1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3 * Copyright (c) 2005 Voltaire Inc. All rights reserved.
4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved.
7 */
8
9 #include <linux/completion.h>
10 #include <linux/in.h>
11 #include <linux/in6.h>
12 #include <linux/mutex.h>
13 #include <linux/random.h>
14 #include <linux/igmp.h>
15 #include <linux/xarray.h>
16 #include <linux/inetdevice.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <net/route.h>
20
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 #include <net/tcp.h>
24 #include <net/ipv6.h>
25 #include <net/ip_fib.h>
26 #include <net/ip6_route.h>
27
28 #include <rdma/rdma_cm.h>
29 #include <rdma/rdma_cm_ib.h>
30 #include <rdma/rdma_netlink.h>
31 #include <rdma/ib.h>
32 #include <rdma/ib_cache.h>
33 #include <rdma/ib_cm.h>
34 #include <rdma/ib_sa.h>
35 #include <rdma/iw_cm.h>
36
37 #include "core_priv.h"
38 #include "cma_priv.h"
39 #include "cma_trace.h"
40
41 MODULE_AUTHOR("Sean Hefty");
42 MODULE_DESCRIPTION("Generic RDMA CM Agent");
43 MODULE_LICENSE("Dual BSD/GPL");
44
45 #define CMA_CM_RESPONSE_TIMEOUT 20
46 #define CMA_MAX_CM_RETRIES 15
47 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
48 #define CMA_IBOE_PACKET_LIFETIME 18
49 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
50
51 static const char * const cma_events[] = {
52 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved",
53 [RDMA_CM_EVENT_ADDR_ERROR] = "address error",
54 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ",
55 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error",
56 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request",
57 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
58 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error",
59 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable",
60 [RDMA_CM_EVENT_REJECTED] = "rejected",
61 [RDMA_CM_EVENT_ESTABLISHED] = "established",
62 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected",
63 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal",
64 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join",
65 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error",
66 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change",
67 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit",
68 };
69
70 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
71 enum ib_gid_type gid_type);
72
rdma_event_msg(enum rdma_cm_event_type event)73 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
74 {
75 size_t index = event;
76
77 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
78 cma_events[index] : "unrecognized event";
79 }
80 EXPORT_SYMBOL(rdma_event_msg);
81
rdma_reject_msg(struct rdma_cm_id * id,int reason)82 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
83 int reason)
84 {
85 if (rdma_ib_or_roce(id->device, id->port_num))
86 return ibcm_reject_msg(reason);
87
88 if (rdma_protocol_iwarp(id->device, id->port_num))
89 return iwcm_reject_msg(reason);
90
91 WARN_ON_ONCE(1);
92 return "unrecognized transport";
93 }
94 EXPORT_SYMBOL(rdma_reject_msg);
95
96 /**
97 * rdma_is_consumer_reject - return true if the consumer rejected the connect
98 * request.
99 * @id: Communication identifier that received the REJECT event.
100 * @reason: Value returned in the REJECT event status field.
101 */
rdma_is_consumer_reject(struct rdma_cm_id * id,int reason)102 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
103 {
104 if (rdma_ib_or_roce(id->device, id->port_num))
105 return reason == IB_CM_REJ_CONSUMER_DEFINED;
106
107 if (rdma_protocol_iwarp(id->device, id->port_num))
108 return reason == -ECONNREFUSED;
109
110 WARN_ON_ONCE(1);
111 return false;
112 }
113
rdma_consumer_reject_data(struct rdma_cm_id * id,struct rdma_cm_event * ev,u8 * data_len)114 const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
115 struct rdma_cm_event *ev, u8 *data_len)
116 {
117 const void *p;
118
119 if (rdma_is_consumer_reject(id, ev->status)) {
120 *data_len = ev->param.conn.private_data_len;
121 p = ev->param.conn.private_data;
122 } else {
123 *data_len = 0;
124 p = NULL;
125 }
126 return p;
127 }
128 EXPORT_SYMBOL(rdma_consumer_reject_data);
129
130 /**
131 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
132 * @id: Communication Identifier
133 */
rdma_iw_cm_id(struct rdma_cm_id * id)134 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
135 {
136 struct rdma_id_private *id_priv;
137
138 id_priv = container_of(id, struct rdma_id_private, id);
139 if (id->device->node_type == RDMA_NODE_RNIC)
140 return id_priv->cm_id.iw;
141 return NULL;
142 }
143 EXPORT_SYMBOL(rdma_iw_cm_id);
144
145 /**
146 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack.
147 * @res: rdma resource tracking entry pointer
148 */
rdma_res_to_id(struct rdma_restrack_entry * res)149 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res)
150 {
151 struct rdma_id_private *id_priv =
152 container_of(res, struct rdma_id_private, res);
153
154 return &id_priv->id;
155 }
156 EXPORT_SYMBOL(rdma_res_to_id);
157
158 static int cma_add_one(struct ib_device *device);
159 static void cma_remove_one(struct ib_device *device, void *client_data);
160
161 static struct ib_client cma_client = {
162 .name = "cma",
163 .add = cma_add_one,
164 .remove = cma_remove_one
165 };
166
167 static struct ib_sa_client sa_client;
168 static LIST_HEAD(dev_list);
169 static LIST_HEAD(listen_any_list);
170 static DEFINE_MUTEX(lock);
171 static struct workqueue_struct *cma_wq;
172 static unsigned int cma_pernet_id;
173
174 struct cma_pernet {
175 struct xarray tcp_ps;
176 struct xarray udp_ps;
177 struct xarray ipoib_ps;
178 struct xarray ib_ps;
179 };
180
cma_pernet(struct net * net)181 static struct cma_pernet *cma_pernet(struct net *net)
182 {
183 return net_generic(net, cma_pernet_id);
184 }
185
186 static
cma_pernet_xa(struct net * net,enum rdma_ucm_port_space ps)187 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
188 {
189 struct cma_pernet *pernet = cma_pernet(net);
190
191 switch (ps) {
192 case RDMA_PS_TCP:
193 return &pernet->tcp_ps;
194 case RDMA_PS_UDP:
195 return &pernet->udp_ps;
196 case RDMA_PS_IPOIB:
197 return &pernet->ipoib_ps;
198 case RDMA_PS_IB:
199 return &pernet->ib_ps;
200 default:
201 return NULL;
202 }
203 }
204
205 struct cma_device {
206 struct list_head list;
207 struct ib_device *device;
208 struct completion comp;
209 refcount_t refcount;
210 struct list_head id_list;
211 enum ib_gid_type *default_gid_type;
212 u8 *default_roce_tos;
213 };
214
215 struct rdma_bind_list {
216 enum rdma_ucm_port_space ps;
217 struct hlist_head owners;
218 unsigned short port;
219 };
220
cma_ps_alloc(struct net * net,enum rdma_ucm_port_space ps,struct rdma_bind_list * bind_list,int snum)221 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
222 struct rdma_bind_list *bind_list, int snum)
223 {
224 struct xarray *xa = cma_pernet_xa(net, ps);
225
226 return xa_insert(xa, snum, bind_list, GFP_KERNEL);
227 }
228
cma_ps_find(struct net * net,enum rdma_ucm_port_space ps,int snum)229 static struct rdma_bind_list *cma_ps_find(struct net *net,
230 enum rdma_ucm_port_space ps, int snum)
231 {
232 struct xarray *xa = cma_pernet_xa(net, ps);
233
234 return xa_load(xa, snum);
235 }
236
cma_ps_remove(struct net * net,enum rdma_ucm_port_space ps,int snum)237 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
238 int snum)
239 {
240 struct xarray *xa = cma_pernet_xa(net, ps);
241
242 xa_erase(xa, snum);
243 }
244
245 enum {
246 CMA_OPTION_AFONLY,
247 };
248
cma_dev_get(struct cma_device * cma_dev)249 void cma_dev_get(struct cma_device *cma_dev)
250 {
251 refcount_inc(&cma_dev->refcount);
252 }
253
cma_dev_put(struct cma_device * cma_dev)254 void cma_dev_put(struct cma_device *cma_dev)
255 {
256 if (refcount_dec_and_test(&cma_dev->refcount))
257 complete(&cma_dev->comp);
258 }
259
cma_enum_devices_by_ibdev(cma_device_filter filter,void * cookie)260 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter,
261 void *cookie)
262 {
263 struct cma_device *cma_dev;
264 struct cma_device *found_cma_dev = NULL;
265
266 mutex_lock(&lock);
267
268 list_for_each_entry(cma_dev, &dev_list, list)
269 if (filter(cma_dev->device, cookie)) {
270 found_cma_dev = cma_dev;
271 break;
272 }
273
274 if (found_cma_dev)
275 cma_dev_get(found_cma_dev);
276 mutex_unlock(&lock);
277 return found_cma_dev;
278 }
279
cma_get_default_gid_type(struct cma_device * cma_dev,u32 port)280 int cma_get_default_gid_type(struct cma_device *cma_dev,
281 u32 port)
282 {
283 if (!rdma_is_port_valid(cma_dev->device, port))
284 return -EINVAL;
285
286 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
287 }
288
cma_set_default_gid_type(struct cma_device * cma_dev,u32 port,enum ib_gid_type default_gid_type)289 int cma_set_default_gid_type(struct cma_device *cma_dev,
290 u32 port,
291 enum ib_gid_type default_gid_type)
292 {
293 unsigned long supported_gids;
294
295 if (!rdma_is_port_valid(cma_dev->device, port))
296 return -EINVAL;
297
298 if (default_gid_type == IB_GID_TYPE_IB &&
299 rdma_protocol_roce_eth_encap(cma_dev->device, port))
300 default_gid_type = IB_GID_TYPE_ROCE;
301
302 supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
303
304 if (!(supported_gids & 1 << default_gid_type))
305 return -EINVAL;
306
307 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
308 default_gid_type;
309
310 return 0;
311 }
312
cma_get_default_roce_tos(struct cma_device * cma_dev,u32 port)313 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port)
314 {
315 if (!rdma_is_port_valid(cma_dev->device, port))
316 return -EINVAL;
317
318 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
319 }
320
cma_set_default_roce_tos(struct cma_device * cma_dev,u32 port,u8 default_roce_tos)321 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port,
322 u8 default_roce_tos)
323 {
324 if (!rdma_is_port_valid(cma_dev->device, port))
325 return -EINVAL;
326
327 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
328 default_roce_tos;
329
330 return 0;
331 }
cma_get_ib_dev(struct cma_device * cma_dev)332 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
333 {
334 return cma_dev->device;
335 }
336
337 /*
338 * Device removal can occur at anytime, so we need extra handling to
339 * serialize notifying the user of device removal with other callbacks.
340 * We do this by disabling removal notification while a callback is in process,
341 * and reporting it after the callback completes.
342 */
343
344 struct cma_multicast {
345 struct rdma_id_private *id_priv;
346 union {
347 struct ib_sa_multicast *sa_mc;
348 struct {
349 struct work_struct work;
350 struct rdma_cm_event event;
351 } iboe_join;
352 };
353 struct list_head list;
354 void *context;
355 struct sockaddr_storage addr;
356 u8 join_state;
357 };
358
359 struct cma_work {
360 struct work_struct work;
361 struct rdma_id_private *id;
362 enum rdma_cm_state old_state;
363 enum rdma_cm_state new_state;
364 struct rdma_cm_event event;
365 };
366
367 union cma_ip_addr {
368 struct in6_addr ip6;
369 struct {
370 __be32 pad[3];
371 __be32 addr;
372 } ip4;
373 };
374
375 struct cma_hdr {
376 u8 cma_version;
377 u8 ip_version; /* IP version: 7:4 */
378 __be16 port;
379 union cma_ip_addr src_addr;
380 union cma_ip_addr dst_addr;
381 };
382
383 #define CMA_VERSION 0x00
384
385 struct cma_req_info {
386 struct sockaddr_storage listen_addr_storage;
387 struct sockaddr_storage src_addr_storage;
388 struct ib_device *device;
389 union ib_gid local_gid;
390 __be64 service_id;
391 int port;
392 bool has_gid;
393 u16 pkey;
394 };
395
cma_comp_exch(struct rdma_id_private * id_priv,enum rdma_cm_state comp,enum rdma_cm_state exch)396 static int cma_comp_exch(struct rdma_id_private *id_priv,
397 enum rdma_cm_state comp, enum rdma_cm_state exch)
398 {
399 unsigned long flags;
400 int ret;
401
402 /*
403 * The FSM uses a funny double locking where state is protected by both
404 * the handler_mutex and the spinlock. State is not allowed to change
405 * to/from a handler_mutex protected value without also holding
406 * handler_mutex.
407 */
408 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
409 lockdep_assert_held(&id_priv->handler_mutex);
410
411 spin_lock_irqsave(&id_priv->lock, flags);
412 if ((ret = (id_priv->state == comp)))
413 id_priv->state = exch;
414 spin_unlock_irqrestore(&id_priv->lock, flags);
415 return ret;
416 }
417
cma_get_ip_ver(const struct cma_hdr * hdr)418 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
419 {
420 return hdr->ip_version >> 4;
421 }
422
cma_set_ip_ver(struct cma_hdr * hdr,u8 ip_ver)423 static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
424 {
425 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
426 }
427
cma_igmp_send(struct net_device * ndev,union ib_gid * mgid,bool join)428 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
429 {
430 struct in_device *in_dev = NULL;
431
432 if (ndev) {
433 rtnl_lock();
434 in_dev = __in_dev_get_rtnl(ndev);
435 if (in_dev) {
436 if (join)
437 ip_mc_inc_group(in_dev,
438 *(__be32 *)(mgid->raw + 12));
439 else
440 ip_mc_dec_group(in_dev,
441 *(__be32 *)(mgid->raw + 12));
442 }
443 rtnl_unlock();
444 }
445 return (in_dev) ? 0 : -ENODEV;
446 }
447
_cma_attach_to_dev(struct rdma_id_private * id_priv,struct cma_device * cma_dev)448 static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
449 struct cma_device *cma_dev)
450 {
451 cma_dev_get(cma_dev);
452 id_priv->cma_dev = cma_dev;
453 id_priv->id.device = cma_dev->device;
454 id_priv->id.route.addr.dev_addr.transport =
455 rdma_node_get_transport(cma_dev->device->node_type);
456 list_add_tail(&id_priv->device_item, &cma_dev->id_list);
457
458 trace_cm_id_attach(id_priv, cma_dev->device);
459 }
460
cma_attach_to_dev(struct rdma_id_private * id_priv,struct cma_device * cma_dev)461 static void cma_attach_to_dev(struct rdma_id_private *id_priv,
462 struct cma_device *cma_dev)
463 {
464 _cma_attach_to_dev(id_priv, cma_dev);
465 id_priv->gid_type =
466 cma_dev->default_gid_type[id_priv->id.port_num -
467 rdma_start_port(cma_dev->device)];
468 }
469
cma_release_dev(struct rdma_id_private * id_priv)470 static void cma_release_dev(struct rdma_id_private *id_priv)
471 {
472 mutex_lock(&lock);
473 list_del_init(&id_priv->device_item);
474 cma_dev_put(id_priv->cma_dev);
475 id_priv->cma_dev = NULL;
476 id_priv->id.device = NULL;
477 if (id_priv->id.route.addr.dev_addr.sgid_attr) {
478 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
479 id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
480 }
481 mutex_unlock(&lock);
482 }
483
cma_src_addr(struct rdma_id_private * id_priv)484 static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
485 {
486 return (struct sockaddr *) &id_priv->id.route.addr.src_addr;
487 }
488
cma_dst_addr(struct rdma_id_private * id_priv)489 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
490 {
491 return (struct sockaddr *) &id_priv->id.route.addr.dst_addr;
492 }
493
cma_family(struct rdma_id_private * id_priv)494 static inline unsigned short cma_family(struct rdma_id_private *id_priv)
495 {
496 return id_priv->id.route.addr.src_addr.ss_family;
497 }
498
cma_set_qkey(struct rdma_id_private * id_priv,u32 qkey)499 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
500 {
501 struct ib_sa_mcmember_rec rec;
502 int ret = 0;
503
504 if (id_priv->qkey) {
505 if (qkey && id_priv->qkey != qkey)
506 return -EINVAL;
507 return 0;
508 }
509
510 if (qkey) {
511 id_priv->qkey = qkey;
512 return 0;
513 }
514
515 switch (id_priv->id.ps) {
516 case RDMA_PS_UDP:
517 case RDMA_PS_IB:
518 id_priv->qkey = RDMA_UDP_QKEY;
519 break;
520 case RDMA_PS_IPOIB:
521 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
522 ret = ib_sa_get_mcmember_rec(id_priv->id.device,
523 id_priv->id.port_num, &rec.mgid,
524 &rec);
525 if (!ret)
526 id_priv->qkey = be32_to_cpu(rec.qkey);
527 break;
528 default:
529 break;
530 }
531 return ret;
532 }
533
cma_translate_ib(struct sockaddr_ib * sib,struct rdma_dev_addr * dev_addr)534 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
535 {
536 dev_addr->dev_type = ARPHRD_INFINIBAND;
537 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
538 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
539 }
540
cma_translate_addr(struct sockaddr * addr,struct rdma_dev_addr * dev_addr)541 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
542 {
543 int ret;
544
545 if (addr->sa_family != AF_IB) {
546 ret = rdma_translate_ip(addr, dev_addr);
547 } else {
548 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
549 ret = 0;
550 }
551
552 return ret;
553 }
554
555 static const struct ib_gid_attr *
cma_validate_port(struct ib_device * device,u32 port,enum ib_gid_type gid_type,union ib_gid * gid,struct rdma_id_private * id_priv)556 cma_validate_port(struct ib_device *device, u32 port,
557 enum ib_gid_type gid_type,
558 union ib_gid *gid,
559 struct rdma_id_private *id_priv)
560 {
561 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
562 int bound_if_index = dev_addr->bound_dev_if;
563 const struct ib_gid_attr *sgid_attr;
564 int dev_type = dev_addr->dev_type;
565 struct net_device *ndev = NULL;
566
567 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
568 return ERR_PTR(-ENODEV);
569
570 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
571 return ERR_PTR(-ENODEV);
572
573 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
574 return ERR_PTR(-ENODEV);
575
576 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
577 ndev = dev_get_by_index(dev_addr->net, bound_if_index);
578 if (!ndev)
579 return ERR_PTR(-ENODEV);
580 } else {
581 gid_type = IB_GID_TYPE_IB;
582 }
583
584 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
585 if (ndev)
586 dev_put(ndev);
587 return sgid_attr;
588 }
589
cma_bind_sgid_attr(struct rdma_id_private * id_priv,const struct ib_gid_attr * sgid_attr)590 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
591 const struct ib_gid_attr *sgid_attr)
592 {
593 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
594 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
595 }
596
597 /**
598 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
599 * based on source ip address.
600 * @id_priv: cm_id which should be bound to cma device
601 *
602 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
603 * based on source IP address. It returns 0 on success or error code otherwise.
604 * It is applicable to active and passive side cm_id.
605 */
cma_acquire_dev_by_src_ip(struct rdma_id_private * id_priv)606 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
607 {
608 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
609 const struct ib_gid_attr *sgid_attr;
610 union ib_gid gid, iboe_gid, *gidp;
611 struct cma_device *cma_dev;
612 enum ib_gid_type gid_type;
613 int ret = -ENODEV;
614 u32 port;
615
616 if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
617 id_priv->id.ps == RDMA_PS_IPOIB)
618 return -EINVAL;
619
620 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
621 &iboe_gid);
622
623 memcpy(&gid, dev_addr->src_dev_addr +
624 rdma_addr_gid_offset(dev_addr), sizeof(gid));
625
626 mutex_lock(&lock);
627 list_for_each_entry(cma_dev, &dev_list, list) {
628 rdma_for_each_port (cma_dev->device, port) {
629 gidp = rdma_protocol_roce(cma_dev->device, port) ?
630 &iboe_gid : &gid;
631 gid_type = cma_dev->default_gid_type[port - 1];
632 sgid_attr = cma_validate_port(cma_dev->device, port,
633 gid_type, gidp, id_priv);
634 if (!IS_ERR(sgid_attr)) {
635 id_priv->id.port_num = port;
636 cma_bind_sgid_attr(id_priv, sgid_attr);
637 cma_attach_to_dev(id_priv, cma_dev);
638 ret = 0;
639 goto out;
640 }
641 }
642 }
643 out:
644 mutex_unlock(&lock);
645 return ret;
646 }
647
648 /**
649 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
650 * @id_priv: cm id to bind to cma device
651 * @listen_id_priv: listener cm id to match against
652 * @req: Pointer to req structure containaining incoming
653 * request information
654 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
655 * rdma device matches for listen_id and incoming request. It also verifies
656 * that a GID table entry is present for the source address.
657 * Returns 0 on success, or returns error code otherwise.
658 */
cma_ib_acquire_dev(struct rdma_id_private * id_priv,const struct rdma_id_private * listen_id_priv,struct cma_req_info * req)659 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
660 const struct rdma_id_private *listen_id_priv,
661 struct cma_req_info *req)
662 {
663 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
664 const struct ib_gid_attr *sgid_attr;
665 enum ib_gid_type gid_type;
666 union ib_gid gid;
667
668 if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
669 id_priv->id.ps == RDMA_PS_IPOIB)
670 return -EINVAL;
671
672 if (rdma_protocol_roce(req->device, req->port))
673 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
674 &gid);
675 else
676 memcpy(&gid, dev_addr->src_dev_addr +
677 rdma_addr_gid_offset(dev_addr), sizeof(gid));
678
679 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
680 sgid_attr = cma_validate_port(req->device, req->port,
681 gid_type, &gid, id_priv);
682 if (IS_ERR(sgid_attr))
683 return PTR_ERR(sgid_attr);
684
685 id_priv->id.port_num = req->port;
686 cma_bind_sgid_attr(id_priv, sgid_attr);
687 /* Need to acquire lock to protect against reader
688 * of cma_dev->id_list such as cma_netdev_callback() and
689 * cma_process_remove().
690 */
691 mutex_lock(&lock);
692 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
693 mutex_unlock(&lock);
694 rdma_restrack_add(&id_priv->res);
695 return 0;
696 }
697
cma_iw_acquire_dev(struct rdma_id_private * id_priv,const struct rdma_id_private * listen_id_priv)698 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
699 const struct rdma_id_private *listen_id_priv)
700 {
701 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
702 const struct ib_gid_attr *sgid_attr;
703 struct cma_device *cma_dev;
704 enum ib_gid_type gid_type;
705 int ret = -ENODEV;
706 union ib_gid gid;
707 u32 port;
708
709 if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
710 id_priv->id.ps == RDMA_PS_IPOIB)
711 return -EINVAL;
712
713 memcpy(&gid, dev_addr->src_dev_addr +
714 rdma_addr_gid_offset(dev_addr), sizeof(gid));
715
716 mutex_lock(&lock);
717
718 cma_dev = listen_id_priv->cma_dev;
719 port = listen_id_priv->id.port_num;
720 gid_type = listen_id_priv->gid_type;
721 sgid_attr = cma_validate_port(cma_dev->device, port,
722 gid_type, &gid, id_priv);
723 if (!IS_ERR(sgid_attr)) {
724 id_priv->id.port_num = port;
725 cma_bind_sgid_attr(id_priv, sgid_attr);
726 ret = 0;
727 goto out;
728 }
729
730 list_for_each_entry(cma_dev, &dev_list, list) {
731 rdma_for_each_port (cma_dev->device, port) {
732 if (listen_id_priv->cma_dev == cma_dev &&
733 listen_id_priv->id.port_num == port)
734 continue;
735
736 gid_type = cma_dev->default_gid_type[port - 1];
737 sgid_attr = cma_validate_port(cma_dev->device, port,
738 gid_type, &gid, id_priv);
739 if (!IS_ERR(sgid_attr)) {
740 id_priv->id.port_num = port;
741 cma_bind_sgid_attr(id_priv, sgid_attr);
742 ret = 0;
743 goto out;
744 }
745 }
746 }
747
748 out:
749 if (!ret) {
750 cma_attach_to_dev(id_priv, cma_dev);
751 rdma_restrack_add(&id_priv->res);
752 }
753
754 mutex_unlock(&lock);
755 return ret;
756 }
757
758 /*
759 * Select the source IB device and address to reach the destination IB address.
760 */
cma_resolve_ib_dev(struct rdma_id_private * id_priv)761 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
762 {
763 struct cma_device *cma_dev, *cur_dev;
764 struct sockaddr_ib *addr;
765 union ib_gid gid, sgid, *dgid;
766 unsigned int p;
767 u16 pkey, index;
768 enum ib_port_state port_state;
769 int ret;
770 int i;
771
772 cma_dev = NULL;
773 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
774 dgid = (union ib_gid *) &addr->sib_addr;
775 pkey = ntohs(addr->sib_pkey);
776
777 mutex_lock(&lock);
778 list_for_each_entry(cur_dev, &dev_list, list) {
779 rdma_for_each_port (cur_dev->device, p) {
780 if (!rdma_cap_af_ib(cur_dev->device, p))
781 continue;
782
783 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
784 continue;
785
786 if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
787 continue;
788
789 for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len;
790 ++i) {
791 ret = rdma_query_gid(cur_dev->device, p, i,
792 &gid);
793 if (ret)
794 continue;
795
796 if (!memcmp(&gid, dgid, sizeof(gid))) {
797 cma_dev = cur_dev;
798 sgid = gid;
799 id_priv->id.port_num = p;
800 goto found;
801 }
802
803 if (!cma_dev && (gid.global.subnet_prefix ==
804 dgid->global.subnet_prefix) &&
805 port_state == IB_PORT_ACTIVE) {
806 cma_dev = cur_dev;
807 sgid = gid;
808 id_priv->id.port_num = p;
809 goto found;
810 }
811 }
812 }
813 }
814 mutex_unlock(&lock);
815 return -ENODEV;
816
817 found:
818 cma_attach_to_dev(id_priv, cma_dev);
819 rdma_restrack_add(&id_priv->res);
820 mutex_unlock(&lock);
821 addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
822 memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
823 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
824 return 0;
825 }
826
cma_id_get(struct rdma_id_private * id_priv)827 static void cma_id_get(struct rdma_id_private *id_priv)
828 {
829 refcount_inc(&id_priv->refcount);
830 }
831
cma_id_put(struct rdma_id_private * id_priv)832 static void cma_id_put(struct rdma_id_private *id_priv)
833 {
834 if (refcount_dec_and_test(&id_priv->refcount))
835 complete(&id_priv->comp);
836 }
837
838 static struct rdma_id_private *
__rdma_create_id(struct net * net,rdma_cm_event_handler event_handler,void * context,enum rdma_ucm_port_space ps,enum ib_qp_type qp_type,const struct rdma_id_private * parent)839 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
840 void *context, enum rdma_ucm_port_space ps,
841 enum ib_qp_type qp_type, const struct rdma_id_private *parent)
842 {
843 struct rdma_id_private *id_priv;
844
845 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
846 if (!id_priv)
847 return ERR_PTR(-ENOMEM);
848
849 id_priv->state = RDMA_CM_IDLE;
850 id_priv->id.context = context;
851 id_priv->id.event_handler = event_handler;
852 id_priv->id.ps = ps;
853 id_priv->id.qp_type = qp_type;
854 id_priv->tos_set = false;
855 id_priv->timeout_set = false;
856 id_priv->min_rnr_timer_set = false;
857 id_priv->gid_type = IB_GID_TYPE_IB;
858 spin_lock_init(&id_priv->lock);
859 mutex_init(&id_priv->qp_mutex);
860 init_completion(&id_priv->comp);
861 refcount_set(&id_priv->refcount, 1);
862 mutex_init(&id_priv->handler_mutex);
863 INIT_LIST_HEAD(&id_priv->device_item);
864 INIT_LIST_HEAD(&id_priv->listen_list);
865 INIT_LIST_HEAD(&id_priv->mc_list);
866 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
867 id_priv->id.route.addr.dev_addr.net = get_net(net);
868 id_priv->seq_num &= 0x00ffffff;
869
870 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
871 if (parent)
872 rdma_restrack_parent_name(&id_priv->res, &parent->res);
873
874 return id_priv;
875 }
876
877 struct rdma_cm_id *
__rdma_create_kernel_id(struct net * net,rdma_cm_event_handler event_handler,void * context,enum rdma_ucm_port_space ps,enum ib_qp_type qp_type,const char * caller)878 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
879 void *context, enum rdma_ucm_port_space ps,
880 enum ib_qp_type qp_type, const char *caller)
881 {
882 struct rdma_id_private *ret;
883
884 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
885 if (IS_ERR(ret))
886 return ERR_CAST(ret);
887
888 rdma_restrack_set_name(&ret->res, caller);
889 return &ret->id;
890 }
891 EXPORT_SYMBOL(__rdma_create_kernel_id);
892
rdma_create_user_id(rdma_cm_event_handler event_handler,void * context,enum rdma_ucm_port_space ps,enum ib_qp_type qp_type)893 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
894 void *context,
895 enum rdma_ucm_port_space ps,
896 enum ib_qp_type qp_type)
897 {
898 struct rdma_id_private *ret;
899
900 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
901 ps, qp_type, NULL);
902 if (IS_ERR(ret))
903 return ERR_CAST(ret);
904
905 rdma_restrack_set_name(&ret->res, NULL);
906 return &ret->id;
907 }
908 EXPORT_SYMBOL(rdma_create_user_id);
909
cma_init_ud_qp(struct rdma_id_private * id_priv,struct ib_qp * qp)910 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
911 {
912 struct ib_qp_attr qp_attr;
913 int qp_attr_mask, ret;
914
915 qp_attr.qp_state = IB_QPS_INIT;
916 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
917 if (ret)
918 return ret;
919
920 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
921 if (ret)
922 return ret;
923
924 qp_attr.qp_state = IB_QPS_RTR;
925 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
926 if (ret)
927 return ret;
928
929 qp_attr.qp_state = IB_QPS_RTS;
930 qp_attr.sq_psn = 0;
931 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
932
933 return ret;
934 }
935
cma_init_conn_qp(struct rdma_id_private * id_priv,struct ib_qp * qp)936 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
937 {
938 struct ib_qp_attr qp_attr;
939 int qp_attr_mask, ret;
940
941 qp_attr.qp_state = IB_QPS_INIT;
942 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
943 if (ret)
944 return ret;
945
946 return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
947 }
948
rdma_create_qp(struct rdma_cm_id * id,struct ib_pd * pd,struct ib_qp_init_attr * qp_init_attr)949 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
950 struct ib_qp_init_attr *qp_init_attr)
951 {
952 struct rdma_id_private *id_priv;
953 struct ib_qp *qp;
954 int ret;
955
956 id_priv = container_of(id, struct rdma_id_private, id);
957 if (id->device != pd->device) {
958 ret = -EINVAL;
959 goto out_err;
960 }
961
962 qp_init_attr->port_num = id->port_num;
963 qp = ib_create_qp(pd, qp_init_attr);
964 if (IS_ERR(qp)) {
965 ret = PTR_ERR(qp);
966 goto out_err;
967 }
968
969 if (id->qp_type == IB_QPT_UD)
970 ret = cma_init_ud_qp(id_priv, qp);
971 else
972 ret = cma_init_conn_qp(id_priv, qp);
973 if (ret)
974 goto out_destroy;
975
976 id->qp = qp;
977 id_priv->qp_num = qp->qp_num;
978 id_priv->srq = (qp->srq != NULL);
979 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
980 return 0;
981 out_destroy:
982 ib_destroy_qp(qp);
983 out_err:
984 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
985 return ret;
986 }
987 EXPORT_SYMBOL(rdma_create_qp);
988
rdma_destroy_qp(struct rdma_cm_id * id)989 void rdma_destroy_qp(struct rdma_cm_id *id)
990 {
991 struct rdma_id_private *id_priv;
992
993 id_priv = container_of(id, struct rdma_id_private, id);
994 trace_cm_qp_destroy(id_priv);
995 mutex_lock(&id_priv->qp_mutex);
996 ib_destroy_qp(id_priv->id.qp);
997 id_priv->id.qp = NULL;
998 mutex_unlock(&id_priv->qp_mutex);
999 }
1000 EXPORT_SYMBOL(rdma_destroy_qp);
1001
cma_modify_qp_rtr(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)1002 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
1003 struct rdma_conn_param *conn_param)
1004 {
1005 struct ib_qp_attr qp_attr;
1006 int qp_attr_mask, ret;
1007
1008 mutex_lock(&id_priv->qp_mutex);
1009 if (!id_priv->id.qp) {
1010 ret = 0;
1011 goto out;
1012 }
1013
1014 /* Need to update QP attributes from default values. */
1015 qp_attr.qp_state = IB_QPS_INIT;
1016 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1017 if (ret)
1018 goto out;
1019
1020 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1021 if (ret)
1022 goto out;
1023
1024 qp_attr.qp_state = IB_QPS_RTR;
1025 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1026 if (ret)
1027 goto out;
1028
1029 BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
1030
1031 if (conn_param)
1032 qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
1033 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1034 out:
1035 mutex_unlock(&id_priv->qp_mutex);
1036 return ret;
1037 }
1038
cma_modify_qp_rts(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)1039 static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
1040 struct rdma_conn_param *conn_param)
1041 {
1042 struct ib_qp_attr qp_attr;
1043 int qp_attr_mask, ret;
1044
1045 mutex_lock(&id_priv->qp_mutex);
1046 if (!id_priv->id.qp) {
1047 ret = 0;
1048 goto out;
1049 }
1050
1051 qp_attr.qp_state = IB_QPS_RTS;
1052 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1053 if (ret)
1054 goto out;
1055
1056 if (conn_param)
1057 qp_attr.max_rd_atomic = conn_param->initiator_depth;
1058 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1059 out:
1060 mutex_unlock(&id_priv->qp_mutex);
1061 return ret;
1062 }
1063
cma_modify_qp_err(struct rdma_id_private * id_priv)1064 static int cma_modify_qp_err(struct rdma_id_private *id_priv)
1065 {
1066 struct ib_qp_attr qp_attr;
1067 int ret;
1068
1069 mutex_lock(&id_priv->qp_mutex);
1070 if (!id_priv->id.qp) {
1071 ret = 0;
1072 goto out;
1073 }
1074
1075 qp_attr.qp_state = IB_QPS_ERR;
1076 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
1077 out:
1078 mutex_unlock(&id_priv->qp_mutex);
1079 return ret;
1080 }
1081
cma_ib_init_qp_attr(struct rdma_id_private * id_priv,struct ib_qp_attr * qp_attr,int * qp_attr_mask)1082 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
1083 struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1084 {
1085 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
1086 int ret;
1087 u16 pkey;
1088
1089 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
1090 pkey = 0xffff;
1091 else
1092 pkey = ib_addr_get_pkey(dev_addr);
1093
1094 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
1095 pkey, &qp_attr->pkey_index);
1096 if (ret)
1097 return ret;
1098
1099 qp_attr->port_num = id_priv->id.port_num;
1100 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
1101
1102 if (id_priv->id.qp_type == IB_QPT_UD) {
1103 ret = cma_set_qkey(id_priv, 0);
1104 if (ret)
1105 return ret;
1106
1107 qp_attr->qkey = id_priv->qkey;
1108 *qp_attr_mask |= IB_QP_QKEY;
1109 } else {
1110 qp_attr->qp_access_flags = 0;
1111 *qp_attr_mask |= IB_QP_ACCESS_FLAGS;
1112 }
1113 return 0;
1114 }
1115
rdma_init_qp_attr(struct rdma_cm_id * id,struct ib_qp_attr * qp_attr,int * qp_attr_mask)1116 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
1117 int *qp_attr_mask)
1118 {
1119 struct rdma_id_private *id_priv;
1120 int ret = 0;
1121
1122 id_priv = container_of(id, struct rdma_id_private, id);
1123 if (rdma_cap_ib_cm(id->device, id->port_num)) {
1124 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
1125 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
1126 else
1127 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
1128 qp_attr_mask);
1129
1130 if (qp_attr->qp_state == IB_QPS_RTR)
1131 qp_attr->rq_psn = id_priv->seq_num;
1132 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
1133 if (!id_priv->cm_id.iw) {
1134 qp_attr->qp_access_flags = 0;
1135 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
1136 } else
1137 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
1138 qp_attr_mask);
1139 qp_attr->port_num = id_priv->id.port_num;
1140 *qp_attr_mask |= IB_QP_PORT;
1141 } else {
1142 ret = -ENOSYS;
1143 }
1144
1145 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
1146 qp_attr->timeout = id_priv->timeout;
1147
1148 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set)
1149 qp_attr->min_rnr_timer = id_priv->min_rnr_timer;
1150
1151 return ret;
1152 }
1153 EXPORT_SYMBOL(rdma_init_qp_attr);
1154
cma_zero_addr(const struct sockaddr * addr)1155 static inline bool cma_zero_addr(const struct sockaddr *addr)
1156 {
1157 switch (addr->sa_family) {
1158 case AF_INET:
1159 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
1160 case AF_INET6:
1161 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
1162 case AF_IB:
1163 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
1164 default:
1165 return false;
1166 }
1167 }
1168
cma_loopback_addr(const struct sockaddr * addr)1169 static inline bool cma_loopback_addr(const struct sockaddr *addr)
1170 {
1171 switch (addr->sa_family) {
1172 case AF_INET:
1173 return ipv4_is_loopback(
1174 ((struct sockaddr_in *)addr)->sin_addr.s_addr);
1175 case AF_INET6:
1176 return ipv6_addr_loopback(
1177 &((struct sockaddr_in6 *)addr)->sin6_addr);
1178 case AF_IB:
1179 return ib_addr_loopback(
1180 &((struct sockaddr_ib *)addr)->sib_addr);
1181 default:
1182 return false;
1183 }
1184 }
1185
cma_any_addr(const struct sockaddr * addr)1186 static inline bool cma_any_addr(const struct sockaddr *addr)
1187 {
1188 return cma_zero_addr(addr) || cma_loopback_addr(addr);
1189 }
1190
cma_addr_cmp(const struct sockaddr * src,const struct sockaddr * dst)1191 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
1192 {
1193 if (src->sa_family != dst->sa_family)
1194 return -1;
1195
1196 switch (src->sa_family) {
1197 case AF_INET:
1198 return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
1199 ((struct sockaddr_in *)dst)->sin_addr.s_addr;
1200 case AF_INET6: {
1201 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
1202 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
1203 bool link_local;
1204
1205 if (ipv6_addr_cmp(&src_addr6->sin6_addr,
1206 &dst_addr6->sin6_addr))
1207 return 1;
1208 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
1209 IPV6_ADDR_LINKLOCAL;
1210 /* Link local must match their scope_ids */
1211 return link_local ? (src_addr6->sin6_scope_id !=
1212 dst_addr6->sin6_scope_id) :
1213 0;
1214 }
1215
1216 default:
1217 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
1218 &((struct sockaddr_ib *) dst)->sib_addr);
1219 }
1220 }
1221
cma_port(const struct sockaddr * addr)1222 static __be16 cma_port(const struct sockaddr *addr)
1223 {
1224 struct sockaddr_ib *sib;
1225
1226 switch (addr->sa_family) {
1227 case AF_INET:
1228 return ((struct sockaddr_in *) addr)->sin_port;
1229 case AF_INET6:
1230 return ((struct sockaddr_in6 *) addr)->sin6_port;
1231 case AF_IB:
1232 sib = (struct sockaddr_ib *) addr;
1233 return htons((u16) (be64_to_cpu(sib->sib_sid) &
1234 be64_to_cpu(sib->sib_sid_mask)));
1235 default:
1236 return 0;
1237 }
1238 }
1239
cma_any_port(const struct sockaddr * addr)1240 static inline int cma_any_port(const struct sockaddr *addr)
1241 {
1242 return !cma_port(addr);
1243 }
1244
cma_save_ib_info(struct sockaddr * src_addr,struct sockaddr * dst_addr,const struct rdma_cm_id * listen_id,const struct sa_path_rec * path)1245 static void cma_save_ib_info(struct sockaddr *src_addr,
1246 struct sockaddr *dst_addr,
1247 const struct rdma_cm_id *listen_id,
1248 const struct sa_path_rec *path)
1249 {
1250 struct sockaddr_ib *listen_ib, *ib;
1251
1252 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
1253 if (src_addr) {
1254 ib = (struct sockaddr_ib *)src_addr;
1255 ib->sib_family = AF_IB;
1256 if (path) {
1257 ib->sib_pkey = path->pkey;
1258 ib->sib_flowinfo = path->flow_label;
1259 memcpy(&ib->sib_addr, &path->sgid, 16);
1260 ib->sib_sid = path->service_id;
1261 ib->sib_scope_id = 0;
1262 } else {
1263 ib->sib_pkey = listen_ib->sib_pkey;
1264 ib->sib_flowinfo = listen_ib->sib_flowinfo;
1265 ib->sib_addr = listen_ib->sib_addr;
1266 ib->sib_sid = listen_ib->sib_sid;
1267 ib->sib_scope_id = listen_ib->sib_scope_id;
1268 }
1269 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
1270 }
1271 if (dst_addr) {
1272 ib = (struct sockaddr_ib *)dst_addr;
1273 ib->sib_family = AF_IB;
1274 if (path) {
1275 ib->sib_pkey = path->pkey;
1276 ib->sib_flowinfo = path->flow_label;
1277 memcpy(&ib->sib_addr, &path->dgid, 16);
1278 }
1279 }
1280 }
1281
cma_save_ip4_info(struct sockaddr_in * src_addr,struct sockaddr_in * dst_addr,struct cma_hdr * hdr,__be16 local_port)1282 static void cma_save_ip4_info(struct sockaddr_in *src_addr,
1283 struct sockaddr_in *dst_addr,
1284 struct cma_hdr *hdr,
1285 __be16 local_port)
1286 {
1287 if (src_addr) {
1288 *src_addr = (struct sockaddr_in) {
1289 .sin_family = AF_INET,
1290 .sin_addr.s_addr = hdr->dst_addr.ip4.addr,
1291 .sin_port = local_port,
1292 };
1293 }
1294
1295 if (dst_addr) {
1296 *dst_addr = (struct sockaddr_in) {
1297 .sin_family = AF_INET,
1298 .sin_addr.s_addr = hdr->src_addr.ip4.addr,
1299 .sin_port = hdr->port,
1300 };
1301 }
1302 }
1303
cma_save_ip6_info(struct sockaddr_in6 * src_addr,struct sockaddr_in6 * dst_addr,struct cma_hdr * hdr,__be16 local_port)1304 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
1305 struct sockaddr_in6 *dst_addr,
1306 struct cma_hdr *hdr,
1307 __be16 local_port)
1308 {
1309 if (src_addr) {
1310 *src_addr = (struct sockaddr_in6) {
1311 .sin6_family = AF_INET6,
1312 .sin6_addr = hdr->dst_addr.ip6,
1313 .sin6_port = local_port,
1314 };
1315 }
1316
1317 if (dst_addr) {
1318 *dst_addr = (struct sockaddr_in6) {
1319 .sin6_family = AF_INET6,
1320 .sin6_addr = hdr->src_addr.ip6,
1321 .sin6_port = hdr->port,
1322 };
1323 }
1324 }
1325
cma_port_from_service_id(__be64 service_id)1326 static u16 cma_port_from_service_id(__be64 service_id)
1327 {
1328 return (u16)be64_to_cpu(service_id);
1329 }
1330
cma_save_ip_info(struct sockaddr * src_addr,struct sockaddr * dst_addr,const struct ib_cm_event * ib_event,__be64 service_id)1331 static int cma_save_ip_info(struct sockaddr *src_addr,
1332 struct sockaddr *dst_addr,
1333 const struct ib_cm_event *ib_event,
1334 __be64 service_id)
1335 {
1336 struct cma_hdr *hdr;
1337 __be16 port;
1338
1339 hdr = ib_event->private_data;
1340 if (hdr->cma_version != CMA_VERSION)
1341 return -EINVAL;
1342
1343 port = htons(cma_port_from_service_id(service_id));
1344
1345 switch (cma_get_ip_ver(hdr)) {
1346 case 4:
1347 cma_save_ip4_info((struct sockaddr_in *)src_addr,
1348 (struct sockaddr_in *)dst_addr, hdr, port);
1349 break;
1350 case 6:
1351 cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
1352 (struct sockaddr_in6 *)dst_addr, hdr, port);
1353 break;
1354 default:
1355 return -EAFNOSUPPORT;
1356 }
1357
1358 return 0;
1359 }
1360
cma_save_net_info(struct sockaddr * src_addr,struct sockaddr * dst_addr,const struct rdma_cm_id * listen_id,const struct ib_cm_event * ib_event,sa_family_t sa_family,__be64 service_id)1361 static int cma_save_net_info(struct sockaddr *src_addr,
1362 struct sockaddr *dst_addr,
1363 const struct rdma_cm_id *listen_id,
1364 const struct ib_cm_event *ib_event,
1365 sa_family_t sa_family, __be64 service_id)
1366 {
1367 if (sa_family == AF_IB) {
1368 if (ib_event->event == IB_CM_REQ_RECEIVED)
1369 cma_save_ib_info(src_addr, dst_addr, listen_id,
1370 ib_event->param.req_rcvd.primary_path);
1371 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1372 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
1373 return 0;
1374 }
1375
1376 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
1377 }
1378
cma_save_req_info(const struct ib_cm_event * ib_event,struct cma_req_info * req)1379 static int cma_save_req_info(const struct ib_cm_event *ib_event,
1380 struct cma_req_info *req)
1381 {
1382 const struct ib_cm_req_event_param *req_param =
1383 &ib_event->param.req_rcvd;
1384 const struct ib_cm_sidr_req_event_param *sidr_param =
1385 &ib_event->param.sidr_req_rcvd;
1386
1387 switch (ib_event->event) {
1388 case IB_CM_REQ_RECEIVED:
1389 req->device = req_param->listen_id->device;
1390 req->port = req_param->port;
1391 memcpy(&req->local_gid, &req_param->primary_path->sgid,
1392 sizeof(req->local_gid));
1393 req->has_gid = true;
1394 req->service_id = req_param->primary_path->service_id;
1395 req->pkey = be16_to_cpu(req_param->primary_path->pkey);
1396 if (req->pkey != req_param->bth_pkey)
1397 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
1398 "RDMA CMA: in the future this may cause the request to be dropped\n",
1399 req_param->bth_pkey, req->pkey);
1400 break;
1401 case IB_CM_SIDR_REQ_RECEIVED:
1402 req->device = sidr_param->listen_id->device;
1403 req->port = sidr_param->port;
1404 req->has_gid = false;
1405 req->service_id = sidr_param->service_id;
1406 req->pkey = sidr_param->pkey;
1407 if (req->pkey != sidr_param->bth_pkey)
1408 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
1409 "RDMA CMA: in the future this may cause the request to be dropped\n",
1410 sidr_param->bth_pkey, req->pkey);
1411 break;
1412 default:
1413 return -EINVAL;
1414 }
1415
1416 return 0;
1417 }
1418
validate_ipv4_net_dev(struct net_device * net_dev,const struct sockaddr_in * dst_addr,const struct sockaddr_in * src_addr)1419 static bool validate_ipv4_net_dev(struct net_device *net_dev,
1420 const struct sockaddr_in *dst_addr,
1421 const struct sockaddr_in *src_addr)
1422 {
1423 __be32 daddr = dst_addr->sin_addr.s_addr,
1424 saddr = src_addr->sin_addr.s_addr;
1425 struct fib_result res;
1426 struct flowi4 fl4;
1427 int err;
1428 bool ret;
1429
1430 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1431 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
1432 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
1433 ipv4_is_loopback(saddr))
1434 return false;
1435
1436 memset(&fl4, 0, sizeof(fl4));
1437 fl4.flowi4_iif = net_dev->ifindex;
1438 fl4.daddr = daddr;
1439 fl4.saddr = saddr;
1440
1441 rcu_read_lock();
1442 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
1443 ret = err == 0 && FIB_RES_DEV(res) == net_dev;
1444 rcu_read_unlock();
1445
1446 return ret;
1447 }
1448
validate_ipv6_net_dev(struct net_device * net_dev,const struct sockaddr_in6 * dst_addr,const struct sockaddr_in6 * src_addr)1449 static bool validate_ipv6_net_dev(struct net_device *net_dev,
1450 const struct sockaddr_in6 *dst_addr,
1451 const struct sockaddr_in6 *src_addr)
1452 {
1453 #if IS_ENABLED(CONFIG_IPV6)
1454 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
1455 IPV6_ADDR_LINKLOCAL;
1456 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
1457 &src_addr->sin6_addr, net_dev->ifindex,
1458 NULL, strict);
1459 bool ret;
1460
1461 if (!rt)
1462 return false;
1463
1464 ret = rt->rt6i_idev->dev == net_dev;
1465 ip6_rt_put(rt);
1466
1467 return ret;
1468 #else
1469 return false;
1470 #endif
1471 }
1472
validate_net_dev(struct net_device * net_dev,const struct sockaddr * daddr,const struct sockaddr * saddr)1473 static bool validate_net_dev(struct net_device *net_dev,
1474 const struct sockaddr *daddr,
1475 const struct sockaddr *saddr)
1476 {
1477 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
1478 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
1479 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1480 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
1481
1482 switch (daddr->sa_family) {
1483 case AF_INET:
1484 return saddr->sa_family == AF_INET &&
1485 validate_ipv4_net_dev(net_dev, daddr4, saddr4);
1486
1487 case AF_INET6:
1488 return saddr->sa_family == AF_INET6 &&
1489 validate_ipv6_net_dev(net_dev, daddr6, saddr6);
1490
1491 default:
1492 return false;
1493 }
1494 }
1495
1496 static struct net_device *
roce_get_net_dev_by_cm_event(const struct ib_cm_event * ib_event)1497 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
1498 {
1499 const struct ib_gid_attr *sgid_attr = NULL;
1500 struct net_device *ndev;
1501
1502 if (ib_event->event == IB_CM_REQ_RECEIVED)
1503 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
1504 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1505 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
1506
1507 if (!sgid_attr)
1508 return NULL;
1509
1510 rcu_read_lock();
1511 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
1512 if (IS_ERR(ndev))
1513 ndev = NULL;
1514 else
1515 dev_hold(ndev);
1516 rcu_read_unlock();
1517 return ndev;
1518 }
1519
cma_get_net_dev(const struct ib_cm_event * ib_event,struct cma_req_info * req)1520 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
1521 struct cma_req_info *req)
1522 {
1523 struct sockaddr *listen_addr =
1524 (struct sockaddr *)&req->listen_addr_storage;
1525 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
1526 struct net_device *net_dev;
1527 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
1528 int err;
1529
1530 err = cma_save_ip_info(listen_addr, src_addr, ib_event,
1531 req->service_id);
1532 if (err)
1533 return ERR_PTR(err);
1534
1535 if (rdma_protocol_roce(req->device, req->port))
1536 net_dev = roce_get_net_dev_by_cm_event(ib_event);
1537 else
1538 net_dev = ib_get_net_dev_by_params(req->device, req->port,
1539 req->pkey,
1540 gid, listen_addr);
1541 if (!net_dev)
1542 return ERR_PTR(-ENODEV);
1543
1544 return net_dev;
1545 }
1546
rdma_ps_from_service_id(__be64 service_id)1547 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
1548 {
1549 return (be64_to_cpu(service_id) >> 16) & 0xffff;
1550 }
1551
cma_match_private_data(struct rdma_id_private * id_priv,const struct cma_hdr * hdr)1552 static bool cma_match_private_data(struct rdma_id_private *id_priv,
1553 const struct cma_hdr *hdr)
1554 {
1555 struct sockaddr *addr = cma_src_addr(id_priv);
1556 __be32 ip4_addr;
1557 struct in6_addr ip6_addr;
1558
1559 if (cma_any_addr(addr) && !id_priv->afonly)
1560 return true;
1561
1562 switch (addr->sa_family) {
1563 case AF_INET:
1564 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
1565 if (cma_get_ip_ver(hdr) != 4)
1566 return false;
1567 if (!cma_any_addr(addr) &&
1568 hdr->dst_addr.ip4.addr != ip4_addr)
1569 return false;
1570 break;
1571 case AF_INET6:
1572 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
1573 if (cma_get_ip_ver(hdr) != 6)
1574 return false;
1575 if (!cma_any_addr(addr) &&
1576 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
1577 return false;
1578 break;
1579 case AF_IB:
1580 return true;
1581 default:
1582 return false;
1583 }
1584
1585 return true;
1586 }
1587
cma_protocol_roce(const struct rdma_cm_id * id)1588 static bool cma_protocol_roce(const struct rdma_cm_id *id)
1589 {
1590 struct ib_device *device = id->device;
1591 const u32 port_num = id->port_num ?: rdma_start_port(device);
1592
1593 return rdma_protocol_roce(device, port_num);
1594 }
1595
cma_is_req_ipv6_ll(const struct cma_req_info * req)1596 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
1597 {
1598 const struct sockaddr *daddr =
1599 (const struct sockaddr *)&req->listen_addr_storage;
1600 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1601
1602 /* Returns true if the req is for IPv6 link local */
1603 return (daddr->sa_family == AF_INET6 &&
1604 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
1605 }
1606
cma_match_net_dev(const struct rdma_cm_id * id,const struct net_device * net_dev,const struct cma_req_info * req)1607 static bool cma_match_net_dev(const struct rdma_cm_id *id,
1608 const struct net_device *net_dev,
1609 const struct cma_req_info *req)
1610 {
1611 const struct rdma_addr *addr = &id->route.addr;
1612
1613 if (!net_dev)
1614 /* This request is an AF_IB request */
1615 return (!id->port_num || id->port_num == req->port) &&
1616 (addr->src_addr.ss_family == AF_IB);
1617
1618 /*
1619 * If the request is not for IPv6 link local, allow matching
1620 * request to any netdevice of the one or multiport rdma device.
1621 */
1622 if (!cma_is_req_ipv6_ll(req))
1623 return true;
1624 /*
1625 * Net namespaces must match, and if the listner is listening
1626 * on a specific netdevice than netdevice must match as well.
1627 */
1628 if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
1629 (!!addr->dev_addr.bound_dev_if ==
1630 (addr->dev_addr.bound_dev_if == net_dev->ifindex)))
1631 return true;
1632 else
1633 return false;
1634 }
1635
cma_find_listener(const struct rdma_bind_list * bind_list,const struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event,const struct cma_req_info * req,const struct net_device * net_dev)1636 static struct rdma_id_private *cma_find_listener(
1637 const struct rdma_bind_list *bind_list,
1638 const struct ib_cm_id *cm_id,
1639 const struct ib_cm_event *ib_event,
1640 const struct cma_req_info *req,
1641 const struct net_device *net_dev)
1642 {
1643 struct rdma_id_private *id_priv, *id_priv_dev;
1644
1645 lockdep_assert_held(&lock);
1646
1647 if (!bind_list)
1648 return ERR_PTR(-EINVAL);
1649
1650 hlist_for_each_entry(id_priv, &bind_list->owners, node) {
1651 if (cma_match_private_data(id_priv, ib_event->private_data)) {
1652 if (id_priv->id.device == cm_id->device &&
1653 cma_match_net_dev(&id_priv->id, net_dev, req))
1654 return id_priv;
1655 list_for_each_entry(id_priv_dev,
1656 &id_priv->listen_list,
1657 listen_item) {
1658 if (id_priv_dev->id.device == cm_id->device &&
1659 cma_match_net_dev(&id_priv_dev->id,
1660 net_dev, req))
1661 return id_priv_dev;
1662 }
1663 }
1664 }
1665
1666 return ERR_PTR(-EINVAL);
1667 }
1668
1669 static struct rdma_id_private *
cma_ib_id_from_event(struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event,struct cma_req_info * req,struct net_device ** net_dev)1670 cma_ib_id_from_event(struct ib_cm_id *cm_id,
1671 const struct ib_cm_event *ib_event,
1672 struct cma_req_info *req,
1673 struct net_device **net_dev)
1674 {
1675 struct rdma_bind_list *bind_list;
1676 struct rdma_id_private *id_priv;
1677 int err;
1678
1679 err = cma_save_req_info(ib_event, req);
1680 if (err)
1681 return ERR_PTR(err);
1682
1683 *net_dev = cma_get_net_dev(ib_event, req);
1684 if (IS_ERR(*net_dev)) {
1685 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
1686 /* Assuming the protocol is AF_IB */
1687 *net_dev = NULL;
1688 } else {
1689 return ERR_CAST(*net_dev);
1690 }
1691 }
1692
1693 mutex_lock(&lock);
1694 /*
1695 * Net namespace might be getting deleted while route lookup,
1696 * cm_id lookup is in progress. Therefore, perform netdevice
1697 * validation, cm_id lookup under rcu lock.
1698 * RCU lock along with netdevice state check, synchronizes with
1699 * netdevice migrating to different net namespace and also avoids
1700 * case where net namespace doesn't get deleted while lookup is in
1701 * progress.
1702 * If the device state is not IFF_UP, its properties such as ifindex
1703 * and nd_net cannot be trusted to remain valid without rcu lock.
1704 * net/core/dev.c change_net_namespace() ensures to synchronize with
1705 * ongoing operations on net device after device is closed using
1706 * synchronize_net().
1707 */
1708 rcu_read_lock();
1709 if (*net_dev) {
1710 /*
1711 * If netdevice is down, it is likely that it is administratively
1712 * down or it might be migrating to different namespace.
1713 * In that case avoid further processing, as the net namespace
1714 * or ifindex may change.
1715 */
1716 if (((*net_dev)->flags & IFF_UP) == 0) {
1717 id_priv = ERR_PTR(-EHOSTUNREACH);
1718 goto err;
1719 }
1720
1721 if (!validate_net_dev(*net_dev,
1722 (struct sockaddr *)&req->src_addr_storage,
1723 (struct sockaddr *)&req->listen_addr_storage)) {
1724 id_priv = ERR_PTR(-EHOSTUNREACH);
1725 goto err;
1726 }
1727 }
1728
1729 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
1730 rdma_ps_from_service_id(req->service_id),
1731 cma_port_from_service_id(req->service_id));
1732 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
1733 err:
1734 rcu_read_unlock();
1735 mutex_unlock(&lock);
1736 if (IS_ERR(id_priv) && *net_dev) {
1737 dev_put(*net_dev);
1738 *net_dev = NULL;
1739 }
1740 return id_priv;
1741 }
1742
cma_user_data_offset(struct rdma_id_private * id_priv)1743 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
1744 {
1745 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
1746 }
1747
cma_cancel_route(struct rdma_id_private * id_priv)1748 static void cma_cancel_route(struct rdma_id_private *id_priv)
1749 {
1750 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
1751 if (id_priv->query)
1752 ib_sa_cancel_query(id_priv->query_id, id_priv->query);
1753 }
1754 }
1755
_cma_cancel_listens(struct rdma_id_private * id_priv)1756 static void _cma_cancel_listens(struct rdma_id_private *id_priv)
1757 {
1758 struct rdma_id_private *dev_id_priv;
1759
1760 lockdep_assert_held(&lock);
1761
1762 /*
1763 * Remove from listen_any_list to prevent added devices from spawning
1764 * additional listen requests.
1765 */
1766 list_del_init(&id_priv->listen_any_item);
1767
1768 while (!list_empty(&id_priv->listen_list)) {
1769 dev_id_priv =
1770 list_first_entry(&id_priv->listen_list,
1771 struct rdma_id_private, listen_item);
1772 /* sync with device removal to avoid duplicate destruction */
1773 list_del_init(&dev_id_priv->device_item);
1774 list_del_init(&dev_id_priv->listen_item);
1775 mutex_unlock(&lock);
1776
1777 rdma_destroy_id(&dev_id_priv->id);
1778 mutex_lock(&lock);
1779 }
1780 }
1781
cma_cancel_listens(struct rdma_id_private * id_priv)1782 static void cma_cancel_listens(struct rdma_id_private *id_priv)
1783 {
1784 mutex_lock(&lock);
1785 _cma_cancel_listens(id_priv);
1786 mutex_unlock(&lock);
1787 }
1788
cma_cancel_operation(struct rdma_id_private * id_priv,enum rdma_cm_state state)1789 static void cma_cancel_operation(struct rdma_id_private *id_priv,
1790 enum rdma_cm_state state)
1791 {
1792 switch (state) {
1793 case RDMA_CM_ADDR_QUERY:
1794 /*
1795 * We can avoid doing the rdma_addr_cancel() based on state,
1796 * only RDMA_CM_ADDR_QUERY has a work that could still execute.
1797 * Notice that the addr_handler work could still be exiting
1798 * outside this state, however due to the interaction with the
1799 * handler_mutex the work is guaranteed not to touch id_priv
1800 * during exit.
1801 */
1802 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
1803 break;
1804 case RDMA_CM_ROUTE_QUERY:
1805 cma_cancel_route(id_priv);
1806 break;
1807 case RDMA_CM_LISTEN:
1808 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
1809 cma_cancel_listens(id_priv);
1810 break;
1811 default:
1812 break;
1813 }
1814 }
1815
cma_release_port(struct rdma_id_private * id_priv)1816 static void cma_release_port(struct rdma_id_private *id_priv)
1817 {
1818 struct rdma_bind_list *bind_list = id_priv->bind_list;
1819 struct net *net = id_priv->id.route.addr.dev_addr.net;
1820
1821 if (!bind_list)
1822 return;
1823
1824 mutex_lock(&lock);
1825 hlist_del(&id_priv->node);
1826 if (hlist_empty(&bind_list->owners)) {
1827 cma_ps_remove(net, bind_list->ps, bind_list->port);
1828 kfree(bind_list);
1829 }
1830 mutex_unlock(&lock);
1831 }
1832
destroy_mc(struct rdma_id_private * id_priv,struct cma_multicast * mc)1833 static void destroy_mc(struct rdma_id_private *id_priv,
1834 struct cma_multicast *mc)
1835 {
1836 bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
1837
1838 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
1839 ib_sa_free_multicast(mc->sa_mc);
1840
1841 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
1842 struct rdma_dev_addr *dev_addr =
1843 &id_priv->id.route.addr.dev_addr;
1844 struct net_device *ndev = NULL;
1845
1846 if (dev_addr->bound_dev_if)
1847 ndev = dev_get_by_index(dev_addr->net,
1848 dev_addr->bound_dev_if);
1849 if (ndev && !send_only) {
1850 enum ib_gid_type gid_type;
1851 union ib_gid mgid;
1852
1853 gid_type = id_priv->cma_dev->default_gid_type
1854 [id_priv->id.port_num -
1855 rdma_start_port(
1856 id_priv->cma_dev->device)];
1857 cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid,
1858 gid_type);
1859 cma_igmp_send(ndev, &mgid, false);
1860 }
1861 dev_put(ndev);
1862
1863 cancel_work_sync(&mc->iboe_join.work);
1864 }
1865 kfree(mc);
1866 }
1867
cma_leave_mc_groups(struct rdma_id_private * id_priv)1868 static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
1869 {
1870 struct cma_multicast *mc;
1871
1872 while (!list_empty(&id_priv->mc_list)) {
1873 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
1874 list);
1875 list_del(&mc->list);
1876 destroy_mc(id_priv, mc);
1877 }
1878 }
1879
_destroy_id(struct rdma_id_private * id_priv,enum rdma_cm_state state)1880 static void _destroy_id(struct rdma_id_private *id_priv,
1881 enum rdma_cm_state state)
1882 {
1883 cma_cancel_operation(id_priv, state);
1884
1885 rdma_restrack_del(&id_priv->res);
1886 if (id_priv->cma_dev) {
1887 if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
1888 if (id_priv->cm_id.ib)
1889 ib_destroy_cm_id(id_priv->cm_id.ib);
1890 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
1891 if (id_priv->cm_id.iw)
1892 iw_destroy_cm_id(id_priv->cm_id.iw);
1893 }
1894 cma_leave_mc_groups(id_priv);
1895 cma_release_dev(id_priv);
1896 }
1897
1898 cma_release_port(id_priv);
1899 cma_id_put(id_priv);
1900 wait_for_completion(&id_priv->comp);
1901
1902 if (id_priv->internal_id)
1903 cma_id_put(id_priv->id.context);
1904
1905 kfree(id_priv->id.route.path_rec);
1906
1907 put_net(id_priv->id.route.addr.dev_addr.net);
1908 kfree(id_priv);
1909 }
1910
1911 /*
1912 * destroy an ID from within the handler_mutex. This ensures that no other
1913 * handlers can start running concurrently.
1914 */
destroy_id_handler_unlock(struct rdma_id_private * id_priv)1915 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
1916 __releases(&idprv->handler_mutex)
1917 {
1918 enum rdma_cm_state state;
1919 unsigned long flags;
1920
1921 trace_cm_id_destroy(id_priv);
1922
1923 /*
1924 * Setting the state to destroyed under the handler mutex provides a
1925 * fence against calling handler callbacks. If this is invoked due to
1926 * the failure of a handler callback then it guarentees that no future
1927 * handlers will be called.
1928 */
1929 lockdep_assert_held(&id_priv->handler_mutex);
1930 spin_lock_irqsave(&id_priv->lock, flags);
1931 state = id_priv->state;
1932 id_priv->state = RDMA_CM_DESTROYING;
1933 spin_unlock_irqrestore(&id_priv->lock, flags);
1934 mutex_unlock(&id_priv->handler_mutex);
1935 _destroy_id(id_priv, state);
1936 }
1937
rdma_destroy_id(struct rdma_cm_id * id)1938 void rdma_destroy_id(struct rdma_cm_id *id)
1939 {
1940 struct rdma_id_private *id_priv =
1941 container_of(id, struct rdma_id_private, id);
1942
1943 mutex_lock(&id_priv->handler_mutex);
1944 destroy_id_handler_unlock(id_priv);
1945 }
1946 EXPORT_SYMBOL(rdma_destroy_id);
1947
cma_rep_recv(struct rdma_id_private * id_priv)1948 static int cma_rep_recv(struct rdma_id_private *id_priv)
1949 {
1950 int ret;
1951
1952 ret = cma_modify_qp_rtr(id_priv, NULL);
1953 if (ret)
1954 goto reject;
1955
1956 ret = cma_modify_qp_rts(id_priv, NULL);
1957 if (ret)
1958 goto reject;
1959
1960 trace_cm_send_rtu(id_priv);
1961 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
1962 if (ret)
1963 goto reject;
1964
1965 return 0;
1966 reject:
1967 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
1968 cma_modify_qp_err(id_priv);
1969 trace_cm_send_rej(id_priv);
1970 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
1971 NULL, 0, NULL, 0);
1972 return ret;
1973 }
1974
cma_set_rep_event_data(struct rdma_cm_event * event,const struct ib_cm_rep_event_param * rep_data,void * private_data)1975 static void cma_set_rep_event_data(struct rdma_cm_event *event,
1976 const struct ib_cm_rep_event_param *rep_data,
1977 void *private_data)
1978 {
1979 event->param.conn.private_data = private_data;
1980 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
1981 event->param.conn.responder_resources = rep_data->responder_resources;
1982 event->param.conn.initiator_depth = rep_data->initiator_depth;
1983 event->param.conn.flow_control = rep_data->flow_control;
1984 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
1985 event->param.conn.srq = rep_data->srq;
1986 event->param.conn.qp_num = rep_data->remote_qpn;
1987
1988 event->ece.vendor_id = rep_data->ece.vendor_id;
1989 event->ece.attr_mod = rep_data->ece.attr_mod;
1990 }
1991
cma_cm_event_handler(struct rdma_id_private * id_priv,struct rdma_cm_event * event)1992 static int cma_cm_event_handler(struct rdma_id_private *id_priv,
1993 struct rdma_cm_event *event)
1994 {
1995 int ret;
1996
1997 lockdep_assert_held(&id_priv->handler_mutex);
1998
1999 trace_cm_event_handler(id_priv, event);
2000 ret = id_priv->id.event_handler(&id_priv->id, event);
2001 trace_cm_event_done(id_priv, event, ret);
2002 return ret;
2003 }
2004
cma_ib_handler(struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event)2005 static int cma_ib_handler(struct ib_cm_id *cm_id,
2006 const struct ib_cm_event *ib_event)
2007 {
2008 struct rdma_id_private *id_priv = cm_id->context;
2009 struct rdma_cm_event event = {};
2010 enum rdma_cm_state state;
2011 int ret;
2012
2013 mutex_lock(&id_priv->handler_mutex);
2014 state = READ_ONCE(id_priv->state);
2015 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
2016 state != RDMA_CM_CONNECT) ||
2017 (ib_event->event == IB_CM_TIMEWAIT_EXIT &&
2018 state != RDMA_CM_DISCONNECT))
2019 goto out;
2020
2021 switch (ib_event->event) {
2022 case IB_CM_REQ_ERROR:
2023 case IB_CM_REP_ERROR:
2024 event.event = RDMA_CM_EVENT_UNREACHABLE;
2025 event.status = -ETIMEDOUT;
2026 break;
2027 case IB_CM_REP_RECEIVED:
2028 if (state == RDMA_CM_CONNECT &&
2029 (id_priv->id.qp_type != IB_QPT_UD)) {
2030 trace_cm_send_mra(id_priv);
2031 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2032 }
2033 if (id_priv->id.qp) {
2034 event.status = cma_rep_recv(id_priv);
2035 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
2036 RDMA_CM_EVENT_ESTABLISHED;
2037 } else {
2038 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
2039 }
2040 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
2041 ib_event->private_data);
2042 break;
2043 case IB_CM_RTU_RECEIVED:
2044 case IB_CM_USER_ESTABLISHED:
2045 event.event = RDMA_CM_EVENT_ESTABLISHED;
2046 break;
2047 case IB_CM_DREQ_ERROR:
2048 event.status = -ETIMEDOUT;
2049 fallthrough;
2050 case IB_CM_DREQ_RECEIVED:
2051 case IB_CM_DREP_RECEIVED:
2052 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
2053 RDMA_CM_DISCONNECT))
2054 goto out;
2055 event.event = RDMA_CM_EVENT_DISCONNECTED;
2056 break;
2057 case IB_CM_TIMEWAIT_EXIT:
2058 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
2059 break;
2060 case IB_CM_MRA_RECEIVED:
2061 /* ignore event */
2062 goto out;
2063 case IB_CM_REJ_RECEIVED:
2064 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
2065 ib_event->param.rej_rcvd.reason));
2066 cma_modify_qp_err(id_priv);
2067 event.status = ib_event->param.rej_rcvd.reason;
2068 event.event = RDMA_CM_EVENT_REJECTED;
2069 event.param.conn.private_data = ib_event->private_data;
2070 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
2071 break;
2072 default:
2073 pr_err("RDMA CMA: unexpected IB CM event: %d\n",
2074 ib_event->event);
2075 goto out;
2076 }
2077
2078 ret = cma_cm_event_handler(id_priv, &event);
2079 if (ret) {
2080 /* Destroy the CM ID by returning a non-zero value. */
2081 id_priv->cm_id.ib = NULL;
2082 destroy_id_handler_unlock(id_priv);
2083 return ret;
2084 }
2085 out:
2086 mutex_unlock(&id_priv->handler_mutex);
2087 return 0;
2088 }
2089
2090 static struct rdma_id_private *
cma_ib_new_conn_id(const struct rdma_cm_id * listen_id,const struct ib_cm_event * ib_event,struct net_device * net_dev)2091 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
2092 const struct ib_cm_event *ib_event,
2093 struct net_device *net_dev)
2094 {
2095 struct rdma_id_private *listen_id_priv;
2096 struct rdma_id_private *id_priv;
2097 struct rdma_cm_id *id;
2098 struct rdma_route *rt;
2099 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2100 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
2101 const __be64 service_id =
2102 ib_event->param.req_rcvd.primary_path->service_id;
2103 int ret;
2104
2105 listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2106 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
2107 listen_id->event_handler, listen_id->context,
2108 listen_id->ps,
2109 ib_event->param.req_rcvd.qp_type,
2110 listen_id_priv);
2111 if (IS_ERR(id_priv))
2112 return NULL;
2113
2114 id = &id_priv->id;
2115 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2116 (struct sockaddr *)&id->route.addr.dst_addr,
2117 listen_id, ib_event, ss_family, service_id))
2118 goto err;
2119
2120 rt = &id->route;
2121 rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
2122 rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec),
2123 GFP_KERNEL);
2124 if (!rt->path_rec)
2125 goto err;
2126
2127 rt->path_rec[0] = *path;
2128 if (rt->num_paths == 2)
2129 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
2130
2131 if (net_dev) {
2132 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
2133 } else {
2134 if (!cma_protocol_roce(listen_id) &&
2135 cma_any_addr(cma_src_addr(id_priv))) {
2136 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
2137 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
2138 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
2139 } else if (!cma_any_addr(cma_src_addr(id_priv))) {
2140 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
2141 if (ret)
2142 goto err;
2143 }
2144 }
2145 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
2146
2147 id_priv->state = RDMA_CM_CONNECT;
2148 return id_priv;
2149
2150 err:
2151 rdma_destroy_id(id);
2152 return NULL;
2153 }
2154
2155 static struct rdma_id_private *
cma_ib_new_udp_id(const struct rdma_cm_id * listen_id,const struct ib_cm_event * ib_event,struct net_device * net_dev)2156 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
2157 const struct ib_cm_event *ib_event,
2158 struct net_device *net_dev)
2159 {
2160 const struct rdma_id_private *listen_id_priv;
2161 struct rdma_id_private *id_priv;
2162 struct rdma_cm_id *id;
2163 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2164 struct net *net = listen_id->route.addr.dev_addr.net;
2165 int ret;
2166
2167 listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2168 id_priv = __rdma_create_id(net, listen_id->event_handler,
2169 listen_id->context, listen_id->ps, IB_QPT_UD,
2170 listen_id_priv);
2171 if (IS_ERR(id_priv))
2172 return NULL;
2173
2174 id = &id_priv->id;
2175 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2176 (struct sockaddr *)&id->route.addr.dst_addr,
2177 listen_id, ib_event, ss_family,
2178 ib_event->param.sidr_req_rcvd.service_id))
2179 goto err;
2180
2181 if (net_dev) {
2182 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
2183 } else {
2184 if (!cma_any_addr(cma_src_addr(id_priv))) {
2185 ret = cma_translate_addr(cma_src_addr(id_priv),
2186 &id->route.addr.dev_addr);
2187 if (ret)
2188 goto err;
2189 }
2190 }
2191
2192 id_priv->state = RDMA_CM_CONNECT;
2193 return id_priv;
2194 err:
2195 rdma_destroy_id(id);
2196 return NULL;
2197 }
2198
cma_set_req_event_data(struct rdma_cm_event * event,const struct ib_cm_req_event_param * req_data,void * private_data,int offset)2199 static void cma_set_req_event_data(struct rdma_cm_event *event,
2200 const struct ib_cm_req_event_param *req_data,
2201 void *private_data, int offset)
2202 {
2203 event->param.conn.private_data = private_data + offset;
2204 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
2205 event->param.conn.responder_resources = req_data->responder_resources;
2206 event->param.conn.initiator_depth = req_data->initiator_depth;
2207 event->param.conn.flow_control = req_data->flow_control;
2208 event->param.conn.retry_count = req_data->retry_count;
2209 event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
2210 event->param.conn.srq = req_data->srq;
2211 event->param.conn.qp_num = req_data->remote_qpn;
2212
2213 event->ece.vendor_id = req_data->ece.vendor_id;
2214 event->ece.attr_mod = req_data->ece.attr_mod;
2215 }
2216
cma_ib_check_req_qp_type(const struct rdma_cm_id * id,const struct ib_cm_event * ib_event)2217 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
2218 const struct ib_cm_event *ib_event)
2219 {
2220 return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
2221 (ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
2222 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
2223 (id->qp_type == IB_QPT_UD)) ||
2224 (!id->qp_type));
2225 }
2226
cma_ib_req_handler(struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event)2227 static int cma_ib_req_handler(struct ib_cm_id *cm_id,
2228 const struct ib_cm_event *ib_event)
2229 {
2230 struct rdma_id_private *listen_id, *conn_id = NULL;
2231 struct rdma_cm_event event = {};
2232 struct cma_req_info req = {};
2233 struct net_device *net_dev;
2234 u8 offset;
2235 int ret;
2236
2237 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
2238 if (IS_ERR(listen_id))
2239 return PTR_ERR(listen_id);
2240
2241 trace_cm_req_handler(listen_id, ib_event->event);
2242 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
2243 ret = -EINVAL;
2244 goto net_dev_put;
2245 }
2246
2247 mutex_lock(&listen_id->handler_mutex);
2248 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
2249 ret = -ECONNABORTED;
2250 goto err_unlock;
2251 }
2252
2253 offset = cma_user_data_offset(listen_id);
2254 event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2255 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
2256 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
2257 event.param.ud.private_data = ib_event->private_data + offset;
2258 event.param.ud.private_data_len =
2259 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
2260 } else {
2261 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
2262 cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
2263 ib_event->private_data, offset);
2264 }
2265 if (!conn_id) {
2266 ret = -ENOMEM;
2267 goto err_unlock;
2268 }
2269
2270 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2271 ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
2272 if (ret) {
2273 destroy_id_handler_unlock(conn_id);
2274 goto err_unlock;
2275 }
2276
2277 conn_id->cm_id.ib = cm_id;
2278 cm_id->context = conn_id;
2279 cm_id->cm_handler = cma_ib_handler;
2280
2281 ret = cma_cm_event_handler(conn_id, &event);
2282 if (ret) {
2283 /* Destroy the CM ID by returning a non-zero value. */
2284 conn_id->cm_id.ib = NULL;
2285 mutex_unlock(&listen_id->handler_mutex);
2286 destroy_id_handler_unlock(conn_id);
2287 goto net_dev_put;
2288 }
2289
2290 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
2291 conn_id->id.qp_type != IB_QPT_UD) {
2292 trace_cm_send_mra(cm_id->context);
2293 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2294 }
2295 mutex_unlock(&conn_id->handler_mutex);
2296
2297 err_unlock:
2298 mutex_unlock(&listen_id->handler_mutex);
2299
2300 net_dev_put:
2301 if (net_dev)
2302 dev_put(net_dev);
2303
2304 return ret;
2305 }
2306
rdma_get_service_id(struct rdma_cm_id * id,struct sockaddr * addr)2307 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
2308 {
2309 if (addr->sa_family == AF_IB)
2310 return ((struct sockaddr_ib *) addr)->sib_sid;
2311
2312 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
2313 }
2314 EXPORT_SYMBOL(rdma_get_service_id);
2315
rdma_read_gids(struct rdma_cm_id * cm_id,union ib_gid * sgid,union ib_gid * dgid)2316 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
2317 union ib_gid *dgid)
2318 {
2319 struct rdma_addr *addr = &cm_id->route.addr;
2320
2321 if (!cm_id->device) {
2322 if (sgid)
2323 memset(sgid, 0, sizeof(*sgid));
2324 if (dgid)
2325 memset(dgid, 0, sizeof(*dgid));
2326 return;
2327 }
2328
2329 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
2330 if (sgid)
2331 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
2332 if (dgid)
2333 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
2334 } else {
2335 if (sgid)
2336 rdma_addr_get_sgid(&addr->dev_addr, sgid);
2337 if (dgid)
2338 rdma_addr_get_dgid(&addr->dev_addr, dgid);
2339 }
2340 }
2341 EXPORT_SYMBOL(rdma_read_gids);
2342
cma_iw_handler(struct iw_cm_id * iw_id,struct iw_cm_event * iw_event)2343 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
2344 {
2345 struct rdma_id_private *id_priv = iw_id->context;
2346 struct rdma_cm_event event = {};
2347 int ret = 0;
2348 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2349 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2350
2351 mutex_lock(&id_priv->handler_mutex);
2352 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
2353 goto out;
2354
2355 switch (iw_event->event) {
2356 case IW_CM_EVENT_CLOSE:
2357 event.event = RDMA_CM_EVENT_DISCONNECTED;
2358 break;
2359 case IW_CM_EVENT_CONNECT_REPLY:
2360 memcpy(cma_src_addr(id_priv), laddr,
2361 rdma_addr_size(laddr));
2362 memcpy(cma_dst_addr(id_priv), raddr,
2363 rdma_addr_size(raddr));
2364 switch (iw_event->status) {
2365 case 0:
2366 event.event = RDMA_CM_EVENT_ESTABLISHED;
2367 event.param.conn.initiator_depth = iw_event->ird;
2368 event.param.conn.responder_resources = iw_event->ord;
2369 break;
2370 case -ECONNRESET:
2371 case -ECONNREFUSED:
2372 event.event = RDMA_CM_EVENT_REJECTED;
2373 break;
2374 case -ETIMEDOUT:
2375 event.event = RDMA_CM_EVENT_UNREACHABLE;
2376 break;
2377 default:
2378 event.event = RDMA_CM_EVENT_CONNECT_ERROR;
2379 break;
2380 }
2381 break;
2382 case IW_CM_EVENT_ESTABLISHED:
2383 event.event = RDMA_CM_EVENT_ESTABLISHED;
2384 event.param.conn.initiator_depth = iw_event->ird;
2385 event.param.conn.responder_resources = iw_event->ord;
2386 break;
2387 default:
2388 goto out;
2389 }
2390
2391 event.status = iw_event->status;
2392 event.param.conn.private_data = iw_event->private_data;
2393 event.param.conn.private_data_len = iw_event->private_data_len;
2394 ret = cma_cm_event_handler(id_priv, &event);
2395 if (ret) {
2396 /* Destroy the CM ID by returning a non-zero value. */
2397 id_priv->cm_id.iw = NULL;
2398 destroy_id_handler_unlock(id_priv);
2399 return ret;
2400 }
2401
2402 out:
2403 mutex_unlock(&id_priv->handler_mutex);
2404 return ret;
2405 }
2406
iw_conn_req_handler(struct iw_cm_id * cm_id,struct iw_cm_event * iw_event)2407 static int iw_conn_req_handler(struct iw_cm_id *cm_id,
2408 struct iw_cm_event *iw_event)
2409 {
2410 struct rdma_id_private *listen_id, *conn_id;
2411 struct rdma_cm_event event = {};
2412 int ret = -ECONNABORTED;
2413 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2414 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2415
2416 event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2417 event.param.conn.private_data = iw_event->private_data;
2418 event.param.conn.private_data_len = iw_event->private_data_len;
2419 event.param.conn.initiator_depth = iw_event->ird;
2420 event.param.conn.responder_resources = iw_event->ord;
2421
2422 listen_id = cm_id->context;
2423
2424 mutex_lock(&listen_id->handler_mutex);
2425 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
2426 goto out;
2427
2428 /* Create a new RDMA id for the new IW CM ID */
2429 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
2430 listen_id->id.event_handler,
2431 listen_id->id.context, RDMA_PS_TCP,
2432 IB_QPT_RC, listen_id);
2433 if (IS_ERR(conn_id)) {
2434 ret = -ENOMEM;
2435 goto out;
2436 }
2437 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2438 conn_id->state = RDMA_CM_CONNECT;
2439
2440 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
2441 if (ret) {
2442 mutex_unlock(&listen_id->handler_mutex);
2443 destroy_id_handler_unlock(conn_id);
2444 return ret;
2445 }
2446
2447 ret = cma_iw_acquire_dev(conn_id, listen_id);
2448 if (ret) {
2449 mutex_unlock(&listen_id->handler_mutex);
2450 destroy_id_handler_unlock(conn_id);
2451 return ret;
2452 }
2453
2454 conn_id->cm_id.iw = cm_id;
2455 cm_id->context = conn_id;
2456 cm_id->cm_handler = cma_iw_handler;
2457
2458 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
2459 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
2460
2461 ret = cma_cm_event_handler(conn_id, &event);
2462 if (ret) {
2463 /* User wants to destroy the CM ID */
2464 conn_id->cm_id.iw = NULL;
2465 mutex_unlock(&listen_id->handler_mutex);
2466 destroy_id_handler_unlock(conn_id);
2467 return ret;
2468 }
2469
2470 mutex_unlock(&conn_id->handler_mutex);
2471
2472 out:
2473 mutex_unlock(&listen_id->handler_mutex);
2474 return ret;
2475 }
2476
cma_ib_listen(struct rdma_id_private * id_priv)2477 static int cma_ib_listen(struct rdma_id_private *id_priv)
2478 {
2479 struct sockaddr *addr;
2480 struct ib_cm_id *id;
2481 __be64 svc_id;
2482
2483 addr = cma_src_addr(id_priv);
2484 svc_id = rdma_get_service_id(&id_priv->id, addr);
2485 id = ib_cm_insert_listen(id_priv->id.device,
2486 cma_ib_req_handler, svc_id);
2487 if (IS_ERR(id))
2488 return PTR_ERR(id);
2489 id_priv->cm_id.ib = id;
2490
2491 return 0;
2492 }
2493
cma_iw_listen(struct rdma_id_private * id_priv,int backlog)2494 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
2495 {
2496 int ret;
2497 struct iw_cm_id *id;
2498
2499 id = iw_create_cm_id(id_priv->id.device,
2500 iw_conn_req_handler,
2501 id_priv);
2502 if (IS_ERR(id))
2503 return PTR_ERR(id);
2504
2505 mutex_lock(&id_priv->qp_mutex);
2506 id->tos = id_priv->tos;
2507 id->tos_set = id_priv->tos_set;
2508 mutex_unlock(&id_priv->qp_mutex);
2509 id->afonly = id_priv->afonly;
2510 id_priv->cm_id.iw = id;
2511
2512 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
2513 rdma_addr_size(cma_src_addr(id_priv)));
2514
2515 ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
2516
2517 if (ret) {
2518 iw_destroy_cm_id(id_priv->cm_id.iw);
2519 id_priv->cm_id.iw = NULL;
2520 }
2521
2522 return ret;
2523 }
2524
cma_listen_handler(struct rdma_cm_id * id,struct rdma_cm_event * event)2525 static int cma_listen_handler(struct rdma_cm_id *id,
2526 struct rdma_cm_event *event)
2527 {
2528 struct rdma_id_private *id_priv = id->context;
2529
2530 /* Listening IDs are always destroyed on removal */
2531 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
2532 return -1;
2533
2534 id->context = id_priv->id.context;
2535 id->event_handler = id_priv->id.event_handler;
2536 trace_cm_event_handler(id_priv, event);
2537 return id_priv->id.event_handler(id, event);
2538 }
2539
cma_listen_on_dev(struct rdma_id_private * id_priv,struct cma_device * cma_dev,struct rdma_id_private ** to_destroy)2540 static int cma_listen_on_dev(struct rdma_id_private *id_priv,
2541 struct cma_device *cma_dev,
2542 struct rdma_id_private **to_destroy)
2543 {
2544 struct rdma_id_private *dev_id_priv;
2545 struct net *net = id_priv->id.route.addr.dev_addr.net;
2546 int ret;
2547
2548 lockdep_assert_held(&lock);
2549
2550 *to_destroy = NULL;
2551 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
2552 return 0;
2553
2554 dev_id_priv =
2555 __rdma_create_id(net, cma_listen_handler, id_priv,
2556 id_priv->id.ps, id_priv->id.qp_type, id_priv);
2557 if (IS_ERR(dev_id_priv))
2558 return PTR_ERR(dev_id_priv);
2559
2560 dev_id_priv->state = RDMA_CM_ADDR_BOUND;
2561 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
2562 rdma_addr_size(cma_src_addr(id_priv)));
2563
2564 _cma_attach_to_dev(dev_id_priv, cma_dev);
2565 rdma_restrack_add(&dev_id_priv->res);
2566 cma_id_get(id_priv);
2567 dev_id_priv->internal_id = 1;
2568 dev_id_priv->afonly = id_priv->afonly;
2569 mutex_lock(&id_priv->qp_mutex);
2570 dev_id_priv->tos_set = id_priv->tos_set;
2571 dev_id_priv->tos = id_priv->tos;
2572 mutex_unlock(&id_priv->qp_mutex);
2573
2574 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
2575 if (ret)
2576 goto err_listen;
2577 list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list);
2578 return 0;
2579 err_listen:
2580 /* Caller must destroy this after releasing lock */
2581 *to_destroy = dev_id_priv;
2582 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
2583 return ret;
2584 }
2585
cma_listen_on_all(struct rdma_id_private * id_priv)2586 static int cma_listen_on_all(struct rdma_id_private *id_priv)
2587 {
2588 struct rdma_id_private *to_destroy;
2589 struct cma_device *cma_dev;
2590 int ret;
2591
2592 mutex_lock(&lock);
2593 list_add_tail(&id_priv->listen_any_item, &listen_any_list);
2594 list_for_each_entry(cma_dev, &dev_list, list) {
2595 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
2596 if (ret) {
2597 /* Prevent racing with cma_process_remove() */
2598 if (to_destroy)
2599 list_del_init(&to_destroy->device_item);
2600 goto err_listen;
2601 }
2602 }
2603 mutex_unlock(&lock);
2604 return 0;
2605
2606 err_listen:
2607 _cma_cancel_listens(id_priv);
2608 mutex_unlock(&lock);
2609 if (to_destroy)
2610 rdma_destroy_id(&to_destroy->id);
2611 return ret;
2612 }
2613
rdma_set_service_type(struct rdma_cm_id * id,int tos)2614 void rdma_set_service_type(struct rdma_cm_id *id, int tos)
2615 {
2616 struct rdma_id_private *id_priv;
2617
2618 id_priv = container_of(id, struct rdma_id_private, id);
2619 mutex_lock(&id_priv->qp_mutex);
2620 id_priv->tos = (u8) tos;
2621 id_priv->tos_set = true;
2622 mutex_unlock(&id_priv->qp_mutex);
2623 }
2624 EXPORT_SYMBOL(rdma_set_service_type);
2625
2626 /**
2627 * rdma_set_ack_timeout() - Set the ack timeout of QP associated
2628 * with a connection identifier.
2629 * @id: Communication identifier to associated with service type.
2630 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
2631 *
2632 * This function should be called before rdma_connect() on active side,
2633 * and on passive side before rdma_accept(). It is applicable to primary
2634 * path only. The timeout will affect the local side of the QP, it is not
2635 * negotiated with remote side and zero disables the timer. In case it is
2636 * set before rdma_resolve_route, the value will also be used to determine
2637 * PacketLifeTime for RoCE.
2638 *
2639 * Return: 0 for success
2640 */
rdma_set_ack_timeout(struct rdma_cm_id * id,u8 timeout)2641 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
2642 {
2643 struct rdma_id_private *id_priv;
2644
2645 if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI)
2646 return -EINVAL;
2647
2648 id_priv = container_of(id, struct rdma_id_private, id);
2649 mutex_lock(&id_priv->qp_mutex);
2650 id_priv->timeout = timeout;
2651 id_priv->timeout_set = true;
2652 mutex_unlock(&id_priv->qp_mutex);
2653
2654 return 0;
2655 }
2656 EXPORT_SYMBOL(rdma_set_ack_timeout);
2657
2658 /**
2659 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the
2660 * QP associated with a connection identifier.
2661 * @id: Communication identifier to associated with service type.
2662 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK
2663 * Timer Field" in the IBTA specification.
2664 *
2665 * This function should be called before rdma_connect() on active
2666 * side, and on passive side before rdma_accept(). The timer value
2667 * will be associated with the local QP. When it receives a send it is
2668 * not read to handle, typically if the receive queue is empty, an RNR
2669 * Retry NAK is returned to the requester with the min_rnr_timer
2670 * encoded. The requester will then wait at least the time specified
2671 * in the NAK before retrying. The default is zero, which translates
2672 * to a minimum RNR Timer value of 655 ms.
2673 *
2674 * Return: 0 for success
2675 */
rdma_set_min_rnr_timer(struct rdma_cm_id * id,u8 min_rnr_timer)2676 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer)
2677 {
2678 struct rdma_id_private *id_priv;
2679
2680 /* It is a five-bit value */
2681 if (min_rnr_timer & 0xe0)
2682 return -EINVAL;
2683
2684 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT))
2685 return -EINVAL;
2686
2687 id_priv = container_of(id, struct rdma_id_private, id);
2688 mutex_lock(&id_priv->qp_mutex);
2689 id_priv->min_rnr_timer = min_rnr_timer;
2690 id_priv->min_rnr_timer_set = true;
2691 mutex_unlock(&id_priv->qp_mutex);
2692
2693 return 0;
2694 }
2695 EXPORT_SYMBOL(rdma_set_min_rnr_timer);
2696
cma_query_handler(int status,struct sa_path_rec * path_rec,void * context)2697 static void cma_query_handler(int status, struct sa_path_rec *path_rec,
2698 void *context)
2699 {
2700 struct cma_work *work = context;
2701 struct rdma_route *route;
2702
2703 route = &work->id->id.route;
2704
2705 if (!status) {
2706 route->num_paths = 1;
2707 *route->path_rec = *path_rec;
2708 } else {
2709 work->old_state = RDMA_CM_ROUTE_QUERY;
2710 work->new_state = RDMA_CM_ADDR_RESOLVED;
2711 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
2712 work->event.status = status;
2713 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
2714 status);
2715 }
2716
2717 queue_work(cma_wq, &work->work);
2718 }
2719
cma_query_ib_route(struct rdma_id_private * id_priv,unsigned long timeout_ms,struct cma_work * work)2720 static int cma_query_ib_route(struct rdma_id_private *id_priv,
2721 unsigned long timeout_ms, struct cma_work *work)
2722 {
2723 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
2724 struct sa_path_rec path_rec;
2725 ib_sa_comp_mask comp_mask;
2726 struct sockaddr_in6 *sin6;
2727 struct sockaddr_ib *sib;
2728
2729 memset(&path_rec, 0, sizeof path_rec);
2730
2731 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
2732 path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
2733 else
2734 path_rec.rec_type = SA_PATH_REC_TYPE_IB;
2735 rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
2736 rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
2737 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
2738 path_rec.numb_path = 1;
2739 path_rec.reversible = 1;
2740 path_rec.service_id = rdma_get_service_id(&id_priv->id,
2741 cma_dst_addr(id_priv));
2742
2743 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
2744 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
2745 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
2746
2747 switch (cma_family(id_priv)) {
2748 case AF_INET:
2749 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
2750 comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
2751 break;
2752 case AF_INET6:
2753 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
2754 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
2755 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2756 break;
2757 case AF_IB:
2758 sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
2759 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
2760 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2761 break;
2762 }
2763
2764 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
2765 id_priv->id.port_num, &path_rec,
2766 comp_mask, timeout_ms,
2767 GFP_KERNEL, cma_query_handler,
2768 work, &id_priv->query);
2769
2770 return (id_priv->query_id < 0) ? id_priv->query_id : 0;
2771 }
2772
cma_iboe_join_work_handler(struct work_struct * work)2773 static void cma_iboe_join_work_handler(struct work_struct *work)
2774 {
2775 struct cma_multicast *mc =
2776 container_of(work, struct cma_multicast, iboe_join.work);
2777 struct rdma_cm_event *event = &mc->iboe_join.event;
2778 struct rdma_id_private *id_priv = mc->id_priv;
2779 int ret;
2780
2781 mutex_lock(&id_priv->handler_mutex);
2782 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2783 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2784 goto out_unlock;
2785
2786 ret = cma_cm_event_handler(id_priv, event);
2787 WARN_ON(ret);
2788
2789 out_unlock:
2790 mutex_unlock(&id_priv->handler_mutex);
2791 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
2792 rdma_destroy_ah_attr(&event->param.ud.ah_attr);
2793 }
2794
cma_work_handler(struct work_struct * _work)2795 static void cma_work_handler(struct work_struct *_work)
2796 {
2797 struct cma_work *work = container_of(_work, struct cma_work, work);
2798 struct rdma_id_private *id_priv = work->id;
2799
2800 mutex_lock(&id_priv->handler_mutex);
2801 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2802 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2803 goto out_unlock;
2804 if (work->old_state != 0 || work->new_state != 0) {
2805 if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
2806 goto out_unlock;
2807 }
2808
2809 if (cma_cm_event_handler(id_priv, &work->event)) {
2810 cma_id_put(id_priv);
2811 destroy_id_handler_unlock(id_priv);
2812 goto out_free;
2813 }
2814
2815 out_unlock:
2816 mutex_unlock(&id_priv->handler_mutex);
2817 cma_id_put(id_priv);
2818 out_free:
2819 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
2820 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
2821 kfree(work);
2822 }
2823
cma_init_resolve_route_work(struct cma_work * work,struct rdma_id_private * id_priv)2824 static void cma_init_resolve_route_work(struct cma_work *work,
2825 struct rdma_id_private *id_priv)
2826 {
2827 work->id = id_priv;
2828 INIT_WORK(&work->work, cma_work_handler);
2829 work->old_state = RDMA_CM_ROUTE_QUERY;
2830 work->new_state = RDMA_CM_ROUTE_RESOLVED;
2831 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
2832 }
2833
enqueue_resolve_addr_work(struct cma_work * work,struct rdma_id_private * id_priv)2834 static void enqueue_resolve_addr_work(struct cma_work *work,
2835 struct rdma_id_private *id_priv)
2836 {
2837 /* Balances with cma_id_put() in cma_work_handler */
2838 cma_id_get(id_priv);
2839
2840 work->id = id_priv;
2841 INIT_WORK(&work->work, cma_work_handler);
2842 work->old_state = RDMA_CM_ADDR_QUERY;
2843 work->new_state = RDMA_CM_ADDR_RESOLVED;
2844 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
2845
2846 queue_work(cma_wq, &work->work);
2847 }
2848
cma_resolve_ib_route(struct rdma_id_private * id_priv,unsigned long timeout_ms)2849 static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
2850 unsigned long timeout_ms)
2851 {
2852 struct rdma_route *route = &id_priv->id.route;
2853 struct cma_work *work;
2854 int ret;
2855
2856 work = kzalloc(sizeof *work, GFP_KERNEL);
2857 if (!work)
2858 return -ENOMEM;
2859
2860 cma_init_resolve_route_work(work, id_priv);
2861
2862 if (!route->path_rec)
2863 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
2864 if (!route->path_rec) {
2865 ret = -ENOMEM;
2866 goto err1;
2867 }
2868
2869 ret = cma_query_ib_route(id_priv, timeout_ms, work);
2870 if (ret)
2871 goto err2;
2872
2873 return 0;
2874 err2:
2875 kfree(route->path_rec);
2876 route->path_rec = NULL;
2877 err1:
2878 kfree(work);
2879 return ret;
2880 }
2881
cma_route_gid_type(enum rdma_network_type network_type,unsigned long supported_gids,enum ib_gid_type default_gid)2882 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
2883 unsigned long supported_gids,
2884 enum ib_gid_type default_gid)
2885 {
2886 if ((network_type == RDMA_NETWORK_IPV4 ||
2887 network_type == RDMA_NETWORK_IPV6) &&
2888 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
2889 return IB_GID_TYPE_ROCE_UDP_ENCAP;
2890
2891 return default_gid;
2892 }
2893
2894 /*
2895 * cma_iboe_set_path_rec_l2_fields() is helper function which sets
2896 * path record type based on GID type.
2897 * It also sets up other L2 fields which includes destination mac address
2898 * netdev ifindex, of the path record.
2899 * It returns the netdev of the bound interface for this path record entry.
2900 */
2901 static struct net_device *
cma_iboe_set_path_rec_l2_fields(struct rdma_id_private * id_priv)2902 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
2903 {
2904 struct rdma_route *route = &id_priv->id.route;
2905 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
2906 struct rdma_addr *addr = &route->addr;
2907 unsigned long supported_gids;
2908 struct net_device *ndev;
2909
2910 if (!addr->dev_addr.bound_dev_if)
2911 return NULL;
2912
2913 ndev = dev_get_by_index(addr->dev_addr.net,
2914 addr->dev_addr.bound_dev_if);
2915 if (!ndev)
2916 return NULL;
2917
2918 supported_gids = roce_gid_type_mask_support(id_priv->id.device,
2919 id_priv->id.port_num);
2920 gid_type = cma_route_gid_type(addr->dev_addr.network,
2921 supported_gids,
2922 id_priv->gid_type);
2923 /* Use the hint from IP Stack to select GID Type */
2924 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
2925 gid_type = ib_network_to_gid_type(addr->dev_addr.network);
2926 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
2927
2928 route->path_rec->roce.route_resolved = true;
2929 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
2930 return ndev;
2931 }
2932
rdma_set_ib_path(struct rdma_cm_id * id,struct sa_path_rec * path_rec)2933 int rdma_set_ib_path(struct rdma_cm_id *id,
2934 struct sa_path_rec *path_rec)
2935 {
2936 struct rdma_id_private *id_priv;
2937 struct net_device *ndev;
2938 int ret;
2939
2940 id_priv = container_of(id, struct rdma_id_private, id);
2941 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
2942 RDMA_CM_ROUTE_RESOLVED))
2943 return -EINVAL;
2944
2945 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
2946 GFP_KERNEL);
2947 if (!id->route.path_rec) {
2948 ret = -ENOMEM;
2949 goto err;
2950 }
2951
2952 if (rdma_protocol_roce(id->device, id->port_num)) {
2953 ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
2954 if (!ndev) {
2955 ret = -ENODEV;
2956 goto err_free;
2957 }
2958 dev_put(ndev);
2959 }
2960
2961 id->route.num_paths = 1;
2962 return 0;
2963
2964 err_free:
2965 kfree(id->route.path_rec);
2966 id->route.path_rec = NULL;
2967 err:
2968 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
2969 return ret;
2970 }
2971 EXPORT_SYMBOL(rdma_set_ib_path);
2972
cma_resolve_iw_route(struct rdma_id_private * id_priv)2973 static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
2974 {
2975 struct cma_work *work;
2976
2977 work = kzalloc(sizeof *work, GFP_KERNEL);
2978 if (!work)
2979 return -ENOMEM;
2980
2981 cma_init_resolve_route_work(work, id_priv);
2982 queue_work(cma_wq, &work->work);
2983 return 0;
2984 }
2985
get_vlan_ndev_tc(struct net_device * vlan_ndev,int prio)2986 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
2987 {
2988 struct net_device *dev;
2989
2990 dev = vlan_dev_real_dev(vlan_ndev);
2991 if (dev->num_tc)
2992 return netdev_get_prio_tc_map(dev, prio);
2993
2994 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
2995 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2996 }
2997
2998 struct iboe_prio_tc_map {
2999 int input_prio;
3000 int output_tc;
3001 bool found;
3002 };
3003
get_lower_vlan_dev_tc(struct net_device * dev,struct netdev_nested_priv * priv)3004 static int get_lower_vlan_dev_tc(struct net_device *dev,
3005 struct netdev_nested_priv *priv)
3006 {
3007 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
3008
3009 if (is_vlan_dev(dev))
3010 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
3011 else if (dev->num_tc)
3012 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
3013 else
3014 map->output_tc = 0;
3015 /* We are interested only in first level VLAN device, so always
3016 * return 1 to stop iterating over next level devices.
3017 */
3018 map->found = true;
3019 return 1;
3020 }
3021
iboe_tos_to_sl(struct net_device * ndev,int tos)3022 static int iboe_tos_to_sl(struct net_device *ndev, int tos)
3023 {
3024 struct iboe_prio_tc_map prio_tc_map = {};
3025 int prio = rt_tos2priority(tos);
3026 struct netdev_nested_priv priv;
3027
3028 /* If VLAN device, get it directly from the VLAN netdev */
3029 if (is_vlan_dev(ndev))
3030 return get_vlan_ndev_tc(ndev, prio);
3031
3032 prio_tc_map.input_prio = prio;
3033 priv.data = (void *)&prio_tc_map;
3034 rcu_read_lock();
3035 netdev_walk_all_lower_dev_rcu(ndev,
3036 get_lower_vlan_dev_tc,
3037 &priv);
3038 rcu_read_unlock();
3039 /* If map is found from lower device, use it; Otherwise
3040 * continue with the current netdevice to get priority to tc map.
3041 */
3042 if (prio_tc_map.found)
3043 return prio_tc_map.output_tc;
3044 else if (ndev->num_tc)
3045 return netdev_get_prio_tc_map(ndev, prio);
3046 else
3047 return 0;
3048 }
3049
cma_get_roce_udp_flow_label(struct rdma_id_private * id_priv)3050 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
3051 {
3052 struct sockaddr_in6 *addr6;
3053 u16 dport, sport;
3054 u32 hash, fl;
3055
3056 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
3057 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
3058 if ((cma_family(id_priv) != AF_INET6) || !fl) {
3059 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
3060 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
3061 hash = (u32)sport * 31 + dport;
3062 fl = hash & IB_GRH_FLOWLABEL_MASK;
3063 }
3064
3065 return cpu_to_be32(fl);
3066 }
3067
cma_resolve_iboe_route(struct rdma_id_private * id_priv)3068 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
3069 {
3070 struct rdma_route *route = &id_priv->id.route;
3071 struct rdma_addr *addr = &route->addr;
3072 struct cma_work *work;
3073 int ret;
3074 struct net_device *ndev;
3075
3076 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
3077 rdma_start_port(id_priv->cma_dev->device)];
3078 u8 tos;
3079
3080 mutex_lock(&id_priv->qp_mutex);
3081 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
3082 mutex_unlock(&id_priv->qp_mutex);
3083
3084 work = kzalloc(sizeof *work, GFP_KERNEL);
3085 if (!work)
3086 return -ENOMEM;
3087
3088 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
3089 if (!route->path_rec) {
3090 ret = -ENOMEM;
3091 goto err1;
3092 }
3093
3094 route->num_paths = 1;
3095
3096 ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3097 if (!ndev) {
3098 ret = -ENODEV;
3099 goto err2;
3100 }
3101
3102 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
3103 &route->path_rec->sgid);
3104 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
3105 &route->path_rec->dgid);
3106
3107 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
3108 /* TODO: get the hoplimit from the inet/inet6 device */
3109 route->path_rec->hop_limit = addr->dev_addr.hoplimit;
3110 else
3111 route->path_rec->hop_limit = 1;
3112 route->path_rec->reversible = 1;
3113 route->path_rec->pkey = cpu_to_be16(0xffff);
3114 route->path_rec->mtu_selector = IB_SA_EQ;
3115 route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
3116 route->path_rec->traffic_class = tos;
3117 route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
3118 route->path_rec->rate_selector = IB_SA_EQ;
3119 route->path_rec->rate = iboe_get_rate(ndev);
3120 dev_put(ndev);
3121 route->path_rec->packet_life_time_selector = IB_SA_EQ;
3122 /* In case ACK timeout is set, use this value to calculate
3123 * PacketLifeTime. As per IBTA 12.7.34,
3124 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay).
3125 * Assuming a negligible local ACK delay, we can use
3126 * PacketLifeTime = local ACK timeout/2
3127 * as a reasonable approximation for RoCE networks.
3128 */
3129 mutex_lock(&id_priv->qp_mutex);
3130 if (id_priv->timeout_set && id_priv->timeout)
3131 route->path_rec->packet_life_time = id_priv->timeout - 1;
3132 else
3133 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
3134 mutex_unlock(&id_priv->qp_mutex);
3135
3136 if (!route->path_rec->mtu) {
3137 ret = -EINVAL;
3138 goto err2;
3139 }
3140
3141 if (rdma_protocol_roce_udp_encap(id_priv->id.device,
3142 id_priv->id.port_num))
3143 route->path_rec->flow_label =
3144 cma_get_roce_udp_flow_label(id_priv);
3145
3146 cma_init_resolve_route_work(work, id_priv);
3147 queue_work(cma_wq, &work->work);
3148
3149 return 0;
3150
3151 err2:
3152 kfree(route->path_rec);
3153 route->path_rec = NULL;
3154 route->num_paths = 0;
3155 err1:
3156 kfree(work);
3157 return ret;
3158 }
3159
rdma_resolve_route(struct rdma_cm_id * id,unsigned long timeout_ms)3160 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
3161 {
3162 struct rdma_id_private *id_priv;
3163 int ret;
3164
3165 if (!timeout_ms)
3166 return -EINVAL;
3167
3168 id_priv = container_of(id, struct rdma_id_private, id);
3169 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
3170 return -EINVAL;
3171
3172 cma_id_get(id_priv);
3173 if (rdma_cap_ib_sa(id->device, id->port_num))
3174 ret = cma_resolve_ib_route(id_priv, timeout_ms);
3175 else if (rdma_protocol_roce(id->device, id->port_num))
3176 ret = cma_resolve_iboe_route(id_priv);
3177 else if (rdma_protocol_iwarp(id->device, id->port_num))
3178 ret = cma_resolve_iw_route(id_priv);
3179 else
3180 ret = -ENOSYS;
3181
3182 if (ret)
3183 goto err;
3184
3185 return 0;
3186 err:
3187 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
3188 cma_id_put(id_priv);
3189 return ret;
3190 }
3191 EXPORT_SYMBOL(rdma_resolve_route);
3192
cma_set_loopback(struct sockaddr * addr)3193 static void cma_set_loopback(struct sockaddr *addr)
3194 {
3195 switch (addr->sa_family) {
3196 case AF_INET:
3197 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
3198 break;
3199 case AF_INET6:
3200 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
3201 0, 0, 0, htonl(1));
3202 break;
3203 default:
3204 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
3205 0, 0, 0, htonl(1));
3206 break;
3207 }
3208 }
3209
cma_bind_loopback(struct rdma_id_private * id_priv)3210 static int cma_bind_loopback(struct rdma_id_private *id_priv)
3211 {
3212 struct cma_device *cma_dev, *cur_dev;
3213 union ib_gid gid;
3214 enum ib_port_state port_state;
3215 unsigned int p;
3216 u16 pkey;
3217 int ret;
3218
3219 cma_dev = NULL;
3220 mutex_lock(&lock);
3221 list_for_each_entry(cur_dev, &dev_list, list) {
3222 if (cma_family(id_priv) == AF_IB &&
3223 !rdma_cap_ib_cm(cur_dev->device, 1))
3224 continue;
3225
3226 if (!cma_dev)
3227 cma_dev = cur_dev;
3228
3229 rdma_for_each_port (cur_dev->device, p) {
3230 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
3231 port_state == IB_PORT_ACTIVE) {
3232 cma_dev = cur_dev;
3233 goto port_found;
3234 }
3235 }
3236 }
3237
3238 if (!cma_dev) {
3239 ret = -ENODEV;
3240 goto out;
3241 }
3242
3243 p = 1;
3244
3245 port_found:
3246 ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
3247 if (ret)
3248 goto out;
3249
3250 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
3251 if (ret)
3252 goto out;
3253
3254 id_priv->id.route.addr.dev_addr.dev_type =
3255 (rdma_protocol_ib(cma_dev->device, p)) ?
3256 ARPHRD_INFINIBAND : ARPHRD_ETHER;
3257
3258 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3259 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
3260 id_priv->id.port_num = p;
3261 cma_attach_to_dev(id_priv, cma_dev);
3262 rdma_restrack_add(&id_priv->res);
3263 cma_set_loopback(cma_src_addr(id_priv));
3264 out:
3265 mutex_unlock(&lock);
3266 return ret;
3267 }
3268
addr_handler(int status,struct sockaddr * src_addr,struct rdma_dev_addr * dev_addr,void * context)3269 static void addr_handler(int status, struct sockaddr *src_addr,
3270 struct rdma_dev_addr *dev_addr, void *context)
3271 {
3272 struct rdma_id_private *id_priv = context;
3273 struct rdma_cm_event event = {};
3274 struct sockaddr *addr;
3275 struct sockaddr_storage old_addr;
3276
3277 mutex_lock(&id_priv->handler_mutex);
3278 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
3279 RDMA_CM_ADDR_RESOLVED))
3280 goto out;
3281
3282 /*
3283 * Store the previous src address, so that if we fail to acquire
3284 * matching rdma device, old address can be restored back, which helps
3285 * to cancel the cma listen operation correctly.
3286 */
3287 addr = cma_src_addr(id_priv);
3288 memcpy(&old_addr, addr, rdma_addr_size(addr));
3289 memcpy(addr, src_addr, rdma_addr_size(src_addr));
3290 if (!status && !id_priv->cma_dev) {
3291 status = cma_acquire_dev_by_src_ip(id_priv);
3292 if (status)
3293 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
3294 status);
3295 rdma_restrack_add(&id_priv->res);
3296 } else if (status) {
3297 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
3298 }
3299
3300 if (status) {
3301 memcpy(addr, &old_addr,
3302 rdma_addr_size((struct sockaddr *)&old_addr));
3303 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3304 RDMA_CM_ADDR_BOUND))
3305 goto out;
3306 event.event = RDMA_CM_EVENT_ADDR_ERROR;
3307 event.status = status;
3308 } else
3309 event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3310
3311 if (cma_cm_event_handler(id_priv, &event)) {
3312 destroy_id_handler_unlock(id_priv);
3313 return;
3314 }
3315 out:
3316 mutex_unlock(&id_priv->handler_mutex);
3317 }
3318
cma_resolve_loopback(struct rdma_id_private * id_priv)3319 static int cma_resolve_loopback(struct rdma_id_private *id_priv)
3320 {
3321 struct cma_work *work;
3322 union ib_gid gid;
3323 int ret;
3324
3325 work = kzalloc(sizeof *work, GFP_KERNEL);
3326 if (!work)
3327 return -ENOMEM;
3328
3329 if (!id_priv->cma_dev) {
3330 ret = cma_bind_loopback(id_priv);
3331 if (ret)
3332 goto err;
3333 }
3334
3335 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3336 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
3337
3338 enqueue_resolve_addr_work(work, id_priv);
3339 return 0;
3340 err:
3341 kfree(work);
3342 return ret;
3343 }
3344
cma_resolve_ib_addr(struct rdma_id_private * id_priv)3345 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
3346 {
3347 struct cma_work *work;
3348 int ret;
3349
3350 work = kzalloc(sizeof *work, GFP_KERNEL);
3351 if (!work)
3352 return -ENOMEM;
3353
3354 if (!id_priv->cma_dev) {
3355 ret = cma_resolve_ib_dev(id_priv);
3356 if (ret)
3357 goto err;
3358 }
3359
3360 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
3361 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
3362
3363 enqueue_resolve_addr_work(work, id_priv);
3364 return 0;
3365 err:
3366 kfree(work);
3367 return ret;
3368 }
3369
cma_bind_addr(struct rdma_cm_id * id,struct sockaddr * src_addr,const struct sockaddr * dst_addr)3370 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
3371 const struct sockaddr *dst_addr)
3372 {
3373 struct sockaddr_storage zero_sock = {};
3374
3375 if (src_addr && src_addr->sa_family)
3376 return rdma_bind_addr(id, src_addr);
3377
3378 /*
3379 * When the src_addr is not specified, automatically supply an any addr
3380 */
3381 zero_sock.ss_family = dst_addr->sa_family;
3382 if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) {
3383 struct sockaddr_in6 *src_addr6 =
3384 (struct sockaddr_in6 *)&zero_sock;
3385 struct sockaddr_in6 *dst_addr6 =
3386 (struct sockaddr_in6 *)dst_addr;
3387
3388 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
3389 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
3390 id->route.addr.dev_addr.bound_dev_if =
3391 dst_addr6->sin6_scope_id;
3392 } else if (dst_addr->sa_family == AF_IB) {
3393 ((struct sockaddr_ib *)&zero_sock)->sib_pkey =
3394 ((struct sockaddr_ib *)dst_addr)->sib_pkey;
3395 }
3396 return rdma_bind_addr(id, (struct sockaddr *)&zero_sock);
3397 }
3398
3399 /*
3400 * If required, resolve the source address for bind and leave the id_priv in
3401 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
3402 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is
3403 * ignored.
3404 */
resolve_prepare_src(struct rdma_id_private * id_priv,struct sockaddr * src_addr,const struct sockaddr * dst_addr)3405 static int resolve_prepare_src(struct rdma_id_private *id_priv,
3406 struct sockaddr *src_addr,
3407 const struct sockaddr *dst_addr)
3408 {
3409 int ret;
3410
3411 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr));
3412 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
3413 /* For a well behaved ULP state will be RDMA_CM_IDLE */
3414 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
3415 if (ret)
3416 goto err_dst;
3417 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3418 RDMA_CM_ADDR_QUERY))) {
3419 ret = -EINVAL;
3420 goto err_dst;
3421 }
3422 }
3423
3424 if (cma_family(id_priv) != dst_addr->sa_family) {
3425 ret = -EINVAL;
3426 goto err_state;
3427 }
3428 return 0;
3429
3430 err_state:
3431 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
3432 err_dst:
3433 memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr));
3434 return ret;
3435 }
3436
rdma_resolve_addr(struct rdma_cm_id * id,struct sockaddr * src_addr,const struct sockaddr * dst_addr,unsigned long timeout_ms)3437 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
3438 const struct sockaddr *dst_addr, unsigned long timeout_ms)
3439 {
3440 struct rdma_id_private *id_priv =
3441 container_of(id, struct rdma_id_private, id);
3442 int ret;
3443
3444 ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
3445 if (ret)
3446 return ret;
3447
3448 if (cma_any_addr(dst_addr)) {
3449 ret = cma_resolve_loopback(id_priv);
3450 } else {
3451 if (dst_addr->sa_family == AF_IB) {
3452 ret = cma_resolve_ib_addr(id_priv);
3453 } else {
3454 /*
3455 * The FSM can return back to RDMA_CM_ADDR_BOUND after
3456 * rdma_resolve_ip() is called, eg through the error
3457 * path in addr_handler(). If this happens the existing
3458 * request must be canceled before issuing a new one.
3459 * Since canceling a request is a bit slow and this
3460 * oddball path is rare, keep track once a request has
3461 * been issued. The track turns out to be a permanent
3462 * state since this is the only cancel as it is
3463 * immediately before rdma_resolve_ip().
3464 */
3465 if (id_priv->used_resolve_ip)
3466 rdma_addr_cancel(&id->route.addr.dev_addr);
3467 else
3468 id_priv->used_resolve_ip = 1;
3469 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
3470 &id->route.addr.dev_addr,
3471 timeout_ms, addr_handler,
3472 false, id_priv);
3473 }
3474 }
3475 if (ret)
3476 goto err;
3477
3478 return 0;
3479 err:
3480 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
3481 return ret;
3482 }
3483 EXPORT_SYMBOL(rdma_resolve_addr);
3484
rdma_set_reuseaddr(struct rdma_cm_id * id,int reuse)3485 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
3486 {
3487 struct rdma_id_private *id_priv;
3488 unsigned long flags;
3489 int ret;
3490
3491 id_priv = container_of(id, struct rdma_id_private, id);
3492 spin_lock_irqsave(&id_priv->lock, flags);
3493 if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
3494 id_priv->state == RDMA_CM_IDLE) {
3495 id_priv->reuseaddr = reuse;
3496 ret = 0;
3497 } else {
3498 ret = -EINVAL;
3499 }
3500 spin_unlock_irqrestore(&id_priv->lock, flags);
3501 return ret;
3502 }
3503 EXPORT_SYMBOL(rdma_set_reuseaddr);
3504
rdma_set_afonly(struct rdma_cm_id * id,int afonly)3505 int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
3506 {
3507 struct rdma_id_private *id_priv;
3508 unsigned long flags;
3509 int ret;
3510
3511 id_priv = container_of(id, struct rdma_id_private, id);
3512 spin_lock_irqsave(&id_priv->lock, flags);
3513 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
3514 id_priv->options |= (1 << CMA_OPTION_AFONLY);
3515 id_priv->afonly = afonly;
3516 ret = 0;
3517 } else {
3518 ret = -EINVAL;
3519 }
3520 spin_unlock_irqrestore(&id_priv->lock, flags);
3521 return ret;
3522 }
3523 EXPORT_SYMBOL(rdma_set_afonly);
3524
cma_bind_port(struct rdma_bind_list * bind_list,struct rdma_id_private * id_priv)3525 static void cma_bind_port(struct rdma_bind_list *bind_list,
3526 struct rdma_id_private *id_priv)
3527 {
3528 struct sockaddr *addr;
3529 struct sockaddr_ib *sib;
3530 u64 sid, mask;
3531 __be16 port;
3532
3533 lockdep_assert_held(&lock);
3534
3535 addr = cma_src_addr(id_priv);
3536 port = htons(bind_list->port);
3537
3538 switch (addr->sa_family) {
3539 case AF_INET:
3540 ((struct sockaddr_in *) addr)->sin_port = port;
3541 break;
3542 case AF_INET6:
3543 ((struct sockaddr_in6 *) addr)->sin6_port = port;
3544 break;
3545 case AF_IB:
3546 sib = (struct sockaddr_ib *) addr;
3547 sid = be64_to_cpu(sib->sib_sid);
3548 mask = be64_to_cpu(sib->sib_sid_mask);
3549 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
3550 sib->sib_sid_mask = cpu_to_be64(~0ULL);
3551 break;
3552 }
3553 id_priv->bind_list = bind_list;
3554 hlist_add_head(&id_priv->node, &bind_list->owners);
3555 }
3556
cma_alloc_port(enum rdma_ucm_port_space ps,struct rdma_id_private * id_priv,unsigned short snum)3557 static int cma_alloc_port(enum rdma_ucm_port_space ps,
3558 struct rdma_id_private *id_priv, unsigned short snum)
3559 {
3560 struct rdma_bind_list *bind_list;
3561 int ret;
3562
3563 lockdep_assert_held(&lock);
3564
3565 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
3566 if (!bind_list)
3567 return -ENOMEM;
3568
3569 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
3570 snum);
3571 if (ret < 0)
3572 goto err;
3573
3574 bind_list->ps = ps;
3575 bind_list->port = snum;
3576 cma_bind_port(bind_list, id_priv);
3577 return 0;
3578 err:
3579 kfree(bind_list);
3580 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
3581 }
3582
cma_port_is_unique(struct rdma_bind_list * bind_list,struct rdma_id_private * id_priv)3583 static int cma_port_is_unique(struct rdma_bind_list *bind_list,
3584 struct rdma_id_private *id_priv)
3585 {
3586 struct rdma_id_private *cur_id;
3587 struct sockaddr *daddr = cma_dst_addr(id_priv);
3588 struct sockaddr *saddr = cma_src_addr(id_priv);
3589 __be16 dport = cma_port(daddr);
3590
3591 lockdep_assert_held(&lock);
3592
3593 hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3594 struct sockaddr *cur_daddr = cma_dst_addr(cur_id);
3595 struct sockaddr *cur_saddr = cma_src_addr(cur_id);
3596 __be16 cur_dport = cma_port(cur_daddr);
3597
3598 if (id_priv == cur_id)
3599 continue;
3600
3601 /* different dest port -> unique */
3602 if (!cma_any_port(daddr) &&
3603 !cma_any_port(cur_daddr) &&
3604 (dport != cur_dport))
3605 continue;
3606
3607 /* different src address -> unique */
3608 if (!cma_any_addr(saddr) &&
3609 !cma_any_addr(cur_saddr) &&
3610 cma_addr_cmp(saddr, cur_saddr))
3611 continue;
3612
3613 /* different dst address -> unique */
3614 if (!cma_any_addr(daddr) &&
3615 !cma_any_addr(cur_daddr) &&
3616 cma_addr_cmp(daddr, cur_daddr))
3617 continue;
3618
3619 return -EADDRNOTAVAIL;
3620 }
3621 return 0;
3622 }
3623
cma_alloc_any_port(enum rdma_ucm_port_space ps,struct rdma_id_private * id_priv)3624 static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
3625 struct rdma_id_private *id_priv)
3626 {
3627 static unsigned int last_used_port;
3628 int low, high, remaining;
3629 unsigned int rover;
3630 struct net *net = id_priv->id.route.addr.dev_addr.net;
3631
3632 lockdep_assert_held(&lock);
3633
3634 inet_get_local_port_range(net, &low, &high);
3635 remaining = (high - low) + 1;
3636 rover = prandom_u32() % remaining + low;
3637 retry:
3638 if (last_used_port != rover) {
3639 struct rdma_bind_list *bind_list;
3640 int ret;
3641
3642 bind_list = cma_ps_find(net, ps, (unsigned short)rover);
3643
3644 if (!bind_list) {
3645 ret = cma_alloc_port(ps, id_priv, rover);
3646 } else {
3647 ret = cma_port_is_unique(bind_list, id_priv);
3648 if (!ret)
3649 cma_bind_port(bind_list, id_priv);
3650 }
3651 /*
3652 * Remember previously used port number in order to avoid
3653 * re-using same port immediately after it is closed.
3654 */
3655 if (!ret)
3656 last_used_port = rover;
3657 if (ret != -EADDRNOTAVAIL)
3658 return ret;
3659 }
3660 if (--remaining) {
3661 rover++;
3662 if ((rover < low) || (rover > high))
3663 rover = low;
3664 goto retry;
3665 }
3666 return -EADDRNOTAVAIL;
3667 }
3668
3669 /*
3670 * Check that the requested port is available. This is called when trying to
3671 * bind to a specific port, or when trying to listen on a bound port. In
3672 * the latter case, the provided id_priv may already be on the bind_list, but
3673 * we still need to check that it's okay to start listening.
3674 */
cma_check_port(struct rdma_bind_list * bind_list,struct rdma_id_private * id_priv,uint8_t reuseaddr)3675 static int cma_check_port(struct rdma_bind_list *bind_list,
3676 struct rdma_id_private *id_priv, uint8_t reuseaddr)
3677 {
3678 struct rdma_id_private *cur_id;
3679 struct sockaddr *addr, *cur_addr;
3680
3681 lockdep_assert_held(&lock);
3682
3683 addr = cma_src_addr(id_priv);
3684 hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3685 if (id_priv == cur_id)
3686 continue;
3687
3688 if (reuseaddr && cur_id->reuseaddr)
3689 continue;
3690
3691 cur_addr = cma_src_addr(cur_id);
3692 if (id_priv->afonly && cur_id->afonly &&
3693 (addr->sa_family != cur_addr->sa_family))
3694 continue;
3695
3696 if (cma_any_addr(addr) || cma_any_addr(cur_addr))
3697 return -EADDRNOTAVAIL;
3698
3699 if (!cma_addr_cmp(addr, cur_addr))
3700 return -EADDRINUSE;
3701 }
3702 return 0;
3703 }
3704
cma_use_port(enum rdma_ucm_port_space ps,struct rdma_id_private * id_priv)3705 static int cma_use_port(enum rdma_ucm_port_space ps,
3706 struct rdma_id_private *id_priv)
3707 {
3708 struct rdma_bind_list *bind_list;
3709 unsigned short snum;
3710 int ret;
3711
3712 lockdep_assert_held(&lock);
3713
3714 snum = ntohs(cma_port(cma_src_addr(id_priv)));
3715 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
3716 return -EACCES;
3717
3718 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
3719 if (!bind_list) {
3720 ret = cma_alloc_port(ps, id_priv, snum);
3721 } else {
3722 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
3723 if (!ret)
3724 cma_bind_port(bind_list, id_priv);
3725 }
3726 return ret;
3727 }
3728
3729 static enum rdma_ucm_port_space
cma_select_inet_ps(struct rdma_id_private * id_priv)3730 cma_select_inet_ps(struct rdma_id_private *id_priv)
3731 {
3732 switch (id_priv->id.ps) {
3733 case RDMA_PS_TCP:
3734 case RDMA_PS_UDP:
3735 case RDMA_PS_IPOIB:
3736 case RDMA_PS_IB:
3737 return id_priv->id.ps;
3738 default:
3739
3740 return 0;
3741 }
3742 }
3743
3744 static enum rdma_ucm_port_space
cma_select_ib_ps(struct rdma_id_private * id_priv)3745 cma_select_ib_ps(struct rdma_id_private *id_priv)
3746 {
3747 enum rdma_ucm_port_space ps = 0;
3748 struct sockaddr_ib *sib;
3749 u64 sid_ps, mask, sid;
3750
3751 sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
3752 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
3753 sid = be64_to_cpu(sib->sib_sid) & mask;
3754
3755 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
3756 sid_ps = RDMA_IB_IP_PS_IB;
3757 ps = RDMA_PS_IB;
3758 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
3759 (sid == (RDMA_IB_IP_PS_TCP & mask))) {
3760 sid_ps = RDMA_IB_IP_PS_TCP;
3761 ps = RDMA_PS_TCP;
3762 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
3763 (sid == (RDMA_IB_IP_PS_UDP & mask))) {
3764 sid_ps = RDMA_IB_IP_PS_UDP;
3765 ps = RDMA_PS_UDP;
3766 }
3767
3768 if (ps) {
3769 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
3770 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
3771 be64_to_cpu(sib->sib_sid_mask));
3772 }
3773 return ps;
3774 }
3775
cma_get_port(struct rdma_id_private * id_priv)3776 static int cma_get_port(struct rdma_id_private *id_priv)
3777 {
3778 enum rdma_ucm_port_space ps;
3779 int ret;
3780
3781 if (cma_family(id_priv) != AF_IB)
3782 ps = cma_select_inet_ps(id_priv);
3783 else
3784 ps = cma_select_ib_ps(id_priv);
3785 if (!ps)
3786 return -EPROTONOSUPPORT;
3787
3788 mutex_lock(&lock);
3789 if (cma_any_port(cma_src_addr(id_priv)))
3790 ret = cma_alloc_any_port(ps, id_priv);
3791 else
3792 ret = cma_use_port(ps, id_priv);
3793 mutex_unlock(&lock);
3794
3795 return ret;
3796 }
3797
cma_check_linklocal(struct rdma_dev_addr * dev_addr,struct sockaddr * addr)3798 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
3799 struct sockaddr *addr)
3800 {
3801 #if IS_ENABLED(CONFIG_IPV6)
3802 struct sockaddr_in6 *sin6;
3803
3804 if (addr->sa_family != AF_INET6)
3805 return 0;
3806
3807 sin6 = (struct sockaddr_in6 *) addr;
3808
3809 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
3810 return 0;
3811
3812 if (!sin6->sin6_scope_id)
3813 return -EINVAL;
3814
3815 dev_addr->bound_dev_if = sin6->sin6_scope_id;
3816 #endif
3817 return 0;
3818 }
3819
rdma_listen(struct rdma_cm_id * id,int backlog)3820 int rdma_listen(struct rdma_cm_id *id, int backlog)
3821 {
3822 struct rdma_id_private *id_priv =
3823 container_of(id, struct rdma_id_private, id);
3824 int ret;
3825
3826 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
3827 struct sockaddr_in any_in = {
3828 .sin_family = AF_INET,
3829 .sin_addr.s_addr = htonl(INADDR_ANY),
3830 };
3831
3832 /* For a well behaved ULP state will be RDMA_CM_IDLE */
3833 ret = rdma_bind_addr(id, (struct sockaddr *)&any_in);
3834 if (ret)
3835 return ret;
3836 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3837 RDMA_CM_LISTEN)))
3838 return -EINVAL;
3839 }
3840
3841 /*
3842 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
3843 * any more, and has to be unique in the bind list.
3844 */
3845 if (id_priv->reuseaddr) {
3846 mutex_lock(&lock);
3847 ret = cma_check_port(id_priv->bind_list, id_priv, 0);
3848 if (!ret)
3849 id_priv->reuseaddr = 0;
3850 mutex_unlock(&lock);
3851 if (ret)
3852 goto err;
3853 }
3854
3855 id_priv->backlog = backlog;
3856 if (id_priv->cma_dev) {
3857 if (rdma_cap_ib_cm(id->device, 1)) {
3858 ret = cma_ib_listen(id_priv);
3859 if (ret)
3860 goto err;
3861 } else if (rdma_cap_iw_cm(id->device, 1)) {
3862 ret = cma_iw_listen(id_priv, backlog);
3863 if (ret)
3864 goto err;
3865 } else {
3866 ret = -ENOSYS;
3867 goto err;
3868 }
3869 } else {
3870 ret = cma_listen_on_all(id_priv);
3871 if (ret)
3872 goto err;
3873 }
3874
3875 return 0;
3876 err:
3877 id_priv->backlog = 0;
3878 /*
3879 * All the failure paths that lead here will not allow the req_handler's
3880 * to have run.
3881 */
3882 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
3883 return ret;
3884 }
3885 EXPORT_SYMBOL(rdma_listen);
3886
rdma_bind_addr(struct rdma_cm_id * id,struct sockaddr * addr)3887 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
3888 {
3889 struct rdma_id_private *id_priv;
3890 int ret;
3891 struct sockaddr *daddr;
3892
3893 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
3894 addr->sa_family != AF_IB)
3895 return -EAFNOSUPPORT;
3896
3897 id_priv = container_of(id, struct rdma_id_private, id);
3898 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
3899 return -EINVAL;
3900
3901 ret = cma_check_linklocal(&id->route.addr.dev_addr, addr);
3902 if (ret)
3903 goto err1;
3904
3905 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
3906 if (!cma_any_addr(addr)) {
3907 ret = cma_translate_addr(addr, &id->route.addr.dev_addr);
3908 if (ret)
3909 goto err1;
3910
3911 ret = cma_acquire_dev_by_src_ip(id_priv);
3912 if (ret)
3913 goto err1;
3914 }
3915
3916 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
3917 if (addr->sa_family == AF_INET)
3918 id_priv->afonly = 1;
3919 #if IS_ENABLED(CONFIG_IPV6)
3920 else if (addr->sa_family == AF_INET6) {
3921 struct net *net = id_priv->id.route.addr.dev_addr.net;
3922
3923 id_priv->afonly = net->ipv6.sysctl.bindv6only;
3924 }
3925 #endif
3926 }
3927 daddr = cma_dst_addr(id_priv);
3928 daddr->sa_family = addr->sa_family;
3929
3930 ret = cma_get_port(id_priv);
3931 if (ret)
3932 goto err2;
3933
3934 if (!cma_any_addr(addr))
3935 rdma_restrack_add(&id_priv->res);
3936 return 0;
3937 err2:
3938 if (id_priv->cma_dev)
3939 cma_release_dev(id_priv);
3940 err1:
3941 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
3942 return ret;
3943 }
3944 EXPORT_SYMBOL(rdma_bind_addr);
3945
cma_format_hdr(void * hdr,struct rdma_id_private * id_priv)3946 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
3947 {
3948 struct cma_hdr *cma_hdr;
3949
3950 cma_hdr = hdr;
3951 cma_hdr->cma_version = CMA_VERSION;
3952 if (cma_family(id_priv) == AF_INET) {
3953 struct sockaddr_in *src4, *dst4;
3954
3955 src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
3956 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
3957
3958 cma_set_ip_ver(cma_hdr, 4);
3959 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
3960 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
3961 cma_hdr->port = src4->sin_port;
3962 } else if (cma_family(id_priv) == AF_INET6) {
3963 struct sockaddr_in6 *src6, *dst6;
3964
3965 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
3966 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
3967
3968 cma_set_ip_ver(cma_hdr, 6);
3969 cma_hdr->src_addr.ip6 = src6->sin6_addr;
3970 cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
3971 cma_hdr->port = src6->sin6_port;
3972 }
3973 return 0;
3974 }
3975
cma_sidr_rep_handler(struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event)3976 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
3977 const struct ib_cm_event *ib_event)
3978 {
3979 struct rdma_id_private *id_priv = cm_id->context;
3980 struct rdma_cm_event event = {};
3981 const struct ib_cm_sidr_rep_event_param *rep =
3982 &ib_event->param.sidr_rep_rcvd;
3983 int ret;
3984
3985 mutex_lock(&id_priv->handler_mutex);
3986 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
3987 goto out;
3988
3989 switch (ib_event->event) {
3990 case IB_CM_SIDR_REQ_ERROR:
3991 event.event = RDMA_CM_EVENT_UNREACHABLE;
3992 event.status = -ETIMEDOUT;
3993 break;
3994 case IB_CM_SIDR_REP_RECEIVED:
3995 event.param.ud.private_data = ib_event->private_data;
3996 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
3997 if (rep->status != IB_SIDR_SUCCESS) {
3998 event.event = RDMA_CM_EVENT_UNREACHABLE;
3999 event.status = ib_event->param.sidr_rep_rcvd.status;
4000 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
4001 event.status);
4002 break;
4003 }
4004 ret = cma_set_qkey(id_priv, rep->qkey);
4005 if (ret) {
4006 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
4007 event.event = RDMA_CM_EVENT_ADDR_ERROR;
4008 event.status = ret;
4009 break;
4010 }
4011 ib_init_ah_attr_from_path(id_priv->id.device,
4012 id_priv->id.port_num,
4013 id_priv->id.route.path_rec,
4014 &event.param.ud.ah_attr,
4015 rep->sgid_attr);
4016 event.param.ud.qp_num = rep->qpn;
4017 event.param.ud.qkey = rep->qkey;
4018 event.event = RDMA_CM_EVENT_ESTABLISHED;
4019 event.status = 0;
4020 break;
4021 default:
4022 pr_err("RDMA CMA: unexpected IB CM event: %d\n",
4023 ib_event->event);
4024 goto out;
4025 }
4026
4027 ret = cma_cm_event_handler(id_priv, &event);
4028
4029 rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4030 if (ret) {
4031 /* Destroy the CM ID by returning a non-zero value. */
4032 id_priv->cm_id.ib = NULL;
4033 destroy_id_handler_unlock(id_priv);
4034 return ret;
4035 }
4036 out:
4037 mutex_unlock(&id_priv->handler_mutex);
4038 return 0;
4039 }
4040
cma_resolve_ib_udp(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4041 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
4042 struct rdma_conn_param *conn_param)
4043 {
4044 struct ib_cm_sidr_req_param req;
4045 struct ib_cm_id *id;
4046 void *private_data;
4047 u8 offset;
4048 int ret;
4049
4050 memset(&req, 0, sizeof req);
4051 offset = cma_user_data_offset(id_priv);
4052 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4053 return -EINVAL;
4054
4055 if (req.private_data_len) {
4056 private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4057 if (!private_data)
4058 return -ENOMEM;
4059 } else {
4060 private_data = NULL;
4061 }
4062
4063 if (conn_param->private_data && conn_param->private_data_len)
4064 memcpy(private_data + offset, conn_param->private_data,
4065 conn_param->private_data_len);
4066
4067 if (private_data) {
4068 ret = cma_format_hdr(private_data, id_priv);
4069 if (ret)
4070 goto out;
4071 req.private_data = private_data;
4072 }
4073
4074 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
4075 id_priv);
4076 if (IS_ERR(id)) {
4077 ret = PTR_ERR(id);
4078 goto out;
4079 }
4080 id_priv->cm_id.ib = id;
4081
4082 req.path = id_priv->id.route.path_rec;
4083 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4084 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4085 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
4086 req.max_cm_retries = CMA_MAX_CM_RETRIES;
4087
4088 trace_cm_send_sidr_req(id_priv);
4089 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
4090 if (ret) {
4091 ib_destroy_cm_id(id_priv->cm_id.ib);
4092 id_priv->cm_id.ib = NULL;
4093 }
4094 out:
4095 kfree(private_data);
4096 return ret;
4097 }
4098
cma_connect_ib(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4099 static int cma_connect_ib(struct rdma_id_private *id_priv,
4100 struct rdma_conn_param *conn_param)
4101 {
4102 struct ib_cm_req_param req;
4103 struct rdma_route *route;
4104 void *private_data;
4105 struct ib_cm_id *id;
4106 u8 offset;
4107 int ret;
4108
4109 memset(&req, 0, sizeof req);
4110 offset = cma_user_data_offset(id_priv);
4111 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4112 return -EINVAL;
4113
4114 if (req.private_data_len) {
4115 private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4116 if (!private_data)
4117 return -ENOMEM;
4118 } else {
4119 private_data = NULL;
4120 }
4121
4122 if (conn_param->private_data && conn_param->private_data_len)
4123 memcpy(private_data + offset, conn_param->private_data,
4124 conn_param->private_data_len);
4125
4126 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
4127 if (IS_ERR(id)) {
4128 ret = PTR_ERR(id);
4129 goto out;
4130 }
4131 id_priv->cm_id.ib = id;
4132
4133 route = &id_priv->id.route;
4134 if (private_data) {
4135 ret = cma_format_hdr(private_data, id_priv);
4136 if (ret)
4137 goto out;
4138 req.private_data = private_data;
4139 }
4140
4141 req.primary_path = &route->path_rec[0];
4142 if (route->num_paths == 2)
4143 req.alternate_path = &route->path_rec[1];
4144
4145 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4146 /* Alternate path SGID attribute currently unsupported */
4147 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4148 req.qp_num = id_priv->qp_num;
4149 req.qp_type = id_priv->id.qp_type;
4150 req.starting_psn = id_priv->seq_num;
4151 req.responder_resources = conn_param->responder_resources;
4152 req.initiator_depth = conn_param->initiator_depth;
4153 req.flow_control = conn_param->flow_control;
4154 req.retry_count = min_t(u8, 7, conn_param->retry_count);
4155 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4156 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4157 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4158 req.max_cm_retries = CMA_MAX_CM_RETRIES;
4159 req.srq = id_priv->srq ? 1 : 0;
4160 req.ece.vendor_id = id_priv->ece.vendor_id;
4161 req.ece.attr_mod = id_priv->ece.attr_mod;
4162
4163 trace_cm_send_req(id_priv);
4164 ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
4165 out:
4166 if (ret && !IS_ERR(id)) {
4167 ib_destroy_cm_id(id);
4168 id_priv->cm_id.ib = NULL;
4169 }
4170
4171 kfree(private_data);
4172 return ret;
4173 }
4174
cma_connect_iw(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4175 static int cma_connect_iw(struct rdma_id_private *id_priv,
4176 struct rdma_conn_param *conn_param)
4177 {
4178 struct iw_cm_id *cm_id;
4179 int ret;
4180 struct iw_cm_conn_param iw_param;
4181
4182 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
4183 if (IS_ERR(cm_id))
4184 return PTR_ERR(cm_id);
4185
4186 mutex_lock(&id_priv->qp_mutex);
4187 cm_id->tos = id_priv->tos;
4188 cm_id->tos_set = id_priv->tos_set;
4189 mutex_unlock(&id_priv->qp_mutex);
4190
4191 id_priv->cm_id.iw = cm_id;
4192
4193 memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
4194 rdma_addr_size(cma_src_addr(id_priv)));
4195 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
4196 rdma_addr_size(cma_dst_addr(id_priv)));
4197
4198 ret = cma_modify_qp_rtr(id_priv, conn_param);
4199 if (ret)
4200 goto out;
4201
4202 if (conn_param) {
4203 iw_param.ord = conn_param->initiator_depth;
4204 iw_param.ird = conn_param->responder_resources;
4205 iw_param.private_data = conn_param->private_data;
4206 iw_param.private_data_len = conn_param->private_data_len;
4207 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
4208 } else {
4209 memset(&iw_param, 0, sizeof iw_param);
4210 iw_param.qpn = id_priv->qp_num;
4211 }
4212 ret = iw_cm_connect(cm_id, &iw_param);
4213 out:
4214 if (ret) {
4215 iw_destroy_cm_id(cm_id);
4216 id_priv->cm_id.iw = NULL;
4217 }
4218 return ret;
4219 }
4220
4221 /**
4222 * rdma_connect_locked - Initiate an active connection request.
4223 * @id: Connection identifier to connect.
4224 * @conn_param: Connection information used for connected QPs.
4225 *
4226 * Same as rdma_connect() but can only be called from the
4227 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
4228 */
rdma_connect_locked(struct rdma_cm_id * id,struct rdma_conn_param * conn_param)4229 int rdma_connect_locked(struct rdma_cm_id *id,
4230 struct rdma_conn_param *conn_param)
4231 {
4232 struct rdma_id_private *id_priv =
4233 container_of(id, struct rdma_id_private, id);
4234 int ret;
4235
4236 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
4237 return -EINVAL;
4238
4239 if (!id->qp) {
4240 id_priv->qp_num = conn_param->qp_num;
4241 id_priv->srq = conn_param->srq;
4242 }
4243
4244 if (rdma_cap_ib_cm(id->device, id->port_num)) {
4245 if (id->qp_type == IB_QPT_UD)
4246 ret = cma_resolve_ib_udp(id_priv, conn_param);
4247 else
4248 ret = cma_connect_ib(id_priv, conn_param);
4249 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4250 ret = cma_connect_iw(id_priv, conn_param);
4251 } else {
4252 ret = -ENOSYS;
4253 }
4254 if (ret)
4255 goto err_state;
4256 return 0;
4257 err_state:
4258 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
4259 return ret;
4260 }
4261 EXPORT_SYMBOL(rdma_connect_locked);
4262
4263 /**
4264 * rdma_connect - Initiate an active connection request.
4265 * @id: Connection identifier to connect.
4266 * @conn_param: Connection information used for connected QPs.
4267 *
4268 * Users must have resolved a route for the rdma_cm_id to connect with by having
4269 * called rdma_resolve_route before calling this routine.
4270 *
4271 * This call will either connect to a remote QP or obtain remote QP information
4272 * for unconnected rdma_cm_id's. The actual operation is based on the
4273 * rdma_cm_id's port space.
4274 */
rdma_connect(struct rdma_cm_id * id,struct rdma_conn_param * conn_param)4275 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4276 {
4277 struct rdma_id_private *id_priv =
4278 container_of(id, struct rdma_id_private, id);
4279 int ret;
4280
4281 mutex_lock(&id_priv->handler_mutex);
4282 ret = rdma_connect_locked(id, conn_param);
4283 mutex_unlock(&id_priv->handler_mutex);
4284 return ret;
4285 }
4286 EXPORT_SYMBOL(rdma_connect);
4287
4288 /**
4289 * rdma_connect_ece - Initiate an active connection request with ECE data.
4290 * @id: Connection identifier to connect.
4291 * @conn_param: Connection information used for connected QPs.
4292 * @ece: ECE parameters
4293 *
4294 * See rdma_connect() explanation.
4295 */
rdma_connect_ece(struct rdma_cm_id * id,struct rdma_conn_param * conn_param,struct rdma_ucm_ece * ece)4296 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4297 struct rdma_ucm_ece *ece)
4298 {
4299 struct rdma_id_private *id_priv =
4300 container_of(id, struct rdma_id_private, id);
4301
4302 id_priv->ece.vendor_id = ece->vendor_id;
4303 id_priv->ece.attr_mod = ece->attr_mod;
4304
4305 return rdma_connect(id, conn_param);
4306 }
4307 EXPORT_SYMBOL(rdma_connect_ece);
4308
cma_accept_ib(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4309 static int cma_accept_ib(struct rdma_id_private *id_priv,
4310 struct rdma_conn_param *conn_param)
4311 {
4312 struct ib_cm_rep_param rep;
4313 int ret;
4314
4315 ret = cma_modify_qp_rtr(id_priv, conn_param);
4316 if (ret)
4317 goto out;
4318
4319 ret = cma_modify_qp_rts(id_priv, conn_param);
4320 if (ret)
4321 goto out;
4322
4323 memset(&rep, 0, sizeof rep);
4324 rep.qp_num = id_priv->qp_num;
4325 rep.starting_psn = id_priv->seq_num;
4326 rep.private_data = conn_param->private_data;
4327 rep.private_data_len = conn_param->private_data_len;
4328 rep.responder_resources = conn_param->responder_resources;
4329 rep.initiator_depth = conn_param->initiator_depth;
4330 rep.failover_accepted = 0;
4331 rep.flow_control = conn_param->flow_control;
4332 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4333 rep.srq = id_priv->srq ? 1 : 0;
4334 rep.ece.vendor_id = id_priv->ece.vendor_id;
4335 rep.ece.attr_mod = id_priv->ece.attr_mod;
4336
4337 trace_cm_send_rep(id_priv);
4338 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
4339 out:
4340 return ret;
4341 }
4342
cma_accept_iw(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4343 static int cma_accept_iw(struct rdma_id_private *id_priv,
4344 struct rdma_conn_param *conn_param)
4345 {
4346 struct iw_cm_conn_param iw_param;
4347 int ret;
4348
4349 if (!conn_param)
4350 return -EINVAL;
4351
4352 ret = cma_modify_qp_rtr(id_priv, conn_param);
4353 if (ret)
4354 return ret;
4355
4356 iw_param.ord = conn_param->initiator_depth;
4357 iw_param.ird = conn_param->responder_resources;
4358 iw_param.private_data = conn_param->private_data;
4359 iw_param.private_data_len = conn_param->private_data_len;
4360 if (id_priv->id.qp)
4361 iw_param.qpn = id_priv->qp_num;
4362 else
4363 iw_param.qpn = conn_param->qp_num;
4364
4365 return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
4366 }
4367
cma_send_sidr_rep(struct rdma_id_private * id_priv,enum ib_cm_sidr_status status,u32 qkey,const void * private_data,int private_data_len)4368 static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
4369 enum ib_cm_sidr_status status, u32 qkey,
4370 const void *private_data, int private_data_len)
4371 {
4372 struct ib_cm_sidr_rep_param rep;
4373 int ret;
4374
4375 memset(&rep, 0, sizeof rep);
4376 rep.status = status;
4377 if (status == IB_SIDR_SUCCESS) {
4378 ret = cma_set_qkey(id_priv, qkey);
4379 if (ret)
4380 return ret;
4381 rep.qp_num = id_priv->qp_num;
4382 rep.qkey = id_priv->qkey;
4383
4384 rep.ece.vendor_id = id_priv->ece.vendor_id;
4385 rep.ece.attr_mod = id_priv->ece.attr_mod;
4386 }
4387
4388 rep.private_data = private_data;
4389 rep.private_data_len = private_data_len;
4390
4391 trace_cm_send_sidr_rep(id_priv);
4392 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
4393 }
4394
4395 /**
4396 * rdma_accept - Called to accept a connection request or response.
4397 * @id: Connection identifier associated with the request.
4398 * @conn_param: Information needed to establish the connection. This must be
4399 * provided if accepting a connection request. If accepting a connection
4400 * response, this parameter must be NULL.
4401 *
4402 * Typically, this routine is only called by the listener to accept a connection
4403 * request. It must also be called on the active side of a connection if the
4404 * user is performing their own QP transitions.
4405 *
4406 * In the case of error, a reject message is sent to the remote side and the
4407 * state of the qp associated with the id is modified to error, such that any
4408 * previously posted receive buffers would be flushed.
4409 *
4410 * This function is for use by kernel ULPs and must be called from under the
4411 * handler callback.
4412 */
rdma_accept(struct rdma_cm_id * id,struct rdma_conn_param * conn_param)4413 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4414 {
4415 struct rdma_id_private *id_priv =
4416 container_of(id, struct rdma_id_private, id);
4417 int ret;
4418
4419 lockdep_assert_held(&id_priv->handler_mutex);
4420
4421 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4422 return -EINVAL;
4423
4424 if (!id->qp && conn_param) {
4425 id_priv->qp_num = conn_param->qp_num;
4426 id_priv->srq = conn_param->srq;
4427 }
4428
4429 if (rdma_cap_ib_cm(id->device, id->port_num)) {
4430 if (id->qp_type == IB_QPT_UD) {
4431 if (conn_param)
4432 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4433 conn_param->qkey,
4434 conn_param->private_data,
4435 conn_param->private_data_len);
4436 else
4437 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4438 0, NULL, 0);
4439 } else {
4440 if (conn_param)
4441 ret = cma_accept_ib(id_priv, conn_param);
4442 else
4443 ret = cma_rep_recv(id_priv);
4444 }
4445 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4446 ret = cma_accept_iw(id_priv, conn_param);
4447 } else {
4448 ret = -ENOSYS;
4449 }
4450 if (ret)
4451 goto reject;
4452
4453 return 0;
4454 reject:
4455 cma_modify_qp_err(id_priv);
4456 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
4457 return ret;
4458 }
4459 EXPORT_SYMBOL(rdma_accept);
4460
rdma_accept_ece(struct rdma_cm_id * id,struct rdma_conn_param * conn_param,struct rdma_ucm_ece * ece)4461 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4462 struct rdma_ucm_ece *ece)
4463 {
4464 struct rdma_id_private *id_priv =
4465 container_of(id, struct rdma_id_private, id);
4466
4467 id_priv->ece.vendor_id = ece->vendor_id;
4468 id_priv->ece.attr_mod = ece->attr_mod;
4469
4470 return rdma_accept(id, conn_param);
4471 }
4472 EXPORT_SYMBOL(rdma_accept_ece);
4473
rdma_lock_handler(struct rdma_cm_id * id)4474 void rdma_lock_handler(struct rdma_cm_id *id)
4475 {
4476 struct rdma_id_private *id_priv =
4477 container_of(id, struct rdma_id_private, id);
4478
4479 mutex_lock(&id_priv->handler_mutex);
4480 }
4481 EXPORT_SYMBOL(rdma_lock_handler);
4482
rdma_unlock_handler(struct rdma_cm_id * id)4483 void rdma_unlock_handler(struct rdma_cm_id *id)
4484 {
4485 struct rdma_id_private *id_priv =
4486 container_of(id, struct rdma_id_private, id);
4487
4488 mutex_unlock(&id_priv->handler_mutex);
4489 }
4490 EXPORT_SYMBOL(rdma_unlock_handler);
4491
rdma_notify(struct rdma_cm_id * id,enum ib_event_type event)4492 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
4493 {
4494 struct rdma_id_private *id_priv;
4495 int ret;
4496
4497 id_priv = container_of(id, struct rdma_id_private, id);
4498 if (!id_priv->cm_id.ib)
4499 return -EINVAL;
4500
4501 switch (id->device->node_type) {
4502 case RDMA_NODE_IB_CA:
4503 ret = ib_cm_notify(id_priv->cm_id.ib, event);
4504 break;
4505 default:
4506 ret = 0;
4507 break;
4508 }
4509 return ret;
4510 }
4511 EXPORT_SYMBOL(rdma_notify);
4512
rdma_reject(struct rdma_cm_id * id,const void * private_data,u8 private_data_len,u8 reason)4513 int rdma_reject(struct rdma_cm_id *id, const void *private_data,
4514 u8 private_data_len, u8 reason)
4515 {
4516 struct rdma_id_private *id_priv;
4517 int ret;
4518
4519 id_priv = container_of(id, struct rdma_id_private, id);
4520 if (!id_priv->cm_id.ib)
4521 return -EINVAL;
4522
4523 if (rdma_cap_ib_cm(id->device, id->port_num)) {
4524 if (id->qp_type == IB_QPT_UD) {
4525 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
4526 private_data, private_data_len);
4527 } else {
4528 trace_cm_send_rej(id_priv);
4529 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
4530 private_data, private_data_len);
4531 }
4532 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4533 ret = iw_cm_reject(id_priv->cm_id.iw,
4534 private_data, private_data_len);
4535 } else {
4536 ret = -ENOSYS;
4537 }
4538
4539 return ret;
4540 }
4541 EXPORT_SYMBOL(rdma_reject);
4542
rdma_disconnect(struct rdma_cm_id * id)4543 int rdma_disconnect(struct rdma_cm_id *id)
4544 {
4545 struct rdma_id_private *id_priv;
4546 int ret;
4547
4548 id_priv = container_of(id, struct rdma_id_private, id);
4549 if (!id_priv->cm_id.ib)
4550 return -EINVAL;
4551
4552 if (rdma_cap_ib_cm(id->device, id->port_num)) {
4553 ret = cma_modify_qp_err(id_priv);
4554 if (ret)
4555 goto out;
4556 /* Initiate or respond to a disconnect. */
4557 trace_cm_disconnect(id_priv);
4558 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
4559 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
4560 trace_cm_sent_drep(id_priv);
4561 } else {
4562 trace_cm_sent_dreq(id_priv);
4563 }
4564 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4565 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
4566 } else
4567 ret = -EINVAL;
4568
4569 out:
4570 return ret;
4571 }
4572 EXPORT_SYMBOL(rdma_disconnect);
4573
cma_make_mc_event(int status,struct rdma_id_private * id_priv,struct ib_sa_multicast * multicast,struct rdma_cm_event * event,struct cma_multicast * mc)4574 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
4575 struct ib_sa_multicast *multicast,
4576 struct rdma_cm_event *event,
4577 struct cma_multicast *mc)
4578 {
4579 struct rdma_dev_addr *dev_addr;
4580 enum ib_gid_type gid_type;
4581 struct net_device *ndev;
4582
4583 if (!status)
4584 status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
4585 else
4586 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
4587 status);
4588
4589 event->status = status;
4590 event->param.ud.private_data = mc->context;
4591 if (status) {
4592 event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4593 return;
4594 }
4595
4596 dev_addr = &id_priv->id.route.addr.dev_addr;
4597 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4598 gid_type =
4599 id_priv->cma_dev
4600 ->default_gid_type[id_priv->id.port_num -
4601 rdma_start_port(
4602 id_priv->cma_dev->device)];
4603
4604 event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
4605 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
4606 &multicast->rec, ndev, gid_type,
4607 &event->param.ud.ah_attr)) {
4608 event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4609 goto out;
4610 }
4611
4612 event->param.ud.qp_num = 0xFFFFFF;
4613 event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey);
4614
4615 out:
4616 if (ndev)
4617 dev_put(ndev);
4618 }
4619
cma_ib_mc_handler(int status,struct ib_sa_multicast * multicast)4620 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
4621 {
4622 struct cma_multicast *mc = multicast->context;
4623 struct rdma_id_private *id_priv = mc->id_priv;
4624 struct rdma_cm_event event = {};
4625 int ret = 0;
4626
4627 mutex_lock(&id_priv->handler_mutex);
4628 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
4629 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
4630 goto out;
4631
4632 cma_make_mc_event(status, id_priv, multicast, &event, mc);
4633 ret = cma_cm_event_handler(id_priv, &event);
4634 rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4635 WARN_ON(ret);
4636
4637 out:
4638 mutex_unlock(&id_priv->handler_mutex);
4639 return 0;
4640 }
4641
cma_set_mgid(struct rdma_id_private * id_priv,struct sockaddr * addr,union ib_gid * mgid)4642 static void cma_set_mgid(struct rdma_id_private *id_priv,
4643 struct sockaddr *addr, union ib_gid *mgid)
4644 {
4645 unsigned char mc_map[MAX_ADDR_LEN];
4646 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4647 struct sockaddr_in *sin = (struct sockaddr_in *) addr;
4648 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
4649
4650 if (cma_any_addr(addr)) {
4651 memset(mgid, 0, sizeof *mgid);
4652 } else if ((addr->sa_family == AF_INET6) &&
4653 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
4654 0xFF10A01B)) {
4655 /* IPv6 address is an SA assigned MGID. */
4656 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4657 } else if (addr->sa_family == AF_IB) {
4658 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
4659 } else if (addr->sa_family == AF_INET6) {
4660 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
4661 if (id_priv->id.ps == RDMA_PS_UDP)
4662 mc_map[7] = 0x01; /* Use RDMA CM signature */
4663 *mgid = *(union ib_gid *) (mc_map + 4);
4664 } else {
4665 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
4666 if (id_priv->id.ps == RDMA_PS_UDP)
4667 mc_map[7] = 0x01; /* Use RDMA CM signature */
4668 *mgid = *(union ib_gid *) (mc_map + 4);
4669 }
4670 }
4671
cma_join_ib_multicast(struct rdma_id_private * id_priv,struct cma_multicast * mc)4672 static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
4673 struct cma_multicast *mc)
4674 {
4675 struct ib_sa_mcmember_rec rec;
4676 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4677 ib_sa_comp_mask comp_mask;
4678 int ret;
4679
4680 ib_addr_get_mgid(dev_addr, &rec.mgid);
4681 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
4682 &rec.mgid, &rec);
4683 if (ret)
4684 return ret;
4685
4686 ret = cma_set_qkey(id_priv, 0);
4687 if (ret)
4688 return ret;
4689
4690 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
4691 rec.qkey = cpu_to_be32(id_priv->qkey);
4692 rdma_addr_get_sgid(dev_addr, &rec.port_gid);
4693 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
4694 rec.join_state = mc->join_state;
4695
4696 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
4697 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
4698 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
4699 IB_SA_MCMEMBER_REC_FLOW_LABEL |
4700 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
4701
4702 if (id_priv->id.ps == RDMA_PS_IPOIB)
4703 comp_mask |= IB_SA_MCMEMBER_REC_RATE |
4704 IB_SA_MCMEMBER_REC_RATE_SELECTOR |
4705 IB_SA_MCMEMBER_REC_MTU_SELECTOR |
4706 IB_SA_MCMEMBER_REC_MTU |
4707 IB_SA_MCMEMBER_REC_HOP_LIMIT;
4708
4709 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
4710 id_priv->id.port_num, &rec, comp_mask,
4711 GFP_KERNEL, cma_ib_mc_handler, mc);
4712 return PTR_ERR_OR_ZERO(mc->sa_mc);
4713 }
4714
cma_iboe_set_mgid(struct sockaddr * addr,union ib_gid * mgid,enum ib_gid_type gid_type)4715 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
4716 enum ib_gid_type gid_type)
4717 {
4718 struct sockaddr_in *sin = (struct sockaddr_in *)addr;
4719 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
4720
4721 if (cma_any_addr(addr)) {
4722 memset(mgid, 0, sizeof *mgid);
4723 } else if (addr->sa_family == AF_INET6) {
4724 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4725 } else {
4726 mgid->raw[0] =
4727 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
4728 mgid->raw[1] =
4729 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
4730 mgid->raw[2] = 0;
4731 mgid->raw[3] = 0;
4732 mgid->raw[4] = 0;
4733 mgid->raw[5] = 0;
4734 mgid->raw[6] = 0;
4735 mgid->raw[7] = 0;
4736 mgid->raw[8] = 0;
4737 mgid->raw[9] = 0;
4738 mgid->raw[10] = 0xff;
4739 mgid->raw[11] = 0xff;
4740 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
4741 }
4742 }
4743
cma_iboe_join_multicast(struct rdma_id_private * id_priv,struct cma_multicast * mc)4744 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
4745 struct cma_multicast *mc)
4746 {
4747 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4748 int err = 0;
4749 struct sockaddr *addr = (struct sockaddr *)&mc->addr;
4750 struct net_device *ndev = NULL;
4751 struct ib_sa_multicast ib;
4752 enum ib_gid_type gid_type;
4753 bool send_only;
4754
4755 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
4756
4757 if (cma_zero_addr(addr))
4758 return -EINVAL;
4759
4760 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
4761 rdma_start_port(id_priv->cma_dev->device)];
4762 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
4763
4764 ib.rec.pkey = cpu_to_be16(0xffff);
4765 if (id_priv->id.ps == RDMA_PS_UDP)
4766 ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY);
4767
4768 if (dev_addr->bound_dev_if)
4769 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4770 if (!ndev)
4771 return -ENODEV;
4772
4773 ib.rec.rate = iboe_get_rate(ndev);
4774 ib.rec.hop_limit = 1;
4775 ib.rec.mtu = iboe_get_mtu(ndev->mtu);
4776
4777 if (addr->sa_family == AF_INET) {
4778 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
4779 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
4780 if (!send_only) {
4781 err = cma_igmp_send(ndev, &ib.rec.mgid,
4782 true);
4783 }
4784 }
4785 } else {
4786 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
4787 err = -ENOTSUPP;
4788 }
4789 dev_put(ndev);
4790 if (err || !ib.rec.mtu)
4791 return err ?: -EINVAL;
4792
4793 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
4794 &ib.rec.port_gid);
4795 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler);
4796 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc);
4797 queue_work(cma_wq, &mc->iboe_join.work);
4798 return 0;
4799 }
4800
rdma_join_multicast(struct rdma_cm_id * id,struct sockaddr * addr,u8 join_state,void * context)4801 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
4802 u8 join_state, void *context)
4803 {
4804 struct rdma_id_private *id_priv =
4805 container_of(id, struct rdma_id_private, id);
4806 struct cma_multicast *mc;
4807 int ret;
4808
4809 /* Not supported for kernel QPs */
4810 if (WARN_ON(id->qp))
4811 return -EINVAL;
4812
4813 /* ULP is calling this wrong. */
4814 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
4815 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
4816 return -EINVAL;
4817
4818 mc = kzalloc(sizeof(*mc), GFP_KERNEL);
4819 if (!mc)
4820 return -ENOMEM;
4821
4822 memcpy(&mc->addr, addr, rdma_addr_size(addr));
4823 mc->context = context;
4824 mc->id_priv = id_priv;
4825 mc->join_state = join_state;
4826
4827 if (rdma_protocol_roce(id->device, id->port_num)) {
4828 ret = cma_iboe_join_multicast(id_priv, mc);
4829 if (ret)
4830 goto out_err;
4831 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
4832 ret = cma_join_ib_multicast(id_priv, mc);
4833 if (ret)
4834 goto out_err;
4835 } else {
4836 ret = -ENOSYS;
4837 goto out_err;
4838 }
4839
4840 spin_lock(&id_priv->lock);
4841 list_add(&mc->list, &id_priv->mc_list);
4842 spin_unlock(&id_priv->lock);
4843
4844 return 0;
4845 out_err:
4846 kfree(mc);
4847 return ret;
4848 }
4849 EXPORT_SYMBOL(rdma_join_multicast);
4850
rdma_leave_multicast(struct rdma_cm_id * id,struct sockaddr * addr)4851 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
4852 {
4853 struct rdma_id_private *id_priv;
4854 struct cma_multicast *mc;
4855
4856 id_priv = container_of(id, struct rdma_id_private, id);
4857 spin_lock_irq(&id_priv->lock);
4858 list_for_each_entry(mc, &id_priv->mc_list, list) {
4859 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
4860 continue;
4861 list_del(&mc->list);
4862 spin_unlock_irq(&id_priv->lock);
4863
4864 WARN_ON(id_priv->cma_dev->device != id->device);
4865 destroy_mc(id_priv, mc);
4866 return;
4867 }
4868 spin_unlock_irq(&id_priv->lock);
4869 }
4870 EXPORT_SYMBOL(rdma_leave_multicast);
4871
cma_netdev_change(struct net_device * ndev,struct rdma_id_private * id_priv)4872 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
4873 {
4874 struct rdma_dev_addr *dev_addr;
4875 struct cma_work *work;
4876
4877 dev_addr = &id_priv->id.route.addr.dev_addr;
4878
4879 if ((dev_addr->bound_dev_if == ndev->ifindex) &&
4880 (net_eq(dev_net(ndev), dev_addr->net)) &&
4881 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
4882 pr_info("RDMA CM addr change for ndev %s used by id %p\n",
4883 ndev->name, &id_priv->id);
4884 work = kzalloc(sizeof *work, GFP_KERNEL);
4885 if (!work)
4886 return -ENOMEM;
4887
4888 INIT_WORK(&work->work, cma_work_handler);
4889 work->id = id_priv;
4890 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
4891 cma_id_get(id_priv);
4892 queue_work(cma_wq, &work->work);
4893 }
4894
4895 return 0;
4896 }
4897
cma_netdev_callback(struct notifier_block * self,unsigned long event,void * ptr)4898 static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
4899 void *ptr)
4900 {
4901 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
4902 struct cma_device *cma_dev;
4903 struct rdma_id_private *id_priv;
4904 int ret = NOTIFY_DONE;
4905
4906 if (event != NETDEV_BONDING_FAILOVER)
4907 return NOTIFY_DONE;
4908
4909 if (!netif_is_bond_master(ndev))
4910 return NOTIFY_DONE;
4911
4912 mutex_lock(&lock);
4913 list_for_each_entry(cma_dev, &dev_list, list)
4914 list_for_each_entry(id_priv, &cma_dev->id_list, device_item) {
4915 ret = cma_netdev_change(ndev, id_priv);
4916 if (ret)
4917 goto out;
4918 }
4919
4920 out:
4921 mutex_unlock(&lock);
4922 return ret;
4923 }
4924
4925 static struct notifier_block cma_nb = {
4926 .notifier_call = cma_netdev_callback
4927 };
4928
cma_send_device_removal_put(struct rdma_id_private * id_priv)4929 static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
4930 {
4931 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
4932 enum rdma_cm_state state;
4933 unsigned long flags;
4934
4935 mutex_lock(&id_priv->handler_mutex);
4936 /* Record that we want to remove the device */
4937 spin_lock_irqsave(&id_priv->lock, flags);
4938 state = id_priv->state;
4939 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
4940 spin_unlock_irqrestore(&id_priv->lock, flags);
4941 mutex_unlock(&id_priv->handler_mutex);
4942 cma_id_put(id_priv);
4943 return;
4944 }
4945 id_priv->state = RDMA_CM_DEVICE_REMOVAL;
4946 spin_unlock_irqrestore(&id_priv->lock, flags);
4947
4948 if (cma_cm_event_handler(id_priv, &event)) {
4949 /*
4950 * At this point the ULP promises it won't call
4951 * rdma_destroy_id() concurrently
4952 */
4953 cma_id_put(id_priv);
4954 mutex_unlock(&id_priv->handler_mutex);
4955 trace_cm_id_destroy(id_priv);
4956 _destroy_id(id_priv, state);
4957 return;
4958 }
4959 mutex_unlock(&id_priv->handler_mutex);
4960
4961 /*
4962 * If this races with destroy then the thread that first assigns state
4963 * to a destroying does the cancel.
4964 */
4965 cma_cancel_operation(id_priv, state);
4966 cma_id_put(id_priv);
4967 }
4968
cma_process_remove(struct cma_device * cma_dev)4969 static void cma_process_remove(struct cma_device *cma_dev)
4970 {
4971 mutex_lock(&lock);
4972 while (!list_empty(&cma_dev->id_list)) {
4973 struct rdma_id_private *id_priv = list_first_entry(
4974 &cma_dev->id_list, struct rdma_id_private, device_item);
4975
4976 list_del_init(&id_priv->listen_item);
4977 list_del_init(&id_priv->device_item);
4978 cma_id_get(id_priv);
4979 mutex_unlock(&lock);
4980
4981 cma_send_device_removal_put(id_priv);
4982
4983 mutex_lock(&lock);
4984 }
4985 mutex_unlock(&lock);
4986
4987 cma_dev_put(cma_dev);
4988 wait_for_completion(&cma_dev->comp);
4989 }
4990
cma_supported(struct ib_device * device)4991 static bool cma_supported(struct ib_device *device)
4992 {
4993 u32 i;
4994
4995 rdma_for_each_port(device, i) {
4996 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i))
4997 return true;
4998 }
4999 return false;
5000 }
5001
cma_add_one(struct ib_device * device)5002 static int cma_add_one(struct ib_device *device)
5003 {
5004 struct rdma_id_private *to_destroy;
5005 struct cma_device *cma_dev;
5006 struct rdma_id_private *id_priv;
5007 unsigned long supported_gids = 0;
5008 int ret;
5009 u32 i;
5010
5011 if (!cma_supported(device))
5012 return -EOPNOTSUPP;
5013
5014 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
5015 if (!cma_dev)
5016 return -ENOMEM;
5017
5018 cma_dev->device = device;
5019 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
5020 sizeof(*cma_dev->default_gid_type),
5021 GFP_KERNEL);
5022 if (!cma_dev->default_gid_type) {
5023 ret = -ENOMEM;
5024 goto free_cma_dev;
5025 }
5026
5027 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
5028 sizeof(*cma_dev->default_roce_tos),
5029 GFP_KERNEL);
5030 if (!cma_dev->default_roce_tos) {
5031 ret = -ENOMEM;
5032 goto free_gid_type;
5033 }
5034
5035 rdma_for_each_port (device, i) {
5036 supported_gids = roce_gid_type_mask_support(device, i);
5037 WARN_ON(!supported_gids);
5038 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
5039 cma_dev->default_gid_type[i - rdma_start_port(device)] =
5040 CMA_PREFERRED_ROCE_GID_TYPE;
5041 else
5042 cma_dev->default_gid_type[i - rdma_start_port(device)] =
5043 find_first_bit(&supported_gids, BITS_PER_LONG);
5044 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
5045 }
5046
5047 init_completion(&cma_dev->comp);
5048 refcount_set(&cma_dev->refcount, 1);
5049 INIT_LIST_HEAD(&cma_dev->id_list);
5050 ib_set_client_data(device, &cma_client, cma_dev);
5051
5052 mutex_lock(&lock);
5053 list_add_tail(&cma_dev->list, &dev_list);
5054 list_for_each_entry(id_priv, &listen_any_list, listen_any_item) {
5055 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
5056 if (ret)
5057 goto free_listen;
5058 }
5059 mutex_unlock(&lock);
5060
5061 trace_cm_add_one(device);
5062 return 0;
5063
5064 free_listen:
5065 list_del(&cma_dev->list);
5066 mutex_unlock(&lock);
5067
5068 /* cma_process_remove() will delete to_destroy */
5069 cma_process_remove(cma_dev);
5070 kfree(cma_dev->default_roce_tos);
5071 free_gid_type:
5072 kfree(cma_dev->default_gid_type);
5073
5074 free_cma_dev:
5075 kfree(cma_dev);
5076 return ret;
5077 }
5078
cma_remove_one(struct ib_device * device,void * client_data)5079 static void cma_remove_one(struct ib_device *device, void *client_data)
5080 {
5081 struct cma_device *cma_dev = client_data;
5082
5083 trace_cm_remove_one(device);
5084
5085 mutex_lock(&lock);
5086 list_del(&cma_dev->list);
5087 mutex_unlock(&lock);
5088
5089 cma_process_remove(cma_dev);
5090 kfree(cma_dev->default_roce_tos);
5091 kfree(cma_dev->default_gid_type);
5092 kfree(cma_dev);
5093 }
5094
cma_init_net(struct net * net)5095 static int cma_init_net(struct net *net)
5096 {
5097 struct cma_pernet *pernet = cma_pernet(net);
5098
5099 xa_init(&pernet->tcp_ps);
5100 xa_init(&pernet->udp_ps);
5101 xa_init(&pernet->ipoib_ps);
5102 xa_init(&pernet->ib_ps);
5103
5104 return 0;
5105 }
5106
cma_exit_net(struct net * net)5107 static void cma_exit_net(struct net *net)
5108 {
5109 struct cma_pernet *pernet = cma_pernet(net);
5110
5111 WARN_ON(!xa_empty(&pernet->tcp_ps));
5112 WARN_ON(!xa_empty(&pernet->udp_ps));
5113 WARN_ON(!xa_empty(&pernet->ipoib_ps));
5114 WARN_ON(!xa_empty(&pernet->ib_ps));
5115 }
5116
5117 static struct pernet_operations cma_pernet_operations = {
5118 .init = cma_init_net,
5119 .exit = cma_exit_net,
5120 .id = &cma_pernet_id,
5121 .size = sizeof(struct cma_pernet),
5122 };
5123
cma_init(void)5124 static int __init cma_init(void)
5125 {
5126 int ret;
5127
5128 /*
5129 * There is a rare lock ordering dependency in cma_netdev_callback()
5130 * that only happens when bonding is enabled. Teach lockdep that rtnl
5131 * must never be nested under lock so it can find these without having
5132 * to test with bonding.
5133 */
5134 if (IS_ENABLED(CONFIG_LOCKDEP)) {
5135 rtnl_lock();
5136 mutex_lock(&lock);
5137 mutex_unlock(&lock);
5138 rtnl_unlock();
5139 }
5140
5141 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
5142 if (!cma_wq)
5143 return -ENOMEM;
5144
5145 ret = register_pernet_subsys(&cma_pernet_operations);
5146 if (ret)
5147 goto err_wq;
5148
5149 ib_sa_register_client(&sa_client);
5150 register_netdevice_notifier(&cma_nb);
5151
5152 ret = ib_register_client(&cma_client);
5153 if (ret)
5154 goto err;
5155
5156 ret = cma_configfs_init();
5157 if (ret)
5158 goto err_ib;
5159
5160 return 0;
5161
5162 err_ib:
5163 ib_unregister_client(&cma_client);
5164 err:
5165 unregister_netdevice_notifier(&cma_nb);
5166 ib_sa_unregister_client(&sa_client);
5167 unregister_pernet_subsys(&cma_pernet_operations);
5168 err_wq:
5169 destroy_workqueue(cma_wq);
5170 return ret;
5171 }
5172
cma_cleanup(void)5173 static void __exit cma_cleanup(void)
5174 {
5175 cma_configfs_exit();
5176 ib_unregister_client(&cma_client);
5177 unregister_netdevice_notifier(&cma_nb);
5178 ib_sa_unregister_client(&sa_client);
5179 unregister_pernet_subsys(&cma_pernet_operations);
5180 destroy_workqueue(cma_wq);
5181 }
5182
5183 module_init(cma_init);
5184 module_exit(cma_cleanup);
5185