1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/rculist.h>
36 
37 #include "rds.h"
38 #include "ib.h"
39 #include "xlist.h"
40 
41 static DEFINE_PER_CPU(unsigned long, clean_list_grace);
42 #define CLEAN_LIST_BUSY_BIT 0
43 
44 /*
45  * This is stored as mr->r_trans_private.
46  */
47 struct rds_ib_mr {
48 	struct rds_ib_device	*device;
49 	struct rds_ib_mr_pool	*pool;
50 	struct ib_fmr		*fmr;
51 
52 	struct xlist_head	xlist;
53 
54 	/* unmap_list is for freeing */
55 	struct list_head	unmap_list;
56 	unsigned int		remap_count;
57 
58 	struct scatterlist	*sg;
59 	unsigned int		sg_len;
60 	u64			*dma;
61 	int			sg_dma_len;
62 };
63 
64 /*
65  * Our own little FMR pool
66  */
67 struct rds_ib_mr_pool {
68 	struct mutex		flush_lock;		/* serialize fmr invalidate */
69 	struct delayed_work	flush_worker;		/* flush worker */
70 
71 	atomic_t		item_count;		/* total # of MRs */
72 	atomic_t		dirty_count;		/* # dirty of MRs */
73 
74 	struct xlist_head	drop_list;		/* MRs that have reached their max_maps limit */
75 	struct xlist_head	free_list;		/* unused MRs */
76 	struct xlist_head	clean_list;		/* global unused & unamapped MRs */
77 	wait_queue_head_t	flush_wait;
78 
79 	atomic_t		free_pinned;		/* memory pinned by free MRs */
80 	unsigned long		max_items;
81 	unsigned long		max_items_soft;
82 	unsigned long		max_free_pinned;
83 	struct ib_fmr_attr	fmr_attr;
84 };
85 
86 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **);
87 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr);
88 static void rds_ib_mr_pool_flush_worker(struct work_struct *work);
89 
rds_ib_get_device(__be32 ipaddr)90 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
91 {
92 	struct rds_ib_device *rds_ibdev;
93 	struct rds_ib_ipaddr *i_ipaddr;
94 
95 	rcu_read_lock();
96 	list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
97 		list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
98 			if (i_ipaddr->ipaddr == ipaddr) {
99 				atomic_inc(&rds_ibdev->refcount);
100 				rcu_read_unlock();
101 				return rds_ibdev;
102 			}
103 		}
104 	}
105 	rcu_read_unlock();
106 
107 	return NULL;
108 }
109 
rds_ib_add_ipaddr(struct rds_ib_device * rds_ibdev,__be32 ipaddr)110 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
111 {
112 	struct rds_ib_ipaddr *i_ipaddr;
113 
114 	i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
115 	if (!i_ipaddr)
116 		return -ENOMEM;
117 
118 	i_ipaddr->ipaddr = ipaddr;
119 
120 	spin_lock_irq(&rds_ibdev->spinlock);
121 	list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
122 	spin_unlock_irq(&rds_ibdev->spinlock);
123 
124 	return 0;
125 }
126 
rds_ib_remove_ipaddr(struct rds_ib_device * rds_ibdev,__be32 ipaddr)127 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
128 {
129 	struct rds_ib_ipaddr *i_ipaddr;
130 	struct rds_ib_ipaddr *to_free = NULL;
131 
132 
133 	spin_lock_irq(&rds_ibdev->spinlock);
134 	list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
135 		if (i_ipaddr->ipaddr == ipaddr) {
136 			list_del_rcu(&i_ipaddr->list);
137 			to_free = i_ipaddr;
138 			break;
139 		}
140 	}
141 	spin_unlock_irq(&rds_ibdev->spinlock);
142 
143 	if (to_free) {
144 		synchronize_rcu();
145 		kfree(to_free);
146 	}
147 }
148 
rds_ib_update_ipaddr(struct rds_ib_device * rds_ibdev,__be32 ipaddr)149 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
150 {
151 	struct rds_ib_device *rds_ibdev_old;
152 
153 	rds_ibdev_old = rds_ib_get_device(ipaddr);
154 	if (rds_ibdev_old) {
155 		rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
156 		rds_ib_dev_put(rds_ibdev_old);
157 	}
158 
159 	return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
160 }
161 
rds_ib_add_conn(struct rds_ib_device * rds_ibdev,struct rds_connection * conn)162 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
163 {
164 	struct rds_ib_connection *ic = conn->c_transport_data;
165 
166 	/* conn was previously on the nodev_conns_list */
167 	spin_lock_irq(&ib_nodev_conns_lock);
168 	BUG_ON(list_empty(&ib_nodev_conns));
169 	BUG_ON(list_empty(&ic->ib_node));
170 	list_del(&ic->ib_node);
171 
172 	spin_lock(&rds_ibdev->spinlock);
173 	list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
174 	spin_unlock(&rds_ibdev->spinlock);
175 	spin_unlock_irq(&ib_nodev_conns_lock);
176 
177 	ic->rds_ibdev = rds_ibdev;
178 	atomic_inc(&rds_ibdev->refcount);
179 }
180 
rds_ib_remove_conn(struct rds_ib_device * rds_ibdev,struct rds_connection * conn)181 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
182 {
183 	struct rds_ib_connection *ic = conn->c_transport_data;
184 
185 	/* place conn on nodev_conns_list */
186 	spin_lock(&ib_nodev_conns_lock);
187 
188 	spin_lock_irq(&rds_ibdev->spinlock);
189 	BUG_ON(list_empty(&ic->ib_node));
190 	list_del(&ic->ib_node);
191 	spin_unlock_irq(&rds_ibdev->spinlock);
192 
193 	list_add_tail(&ic->ib_node, &ib_nodev_conns);
194 
195 	spin_unlock(&ib_nodev_conns_lock);
196 
197 	ic->rds_ibdev = NULL;
198 	rds_ib_dev_put(rds_ibdev);
199 }
200 
rds_ib_destroy_nodev_conns(void)201 void rds_ib_destroy_nodev_conns(void)
202 {
203 	struct rds_ib_connection *ic, *_ic;
204 	LIST_HEAD(tmp_list);
205 
206 	/* avoid calling conn_destroy with irqs off */
207 	spin_lock_irq(&ib_nodev_conns_lock);
208 	list_splice(&ib_nodev_conns, &tmp_list);
209 	spin_unlock_irq(&ib_nodev_conns_lock);
210 
211 	list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
212 		rds_conn_destroy(ic->conn);
213 }
214 
rds_ib_create_mr_pool(struct rds_ib_device * rds_ibdev)215 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev)
216 {
217 	struct rds_ib_mr_pool *pool;
218 
219 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
220 	if (!pool)
221 		return ERR_PTR(-ENOMEM);
222 
223 	INIT_XLIST_HEAD(&pool->free_list);
224 	INIT_XLIST_HEAD(&pool->drop_list);
225 	INIT_XLIST_HEAD(&pool->clean_list);
226 	mutex_init(&pool->flush_lock);
227 	init_waitqueue_head(&pool->flush_wait);
228 	INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
229 
230 	pool->fmr_attr.max_pages = fmr_message_size;
231 	pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
232 	pool->fmr_attr.page_shift = PAGE_SHIFT;
233 	pool->max_free_pinned = rds_ibdev->max_fmrs * fmr_message_size / 4;
234 
235 	/* We never allow more than max_items MRs to be allocated.
236 	 * When we exceed more than max_items_soft, we start freeing
237 	 * items more aggressively.
238 	 * Make sure that max_items > max_items_soft > max_items / 2
239 	 */
240 	pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4;
241 	pool->max_items = rds_ibdev->max_fmrs;
242 
243 	return pool;
244 }
245 
rds_ib_get_mr_info(struct rds_ib_device * rds_ibdev,struct rds_info_rdma_connection * iinfo)246 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
247 {
248 	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
249 
250 	iinfo->rdma_mr_max = pool->max_items;
251 	iinfo->rdma_mr_size = pool->fmr_attr.max_pages;
252 }
253 
rds_ib_destroy_mr_pool(struct rds_ib_mr_pool * pool)254 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
255 {
256 	cancel_delayed_work_sync(&pool->flush_worker);
257 	rds_ib_flush_mr_pool(pool, 1, NULL);
258 	WARN_ON(atomic_read(&pool->item_count));
259 	WARN_ON(atomic_read(&pool->free_pinned));
260 	kfree(pool);
261 }
262 
refill_local(struct rds_ib_mr_pool * pool,struct xlist_head * xl,struct rds_ib_mr ** ibmr_ret)263 static void refill_local(struct rds_ib_mr_pool *pool, struct xlist_head *xl,
264 			 struct rds_ib_mr **ibmr_ret)
265 {
266 	struct xlist_head *ibmr_xl;
267 	ibmr_xl = xlist_del_head_fast(xl);
268 	*ibmr_ret = list_entry(ibmr_xl, struct rds_ib_mr, xlist);
269 }
270 
rds_ib_reuse_fmr(struct rds_ib_mr_pool * pool)271 static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool)
272 {
273 	struct rds_ib_mr *ibmr = NULL;
274 	struct xlist_head *ret;
275 	unsigned long *flag;
276 
277 	preempt_disable();
278 	flag = &__get_cpu_var(clean_list_grace);
279 	set_bit(CLEAN_LIST_BUSY_BIT, flag);
280 	ret = xlist_del_head(&pool->clean_list);
281 	if (ret)
282 		ibmr = list_entry(ret, struct rds_ib_mr, xlist);
283 
284 	clear_bit(CLEAN_LIST_BUSY_BIT, flag);
285 	preempt_enable();
286 	return ibmr;
287 }
288 
wait_clean_list_grace(void)289 static inline void wait_clean_list_grace(void)
290 {
291 	int cpu;
292 	unsigned long *flag;
293 
294 	for_each_online_cpu(cpu) {
295 		flag = &per_cpu(clean_list_grace, cpu);
296 		while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
297 			cpu_relax();
298 	}
299 }
300 
rds_ib_alloc_fmr(struct rds_ib_device * rds_ibdev)301 static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev)
302 {
303 	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
304 	struct rds_ib_mr *ibmr = NULL;
305 	int err = 0, iter = 0;
306 
307 	if (atomic_read(&pool->dirty_count) >= pool->max_items / 10)
308 		schedule_delayed_work(&pool->flush_worker, 10);
309 
310 	while (1) {
311 		ibmr = rds_ib_reuse_fmr(pool);
312 		if (ibmr)
313 			return ibmr;
314 
315 		/* No clean MRs - now we have the choice of either
316 		 * allocating a fresh MR up to the limit imposed by the
317 		 * driver, or flush any dirty unused MRs.
318 		 * We try to avoid stalling in the send path if possible,
319 		 * so we allocate as long as we're allowed to.
320 		 *
321 		 * We're fussy with enforcing the FMR limit, though. If the driver
322 		 * tells us we can't use more than N fmrs, we shouldn't start
323 		 * arguing with it */
324 		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
325 			break;
326 
327 		atomic_dec(&pool->item_count);
328 
329 		if (++iter > 2) {
330 			rds_ib_stats_inc(s_ib_rdma_mr_pool_depleted);
331 			return ERR_PTR(-EAGAIN);
332 		}
333 
334 		/* We do have some empty MRs. Flush them out. */
335 		rds_ib_stats_inc(s_ib_rdma_mr_pool_wait);
336 		rds_ib_flush_mr_pool(pool, 0, &ibmr);
337 		if (ibmr)
338 			return ibmr;
339 	}
340 
341 	ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev));
342 	if (!ibmr) {
343 		err = -ENOMEM;
344 		goto out_no_cigar;
345 	}
346 
347 	memset(ibmr, 0, sizeof(*ibmr));
348 
349 	ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd,
350 			(IB_ACCESS_LOCAL_WRITE |
351 			 IB_ACCESS_REMOTE_READ |
352 			 IB_ACCESS_REMOTE_WRITE|
353 			 IB_ACCESS_REMOTE_ATOMIC),
354 			&pool->fmr_attr);
355 	if (IS_ERR(ibmr->fmr)) {
356 		err = PTR_ERR(ibmr->fmr);
357 		ibmr->fmr = NULL;
358 		printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err);
359 		goto out_no_cigar;
360 	}
361 
362 	rds_ib_stats_inc(s_ib_rdma_mr_alloc);
363 	return ibmr;
364 
365 out_no_cigar:
366 	if (ibmr) {
367 		if (ibmr->fmr)
368 			ib_dealloc_fmr(ibmr->fmr);
369 		kfree(ibmr);
370 	}
371 	atomic_dec(&pool->item_count);
372 	return ERR_PTR(err);
373 }
374 
rds_ib_map_fmr(struct rds_ib_device * rds_ibdev,struct rds_ib_mr * ibmr,struct scatterlist * sg,unsigned int nents)375 static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr,
376 	       struct scatterlist *sg, unsigned int nents)
377 {
378 	struct ib_device *dev = rds_ibdev->dev;
379 	struct scatterlist *scat = sg;
380 	u64 io_addr = 0;
381 	u64 *dma_pages;
382 	u32 len;
383 	int page_cnt, sg_dma_len;
384 	int i, j;
385 	int ret;
386 
387 	sg_dma_len = ib_dma_map_sg(dev, sg, nents,
388 				 DMA_BIDIRECTIONAL);
389 	if (unlikely(!sg_dma_len)) {
390 		printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n");
391 		return -EBUSY;
392 	}
393 
394 	len = 0;
395 	page_cnt = 0;
396 
397 	for (i = 0; i < sg_dma_len; ++i) {
398 		unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
399 		u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
400 
401 		if (dma_addr & ~PAGE_MASK) {
402 			if (i > 0)
403 				return -EINVAL;
404 			else
405 				++page_cnt;
406 		}
407 		if ((dma_addr + dma_len) & ~PAGE_MASK) {
408 			if (i < sg_dma_len - 1)
409 				return -EINVAL;
410 			else
411 				++page_cnt;
412 		}
413 
414 		len += dma_len;
415 	}
416 
417 	page_cnt += len >> PAGE_SHIFT;
418 	if (page_cnt > fmr_message_size)
419 		return -EINVAL;
420 
421 	dma_pages = kmalloc_node(sizeof(u64) * page_cnt, GFP_ATOMIC,
422 				 rdsibdev_to_node(rds_ibdev));
423 	if (!dma_pages)
424 		return -ENOMEM;
425 
426 	page_cnt = 0;
427 	for (i = 0; i < sg_dma_len; ++i) {
428 		unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
429 		u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
430 
431 		for (j = 0; j < dma_len; j += PAGE_SIZE)
432 			dma_pages[page_cnt++] =
433 				(dma_addr & PAGE_MASK) + j;
434 	}
435 
436 	ret = ib_map_phys_fmr(ibmr->fmr,
437 				   dma_pages, page_cnt, io_addr);
438 	if (ret)
439 		goto out;
440 
441 	/* Success - we successfully remapped the MR, so we can
442 	 * safely tear down the old mapping. */
443 	rds_ib_teardown_mr(ibmr);
444 
445 	ibmr->sg = scat;
446 	ibmr->sg_len = nents;
447 	ibmr->sg_dma_len = sg_dma_len;
448 	ibmr->remap_count++;
449 
450 	rds_ib_stats_inc(s_ib_rdma_mr_used);
451 	ret = 0;
452 
453 out:
454 	kfree(dma_pages);
455 
456 	return ret;
457 }
458 
rds_ib_sync_mr(void * trans_private,int direction)459 void rds_ib_sync_mr(void *trans_private, int direction)
460 {
461 	struct rds_ib_mr *ibmr = trans_private;
462 	struct rds_ib_device *rds_ibdev = ibmr->device;
463 
464 	switch (direction) {
465 	case DMA_FROM_DEVICE:
466 		ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
467 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
468 		break;
469 	case DMA_TO_DEVICE:
470 		ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
471 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
472 		break;
473 	}
474 }
475 
__rds_ib_teardown_mr(struct rds_ib_mr * ibmr)476 static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
477 {
478 	struct rds_ib_device *rds_ibdev = ibmr->device;
479 
480 	if (ibmr->sg_dma_len) {
481 		ib_dma_unmap_sg(rds_ibdev->dev,
482 				ibmr->sg, ibmr->sg_len,
483 				DMA_BIDIRECTIONAL);
484 		ibmr->sg_dma_len = 0;
485 	}
486 
487 	/* Release the s/g list */
488 	if (ibmr->sg_len) {
489 		unsigned int i;
490 
491 		for (i = 0; i < ibmr->sg_len; ++i) {
492 			struct page *page = sg_page(&ibmr->sg[i]);
493 
494 			/* FIXME we need a way to tell a r/w MR
495 			 * from a r/o MR */
496 			BUG_ON(irqs_disabled());
497 			set_page_dirty(page);
498 			put_page(page);
499 		}
500 		kfree(ibmr->sg);
501 
502 		ibmr->sg = NULL;
503 		ibmr->sg_len = 0;
504 	}
505 }
506 
rds_ib_teardown_mr(struct rds_ib_mr * ibmr)507 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
508 {
509 	unsigned int pinned = ibmr->sg_len;
510 
511 	__rds_ib_teardown_mr(ibmr);
512 	if (pinned) {
513 		struct rds_ib_device *rds_ibdev = ibmr->device;
514 		struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
515 
516 		atomic_sub(pinned, &pool->free_pinned);
517 	}
518 }
519 
rds_ib_flush_goal(struct rds_ib_mr_pool * pool,int free_all)520 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
521 {
522 	unsigned int item_count;
523 
524 	item_count = atomic_read(&pool->item_count);
525 	if (free_all)
526 		return item_count;
527 
528 	return 0;
529 }
530 
531 /*
532  * given an xlist of mrs, put them all into the list_head for more processing
533  */
xlist_append_to_list(struct xlist_head * xlist,struct list_head * list)534 static void xlist_append_to_list(struct xlist_head *xlist, struct list_head *list)
535 {
536 	struct rds_ib_mr *ibmr;
537 	struct xlist_head splice;
538 	struct xlist_head *cur;
539 	struct xlist_head *next;
540 
541 	splice.next = NULL;
542 	xlist_splice(xlist, &splice);
543 	cur = splice.next;
544 	while (cur) {
545 		next = cur->next;
546 		ibmr = list_entry(cur, struct rds_ib_mr, xlist);
547 		list_add_tail(&ibmr->unmap_list, list);
548 		cur = next;
549 	}
550 }
551 
552 /*
553  * this takes a list head of mrs and turns it into an xlist of clusters.
554  * each cluster has an xlist of MR_CLUSTER_SIZE mrs that are ready for
555  * reuse.
556  */
list_append_to_xlist(struct rds_ib_mr_pool * pool,struct list_head * list,struct xlist_head * xlist,struct xlist_head ** tail_ret)557 static void list_append_to_xlist(struct rds_ib_mr_pool *pool,
558 				struct list_head *list, struct xlist_head *xlist,
559 				struct xlist_head **tail_ret)
560 {
561 	struct rds_ib_mr *ibmr;
562 	struct xlist_head *cur_mr = xlist;
563 	struct xlist_head *tail_mr = NULL;
564 
565 	list_for_each_entry(ibmr, list, unmap_list) {
566 		tail_mr = &ibmr->xlist;
567 		tail_mr->next = NULL;
568 		cur_mr->next = tail_mr;
569 		cur_mr = tail_mr;
570 	}
571 	*tail_ret = tail_mr;
572 }
573 
574 /*
575  * Flush our pool of MRs.
576  * At a minimum, all currently unused MRs are unmapped.
577  * If the number of MRs allocated exceeds the limit, we also try
578  * to free as many MRs as needed to get back to this limit.
579  */
rds_ib_flush_mr_pool(struct rds_ib_mr_pool * pool,int free_all,struct rds_ib_mr ** ibmr_ret)580 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
581 			        int free_all, struct rds_ib_mr **ibmr_ret)
582 {
583 	struct rds_ib_mr *ibmr, *next;
584 	struct xlist_head clean_xlist;
585 	struct xlist_head *clean_tail;
586 	LIST_HEAD(unmap_list);
587 	LIST_HEAD(fmr_list);
588 	unsigned long unpinned = 0;
589 	unsigned int nfreed = 0, ncleaned = 0, free_goal;
590 	int ret = 0;
591 
592 	rds_ib_stats_inc(s_ib_rdma_mr_pool_flush);
593 
594 	if (ibmr_ret) {
595 		DEFINE_WAIT(wait);
596 		while(!mutex_trylock(&pool->flush_lock)) {
597 			ibmr = rds_ib_reuse_fmr(pool);
598 			if (ibmr) {
599 				*ibmr_ret = ibmr;
600 				finish_wait(&pool->flush_wait, &wait);
601 				goto out_nolock;
602 			}
603 
604 			prepare_to_wait(&pool->flush_wait, &wait,
605 					TASK_UNINTERRUPTIBLE);
606 			if (xlist_empty(&pool->clean_list))
607 				schedule();
608 
609 			ibmr = rds_ib_reuse_fmr(pool);
610 			if (ibmr) {
611 				*ibmr_ret = ibmr;
612 				finish_wait(&pool->flush_wait, &wait);
613 				goto out_nolock;
614 			}
615 		}
616 		finish_wait(&pool->flush_wait, &wait);
617 	} else
618 		mutex_lock(&pool->flush_lock);
619 
620 	if (ibmr_ret) {
621 		ibmr = rds_ib_reuse_fmr(pool);
622 		if (ibmr) {
623 			*ibmr_ret = ibmr;
624 			goto out;
625 		}
626 	}
627 
628 	/* Get the list of all MRs to be dropped. Ordering matters -
629 	 * we want to put drop_list ahead of free_list.
630 	 */
631 	xlist_append_to_list(&pool->drop_list, &unmap_list);
632 	xlist_append_to_list(&pool->free_list, &unmap_list);
633 	if (free_all)
634 		xlist_append_to_list(&pool->clean_list, &unmap_list);
635 
636 	free_goal = rds_ib_flush_goal(pool, free_all);
637 
638 	if (list_empty(&unmap_list))
639 		goto out;
640 
641 	/* String all ib_mr's onto one list and hand them to ib_unmap_fmr */
642 	list_for_each_entry(ibmr, &unmap_list, unmap_list)
643 		list_add(&ibmr->fmr->list, &fmr_list);
644 
645 	ret = ib_unmap_fmr(&fmr_list);
646 	if (ret)
647 		printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret);
648 
649 	/* Now we can destroy the DMA mapping and unpin any pages */
650 	list_for_each_entry_safe(ibmr, next, &unmap_list, unmap_list) {
651 		unpinned += ibmr->sg_len;
652 		__rds_ib_teardown_mr(ibmr);
653 		if (nfreed < free_goal || ibmr->remap_count >= pool->fmr_attr.max_maps) {
654 			rds_ib_stats_inc(s_ib_rdma_mr_free);
655 			list_del(&ibmr->unmap_list);
656 			ib_dealloc_fmr(ibmr->fmr);
657 			kfree(ibmr);
658 			nfreed++;
659 		}
660 		ncleaned++;
661 	}
662 
663 	if (!list_empty(&unmap_list)) {
664 		/* we have to make sure that none of the things we're about
665 		 * to put on the clean list would race with other cpus trying
666 		 * to pull items off.  The xlist would explode if we managed to
667 		 * remove something from the clean list and then add it back again
668 		 * while another CPU was spinning on that same item in xlist_del_head.
669 		 *
670 		 * This is pretty unlikely, but just in case  wait for an xlist grace period
671 		 * here before adding anything back into the clean list.
672 		 */
673 		wait_clean_list_grace();
674 
675 		list_append_to_xlist(pool, &unmap_list, &clean_xlist, &clean_tail);
676 		if (ibmr_ret)
677 			refill_local(pool, &clean_xlist, ibmr_ret);
678 
679 		/* refill_local may have emptied our list */
680 		if (!xlist_empty(&clean_xlist))
681 			xlist_add(clean_xlist.next, clean_tail, &pool->clean_list);
682 
683 	}
684 
685 	atomic_sub(unpinned, &pool->free_pinned);
686 	atomic_sub(ncleaned, &pool->dirty_count);
687 	atomic_sub(nfreed, &pool->item_count);
688 
689 out:
690 	mutex_unlock(&pool->flush_lock);
691 	if (waitqueue_active(&pool->flush_wait))
692 		wake_up(&pool->flush_wait);
693 out_nolock:
694 	return ret;
695 }
696 
rds_ib_mr_pool_flush_worker(struct work_struct * work)697 static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
698 {
699 	struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
700 
701 	rds_ib_flush_mr_pool(pool, 0, NULL);
702 }
703 
rds_ib_free_mr(void * trans_private,int invalidate)704 void rds_ib_free_mr(void *trans_private, int invalidate)
705 {
706 	struct rds_ib_mr *ibmr = trans_private;
707 	struct rds_ib_device *rds_ibdev = ibmr->device;
708 	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
709 
710 	rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
711 
712 	/* Return it to the pool's free list */
713 	if (ibmr->remap_count >= pool->fmr_attr.max_maps)
714 		xlist_add(&ibmr->xlist, &ibmr->xlist, &pool->drop_list);
715 	else
716 		xlist_add(&ibmr->xlist, &ibmr->xlist, &pool->free_list);
717 
718 	atomic_add(ibmr->sg_len, &pool->free_pinned);
719 	atomic_inc(&pool->dirty_count);
720 
721 	/* If we've pinned too many pages, request a flush */
722 	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
723 	    atomic_read(&pool->dirty_count) >= pool->max_items / 10)
724 		schedule_delayed_work(&pool->flush_worker, 10);
725 
726 	if (invalidate) {
727 		if (likely(!in_interrupt())) {
728 			rds_ib_flush_mr_pool(pool, 0, NULL);
729 		} else {
730 			/* We get here if the user created a MR marked
731 			 * as use_once and invalidate at the same time. */
732 			schedule_delayed_work(&pool->flush_worker, 10);
733 		}
734 	}
735 
736 	rds_ib_dev_put(rds_ibdev);
737 }
738 
rds_ib_flush_mrs(void)739 void rds_ib_flush_mrs(void)
740 {
741 	struct rds_ib_device *rds_ibdev;
742 
743 	down_read(&rds_ib_devices_lock);
744 	list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
745 		struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
746 
747 		if (pool)
748 			rds_ib_flush_mr_pool(pool, 0, NULL);
749 	}
750 	up_read(&rds_ib_devices_lock);
751 }
752 
rds_ib_get_mr(struct scatterlist * sg,unsigned long nents,struct rds_sock * rs,u32 * key_ret)753 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
754 		    struct rds_sock *rs, u32 *key_ret)
755 {
756 	struct rds_ib_device *rds_ibdev;
757 	struct rds_ib_mr *ibmr = NULL;
758 	int ret;
759 
760 	rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
761 	if (!rds_ibdev) {
762 		ret = -ENODEV;
763 		goto out;
764 	}
765 
766 	if (!rds_ibdev->mr_pool) {
767 		ret = -ENODEV;
768 		goto out;
769 	}
770 
771 	ibmr = rds_ib_alloc_fmr(rds_ibdev);
772 	if (IS_ERR(ibmr))
773 		return ibmr;
774 
775 	ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents);
776 	if (ret == 0)
777 		*key_ret = ibmr->fmr->rkey;
778 	else
779 		printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret);
780 
781 	ibmr->device = rds_ibdev;
782 	rds_ibdev = NULL;
783 
784  out:
785 	if (ret) {
786 		if (ibmr)
787 			rds_ib_free_mr(ibmr, 0);
788 		ibmr = ERR_PTR(ret);
789 	}
790 	if (rds_ibdev)
791 		rds_ib_dev_put(rds_ibdev);
792 	return ibmr;
793 }
794 
795