1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 #include <rdma/lag.h>
54
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
57
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59 struct rdma_ah_attr *ah_attr);
60
61 static const char * const ib_events[] = {
62 [IB_EVENT_CQ_ERR] = "CQ error",
63 [IB_EVENT_QP_FATAL] = "QP fatal error",
64 [IB_EVENT_QP_REQ_ERR] = "QP request error",
65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
66 [IB_EVENT_COMM_EST] = "communication established",
67 [IB_EVENT_SQ_DRAINED] = "send queue drained",
68 [IB_EVENT_PATH_MIG] = "path migration successful",
69 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
70 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
71 [IB_EVENT_PORT_ACTIVE] = "port active",
72 [IB_EVENT_PORT_ERR] = "port error",
73 [IB_EVENT_LID_CHANGE] = "LID change",
74 [IB_EVENT_PKEY_CHANGE] = "P_key change",
75 [IB_EVENT_SM_CHANGE] = "SM change",
76 [IB_EVENT_SRQ_ERR] = "SRQ error",
77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
80 [IB_EVENT_GID_CHANGE] = "GID changed",
81 };
82
ib_event_msg(enum ib_event_type event)83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85 size_t index = event;
86
87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91
92 static const char * const wc_statuses[] = {
93 [IB_WC_SUCCESS] = "success",
94 [IB_WC_LOC_LEN_ERR] = "local length error",
95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
97 [IB_WC_LOC_PROT_ERR] = "local protection error",
98 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
99 [IB_WC_MW_BIND_ERR] = "memory bind operation error",
100 [IB_WC_BAD_RESP_ERR] = "bad response error",
101 [IB_WC_LOC_ACCESS_ERR] = "local access error",
102 [IB_WC_REM_INV_REQ_ERR] = "remote invalid request error",
103 [IB_WC_REM_ACCESS_ERR] = "remote access error",
104 [IB_WC_REM_OP_ERR] = "remote operation error",
105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
109 [IB_WC_REM_ABORT_ERR] = "operation aborted",
110 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
112 [IB_WC_FATAL_ERR] = "fatal error",
113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
114 [IB_WC_GENERAL_ERR] = "general error",
115 };
116
ib_wc_status_msg(enum ib_wc_status status)117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119 size_t index = status;
120
121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125
ib_rate_to_mult(enum ib_rate rate)126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128 switch (rate) {
129 case IB_RATE_2_5_GBPS: return 1;
130 case IB_RATE_5_GBPS: return 2;
131 case IB_RATE_10_GBPS: return 4;
132 case IB_RATE_20_GBPS: return 8;
133 case IB_RATE_30_GBPS: return 12;
134 case IB_RATE_40_GBPS: return 16;
135 case IB_RATE_60_GBPS: return 24;
136 case IB_RATE_80_GBPS: return 32;
137 case IB_RATE_120_GBPS: return 48;
138 case IB_RATE_14_GBPS: return 6;
139 case IB_RATE_56_GBPS: return 22;
140 case IB_RATE_112_GBPS: return 45;
141 case IB_RATE_168_GBPS: return 67;
142 case IB_RATE_25_GBPS: return 10;
143 case IB_RATE_100_GBPS: return 40;
144 case IB_RATE_200_GBPS: return 80;
145 case IB_RATE_300_GBPS: return 120;
146 case IB_RATE_28_GBPS: return 11;
147 case IB_RATE_50_GBPS: return 20;
148 case IB_RATE_400_GBPS: return 160;
149 case IB_RATE_600_GBPS: return 240;
150 default: return -1;
151 }
152 }
153 EXPORT_SYMBOL(ib_rate_to_mult);
154
mult_to_ib_rate(int mult)155 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
156 {
157 switch (mult) {
158 case 1: return IB_RATE_2_5_GBPS;
159 case 2: return IB_RATE_5_GBPS;
160 case 4: return IB_RATE_10_GBPS;
161 case 8: return IB_RATE_20_GBPS;
162 case 12: return IB_RATE_30_GBPS;
163 case 16: return IB_RATE_40_GBPS;
164 case 24: return IB_RATE_60_GBPS;
165 case 32: return IB_RATE_80_GBPS;
166 case 48: return IB_RATE_120_GBPS;
167 case 6: return IB_RATE_14_GBPS;
168 case 22: return IB_RATE_56_GBPS;
169 case 45: return IB_RATE_112_GBPS;
170 case 67: return IB_RATE_168_GBPS;
171 case 10: return IB_RATE_25_GBPS;
172 case 40: return IB_RATE_100_GBPS;
173 case 80: return IB_RATE_200_GBPS;
174 case 120: return IB_RATE_300_GBPS;
175 case 11: return IB_RATE_28_GBPS;
176 case 20: return IB_RATE_50_GBPS;
177 case 160: return IB_RATE_400_GBPS;
178 case 240: return IB_RATE_600_GBPS;
179 default: return IB_RATE_PORT_CURRENT;
180 }
181 }
182 EXPORT_SYMBOL(mult_to_ib_rate);
183
ib_rate_to_mbps(enum ib_rate rate)184 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
185 {
186 switch (rate) {
187 case IB_RATE_2_5_GBPS: return 2500;
188 case IB_RATE_5_GBPS: return 5000;
189 case IB_RATE_10_GBPS: return 10000;
190 case IB_RATE_20_GBPS: return 20000;
191 case IB_RATE_30_GBPS: return 30000;
192 case IB_RATE_40_GBPS: return 40000;
193 case IB_RATE_60_GBPS: return 60000;
194 case IB_RATE_80_GBPS: return 80000;
195 case IB_RATE_120_GBPS: return 120000;
196 case IB_RATE_14_GBPS: return 14062;
197 case IB_RATE_56_GBPS: return 56250;
198 case IB_RATE_112_GBPS: return 112500;
199 case IB_RATE_168_GBPS: return 168750;
200 case IB_RATE_25_GBPS: return 25781;
201 case IB_RATE_100_GBPS: return 103125;
202 case IB_RATE_200_GBPS: return 206250;
203 case IB_RATE_300_GBPS: return 309375;
204 case IB_RATE_28_GBPS: return 28125;
205 case IB_RATE_50_GBPS: return 53125;
206 case IB_RATE_400_GBPS: return 425000;
207 case IB_RATE_600_GBPS: return 637500;
208 default: return -1;
209 }
210 }
211 EXPORT_SYMBOL(ib_rate_to_mbps);
212
213 __attribute_const__ enum rdma_transport_type
rdma_node_get_transport(unsigned int node_type)214 rdma_node_get_transport(unsigned int node_type)
215 {
216
217 if (node_type == RDMA_NODE_USNIC)
218 return RDMA_TRANSPORT_USNIC;
219 if (node_type == RDMA_NODE_USNIC_UDP)
220 return RDMA_TRANSPORT_USNIC_UDP;
221 if (node_type == RDMA_NODE_RNIC)
222 return RDMA_TRANSPORT_IWARP;
223 if (node_type == RDMA_NODE_UNSPECIFIED)
224 return RDMA_TRANSPORT_UNSPECIFIED;
225
226 return RDMA_TRANSPORT_IB;
227 }
228 EXPORT_SYMBOL(rdma_node_get_transport);
229
rdma_port_get_link_layer(struct ib_device * device,u32 port_num)230 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
231 u32 port_num)
232 {
233 enum rdma_transport_type lt;
234 if (device->ops.get_link_layer)
235 return device->ops.get_link_layer(device, port_num);
236
237 lt = rdma_node_get_transport(device->node_type);
238 if (lt == RDMA_TRANSPORT_IB)
239 return IB_LINK_LAYER_INFINIBAND;
240
241 return IB_LINK_LAYER_ETHERNET;
242 }
243 EXPORT_SYMBOL(rdma_port_get_link_layer);
244
245 /* Protection domains */
246
247 /**
248 * __ib_alloc_pd - Allocates an unused protection domain.
249 * @device: The device on which to allocate the protection domain.
250 * @flags: protection domain flags
251 * @caller: caller's build-time module name
252 *
253 * A protection domain object provides an association between QPs, shared
254 * receive queues, address handles, memory regions, and memory windows.
255 *
256 * Every PD has a local_dma_lkey which can be used as the lkey value for local
257 * memory operations.
258 */
__ib_alloc_pd(struct ib_device * device,unsigned int flags,const char * caller)259 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
260 const char *caller)
261 {
262 struct ib_pd *pd;
263 int mr_access_flags = 0;
264 int ret;
265
266 pd = rdma_zalloc_drv_obj(device, ib_pd);
267 if (!pd)
268 return ERR_PTR(-ENOMEM);
269
270 pd->device = device;
271 pd->flags = flags;
272
273 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
274 rdma_restrack_set_name(&pd->res, caller);
275
276 ret = device->ops.alloc_pd(pd, NULL);
277 if (ret) {
278 rdma_restrack_put(&pd->res);
279 kfree(pd);
280 return ERR_PTR(ret);
281 }
282 rdma_restrack_add(&pd->res);
283
284 if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)
285 pd->local_dma_lkey = device->local_dma_lkey;
286 else
287 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
288
289 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
290 pr_warn("%s: enabling unsafe global rkey\n", caller);
291 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
292 }
293
294 if (mr_access_flags) {
295 struct ib_mr *mr;
296
297 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
298 if (IS_ERR(mr)) {
299 ib_dealloc_pd(pd);
300 return ERR_CAST(mr);
301 }
302
303 mr->device = pd->device;
304 mr->pd = pd;
305 mr->type = IB_MR_TYPE_DMA;
306 mr->uobject = NULL;
307 mr->need_inval = false;
308
309 pd->__internal_mr = mr;
310
311 if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY))
312 pd->local_dma_lkey = pd->__internal_mr->lkey;
313
314 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
315 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
316 }
317
318 return pd;
319 }
320 EXPORT_SYMBOL(__ib_alloc_pd);
321
322 /**
323 * ib_dealloc_pd_user - Deallocates a protection domain.
324 * @pd: The protection domain to deallocate.
325 * @udata: Valid user data or NULL for kernel object
326 *
327 * It is an error to call this function while any resources in the pd still
328 * exist. The caller is responsible to synchronously destroy them and
329 * guarantee no new allocations will happen.
330 */
ib_dealloc_pd_user(struct ib_pd * pd,struct ib_udata * udata)331 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
332 {
333 int ret;
334
335 if (pd->__internal_mr) {
336 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
337 WARN_ON(ret);
338 pd->__internal_mr = NULL;
339 }
340
341 ret = pd->device->ops.dealloc_pd(pd, udata);
342 if (ret)
343 return ret;
344
345 rdma_restrack_del(&pd->res);
346 kfree(pd);
347 return ret;
348 }
349 EXPORT_SYMBOL(ib_dealloc_pd_user);
350
351 /* Address handles */
352
353 /**
354 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
355 * @dest: Pointer to destination ah_attr. Contents of the destination
356 * pointer is assumed to be invalid and attribute are overwritten.
357 * @src: Pointer to source ah_attr.
358 */
rdma_copy_ah_attr(struct rdma_ah_attr * dest,const struct rdma_ah_attr * src)359 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
360 const struct rdma_ah_attr *src)
361 {
362 *dest = *src;
363 if (dest->grh.sgid_attr)
364 rdma_hold_gid_attr(dest->grh.sgid_attr);
365 }
366 EXPORT_SYMBOL(rdma_copy_ah_attr);
367
368 /**
369 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
370 * @old: Pointer to existing ah_attr which needs to be replaced.
371 * old is assumed to be valid or zero'd
372 * @new: Pointer to the new ah_attr.
373 *
374 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
375 * old the ah_attr is valid; after that it copies the new attribute and holds
376 * the reference to the replaced ah_attr.
377 */
rdma_replace_ah_attr(struct rdma_ah_attr * old,const struct rdma_ah_attr * new)378 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
379 const struct rdma_ah_attr *new)
380 {
381 rdma_destroy_ah_attr(old);
382 *old = *new;
383 if (old->grh.sgid_attr)
384 rdma_hold_gid_attr(old->grh.sgid_attr);
385 }
386 EXPORT_SYMBOL(rdma_replace_ah_attr);
387
388 /**
389 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
390 * @dest: Pointer to destination ah_attr to copy to.
391 * dest is assumed to be valid or zero'd
392 * @src: Pointer to the new ah_attr.
393 *
394 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
395 * if it is valid. This also transfers ownership of internal references from
396 * src to dest, making src invalid in the process. No new reference of the src
397 * ah_attr is taken.
398 */
rdma_move_ah_attr(struct rdma_ah_attr * dest,struct rdma_ah_attr * src)399 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
400 {
401 rdma_destroy_ah_attr(dest);
402 *dest = *src;
403 src->grh.sgid_attr = NULL;
404 }
405 EXPORT_SYMBOL(rdma_move_ah_attr);
406
407 /*
408 * Validate that the rdma_ah_attr is valid for the device before passing it
409 * off to the driver.
410 */
rdma_check_ah_attr(struct ib_device * device,struct rdma_ah_attr * ah_attr)411 static int rdma_check_ah_attr(struct ib_device *device,
412 struct rdma_ah_attr *ah_attr)
413 {
414 if (!rdma_is_port_valid(device, ah_attr->port_num))
415 return -EINVAL;
416
417 if ((rdma_is_grh_required(device, ah_attr->port_num) ||
418 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
419 !(ah_attr->ah_flags & IB_AH_GRH))
420 return -EINVAL;
421
422 if (ah_attr->grh.sgid_attr) {
423 /*
424 * Make sure the passed sgid_attr is consistent with the
425 * parameters
426 */
427 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
428 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
429 return -EINVAL;
430 }
431 return 0;
432 }
433
434 /*
435 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
436 * On success the caller is responsible to call rdma_unfill_sgid_attr().
437 */
rdma_fill_sgid_attr(struct ib_device * device,struct rdma_ah_attr * ah_attr,const struct ib_gid_attr ** old_sgid_attr)438 static int rdma_fill_sgid_attr(struct ib_device *device,
439 struct rdma_ah_attr *ah_attr,
440 const struct ib_gid_attr **old_sgid_attr)
441 {
442 const struct ib_gid_attr *sgid_attr;
443 struct ib_global_route *grh;
444 int ret;
445
446 *old_sgid_attr = ah_attr->grh.sgid_attr;
447
448 ret = rdma_check_ah_attr(device, ah_attr);
449 if (ret)
450 return ret;
451
452 if (!(ah_attr->ah_flags & IB_AH_GRH))
453 return 0;
454
455 grh = rdma_ah_retrieve_grh(ah_attr);
456 if (grh->sgid_attr)
457 return 0;
458
459 sgid_attr =
460 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
461 if (IS_ERR(sgid_attr))
462 return PTR_ERR(sgid_attr);
463
464 /* Move ownerhip of the kref into the ah_attr */
465 grh->sgid_attr = sgid_attr;
466 return 0;
467 }
468
rdma_unfill_sgid_attr(struct rdma_ah_attr * ah_attr,const struct ib_gid_attr * old_sgid_attr)469 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
470 const struct ib_gid_attr *old_sgid_attr)
471 {
472 /*
473 * Fill didn't change anything, the caller retains ownership of
474 * whatever it passed
475 */
476 if (ah_attr->grh.sgid_attr == old_sgid_attr)
477 return;
478
479 /*
480 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
481 * doesn't see any change in the rdma_ah_attr. If we get here
482 * old_sgid_attr is NULL.
483 */
484 rdma_destroy_ah_attr(ah_attr);
485 }
486
487 static const struct ib_gid_attr *
rdma_update_sgid_attr(struct rdma_ah_attr * ah_attr,const struct ib_gid_attr * old_attr)488 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
489 const struct ib_gid_attr *old_attr)
490 {
491 if (old_attr)
492 rdma_put_gid_attr(old_attr);
493 if (ah_attr->ah_flags & IB_AH_GRH) {
494 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
495 return ah_attr->grh.sgid_attr;
496 }
497 return NULL;
498 }
499
_rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,u32 flags,struct ib_udata * udata,struct net_device * xmit_slave)500 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
501 struct rdma_ah_attr *ah_attr,
502 u32 flags,
503 struct ib_udata *udata,
504 struct net_device *xmit_slave)
505 {
506 struct rdma_ah_init_attr init_attr = {};
507 struct ib_device *device = pd->device;
508 struct ib_ah *ah;
509 int ret;
510
511 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
512
513 if (!udata && !device->ops.create_ah)
514 return ERR_PTR(-EOPNOTSUPP);
515
516 ah = rdma_zalloc_drv_obj_gfp(
517 device, ib_ah,
518 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
519 if (!ah)
520 return ERR_PTR(-ENOMEM);
521
522 ah->device = device;
523 ah->pd = pd;
524 ah->type = ah_attr->type;
525 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
526 init_attr.ah_attr = ah_attr;
527 init_attr.flags = flags;
528 init_attr.xmit_slave = xmit_slave;
529
530 if (udata)
531 ret = device->ops.create_user_ah(ah, &init_attr, udata);
532 else
533 ret = device->ops.create_ah(ah, &init_attr, NULL);
534 if (ret) {
535 kfree(ah);
536 return ERR_PTR(ret);
537 }
538
539 atomic_inc(&pd->usecnt);
540 return ah;
541 }
542
543 /**
544 * rdma_create_ah - Creates an address handle for the
545 * given address vector.
546 * @pd: The protection domain associated with the address handle.
547 * @ah_attr: The attributes of the address vector.
548 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
549 *
550 * It returns 0 on success and returns appropriate error code on error.
551 * The address handle is used to reference a local or global destination
552 * in all UD QP post sends.
553 */
rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,u32 flags)554 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
555 u32 flags)
556 {
557 const struct ib_gid_attr *old_sgid_attr;
558 struct net_device *slave;
559 struct ib_ah *ah;
560 int ret;
561
562 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
563 if (ret)
564 return ERR_PTR(ret);
565 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
566 (flags & RDMA_CREATE_AH_SLEEPABLE) ?
567 GFP_KERNEL : GFP_ATOMIC);
568 if (IS_ERR(slave)) {
569 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
570 return (void *)slave;
571 }
572 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
573 rdma_lag_put_ah_roce_slave(slave);
574 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
575 return ah;
576 }
577 EXPORT_SYMBOL(rdma_create_ah);
578
579 /**
580 * rdma_create_user_ah - Creates an address handle for the
581 * given address vector.
582 * It resolves destination mac address for ah attribute of RoCE type.
583 * @pd: The protection domain associated with the address handle.
584 * @ah_attr: The attributes of the address vector.
585 * @udata: pointer to user's input output buffer information need by
586 * provider driver.
587 *
588 * It returns 0 on success and returns appropriate error code on error.
589 * The address handle is used to reference a local or global destination
590 * in all UD QP post sends.
591 */
rdma_create_user_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,struct ib_udata * udata)592 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
593 struct rdma_ah_attr *ah_attr,
594 struct ib_udata *udata)
595 {
596 const struct ib_gid_attr *old_sgid_attr;
597 struct ib_ah *ah;
598 int err;
599
600 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
601 if (err)
602 return ERR_PTR(err);
603
604 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
605 err = ib_resolve_eth_dmac(pd->device, ah_attr);
606 if (err) {
607 ah = ERR_PTR(err);
608 goto out;
609 }
610 }
611
612 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
613 udata, NULL);
614
615 out:
616 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
617 return ah;
618 }
619 EXPORT_SYMBOL(rdma_create_user_ah);
620
ib_get_rdma_header_version(const union rdma_network_hdr * hdr)621 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
622 {
623 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
624 struct iphdr ip4h_checked;
625 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
626
627 /* If it's IPv6, the version must be 6, otherwise, the first
628 * 20 bytes (before the IPv4 header) are garbled.
629 */
630 if (ip6h->version != 6)
631 return (ip4h->version == 4) ? 4 : 0;
632 /* version may be 6 or 4 because the first 20 bytes could be garbled */
633
634 /* RoCE v2 requires no options, thus header length
635 * must be 5 words
636 */
637 if (ip4h->ihl != 5)
638 return 6;
639
640 /* Verify checksum.
641 * We can't write on scattered buffers so we need to copy to
642 * temp buffer.
643 */
644 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
645 ip4h_checked.check = 0;
646 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
647 /* if IPv4 header checksum is OK, believe it */
648 if (ip4h->check == ip4h_checked.check)
649 return 4;
650 return 6;
651 }
652 EXPORT_SYMBOL(ib_get_rdma_header_version);
653
ib_get_net_type_by_grh(struct ib_device * device,u32 port_num,const struct ib_grh * grh)654 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
655 u32 port_num,
656 const struct ib_grh *grh)
657 {
658 int grh_version;
659
660 if (rdma_protocol_ib(device, port_num))
661 return RDMA_NETWORK_IB;
662
663 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
664
665 if (grh_version == 4)
666 return RDMA_NETWORK_IPV4;
667
668 if (grh->next_hdr == IPPROTO_UDP)
669 return RDMA_NETWORK_IPV6;
670
671 return RDMA_NETWORK_ROCE_V1;
672 }
673
674 struct find_gid_index_context {
675 u16 vlan_id;
676 enum ib_gid_type gid_type;
677 };
678
find_gid_index(const union ib_gid * gid,const struct ib_gid_attr * gid_attr,void * context)679 static bool find_gid_index(const union ib_gid *gid,
680 const struct ib_gid_attr *gid_attr,
681 void *context)
682 {
683 struct find_gid_index_context *ctx = context;
684 u16 vlan_id = 0xffff;
685 int ret;
686
687 if (ctx->gid_type != gid_attr->gid_type)
688 return false;
689
690 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
691 if (ret)
692 return false;
693
694 return ctx->vlan_id == vlan_id;
695 }
696
697 static const struct ib_gid_attr *
get_sgid_attr_from_eth(struct ib_device * device,u32 port_num,u16 vlan_id,const union ib_gid * sgid,enum ib_gid_type gid_type)698 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
699 u16 vlan_id, const union ib_gid *sgid,
700 enum ib_gid_type gid_type)
701 {
702 struct find_gid_index_context context = {.vlan_id = vlan_id,
703 .gid_type = gid_type};
704
705 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
706 &context);
707 }
708
ib_get_gids_from_rdma_hdr(const union rdma_network_hdr * hdr,enum rdma_network_type net_type,union ib_gid * sgid,union ib_gid * dgid)709 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
710 enum rdma_network_type net_type,
711 union ib_gid *sgid, union ib_gid *dgid)
712 {
713 struct sockaddr_in src_in;
714 struct sockaddr_in dst_in;
715 __be32 src_saddr, dst_saddr;
716
717 if (!sgid || !dgid)
718 return -EINVAL;
719
720 if (net_type == RDMA_NETWORK_IPV4) {
721 memcpy(&src_in.sin_addr.s_addr,
722 &hdr->roce4grh.saddr, 4);
723 memcpy(&dst_in.sin_addr.s_addr,
724 &hdr->roce4grh.daddr, 4);
725 src_saddr = src_in.sin_addr.s_addr;
726 dst_saddr = dst_in.sin_addr.s_addr;
727 ipv6_addr_set_v4mapped(src_saddr,
728 (struct in6_addr *)sgid);
729 ipv6_addr_set_v4mapped(dst_saddr,
730 (struct in6_addr *)dgid);
731 return 0;
732 } else if (net_type == RDMA_NETWORK_IPV6 ||
733 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
734 *dgid = hdr->ibgrh.dgid;
735 *sgid = hdr->ibgrh.sgid;
736 return 0;
737 } else {
738 return -EINVAL;
739 }
740 }
741 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
742
743 /* Resolve destination mac address and hop limit for unicast destination
744 * GID entry, considering the source GID entry as well.
745 * ah_attribute must have have valid port_num, sgid_index.
746 */
ib_resolve_unicast_gid_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)747 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
748 struct rdma_ah_attr *ah_attr)
749 {
750 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
751 const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
752 int hop_limit = 0xff;
753 int ret = 0;
754
755 /* If destination is link local and source GID is RoCEv1,
756 * IP stack is not used.
757 */
758 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
759 sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
760 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
761 ah_attr->roce.dmac);
762 return ret;
763 }
764
765 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
766 ah_attr->roce.dmac,
767 sgid_attr, &hop_limit);
768
769 grh->hop_limit = hop_limit;
770 return ret;
771 }
772
773 /*
774 * This function initializes address handle attributes from the incoming packet.
775 * Incoming packet has dgid of the receiver node on which this code is
776 * getting executed and, sgid contains the GID of the sender.
777 *
778 * When resolving mac address of destination, the arrived dgid is used
779 * as sgid and, sgid is used as dgid because sgid contains destinations
780 * GID whom to respond to.
781 *
782 * On success the caller is responsible to call rdma_destroy_ah_attr on the
783 * attr.
784 */
ib_init_ah_attr_from_wc(struct ib_device * device,u32 port_num,const struct ib_wc * wc,const struct ib_grh * grh,struct rdma_ah_attr * ah_attr)785 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
786 const struct ib_wc *wc, const struct ib_grh *grh,
787 struct rdma_ah_attr *ah_attr)
788 {
789 u32 flow_class;
790 int ret;
791 enum rdma_network_type net_type = RDMA_NETWORK_IB;
792 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
793 const struct ib_gid_attr *sgid_attr;
794 int hoplimit = 0xff;
795 union ib_gid dgid;
796 union ib_gid sgid;
797
798 might_sleep();
799
800 memset(ah_attr, 0, sizeof *ah_attr);
801 ah_attr->type = rdma_ah_find_type(device, port_num);
802 if (rdma_cap_eth_ah(device, port_num)) {
803 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
804 net_type = wc->network_hdr_type;
805 else
806 net_type = ib_get_net_type_by_grh(device, port_num, grh);
807 gid_type = ib_network_to_gid_type(net_type);
808 }
809 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
810 &sgid, &dgid);
811 if (ret)
812 return ret;
813
814 rdma_ah_set_sl(ah_attr, wc->sl);
815 rdma_ah_set_port_num(ah_attr, port_num);
816
817 if (rdma_protocol_roce(device, port_num)) {
818 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
819 wc->vlan_id : 0xffff;
820
821 if (!(wc->wc_flags & IB_WC_GRH))
822 return -EPROTOTYPE;
823
824 sgid_attr = get_sgid_attr_from_eth(device, port_num,
825 vlan_id, &dgid,
826 gid_type);
827 if (IS_ERR(sgid_attr))
828 return PTR_ERR(sgid_attr);
829
830 flow_class = be32_to_cpu(grh->version_tclass_flow);
831 rdma_move_grh_sgid_attr(ah_attr,
832 &sgid,
833 flow_class & 0xFFFFF,
834 hoplimit,
835 (flow_class >> 20) & 0xFF,
836 sgid_attr);
837
838 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
839 if (ret)
840 rdma_destroy_ah_attr(ah_attr);
841
842 return ret;
843 } else {
844 rdma_ah_set_dlid(ah_attr, wc->slid);
845 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
846
847 if ((wc->wc_flags & IB_WC_GRH) == 0)
848 return 0;
849
850 if (dgid.global.interface_id !=
851 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
852 sgid_attr = rdma_find_gid_by_port(
853 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
854 } else
855 sgid_attr = rdma_get_gid_attr(device, port_num, 0);
856
857 if (IS_ERR(sgid_attr))
858 return PTR_ERR(sgid_attr);
859 flow_class = be32_to_cpu(grh->version_tclass_flow);
860 rdma_move_grh_sgid_attr(ah_attr,
861 &sgid,
862 flow_class & 0xFFFFF,
863 hoplimit,
864 (flow_class >> 20) & 0xFF,
865 sgid_attr);
866
867 return 0;
868 }
869 }
870 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
871
872 /**
873 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
874 * of the reference
875 *
876 * @attr: Pointer to AH attribute structure
877 * @dgid: Destination GID
878 * @flow_label: Flow label
879 * @hop_limit: Hop limit
880 * @traffic_class: traffic class
881 * @sgid_attr: Pointer to SGID attribute
882 *
883 * This takes ownership of the sgid_attr reference. The caller must ensure
884 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
885 * calling this function.
886 */
rdma_move_grh_sgid_attr(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 hop_limit,u8 traffic_class,const struct ib_gid_attr * sgid_attr)887 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
888 u32 flow_label, u8 hop_limit, u8 traffic_class,
889 const struct ib_gid_attr *sgid_attr)
890 {
891 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
892 traffic_class);
893 attr->grh.sgid_attr = sgid_attr;
894 }
895 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
896
897 /**
898 * rdma_destroy_ah_attr - Release reference to SGID attribute of
899 * ah attribute.
900 * @ah_attr: Pointer to ah attribute
901 *
902 * Release reference to the SGID attribute of the ah attribute if it is
903 * non NULL. It is safe to call this multiple times, and safe to call it on
904 * a zero initialized ah_attr.
905 */
rdma_destroy_ah_attr(struct rdma_ah_attr * ah_attr)906 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
907 {
908 if (ah_attr->grh.sgid_attr) {
909 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
910 ah_attr->grh.sgid_attr = NULL;
911 }
912 }
913 EXPORT_SYMBOL(rdma_destroy_ah_attr);
914
ib_create_ah_from_wc(struct ib_pd * pd,const struct ib_wc * wc,const struct ib_grh * grh,u32 port_num)915 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
916 const struct ib_grh *grh, u32 port_num)
917 {
918 struct rdma_ah_attr ah_attr;
919 struct ib_ah *ah;
920 int ret;
921
922 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
923 if (ret)
924 return ERR_PTR(ret);
925
926 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
927
928 rdma_destroy_ah_attr(&ah_attr);
929 return ah;
930 }
931 EXPORT_SYMBOL(ib_create_ah_from_wc);
932
rdma_modify_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)933 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
934 {
935 const struct ib_gid_attr *old_sgid_attr;
936 int ret;
937
938 if (ah->type != ah_attr->type)
939 return -EINVAL;
940
941 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
942 if (ret)
943 return ret;
944
945 ret = ah->device->ops.modify_ah ?
946 ah->device->ops.modify_ah(ah, ah_attr) :
947 -EOPNOTSUPP;
948
949 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
950 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
951 return ret;
952 }
953 EXPORT_SYMBOL(rdma_modify_ah);
954
rdma_query_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)955 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
956 {
957 ah_attr->grh.sgid_attr = NULL;
958
959 return ah->device->ops.query_ah ?
960 ah->device->ops.query_ah(ah, ah_attr) :
961 -EOPNOTSUPP;
962 }
963 EXPORT_SYMBOL(rdma_query_ah);
964
rdma_destroy_ah_user(struct ib_ah * ah,u32 flags,struct ib_udata * udata)965 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
966 {
967 const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
968 struct ib_pd *pd;
969 int ret;
970
971 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
972
973 pd = ah->pd;
974
975 ret = ah->device->ops.destroy_ah(ah, flags);
976 if (ret)
977 return ret;
978
979 atomic_dec(&pd->usecnt);
980 if (sgid_attr)
981 rdma_put_gid_attr(sgid_attr);
982
983 kfree(ah);
984 return ret;
985 }
986 EXPORT_SYMBOL(rdma_destroy_ah_user);
987
988 /* Shared receive queues */
989
990 /**
991 * ib_create_srq_user - Creates a SRQ associated with the specified protection
992 * domain.
993 * @pd: The protection domain associated with the SRQ.
994 * @srq_init_attr: A list of initial attributes required to create the
995 * SRQ. If SRQ creation succeeds, then the attributes are updated to
996 * the actual capabilities of the created SRQ.
997 * @uobject: uobject pointer if this is not a kernel SRQ
998 * @udata: udata pointer if this is not a kernel SRQ
999 *
1000 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1001 * requested size of the SRQ, and set to the actual values allocated
1002 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1003 * will always be at least as large as the requested values.
1004 */
ib_create_srq_user(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr,struct ib_usrq_object * uobject,struct ib_udata * udata)1005 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1006 struct ib_srq_init_attr *srq_init_attr,
1007 struct ib_usrq_object *uobject,
1008 struct ib_udata *udata)
1009 {
1010 struct ib_srq *srq;
1011 int ret;
1012
1013 srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1014 if (!srq)
1015 return ERR_PTR(-ENOMEM);
1016
1017 srq->device = pd->device;
1018 srq->pd = pd;
1019 srq->event_handler = srq_init_attr->event_handler;
1020 srq->srq_context = srq_init_attr->srq_context;
1021 srq->srq_type = srq_init_attr->srq_type;
1022 srq->uobject = uobject;
1023
1024 if (ib_srq_has_cq(srq->srq_type)) {
1025 srq->ext.cq = srq_init_attr->ext.cq;
1026 atomic_inc(&srq->ext.cq->usecnt);
1027 }
1028 if (srq->srq_type == IB_SRQT_XRC) {
1029 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1030 if (srq->ext.xrc.xrcd)
1031 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1032 }
1033 atomic_inc(&pd->usecnt);
1034
1035 rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1036 rdma_restrack_parent_name(&srq->res, &pd->res);
1037
1038 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1039 if (ret) {
1040 rdma_restrack_put(&srq->res);
1041 atomic_dec(&srq->pd->usecnt);
1042 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1043 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1044 if (ib_srq_has_cq(srq->srq_type))
1045 atomic_dec(&srq->ext.cq->usecnt);
1046 kfree(srq);
1047 return ERR_PTR(ret);
1048 }
1049
1050 rdma_restrack_add(&srq->res);
1051
1052 return srq;
1053 }
1054 EXPORT_SYMBOL(ib_create_srq_user);
1055
ib_modify_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr,enum ib_srq_attr_mask srq_attr_mask)1056 int ib_modify_srq(struct ib_srq *srq,
1057 struct ib_srq_attr *srq_attr,
1058 enum ib_srq_attr_mask srq_attr_mask)
1059 {
1060 return srq->device->ops.modify_srq ?
1061 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1062 NULL) : -EOPNOTSUPP;
1063 }
1064 EXPORT_SYMBOL(ib_modify_srq);
1065
ib_query_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr)1066 int ib_query_srq(struct ib_srq *srq,
1067 struct ib_srq_attr *srq_attr)
1068 {
1069 return srq->device->ops.query_srq ?
1070 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1071 }
1072 EXPORT_SYMBOL(ib_query_srq);
1073
ib_destroy_srq_user(struct ib_srq * srq,struct ib_udata * udata)1074 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1075 {
1076 int ret;
1077
1078 if (atomic_read(&srq->usecnt))
1079 return -EBUSY;
1080
1081 ret = srq->device->ops.destroy_srq(srq, udata);
1082 if (ret)
1083 return ret;
1084
1085 atomic_dec(&srq->pd->usecnt);
1086 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1087 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1088 if (ib_srq_has_cq(srq->srq_type))
1089 atomic_dec(&srq->ext.cq->usecnt);
1090 rdma_restrack_del(&srq->res);
1091 kfree(srq);
1092
1093 return ret;
1094 }
1095 EXPORT_SYMBOL(ib_destroy_srq_user);
1096
1097 /* Queue pairs */
1098
__ib_shared_qp_event_handler(struct ib_event * event,void * context)1099 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1100 {
1101 struct ib_qp *qp = context;
1102 unsigned long flags;
1103
1104 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1105 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1106 if (event->element.qp->event_handler)
1107 event->element.qp->event_handler(event, event->element.qp->qp_context);
1108 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1109 }
1110
__ib_open_qp(struct ib_qp * real_qp,void (* event_handler)(struct ib_event *,void *),void * qp_context)1111 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1112 void (*event_handler)(struct ib_event *, void *),
1113 void *qp_context)
1114 {
1115 struct ib_qp *qp;
1116 unsigned long flags;
1117 int err;
1118
1119 qp = kzalloc(sizeof *qp, GFP_KERNEL);
1120 if (!qp)
1121 return ERR_PTR(-ENOMEM);
1122
1123 qp->real_qp = real_qp;
1124 err = ib_open_shared_qp_security(qp, real_qp->device);
1125 if (err) {
1126 kfree(qp);
1127 return ERR_PTR(err);
1128 }
1129
1130 qp->real_qp = real_qp;
1131 atomic_inc(&real_qp->usecnt);
1132 qp->device = real_qp->device;
1133 qp->event_handler = event_handler;
1134 qp->qp_context = qp_context;
1135 qp->qp_num = real_qp->qp_num;
1136 qp->qp_type = real_qp->qp_type;
1137
1138 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1139 list_add(&qp->open_list, &real_qp->open_list);
1140 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1141
1142 return qp;
1143 }
1144
ib_open_qp(struct ib_xrcd * xrcd,struct ib_qp_open_attr * qp_open_attr)1145 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1146 struct ib_qp_open_attr *qp_open_attr)
1147 {
1148 struct ib_qp *qp, *real_qp;
1149
1150 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1151 return ERR_PTR(-EINVAL);
1152
1153 down_read(&xrcd->tgt_qps_rwsem);
1154 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1155 if (!real_qp) {
1156 up_read(&xrcd->tgt_qps_rwsem);
1157 return ERR_PTR(-EINVAL);
1158 }
1159 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1160 qp_open_attr->qp_context);
1161 up_read(&xrcd->tgt_qps_rwsem);
1162 return qp;
1163 }
1164 EXPORT_SYMBOL(ib_open_qp);
1165
create_xrc_qp_user(struct ib_qp * qp,struct ib_qp_init_attr * qp_init_attr)1166 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1167 struct ib_qp_init_attr *qp_init_attr)
1168 {
1169 struct ib_qp *real_qp = qp;
1170 int err;
1171
1172 qp->event_handler = __ib_shared_qp_event_handler;
1173 qp->qp_context = qp;
1174 qp->pd = NULL;
1175 qp->send_cq = qp->recv_cq = NULL;
1176 qp->srq = NULL;
1177 qp->xrcd = qp_init_attr->xrcd;
1178 atomic_inc(&qp_init_attr->xrcd->usecnt);
1179 INIT_LIST_HEAD(&qp->open_list);
1180
1181 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1182 qp_init_attr->qp_context);
1183 if (IS_ERR(qp))
1184 return qp;
1185
1186 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1187 real_qp, GFP_KERNEL));
1188 if (err) {
1189 ib_close_qp(qp);
1190 return ERR_PTR(err);
1191 }
1192 return qp;
1193 }
1194
create_qp(struct ib_device * dev,struct ib_pd * pd,struct ib_qp_init_attr * attr,struct ib_udata * udata,struct ib_uqp_object * uobj,const char * caller)1195 static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1196 struct ib_qp_init_attr *attr,
1197 struct ib_udata *udata,
1198 struct ib_uqp_object *uobj, const char *caller)
1199 {
1200 struct ib_udata dummy = {};
1201 struct ib_qp *qp;
1202 int ret;
1203
1204 if (!dev->ops.create_qp)
1205 return ERR_PTR(-EOPNOTSUPP);
1206
1207 qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1208 if (!qp)
1209 return ERR_PTR(-ENOMEM);
1210
1211 qp->device = dev;
1212 qp->pd = pd;
1213 qp->uobject = uobj;
1214 qp->real_qp = qp;
1215
1216 qp->qp_type = attr->qp_type;
1217 qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1218 qp->srq = attr->srq;
1219 qp->event_handler = attr->event_handler;
1220 qp->port = attr->port_num;
1221 qp->qp_context = attr->qp_context;
1222
1223 spin_lock_init(&qp->mr_lock);
1224 INIT_LIST_HEAD(&qp->rdma_mrs);
1225 INIT_LIST_HEAD(&qp->sig_mrs);
1226
1227 qp->send_cq = attr->send_cq;
1228 qp->recv_cq = attr->recv_cq;
1229
1230 rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1231 WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1232 rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1233 ret = dev->ops.create_qp(qp, attr, udata);
1234 if (ret)
1235 goto err_create;
1236
1237 /*
1238 * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1239 * Unfortunately, it is not an easy task to fix that driver.
1240 */
1241 qp->send_cq = attr->send_cq;
1242 qp->recv_cq = attr->recv_cq;
1243
1244 ret = ib_create_qp_security(qp, dev);
1245 if (ret)
1246 goto err_security;
1247
1248 rdma_restrack_add(&qp->res);
1249 return qp;
1250
1251 err_security:
1252 qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1253 err_create:
1254 rdma_restrack_put(&qp->res);
1255 kfree(qp);
1256 return ERR_PTR(ret);
1257
1258 }
1259
1260 /**
1261 * ib_create_qp_user - Creates a QP associated with the specified protection
1262 * domain.
1263 * @dev: IB device
1264 * @pd: The protection domain associated with the QP.
1265 * @attr: A list of initial attributes required to create the
1266 * QP. If QP creation succeeds, then the attributes are updated to
1267 * the actual capabilities of the created QP.
1268 * @udata: User data
1269 * @uobj: uverbs obect
1270 * @caller: caller's build-time module name
1271 */
ib_create_qp_user(struct ib_device * dev,struct ib_pd * pd,struct ib_qp_init_attr * attr,struct ib_udata * udata,struct ib_uqp_object * uobj,const char * caller)1272 struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1273 struct ib_qp_init_attr *attr,
1274 struct ib_udata *udata,
1275 struct ib_uqp_object *uobj, const char *caller)
1276 {
1277 struct ib_qp *qp, *xrc_qp;
1278
1279 if (attr->qp_type == IB_QPT_XRC_TGT)
1280 qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1281 else
1282 qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1283 if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1284 return qp;
1285
1286 xrc_qp = create_xrc_qp_user(qp, attr);
1287 if (IS_ERR(xrc_qp)) {
1288 ib_destroy_qp(qp);
1289 return xrc_qp;
1290 }
1291
1292 xrc_qp->uobject = uobj;
1293 return xrc_qp;
1294 }
1295 EXPORT_SYMBOL(ib_create_qp_user);
1296
ib_qp_usecnt_inc(struct ib_qp * qp)1297 void ib_qp_usecnt_inc(struct ib_qp *qp)
1298 {
1299 if (qp->pd)
1300 atomic_inc(&qp->pd->usecnt);
1301 if (qp->send_cq)
1302 atomic_inc(&qp->send_cq->usecnt);
1303 if (qp->recv_cq)
1304 atomic_inc(&qp->recv_cq->usecnt);
1305 if (qp->srq)
1306 atomic_inc(&qp->srq->usecnt);
1307 if (qp->rwq_ind_tbl)
1308 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1309 }
1310 EXPORT_SYMBOL(ib_qp_usecnt_inc);
1311
ib_qp_usecnt_dec(struct ib_qp * qp)1312 void ib_qp_usecnt_dec(struct ib_qp *qp)
1313 {
1314 if (qp->rwq_ind_tbl)
1315 atomic_dec(&qp->rwq_ind_tbl->usecnt);
1316 if (qp->srq)
1317 atomic_dec(&qp->srq->usecnt);
1318 if (qp->recv_cq)
1319 atomic_dec(&qp->recv_cq->usecnt);
1320 if (qp->send_cq)
1321 atomic_dec(&qp->send_cq->usecnt);
1322 if (qp->pd)
1323 atomic_dec(&qp->pd->usecnt);
1324 }
1325 EXPORT_SYMBOL(ib_qp_usecnt_dec);
1326
ib_create_qp_kernel(struct ib_pd * pd,struct ib_qp_init_attr * qp_init_attr,const char * caller)1327 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1328 struct ib_qp_init_attr *qp_init_attr,
1329 const char *caller)
1330 {
1331 struct ib_device *device = pd->device;
1332 struct ib_qp *qp;
1333 int ret;
1334
1335 /*
1336 * If the callers is using the RDMA API calculate the resources
1337 * needed for the RDMA READ/WRITE operations.
1338 *
1339 * Note that these callers need to pass in a port number.
1340 */
1341 if (qp_init_attr->cap.max_rdma_ctxs)
1342 rdma_rw_init_qp(device, qp_init_attr);
1343
1344 qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1345 if (IS_ERR(qp))
1346 return qp;
1347
1348 ib_qp_usecnt_inc(qp);
1349
1350 if (qp_init_attr->cap.max_rdma_ctxs) {
1351 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1352 if (ret)
1353 goto err;
1354 }
1355
1356 /*
1357 * Note: all hw drivers guarantee that max_send_sge is lower than
1358 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1359 * max_send_sge <= max_sge_rd.
1360 */
1361 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1362 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1363 device->attrs.max_sge_rd);
1364 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1365 qp->integrity_en = true;
1366
1367 return qp;
1368
1369 err:
1370 ib_destroy_qp(qp);
1371 return ERR_PTR(ret);
1372
1373 }
1374 EXPORT_SYMBOL(ib_create_qp_kernel);
1375
1376 static const struct {
1377 int valid;
1378 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
1379 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
1380 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1381 [IB_QPS_RESET] = {
1382 [IB_QPS_RESET] = { .valid = 1 },
1383 [IB_QPS_INIT] = {
1384 .valid = 1,
1385 .req_param = {
1386 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1387 IB_QP_PORT |
1388 IB_QP_QKEY),
1389 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1390 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1391 IB_QP_PORT |
1392 IB_QP_ACCESS_FLAGS),
1393 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1394 IB_QP_PORT |
1395 IB_QP_ACCESS_FLAGS),
1396 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1397 IB_QP_PORT |
1398 IB_QP_ACCESS_FLAGS),
1399 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1400 IB_QP_PORT |
1401 IB_QP_ACCESS_FLAGS),
1402 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1403 IB_QP_QKEY),
1404 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1405 IB_QP_QKEY),
1406 }
1407 },
1408 },
1409 [IB_QPS_INIT] = {
1410 [IB_QPS_RESET] = { .valid = 1 },
1411 [IB_QPS_ERR] = { .valid = 1 },
1412 [IB_QPS_INIT] = {
1413 .valid = 1,
1414 .opt_param = {
1415 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1416 IB_QP_PORT |
1417 IB_QP_QKEY),
1418 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1419 IB_QP_PORT |
1420 IB_QP_ACCESS_FLAGS),
1421 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1422 IB_QP_PORT |
1423 IB_QP_ACCESS_FLAGS),
1424 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1425 IB_QP_PORT |
1426 IB_QP_ACCESS_FLAGS),
1427 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1428 IB_QP_PORT |
1429 IB_QP_ACCESS_FLAGS),
1430 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1431 IB_QP_QKEY),
1432 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1433 IB_QP_QKEY),
1434 }
1435 },
1436 [IB_QPS_RTR] = {
1437 .valid = 1,
1438 .req_param = {
1439 [IB_QPT_UC] = (IB_QP_AV |
1440 IB_QP_PATH_MTU |
1441 IB_QP_DEST_QPN |
1442 IB_QP_RQ_PSN),
1443 [IB_QPT_RC] = (IB_QP_AV |
1444 IB_QP_PATH_MTU |
1445 IB_QP_DEST_QPN |
1446 IB_QP_RQ_PSN |
1447 IB_QP_MAX_DEST_RD_ATOMIC |
1448 IB_QP_MIN_RNR_TIMER),
1449 [IB_QPT_XRC_INI] = (IB_QP_AV |
1450 IB_QP_PATH_MTU |
1451 IB_QP_DEST_QPN |
1452 IB_QP_RQ_PSN),
1453 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1454 IB_QP_PATH_MTU |
1455 IB_QP_DEST_QPN |
1456 IB_QP_RQ_PSN |
1457 IB_QP_MAX_DEST_RD_ATOMIC |
1458 IB_QP_MIN_RNR_TIMER),
1459 },
1460 .opt_param = {
1461 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1462 IB_QP_QKEY),
1463 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1464 IB_QP_ACCESS_FLAGS |
1465 IB_QP_PKEY_INDEX),
1466 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1467 IB_QP_ACCESS_FLAGS |
1468 IB_QP_PKEY_INDEX),
1469 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1470 IB_QP_ACCESS_FLAGS |
1471 IB_QP_PKEY_INDEX),
1472 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1473 IB_QP_ACCESS_FLAGS |
1474 IB_QP_PKEY_INDEX),
1475 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1476 IB_QP_QKEY),
1477 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1478 IB_QP_QKEY),
1479 },
1480 },
1481 },
1482 [IB_QPS_RTR] = {
1483 [IB_QPS_RESET] = { .valid = 1 },
1484 [IB_QPS_ERR] = { .valid = 1 },
1485 [IB_QPS_RTS] = {
1486 .valid = 1,
1487 .req_param = {
1488 [IB_QPT_UD] = IB_QP_SQ_PSN,
1489 [IB_QPT_UC] = IB_QP_SQ_PSN,
1490 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1491 IB_QP_RETRY_CNT |
1492 IB_QP_RNR_RETRY |
1493 IB_QP_SQ_PSN |
1494 IB_QP_MAX_QP_RD_ATOMIC),
1495 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1496 IB_QP_RETRY_CNT |
1497 IB_QP_RNR_RETRY |
1498 IB_QP_SQ_PSN |
1499 IB_QP_MAX_QP_RD_ATOMIC),
1500 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1501 IB_QP_SQ_PSN),
1502 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1503 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1504 },
1505 .opt_param = {
1506 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1507 IB_QP_QKEY),
1508 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1509 IB_QP_ALT_PATH |
1510 IB_QP_ACCESS_FLAGS |
1511 IB_QP_PATH_MIG_STATE),
1512 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1513 IB_QP_ALT_PATH |
1514 IB_QP_ACCESS_FLAGS |
1515 IB_QP_MIN_RNR_TIMER |
1516 IB_QP_PATH_MIG_STATE),
1517 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1518 IB_QP_ALT_PATH |
1519 IB_QP_ACCESS_FLAGS |
1520 IB_QP_PATH_MIG_STATE),
1521 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1522 IB_QP_ALT_PATH |
1523 IB_QP_ACCESS_FLAGS |
1524 IB_QP_MIN_RNR_TIMER |
1525 IB_QP_PATH_MIG_STATE),
1526 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1527 IB_QP_QKEY),
1528 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1529 IB_QP_QKEY),
1530 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1531 }
1532 }
1533 },
1534 [IB_QPS_RTS] = {
1535 [IB_QPS_RESET] = { .valid = 1 },
1536 [IB_QPS_ERR] = { .valid = 1 },
1537 [IB_QPS_RTS] = {
1538 .valid = 1,
1539 .opt_param = {
1540 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1541 IB_QP_QKEY),
1542 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1543 IB_QP_ACCESS_FLAGS |
1544 IB_QP_ALT_PATH |
1545 IB_QP_PATH_MIG_STATE),
1546 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1547 IB_QP_ACCESS_FLAGS |
1548 IB_QP_ALT_PATH |
1549 IB_QP_PATH_MIG_STATE |
1550 IB_QP_MIN_RNR_TIMER),
1551 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1552 IB_QP_ACCESS_FLAGS |
1553 IB_QP_ALT_PATH |
1554 IB_QP_PATH_MIG_STATE),
1555 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1556 IB_QP_ACCESS_FLAGS |
1557 IB_QP_ALT_PATH |
1558 IB_QP_PATH_MIG_STATE |
1559 IB_QP_MIN_RNR_TIMER),
1560 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1561 IB_QP_QKEY),
1562 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1563 IB_QP_QKEY),
1564 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1565 }
1566 },
1567 [IB_QPS_SQD] = {
1568 .valid = 1,
1569 .opt_param = {
1570 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1571 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1572 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1573 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1574 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1575 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1576 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1577 }
1578 },
1579 },
1580 [IB_QPS_SQD] = {
1581 [IB_QPS_RESET] = { .valid = 1 },
1582 [IB_QPS_ERR] = { .valid = 1 },
1583 [IB_QPS_RTS] = {
1584 .valid = 1,
1585 .opt_param = {
1586 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1587 IB_QP_QKEY),
1588 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1589 IB_QP_ALT_PATH |
1590 IB_QP_ACCESS_FLAGS |
1591 IB_QP_PATH_MIG_STATE),
1592 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1593 IB_QP_ALT_PATH |
1594 IB_QP_ACCESS_FLAGS |
1595 IB_QP_MIN_RNR_TIMER |
1596 IB_QP_PATH_MIG_STATE),
1597 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1598 IB_QP_ALT_PATH |
1599 IB_QP_ACCESS_FLAGS |
1600 IB_QP_PATH_MIG_STATE),
1601 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1602 IB_QP_ALT_PATH |
1603 IB_QP_ACCESS_FLAGS |
1604 IB_QP_MIN_RNR_TIMER |
1605 IB_QP_PATH_MIG_STATE),
1606 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1607 IB_QP_QKEY),
1608 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1609 IB_QP_QKEY),
1610 }
1611 },
1612 [IB_QPS_SQD] = {
1613 .valid = 1,
1614 .opt_param = {
1615 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1616 IB_QP_QKEY),
1617 [IB_QPT_UC] = (IB_QP_AV |
1618 IB_QP_ALT_PATH |
1619 IB_QP_ACCESS_FLAGS |
1620 IB_QP_PKEY_INDEX |
1621 IB_QP_PATH_MIG_STATE),
1622 [IB_QPT_RC] = (IB_QP_PORT |
1623 IB_QP_AV |
1624 IB_QP_TIMEOUT |
1625 IB_QP_RETRY_CNT |
1626 IB_QP_RNR_RETRY |
1627 IB_QP_MAX_QP_RD_ATOMIC |
1628 IB_QP_MAX_DEST_RD_ATOMIC |
1629 IB_QP_ALT_PATH |
1630 IB_QP_ACCESS_FLAGS |
1631 IB_QP_PKEY_INDEX |
1632 IB_QP_MIN_RNR_TIMER |
1633 IB_QP_PATH_MIG_STATE),
1634 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1635 IB_QP_AV |
1636 IB_QP_TIMEOUT |
1637 IB_QP_RETRY_CNT |
1638 IB_QP_RNR_RETRY |
1639 IB_QP_MAX_QP_RD_ATOMIC |
1640 IB_QP_ALT_PATH |
1641 IB_QP_ACCESS_FLAGS |
1642 IB_QP_PKEY_INDEX |
1643 IB_QP_PATH_MIG_STATE),
1644 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1645 IB_QP_AV |
1646 IB_QP_TIMEOUT |
1647 IB_QP_MAX_DEST_RD_ATOMIC |
1648 IB_QP_ALT_PATH |
1649 IB_QP_ACCESS_FLAGS |
1650 IB_QP_PKEY_INDEX |
1651 IB_QP_MIN_RNR_TIMER |
1652 IB_QP_PATH_MIG_STATE),
1653 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1654 IB_QP_QKEY),
1655 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1656 IB_QP_QKEY),
1657 }
1658 }
1659 },
1660 [IB_QPS_SQE] = {
1661 [IB_QPS_RESET] = { .valid = 1 },
1662 [IB_QPS_ERR] = { .valid = 1 },
1663 [IB_QPS_RTS] = {
1664 .valid = 1,
1665 .opt_param = {
1666 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1667 IB_QP_QKEY),
1668 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1669 IB_QP_ACCESS_FLAGS),
1670 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1671 IB_QP_QKEY),
1672 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1673 IB_QP_QKEY),
1674 }
1675 }
1676 },
1677 [IB_QPS_ERR] = {
1678 [IB_QPS_RESET] = { .valid = 1 },
1679 [IB_QPS_ERR] = { .valid = 1 }
1680 }
1681 };
1682
ib_modify_qp_is_ok(enum ib_qp_state cur_state,enum ib_qp_state next_state,enum ib_qp_type type,enum ib_qp_attr_mask mask)1683 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1684 enum ib_qp_type type, enum ib_qp_attr_mask mask)
1685 {
1686 enum ib_qp_attr_mask req_param, opt_param;
1687
1688 if (mask & IB_QP_CUR_STATE &&
1689 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1690 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1691 return false;
1692
1693 if (!qp_state_table[cur_state][next_state].valid)
1694 return false;
1695
1696 req_param = qp_state_table[cur_state][next_state].req_param[type];
1697 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1698
1699 if ((mask & req_param) != req_param)
1700 return false;
1701
1702 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1703 return false;
1704
1705 return true;
1706 }
1707 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1708
1709 /**
1710 * ib_resolve_eth_dmac - Resolve destination mac address
1711 * @device: Device to consider
1712 * @ah_attr: address handle attribute which describes the
1713 * source and destination parameters
1714 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1715 * returns 0 on success or appropriate error code. It initializes the
1716 * necessary ah_attr fields when call is successful.
1717 */
ib_resolve_eth_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)1718 static int ib_resolve_eth_dmac(struct ib_device *device,
1719 struct rdma_ah_attr *ah_attr)
1720 {
1721 int ret = 0;
1722
1723 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1724 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1725 __be32 addr = 0;
1726
1727 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1728 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1729 } else {
1730 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1731 (char *)ah_attr->roce.dmac);
1732 }
1733 } else {
1734 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1735 }
1736 return ret;
1737 }
1738
is_qp_type_connected(const struct ib_qp * qp)1739 static bool is_qp_type_connected(const struct ib_qp *qp)
1740 {
1741 return (qp->qp_type == IB_QPT_UC ||
1742 qp->qp_type == IB_QPT_RC ||
1743 qp->qp_type == IB_QPT_XRC_INI ||
1744 qp->qp_type == IB_QPT_XRC_TGT);
1745 }
1746
1747 /*
1748 * IB core internal function to perform QP attributes modification.
1749 */
_ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1750 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1751 int attr_mask, struct ib_udata *udata)
1752 {
1753 u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1754 const struct ib_gid_attr *old_sgid_attr_av;
1755 const struct ib_gid_attr *old_sgid_attr_alt_av;
1756 int ret;
1757
1758 attr->xmit_slave = NULL;
1759 if (attr_mask & IB_QP_AV) {
1760 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1761 &old_sgid_attr_av);
1762 if (ret)
1763 return ret;
1764
1765 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1766 is_qp_type_connected(qp)) {
1767 struct net_device *slave;
1768
1769 /*
1770 * If the user provided the qp_attr then we have to
1771 * resolve it. Kerne users have to provide already
1772 * resolved rdma_ah_attr's.
1773 */
1774 if (udata) {
1775 ret = ib_resolve_eth_dmac(qp->device,
1776 &attr->ah_attr);
1777 if (ret)
1778 goto out_av;
1779 }
1780 slave = rdma_lag_get_ah_roce_slave(qp->device,
1781 &attr->ah_attr,
1782 GFP_KERNEL);
1783 if (IS_ERR(slave)) {
1784 ret = PTR_ERR(slave);
1785 goto out_av;
1786 }
1787 attr->xmit_slave = slave;
1788 }
1789 }
1790 if (attr_mask & IB_QP_ALT_PATH) {
1791 /*
1792 * FIXME: This does not track the migration state, so if the
1793 * user loads a new alternate path after the HW has migrated
1794 * from primary->alternate we will keep the wrong
1795 * references. This is OK for IB because the reference
1796 * counting does not serve any functional purpose.
1797 */
1798 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1799 &old_sgid_attr_alt_av);
1800 if (ret)
1801 goto out_av;
1802
1803 /*
1804 * Today the core code can only handle alternate paths and APM
1805 * for IB. Ban them in roce mode.
1806 */
1807 if (!(rdma_protocol_ib(qp->device,
1808 attr->alt_ah_attr.port_num) &&
1809 rdma_protocol_ib(qp->device, port))) {
1810 ret = -EINVAL;
1811 goto out;
1812 }
1813 }
1814
1815 if (rdma_ib_or_roce(qp->device, port)) {
1816 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1817 dev_warn(&qp->device->dev,
1818 "%s rq_psn overflow, masking to 24 bits\n",
1819 __func__);
1820 attr->rq_psn &= 0xffffff;
1821 }
1822
1823 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1824 dev_warn(&qp->device->dev,
1825 " %s sq_psn overflow, masking to 24 bits\n",
1826 __func__);
1827 attr->sq_psn &= 0xffffff;
1828 }
1829 }
1830
1831 /*
1832 * Bind this qp to a counter automatically based on the rdma counter
1833 * rules. This only set in RST2INIT with port specified
1834 */
1835 if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1836 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1837 rdma_counter_bind_qp_auto(qp, attr->port_num);
1838
1839 ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1840 if (ret)
1841 goto out;
1842
1843 if (attr_mask & IB_QP_PORT)
1844 qp->port = attr->port_num;
1845 if (attr_mask & IB_QP_AV)
1846 qp->av_sgid_attr =
1847 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1848 if (attr_mask & IB_QP_ALT_PATH)
1849 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1850 &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1851
1852 out:
1853 if (attr_mask & IB_QP_ALT_PATH)
1854 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1855 out_av:
1856 if (attr_mask & IB_QP_AV) {
1857 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1858 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1859 }
1860 return ret;
1861 }
1862
1863 /**
1864 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1865 * @ib_qp: The QP to modify.
1866 * @attr: On input, specifies the QP attributes to modify. On output,
1867 * the current values of selected QP attributes are returned.
1868 * @attr_mask: A bit-mask used to specify which attributes of the QP
1869 * are being modified.
1870 * @udata: pointer to user's input output buffer information
1871 * are being modified.
1872 * It returns 0 on success and returns appropriate error code on error.
1873 */
ib_modify_qp_with_udata(struct ib_qp * ib_qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1874 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1875 int attr_mask, struct ib_udata *udata)
1876 {
1877 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1878 }
1879 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1880
ib_get_eth_speed(struct ib_device * dev,u32 port_num,u16 * speed,u8 * width)1881 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1882 {
1883 int rc;
1884 u32 netdev_speed;
1885 struct net_device *netdev;
1886 struct ethtool_link_ksettings lksettings;
1887
1888 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1889 return -EINVAL;
1890
1891 netdev = ib_device_get_netdev(dev, port_num);
1892 if (!netdev)
1893 return -ENODEV;
1894
1895 rtnl_lock();
1896 rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1897 rtnl_unlock();
1898
1899 dev_put(netdev);
1900
1901 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1902 netdev_speed = lksettings.base.speed;
1903 } else {
1904 netdev_speed = SPEED_1000;
1905 pr_warn("%s speed is unknown, defaulting to %u\n", netdev->name,
1906 netdev_speed);
1907 }
1908
1909 if (netdev_speed <= SPEED_1000) {
1910 *width = IB_WIDTH_1X;
1911 *speed = IB_SPEED_SDR;
1912 } else if (netdev_speed <= SPEED_10000) {
1913 *width = IB_WIDTH_1X;
1914 *speed = IB_SPEED_FDR10;
1915 } else if (netdev_speed <= SPEED_20000) {
1916 *width = IB_WIDTH_4X;
1917 *speed = IB_SPEED_DDR;
1918 } else if (netdev_speed <= SPEED_25000) {
1919 *width = IB_WIDTH_1X;
1920 *speed = IB_SPEED_EDR;
1921 } else if (netdev_speed <= SPEED_40000) {
1922 *width = IB_WIDTH_4X;
1923 *speed = IB_SPEED_FDR10;
1924 } else {
1925 *width = IB_WIDTH_4X;
1926 *speed = IB_SPEED_EDR;
1927 }
1928
1929 return 0;
1930 }
1931 EXPORT_SYMBOL(ib_get_eth_speed);
1932
ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask)1933 int ib_modify_qp(struct ib_qp *qp,
1934 struct ib_qp_attr *qp_attr,
1935 int qp_attr_mask)
1936 {
1937 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1938 }
1939 EXPORT_SYMBOL(ib_modify_qp);
1940
ib_query_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask,struct ib_qp_init_attr * qp_init_attr)1941 int ib_query_qp(struct ib_qp *qp,
1942 struct ib_qp_attr *qp_attr,
1943 int qp_attr_mask,
1944 struct ib_qp_init_attr *qp_init_attr)
1945 {
1946 qp_attr->ah_attr.grh.sgid_attr = NULL;
1947 qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1948
1949 return qp->device->ops.query_qp ?
1950 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1951 qp_init_attr) : -EOPNOTSUPP;
1952 }
1953 EXPORT_SYMBOL(ib_query_qp);
1954
ib_close_qp(struct ib_qp * qp)1955 int ib_close_qp(struct ib_qp *qp)
1956 {
1957 struct ib_qp *real_qp;
1958 unsigned long flags;
1959
1960 real_qp = qp->real_qp;
1961 if (real_qp == qp)
1962 return -EINVAL;
1963
1964 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1965 list_del(&qp->open_list);
1966 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1967
1968 atomic_dec(&real_qp->usecnt);
1969 if (qp->qp_sec)
1970 ib_close_shared_qp_security(qp->qp_sec);
1971 kfree(qp);
1972
1973 return 0;
1974 }
1975 EXPORT_SYMBOL(ib_close_qp);
1976
__ib_destroy_shared_qp(struct ib_qp * qp)1977 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1978 {
1979 struct ib_xrcd *xrcd;
1980 struct ib_qp *real_qp;
1981 int ret;
1982
1983 real_qp = qp->real_qp;
1984 xrcd = real_qp->xrcd;
1985 down_write(&xrcd->tgt_qps_rwsem);
1986 ib_close_qp(qp);
1987 if (atomic_read(&real_qp->usecnt) == 0)
1988 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
1989 else
1990 real_qp = NULL;
1991 up_write(&xrcd->tgt_qps_rwsem);
1992
1993 if (real_qp) {
1994 ret = ib_destroy_qp(real_qp);
1995 if (!ret)
1996 atomic_dec(&xrcd->usecnt);
1997 }
1998
1999 return 0;
2000 }
2001
ib_destroy_qp_user(struct ib_qp * qp,struct ib_udata * udata)2002 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2003 {
2004 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2005 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
2006 struct ib_qp_security *sec;
2007 int ret;
2008
2009 WARN_ON_ONCE(qp->mrs_used > 0);
2010
2011 if (atomic_read(&qp->usecnt))
2012 return -EBUSY;
2013
2014 if (qp->real_qp != qp)
2015 return __ib_destroy_shared_qp(qp);
2016
2017 sec = qp->qp_sec;
2018 if (sec)
2019 ib_destroy_qp_security_begin(sec);
2020
2021 if (!qp->uobject)
2022 rdma_rw_cleanup_mrs(qp);
2023
2024 rdma_counter_unbind_qp(qp, true);
2025 ret = qp->device->ops.destroy_qp(qp, udata);
2026 if (ret) {
2027 if (sec)
2028 ib_destroy_qp_security_abort(sec);
2029 return ret;
2030 }
2031
2032 if (alt_path_sgid_attr)
2033 rdma_put_gid_attr(alt_path_sgid_attr);
2034 if (av_sgid_attr)
2035 rdma_put_gid_attr(av_sgid_attr);
2036
2037 ib_qp_usecnt_dec(qp);
2038 if (sec)
2039 ib_destroy_qp_security_end(sec);
2040
2041 rdma_restrack_del(&qp->res);
2042 kfree(qp);
2043 return ret;
2044 }
2045 EXPORT_SYMBOL(ib_destroy_qp_user);
2046
2047 /* Completion queues */
2048
__ib_create_cq(struct ib_device * device,ib_comp_handler comp_handler,void (* event_handler)(struct ib_event *,void *),void * cq_context,const struct ib_cq_init_attr * cq_attr,const char * caller)2049 struct ib_cq *__ib_create_cq(struct ib_device *device,
2050 ib_comp_handler comp_handler,
2051 void (*event_handler)(struct ib_event *, void *),
2052 void *cq_context,
2053 const struct ib_cq_init_attr *cq_attr,
2054 const char *caller)
2055 {
2056 struct ib_cq *cq;
2057 int ret;
2058
2059 cq = rdma_zalloc_drv_obj(device, ib_cq);
2060 if (!cq)
2061 return ERR_PTR(-ENOMEM);
2062
2063 cq->device = device;
2064 cq->uobject = NULL;
2065 cq->comp_handler = comp_handler;
2066 cq->event_handler = event_handler;
2067 cq->cq_context = cq_context;
2068 atomic_set(&cq->usecnt, 0);
2069
2070 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2071 rdma_restrack_set_name(&cq->res, caller);
2072
2073 ret = device->ops.create_cq(cq, cq_attr, NULL);
2074 if (ret) {
2075 rdma_restrack_put(&cq->res);
2076 kfree(cq);
2077 return ERR_PTR(ret);
2078 }
2079
2080 rdma_restrack_add(&cq->res);
2081 return cq;
2082 }
2083 EXPORT_SYMBOL(__ib_create_cq);
2084
rdma_set_cq_moderation(struct ib_cq * cq,u16 cq_count,u16 cq_period)2085 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2086 {
2087 if (cq->shared)
2088 return -EOPNOTSUPP;
2089
2090 return cq->device->ops.modify_cq ?
2091 cq->device->ops.modify_cq(cq, cq_count,
2092 cq_period) : -EOPNOTSUPP;
2093 }
2094 EXPORT_SYMBOL(rdma_set_cq_moderation);
2095
ib_destroy_cq_user(struct ib_cq * cq,struct ib_udata * udata)2096 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2097 {
2098 int ret;
2099
2100 if (WARN_ON_ONCE(cq->shared))
2101 return -EOPNOTSUPP;
2102
2103 if (atomic_read(&cq->usecnt))
2104 return -EBUSY;
2105
2106 ret = cq->device->ops.destroy_cq(cq, udata);
2107 if (ret)
2108 return ret;
2109
2110 rdma_restrack_del(&cq->res);
2111 kfree(cq);
2112 return ret;
2113 }
2114 EXPORT_SYMBOL(ib_destroy_cq_user);
2115
ib_resize_cq(struct ib_cq * cq,int cqe)2116 int ib_resize_cq(struct ib_cq *cq, int cqe)
2117 {
2118 if (cq->shared)
2119 return -EOPNOTSUPP;
2120
2121 return cq->device->ops.resize_cq ?
2122 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2123 }
2124 EXPORT_SYMBOL(ib_resize_cq);
2125
2126 /* Memory regions */
2127
ib_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags)2128 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2129 u64 virt_addr, int access_flags)
2130 {
2131 struct ib_mr *mr;
2132
2133 if (access_flags & IB_ACCESS_ON_DEMAND) {
2134 if (!(pd->device->attrs.kernel_cap_flags &
2135 IBK_ON_DEMAND_PAGING)) {
2136 pr_debug("ODP support not available\n");
2137 return ERR_PTR(-EINVAL);
2138 }
2139 }
2140
2141 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2142 access_flags, NULL);
2143
2144 if (IS_ERR(mr))
2145 return mr;
2146
2147 mr->device = pd->device;
2148 mr->type = IB_MR_TYPE_USER;
2149 mr->pd = pd;
2150 mr->dm = NULL;
2151 atomic_inc(&pd->usecnt);
2152
2153 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2154 rdma_restrack_parent_name(&mr->res, &pd->res);
2155 rdma_restrack_add(&mr->res);
2156
2157 return mr;
2158 }
2159 EXPORT_SYMBOL(ib_reg_user_mr);
2160
ib_advise_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge)2161 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2162 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2163 {
2164 if (!pd->device->ops.advise_mr)
2165 return -EOPNOTSUPP;
2166
2167 if (!num_sge)
2168 return 0;
2169
2170 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2171 NULL);
2172 }
2173 EXPORT_SYMBOL(ib_advise_mr);
2174
ib_dereg_mr_user(struct ib_mr * mr,struct ib_udata * udata)2175 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2176 {
2177 struct ib_pd *pd = mr->pd;
2178 struct ib_dm *dm = mr->dm;
2179 struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2180 int ret;
2181
2182 trace_mr_dereg(mr);
2183 rdma_restrack_del(&mr->res);
2184 ret = mr->device->ops.dereg_mr(mr, udata);
2185 if (!ret) {
2186 atomic_dec(&pd->usecnt);
2187 if (dm)
2188 atomic_dec(&dm->usecnt);
2189 kfree(sig_attrs);
2190 }
2191
2192 return ret;
2193 }
2194 EXPORT_SYMBOL(ib_dereg_mr_user);
2195
2196 /**
2197 * ib_alloc_mr() - Allocates a memory region
2198 * @pd: protection domain associated with the region
2199 * @mr_type: memory region type
2200 * @max_num_sg: maximum sg entries available for registration.
2201 *
2202 * Notes:
2203 * Memory registeration page/sg lists must not exceed max_num_sg.
2204 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2205 * max_num_sg * used_page_size.
2206 *
2207 */
ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)2208 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2209 u32 max_num_sg)
2210 {
2211 struct ib_mr *mr;
2212
2213 if (!pd->device->ops.alloc_mr) {
2214 mr = ERR_PTR(-EOPNOTSUPP);
2215 goto out;
2216 }
2217
2218 if (mr_type == IB_MR_TYPE_INTEGRITY) {
2219 WARN_ON_ONCE(1);
2220 mr = ERR_PTR(-EINVAL);
2221 goto out;
2222 }
2223
2224 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2225 if (IS_ERR(mr))
2226 goto out;
2227
2228 mr->device = pd->device;
2229 mr->pd = pd;
2230 mr->dm = NULL;
2231 mr->uobject = NULL;
2232 atomic_inc(&pd->usecnt);
2233 mr->need_inval = false;
2234 mr->type = mr_type;
2235 mr->sig_attrs = NULL;
2236
2237 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2238 rdma_restrack_parent_name(&mr->res, &pd->res);
2239 rdma_restrack_add(&mr->res);
2240 out:
2241 trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2242 return mr;
2243 }
2244 EXPORT_SYMBOL(ib_alloc_mr);
2245
2246 /**
2247 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2248 * @pd: protection domain associated with the region
2249 * @max_num_data_sg: maximum data sg entries available for registration
2250 * @max_num_meta_sg: maximum metadata sg entries available for
2251 * registration
2252 *
2253 * Notes:
2254 * Memory registration page/sg lists must not exceed max_num_sg,
2255 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2256 *
2257 */
ib_alloc_mr_integrity(struct ib_pd * pd,u32 max_num_data_sg,u32 max_num_meta_sg)2258 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2259 u32 max_num_data_sg,
2260 u32 max_num_meta_sg)
2261 {
2262 struct ib_mr *mr;
2263 struct ib_sig_attrs *sig_attrs;
2264
2265 if (!pd->device->ops.alloc_mr_integrity ||
2266 !pd->device->ops.map_mr_sg_pi) {
2267 mr = ERR_PTR(-EOPNOTSUPP);
2268 goto out;
2269 }
2270
2271 if (!max_num_meta_sg) {
2272 mr = ERR_PTR(-EINVAL);
2273 goto out;
2274 }
2275
2276 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2277 if (!sig_attrs) {
2278 mr = ERR_PTR(-ENOMEM);
2279 goto out;
2280 }
2281
2282 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2283 max_num_meta_sg);
2284 if (IS_ERR(mr)) {
2285 kfree(sig_attrs);
2286 goto out;
2287 }
2288
2289 mr->device = pd->device;
2290 mr->pd = pd;
2291 mr->dm = NULL;
2292 mr->uobject = NULL;
2293 atomic_inc(&pd->usecnt);
2294 mr->need_inval = false;
2295 mr->type = IB_MR_TYPE_INTEGRITY;
2296 mr->sig_attrs = sig_attrs;
2297
2298 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2299 rdma_restrack_parent_name(&mr->res, &pd->res);
2300 rdma_restrack_add(&mr->res);
2301 out:
2302 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2303 return mr;
2304 }
2305 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2306
2307 /* Multicast groups */
2308
is_valid_mcast_lid(struct ib_qp * qp,u16 lid)2309 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2310 {
2311 struct ib_qp_init_attr init_attr = {};
2312 struct ib_qp_attr attr = {};
2313 int num_eth_ports = 0;
2314 unsigned int port;
2315
2316 /* If QP state >= init, it is assigned to a port and we can check this
2317 * port only.
2318 */
2319 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2320 if (attr.qp_state >= IB_QPS_INIT) {
2321 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2322 IB_LINK_LAYER_INFINIBAND)
2323 return true;
2324 goto lid_check;
2325 }
2326 }
2327
2328 /* Can't get a quick answer, iterate over all ports */
2329 rdma_for_each_port(qp->device, port)
2330 if (rdma_port_get_link_layer(qp->device, port) !=
2331 IB_LINK_LAYER_INFINIBAND)
2332 num_eth_ports++;
2333
2334 /* If we have at lease one Ethernet port, RoCE annex declares that
2335 * multicast LID should be ignored. We can't tell at this step if the
2336 * QP belongs to an IB or Ethernet port.
2337 */
2338 if (num_eth_ports)
2339 return true;
2340
2341 /* If all the ports are IB, we can check according to IB spec. */
2342 lid_check:
2343 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2344 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2345 }
2346
ib_attach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)2347 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2348 {
2349 int ret;
2350
2351 if (!qp->device->ops.attach_mcast)
2352 return -EOPNOTSUPP;
2353
2354 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2355 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2356 return -EINVAL;
2357
2358 ret = qp->device->ops.attach_mcast(qp, gid, lid);
2359 if (!ret)
2360 atomic_inc(&qp->usecnt);
2361 return ret;
2362 }
2363 EXPORT_SYMBOL(ib_attach_mcast);
2364
ib_detach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)2365 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2366 {
2367 int ret;
2368
2369 if (!qp->device->ops.detach_mcast)
2370 return -EOPNOTSUPP;
2371
2372 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2373 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2374 return -EINVAL;
2375
2376 ret = qp->device->ops.detach_mcast(qp, gid, lid);
2377 if (!ret)
2378 atomic_dec(&qp->usecnt);
2379 return ret;
2380 }
2381 EXPORT_SYMBOL(ib_detach_mcast);
2382
2383 /**
2384 * ib_alloc_xrcd_user - Allocates an XRC domain.
2385 * @device: The device on which to allocate the XRC domain.
2386 * @inode: inode to connect XRCD
2387 * @udata: Valid user data or NULL for kernel object
2388 */
ib_alloc_xrcd_user(struct ib_device * device,struct inode * inode,struct ib_udata * udata)2389 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2390 struct inode *inode, struct ib_udata *udata)
2391 {
2392 struct ib_xrcd *xrcd;
2393 int ret;
2394
2395 if (!device->ops.alloc_xrcd)
2396 return ERR_PTR(-EOPNOTSUPP);
2397
2398 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2399 if (!xrcd)
2400 return ERR_PTR(-ENOMEM);
2401
2402 xrcd->device = device;
2403 xrcd->inode = inode;
2404 atomic_set(&xrcd->usecnt, 0);
2405 init_rwsem(&xrcd->tgt_qps_rwsem);
2406 xa_init(&xrcd->tgt_qps);
2407
2408 ret = device->ops.alloc_xrcd(xrcd, udata);
2409 if (ret)
2410 goto err;
2411 return xrcd;
2412 err:
2413 kfree(xrcd);
2414 return ERR_PTR(ret);
2415 }
2416 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2417
2418 /**
2419 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2420 * @xrcd: The XRC domain to deallocate.
2421 * @udata: Valid user data or NULL for kernel object
2422 */
ib_dealloc_xrcd_user(struct ib_xrcd * xrcd,struct ib_udata * udata)2423 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2424 {
2425 int ret;
2426
2427 if (atomic_read(&xrcd->usecnt))
2428 return -EBUSY;
2429
2430 WARN_ON(!xa_empty(&xrcd->tgt_qps));
2431 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2432 if (ret)
2433 return ret;
2434 kfree(xrcd);
2435 return ret;
2436 }
2437 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2438
2439 /**
2440 * ib_create_wq - Creates a WQ associated with the specified protection
2441 * domain.
2442 * @pd: The protection domain associated with the WQ.
2443 * @wq_attr: A list of initial attributes required to create the
2444 * WQ. If WQ creation succeeds, then the attributes are updated to
2445 * the actual capabilities of the created WQ.
2446 *
2447 * wq_attr->max_wr and wq_attr->max_sge determine
2448 * the requested size of the WQ, and set to the actual values allocated
2449 * on return.
2450 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2451 * at least as large as the requested values.
2452 */
ib_create_wq(struct ib_pd * pd,struct ib_wq_init_attr * wq_attr)2453 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2454 struct ib_wq_init_attr *wq_attr)
2455 {
2456 struct ib_wq *wq;
2457
2458 if (!pd->device->ops.create_wq)
2459 return ERR_PTR(-EOPNOTSUPP);
2460
2461 wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2462 if (!IS_ERR(wq)) {
2463 wq->event_handler = wq_attr->event_handler;
2464 wq->wq_context = wq_attr->wq_context;
2465 wq->wq_type = wq_attr->wq_type;
2466 wq->cq = wq_attr->cq;
2467 wq->device = pd->device;
2468 wq->pd = pd;
2469 wq->uobject = NULL;
2470 atomic_inc(&pd->usecnt);
2471 atomic_inc(&wq_attr->cq->usecnt);
2472 atomic_set(&wq->usecnt, 0);
2473 }
2474 return wq;
2475 }
2476 EXPORT_SYMBOL(ib_create_wq);
2477
2478 /**
2479 * ib_destroy_wq_user - Destroys the specified user WQ.
2480 * @wq: The WQ to destroy.
2481 * @udata: Valid user data
2482 */
ib_destroy_wq_user(struct ib_wq * wq,struct ib_udata * udata)2483 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2484 {
2485 struct ib_cq *cq = wq->cq;
2486 struct ib_pd *pd = wq->pd;
2487 int ret;
2488
2489 if (atomic_read(&wq->usecnt))
2490 return -EBUSY;
2491
2492 ret = wq->device->ops.destroy_wq(wq, udata);
2493 if (ret)
2494 return ret;
2495
2496 atomic_dec(&pd->usecnt);
2497 atomic_dec(&cq->usecnt);
2498 return ret;
2499 }
2500 EXPORT_SYMBOL(ib_destroy_wq_user);
2501
ib_check_mr_status(struct ib_mr * mr,u32 check_mask,struct ib_mr_status * mr_status)2502 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2503 struct ib_mr_status *mr_status)
2504 {
2505 if (!mr->device->ops.check_mr_status)
2506 return -EOPNOTSUPP;
2507
2508 return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2509 }
2510 EXPORT_SYMBOL(ib_check_mr_status);
2511
ib_set_vf_link_state(struct ib_device * device,int vf,u32 port,int state)2512 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2513 int state)
2514 {
2515 if (!device->ops.set_vf_link_state)
2516 return -EOPNOTSUPP;
2517
2518 return device->ops.set_vf_link_state(device, vf, port, state);
2519 }
2520 EXPORT_SYMBOL(ib_set_vf_link_state);
2521
ib_get_vf_config(struct ib_device * device,int vf,u32 port,struct ifla_vf_info * info)2522 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2523 struct ifla_vf_info *info)
2524 {
2525 if (!device->ops.get_vf_config)
2526 return -EOPNOTSUPP;
2527
2528 return device->ops.get_vf_config(device, vf, port, info);
2529 }
2530 EXPORT_SYMBOL(ib_get_vf_config);
2531
ib_get_vf_stats(struct ib_device * device,int vf,u32 port,struct ifla_vf_stats * stats)2532 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2533 struct ifla_vf_stats *stats)
2534 {
2535 if (!device->ops.get_vf_stats)
2536 return -EOPNOTSUPP;
2537
2538 return device->ops.get_vf_stats(device, vf, port, stats);
2539 }
2540 EXPORT_SYMBOL(ib_get_vf_stats);
2541
ib_set_vf_guid(struct ib_device * device,int vf,u32 port,u64 guid,int type)2542 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2543 int type)
2544 {
2545 if (!device->ops.set_vf_guid)
2546 return -EOPNOTSUPP;
2547
2548 return device->ops.set_vf_guid(device, vf, port, guid, type);
2549 }
2550 EXPORT_SYMBOL(ib_set_vf_guid);
2551
ib_get_vf_guid(struct ib_device * device,int vf,u32 port,struct ifla_vf_guid * node_guid,struct ifla_vf_guid * port_guid)2552 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2553 struct ifla_vf_guid *node_guid,
2554 struct ifla_vf_guid *port_guid)
2555 {
2556 if (!device->ops.get_vf_guid)
2557 return -EOPNOTSUPP;
2558
2559 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2560 }
2561 EXPORT_SYMBOL(ib_get_vf_guid);
2562 /**
2563 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2564 * information) and set an appropriate memory region for registration.
2565 * @mr: memory region
2566 * @data_sg: dma mapped scatterlist for data
2567 * @data_sg_nents: number of entries in data_sg
2568 * @data_sg_offset: offset in bytes into data_sg
2569 * @meta_sg: dma mapped scatterlist for metadata
2570 * @meta_sg_nents: number of entries in meta_sg
2571 * @meta_sg_offset: offset in bytes into meta_sg
2572 * @page_size: page vector desired page size
2573 *
2574 * Constraints:
2575 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2576 *
2577 * Return: 0 on success.
2578 *
2579 * After this completes successfully, the memory region
2580 * is ready for registration.
2581 */
ib_map_mr_sg_pi(struct ib_mr * mr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset,unsigned int page_size)2582 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2583 int data_sg_nents, unsigned int *data_sg_offset,
2584 struct scatterlist *meta_sg, int meta_sg_nents,
2585 unsigned int *meta_sg_offset, unsigned int page_size)
2586 {
2587 if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2588 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2589 return -EOPNOTSUPP;
2590
2591 mr->page_size = page_size;
2592
2593 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2594 data_sg_offset, meta_sg,
2595 meta_sg_nents, meta_sg_offset);
2596 }
2597 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2598
2599 /**
2600 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2601 * and set it the memory region.
2602 * @mr: memory region
2603 * @sg: dma mapped scatterlist
2604 * @sg_nents: number of entries in sg
2605 * @sg_offset: offset in bytes into sg
2606 * @page_size: page vector desired page size
2607 *
2608 * Constraints:
2609 *
2610 * - The first sg element is allowed to have an offset.
2611 * - Each sg element must either be aligned to page_size or virtually
2612 * contiguous to the previous element. In case an sg element has a
2613 * non-contiguous offset, the mapping prefix will not include it.
2614 * - The last sg element is allowed to have length less than page_size.
2615 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2616 * then only max_num_sg entries will be mapped.
2617 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2618 * constraints holds and the page_size argument is ignored.
2619 *
2620 * Returns the number of sg elements that were mapped to the memory region.
2621 *
2622 * After this completes successfully, the memory region
2623 * is ready for registration.
2624 */
ib_map_mr_sg(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)2625 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2626 unsigned int *sg_offset, unsigned int page_size)
2627 {
2628 if (unlikely(!mr->device->ops.map_mr_sg))
2629 return -EOPNOTSUPP;
2630
2631 mr->page_size = page_size;
2632
2633 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2634 }
2635 EXPORT_SYMBOL(ib_map_mr_sg);
2636
2637 /**
2638 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2639 * to a page vector
2640 * @mr: memory region
2641 * @sgl: dma mapped scatterlist
2642 * @sg_nents: number of entries in sg
2643 * @sg_offset_p: ==== =======================================================
2644 * IN start offset in bytes into sg
2645 * OUT offset in bytes for element n of the sg of the first
2646 * byte that has not been processed where n is the return
2647 * value of this function.
2648 * ==== =======================================================
2649 * @set_page: driver page assignment function pointer
2650 *
2651 * Core service helper for drivers to convert the largest
2652 * prefix of given sg list to a page vector. The sg list
2653 * prefix converted is the prefix that meet the requirements
2654 * of ib_map_mr_sg.
2655 *
2656 * Returns the number of sg elements that were assigned to
2657 * a page vector.
2658 */
ib_sg_to_pages(struct ib_mr * mr,struct scatterlist * sgl,int sg_nents,unsigned int * sg_offset_p,int (* set_page)(struct ib_mr *,u64))2659 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2660 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2661 {
2662 struct scatterlist *sg;
2663 u64 last_end_dma_addr = 0;
2664 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2665 unsigned int last_page_off = 0;
2666 u64 page_mask = ~((u64)mr->page_size - 1);
2667 int i, ret;
2668
2669 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2670 return -EINVAL;
2671
2672 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2673 mr->length = 0;
2674
2675 for_each_sg(sgl, sg, sg_nents, i) {
2676 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2677 u64 prev_addr = dma_addr;
2678 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2679 u64 end_dma_addr = dma_addr + dma_len;
2680 u64 page_addr = dma_addr & page_mask;
2681
2682 /*
2683 * For the second and later elements, check whether either the
2684 * end of element i-1 or the start of element i is not aligned
2685 * on a page boundary.
2686 */
2687 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2688 /* Stop mapping if there is a gap. */
2689 if (last_end_dma_addr != dma_addr)
2690 break;
2691
2692 /*
2693 * Coalesce this element with the last. If it is small
2694 * enough just update mr->length. Otherwise start
2695 * mapping from the next page.
2696 */
2697 goto next_page;
2698 }
2699
2700 do {
2701 ret = set_page(mr, page_addr);
2702 if (unlikely(ret < 0)) {
2703 sg_offset = prev_addr - sg_dma_address(sg);
2704 mr->length += prev_addr - dma_addr;
2705 if (sg_offset_p)
2706 *sg_offset_p = sg_offset;
2707 return i || sg_offset ? i : ret;
2708 }
2709 prev_addr = page_addr;
2710 next_page:
2711 page_addr += mr->page_size;
2712 } while (page_addr < end_dma_addr);
2713
2714 mr->length += dma_len;
2715 last_end_dma_addr = end_dma_addr;
2716 last_page_off = end_dma_addr & ~page_mask;
2717
2718 sg_offset = 0;
2719 }
2720
2721 if (sg_offset_p)
2722 *sg_offset_p = 0;
2723 return i;
2724 }
2725 EXPORT_SYMBOL(ib_sg_to_pages);
2726
2727 struct ib_drain_cqe {
2728 struct ib_cqe cqe;
2729 struct completion done;
2730 };
2731
ib_drain_qp_done(struct ib_cq * cq,struct ib_wc * wc)2732 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2733 {
2734 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2735 cqe);
2736
2737 complete(&cqe->done);
2738 }
2739
2740 /*
2741 * Post a WR and block until its completion is reaped for the SQ.
2742 */
__ib_drain_sq(struct ib_qp * qp)2743 static void __ib_drain_sq(struct ib_qp *qp)
2744 {
2745 struct ib_cq *cq = qp->send_cq;
2746 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2747 struct ib_drain_cqe sdrain;
2748 struct ib_rdma_wr swr = {
2749 .wr = {
2750 .next = NULL,
2751 { .wr_cqe = &sdrain.cqe, },
2752 .opcode = IB_WR_RDMA_WRITE,
2753 },
2754 };
2755 int ret;
2756
2757 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2758 if (ret) {
2759 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2760 return;
2761 }
2762
2763 sdrain.cqe.done = ib_drain_qp_done;
2764 init_completion(&sdrain.done);
2765
2766 ret = ib_post_send(qp, &swr.wr, NULL);
2767 if (ret) {
2768 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2769 return;
2770 }
2771
2772 if (cq->poll_ctx == IB_POLL_DIRECT)
2773 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2774 ib_process_cq_direct(cq, -1);
2775 else
2776 wait_for_completion(&sdrain.done);
2777 }
2778
2779 /*
2780 * Post a WR and block until its completion is reaped for the RQ.
2781 */
__ib_drain_rq(struct ib_qp * qp)2782 static void __ib_drain_rq(struct ib_qp *qp)
2783 {
2784 struct ib_cq *cq = qp->recv_cq;
2785 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2786 struct ib_drain_cqe rdrain;
2787 struct ib_recv_wr rwr = {};
2788 int ret;
2789
2790 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2791 if (ret) {
2792 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2793 return;
2794 }
2795
2796 rwr.wr_cqe = &rdrain.cqe;
2797 rdrain.cqe.done = ib_drain_qp_done;
2798 init_completion(&rdrain.done);
2799
2800 ret = ib_post_recv(qp, &rwr, NULL);
2801 if (ret) {
2802 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2803 return;
2804 }
2805
2806 if (cq->poll_ctx == IB_POLL_DIRECT)
2807 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2808 ib_process_cq_direct(cq, -1);
2809 else
2810 wait_for_completion(&rdrain.done);
2811 }
2812
2813 /**
2814 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2815 * application.
2816 * @qp: queue pair to drain
2817 *
2818 * If the device has a provider-specific drain function, then
2819 * call that. Otherwise call the generic drain function
2820 * __ib_drain_sq().
2821 *
2822 * The caller must:
2823 *
2824 * ensure there is room in the CQ and SQ for the drain work request and
2825 * completion.
2826 *
2827 * allocate the CQ using ib_alloc_cq().
2828 *
2829 * ensure that there are no other contexts that are posting WRs concurrently.
2830 * Otherwise the drain is not guaranteed.
2831 */
ib_drain_sq(struct ib_qp * qp)2832 void ib_drain_sq(struct ib_qp *qp)
2833 {
2834 if (qp->device->ops.drain_sq)
2835 qp->device->ops.drain_sq(qp);
2836 else
2837 __ib_drain_sq(qp);
2838 trace_cq_drain_complete(qp->send_cq);
2839 }
2840 EXPORT_SYMBOL(ib_drain_sq);
2841
2842 /**
2843 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2844 * application.
2845 * @qp: queue pair to drain
2846 *
2847 * If the device has a provider-specific drain function, then
2848 * call that. Otherwise call the generic drain function
2849 * __ib_drain_rq().
2850 *
2851 * The caller must:
2852 *
2853 * ensure there is room in the CQ and RQ for the drain work request and
2854 * completion.
2855 *
2856 * allocate the CQ using ib_alloc_cq().
2857 *
2858 * ensure that there are no other contexts that are posting WRs concurrently.
2859 * Otherwise the drain is not guaranteed.
2860 */
ib_drain_rq(struct ib_qp * qp)2861 void ib_drain_rq(struct ib_qp *qp)
2862 {
2863 if (qp->device->ops.drain_rq)
2864 qp->device->ops.drain_rq(qp);
2865 else
2866 __ib_drain_rq(qp);
2867 trace_cq_drain_complete(qp->recv_cq);
2868 }
2869 EXPORT_SYMBOL(ib_drain_rq);
2870
2871 /**
2872 * ib_drain_qp() - Block until all CQEs have been consumed by the
2873 * application on both the RQ and SQ.
2874 * @qp: queue pair to drain
2875 *
2876 * The caller must:
2877 *
2878 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2879 * and completions.
2880 *
2881 * allocate the CQs using ib_alloc_cq().
2882 *
2883 * ensure that there are no other contexts that are posting WRs concurrently.
2884 * Otherwise the drain is not guaranteed.
2885 */
ib_drain_qp(struct ib_qp * qp)2886 void ib_drain_qp(struct ib_qp *qp)
2887 {
2888 ib_drain_sq(qp);
2889 if (!qp->srq)
2890 ib_drain_rq(qp);
2891 }
2892 EXPORT_SYMBOL(ib_drain_qp);
2893
rdma_alloc_netdev(struct ib_device * device,u32 port_num,enum rdma_netdev_t type,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *))2894 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
2895 enum rdma_netdev_t type, const char *name,
2896 unsigned char name_assign_type,
2897 void (*setup)(struct net_device *))
2898 {
2899 struct rdma_netdev_alloc_params params;
2900 struct net_device *netdev;
2901 int rc;
2902
2903 if (!device->ops.rdma_netdev_get_params)
2904 return ERR_PTR(-EOPNOTSUPP);
2905
2906 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2907 ¶ms);
2908 if (rc)
2909 return ERR_PTR(rc);
2910
2911 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2912 setup, params.txqs, params.rxqs);
2913 if (!netdev)
2914 return ERR_PTR(-ENOMEM);
2915
2916 return netdev;
2917 }
2918 EXPORT_SYMBOL(rdma_alloc_netdev);
2919
rdma_init_netdev(struct ib_device * device,u32 port_num,enum rdma_netdev_t type,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),struct net_device * netdev)2920 int rdma_init_netdev(struct ib_device *device, u32 port_num,
2921 enum rdma_netdev_t type, const char *name,
2922 unsigned char name_assign_type,
2923 void (*setup)(struct net_device *),
2924 struct net_device *netdev)
2925 {
2926 struct rdma_netdev_alloc_params params;
2927 int rc;
2928
2929 if (!device->ops.rdma_netdev_get_params)
2930 return -EOPNOTSUPP;
2931
2932 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2933 ¶ms);
2934 if (rc)
2935 return rc;
2936
2937 return params.initialize_rdma_netdev(device, port_num,
2938 netdev, params.param);
2939 }
2940 EXPORT_SYMBOL(rdma_init_netdev);
2941
__rdma_block_iter_start(struct ib_block_iter * biter,struct scatterlist * sglist,unsigned int nents,unsigned long pgsz)2942 void __rdma_block_iter_start(struct ib_block_iter *biter,
2943 struct scatterlist *sglist, unsigned int nents,
2944 unsigned long pgsz)
2945 {
2946 memset(biter, 0, sizeof(struct ib_block_iter));
2947 biter->__sg = sglist;
2948 biter->__sg_nents = nents;
2949
2950 /* Driver provides best block size to use */
2951 biter->__pg_bit = __fls(pgsz);
2952 }
2953 EXPORT_SYMBOL(__rdma_block_iter_start);
2954
__rdma_block_iter_next(struct ib_block_iter * biter)2955 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2956 {
2957 unsigned int block_offset;
2958
2959 if (!biter->__sg_nents || !biter->__sg)
2960 return false;
2961
2962 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2963 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2964 biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2965
2966 if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2967 biter->__sg_advance = 0;
2968 biter->__sg = sg_next(biter->__sg);
2969 biter->__sg_nents--;
2970 }
2971
2972 return true;
2973 }
2974 EXPORT_SYMBOL(__rdma_block_iter_next);
2975
2976 /**
2977 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
2978 * for the drivers.
2979 * @descs: array of static descriptors
2980 * @num_counters: number of elements in array
2981 * @lifespan: milliseconds between updates
2982 */
rdma_alloc_hw_stats_struct(const struct rdma_stat_desc * descs,int num_counters,unsigned long lifespan)2983 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
2984 const struct rdma_stat_desc *descs, int num_counters,
2985 unsigned long lifespan)
2986 {
2987 struct rdma_hw_stats *stats;
2988
2989 stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL);
2990 if (!stats)
2991 return NULL;
2992
2993 stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters),
2994 sizeof(*stats->is_disabled), GFP_KERNEL);
2995 if (!stats->is_disabled)
2996 goto err;
2997
2998 stats->descs = descs;
2999 stats->num_counters = num_counters;
3000 stats->lifespan = msecs_to_jiffies(lifespan);
3001 mutex_init(&stats->lock);
3002
3003 return stats;
3004
3005 err:
3006 kfree(stats);
3007 return NULL;
3008 }
3009 EXPORT_SYMBOL(rdma_alloc_hw_stats_struct);
3010
3011 /**
3012 * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats
3013 * @stats: statistics to release
3014 */
rdma_free_hw_stats_struct(struct rdma_hw_stats * stats)3015 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats)
3016 {
3017 if (!stats)
3018 return;
3019
3020 kfree(stats->is_disabled);
3021 kfree(stats);
3022 }
3023 EXPORT_SYMBOL(rdma_free_hw_stats_struct);
3024