1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47
48 #ifdef CONFIG_RCU_TORTURE_TEST
49 extern int rcutorture_runnable; /* for sysctl */
50 #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
51
52 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
53 extern void rcutorture_record_test_transition(void);
54 extern void rcutorture_record_progress(unsigned long vernum);
55 extern void do_trace_rcu_torture_read(char *rcutorturename,
56 struct rcu_head *rhp);
57 #else
rcutorture_record_test_transition(void)58 static inline void rcutorture_record_test_transition(void)
59 {
60 }
rcutorture_record_progress(unsigned long vernum)61 static inline void rcutorture_record_progress(unsigned long vernum)
62 {
63 }
64 #ifdef CONFIG_RCU_TRACE
65 extern void do_trace_rcu_torture_read(char *rcutorturename,
66 struct rcu_head *rhp);
67 #else
68 #define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0)
69 #endif
70 #endif
71
72 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
73 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
74 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
75 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
76
77 /* Exported common interfaces */
78
79 #ifdef CONFIG_PREEMPT_RCU
80
81 /**
82 * call_rcu() - Queue an RCU callback for invocation after a grace period.
83 * @head: structure to be used for queueing the RCU updates.
84 * @func: actual callback function to be invoked after the grace period
85 *
86 * The callback function will be invoked some time after a full grace
87 * period elapses, in other words after all pre-existing RCU read-side
88 * critical sections have completed. However, the callback function
89 * might well execute concurrently with RCU read-side critical sections
90 * that started after call_rcu() was invoked. RCU read-side critical
91 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
92 * and may be nested.
93 */
94 extern void call_rcu(struct rcu_head *head,
95 void (*func)(struct rcu_head *head));
96
97 #else /* #ifdef CONFIG_PREEMPT_RCU */
98
99 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
100 #define call_rcu call_rcu_sched
101
102 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
103
104 /**
105 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
106 * @head: structure to be used for queueing the RCU updates.
107 * @func: actual callback function to be invoked after the grace period
108 *
109 * The callback function will be invoked some time after a full grace
110 * period elapses, in other words after all currently executing RCU
111 * read-side critical sections have completed. call_rcu_bh() assumes
112 * that the read-side critical sections end on completion of a softirq
113 * handler. This means that read-side critical sections in process
114 * context must not be interrupted by softirqs. This interface is to be
115 * used when most of the read-side critical sections are in softirq context.
116 * RCU read-side critical sections are delimited by :
117 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
118 * OR
119 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
120 * These may be nested.
121 */
122 extern void call_rcu_bh(struct rcu_head *head,
123 void (*func)(struct rcu_head *head));
124
125 /**
126 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
127 * @head: structure to be used for queueing the RCU updates.
128 * @func: actual callback function to be invoked after the grace period
129 *
130 * The callback function will be invoked some time after a full grace
131 * period elapses, in other words after all currently executing RCU
132 * read-side critical sections have completed. call_rcu_sched() assumes
133 * that the read-side critical sections end on enabling of preemption
134 * or on voluntary preemption.
135 * RCU read-side critical sections are delimited by :
136 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
137 * OR
138 * anything that disables preemption.
139 * These may be nested.
140 */
141 extern void call_rcu_sched(struct rcu_head *head,
142 void (*func)(struct rcu_head *rcu));
143
144 extern void synchronize_sched(void);
145
146 #ifdef CONFIG_PREEMPT_RCU
147
148 extern void __rcu_read_lock(void);
149 extern void __rcu_read_unlock(void);
150 void synchronize_rcu(void);
151
152 /*
153 * Defined as a macro as it is a very low level header included from
154 * areas that don't even know about current. This gives the rcu_read_lock()
155 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
156 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
157 */
158 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
159
160 #else /* #ifdef CONFIG_PREEMPT_RCU */
161
__rcu_read_lock(void)162 static inline void __rcu_read_lock(void)
163 {
164 preempt_disable();
165 }
166
__rcu_read_unlock(void)167 static inline void __rcu_read_unlock(void)
168 {
169 preempt_enable();
170 }
171
synchronize_rcu(void)172 static inline void synchronize_rcu(void)
173 {
174 synchronize_sched();
175 }
176
rcu_preempt_depth(void)177 static inline int rcu_preempt_depth(void)
178 {
179 return 0;
180 }
181
182 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
183
184 /* Internal to kernel */
185 extern void rcu_sched_qs(int cpu);
186 extern void rcu_bh_qs(int cpu);
187 extern void rcu_check_callbacks(int cpu, int user);
188 struct notifier_block;
189 extern void rcu_idle_enter(void);
190 extern void rcu_idle_exit(void);
191 extern void rcu_irq_enter(void);
192 extern void rcu_irq_exit(void);
193
194 /**
195 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
196 * @a: Code that RCU needs to pay attention to.
197 *
198 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
199 * in the inner idle loop, that is, between the rcu_idle_enter() and
200 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
201 * critical sections. However, things like powertop need tracepoints
202 * in the inner idle loop.
203 *
204 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
205 * will tell RCU that it needs to pay attending, invoke its argument
206 * (in this example, a call to the do_something_with_RCU() function),
207 * and then tell RCU to go back to ignoring this CPU. It is permissible
208 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
209 * quite limited. If deeper nesting is required, it will be necessary
210 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
211 *
212 * This macro may be used from process-level code only.
213 */
214 #define RCU_NONIDLE(a) \
215 do { \
216 rcu_idle_exit(); \
217 do { a; } while (0); \
218 rcu_idle_enter(); \
219 } while (0)
220
221 /*
222 * Infrastructure to implement the synchronize_() primitives in
223 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
224 */
225
226 typedef void call_rcu_func_t(struct rcu_head *head,
227 void (*func)(struct rcu_head *head));
228 void wait_rcu_gp(call_rcu_func_t crf);
229
230 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
231 #include <linux/rcutree.h>
232 #elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
233 #include <linux/rcutiny.h>
234 #else
235 #error "Unknown RCU implementation specified to kernel configuration"
236 #endif
237
238 /*
239 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
240 * initialization and destruction of rcu_head on the stack. rcu_head structures
241 * allocated dynamically in the heap or defined statically don't need any
242 * initialization.
243 */
244 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
245 extern void init_rcu_head_on_stack(struct rcu_head *head);
246 extern void destroy_rcu_head_on_stack(struct rcu_head *head);
247 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head_on_stack(struct rcu_head * head)248 static inline void init_rcu_head_on_stack(struct rcu_head *head)
249 {
250 }
251
destroy_rcu_head_on_stack(struct rcu_head * head)252 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
253 {
254 }
255 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
256
257 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
258 bool rcu_lockdep_current_cpu_online(void);
259 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)260 static inline bool rcu_lockdep_current_cpu_online(void)
261 {
262 return 1;
263 }
264 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
265
266 #ifdef CONFIG_DEBUG_LOCK_ALLOC
267
268 #ifdef CONFIG_PROVE_RCU
269 extern int rcu_is_cpu_idle(void);
270 #else /* !CONFIG_PROVE_RCU */
rcu_is_cpu_idle(void)271 static inline int rcu_is_cpu_idle(void)
272 {
273 return 0;
274 }
275 #endif /* else !CONFIG_PROVE_RCU */
276
rcu_lock_acquire(struct lockdep_map * map)277 static inline void rcu_lock_acquire(struct lockdep_map *map)
278 {
279 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
280 }
281
rcu_lock_release(struct lockdep_map * map)282 static inline void rcu_lock_release(struct lockdep_map *map)
283 {
284 lock_release(map, 1, _THIS_IP_);
285 }
286
287 extern struct lockdep_map rcu_lock_map;
288 extern struct lockdep_map rcu_bh_lock_map;
289 extern struct lockdep_map rcu_sched_lock_map;
290 extern int debug_lockdep_rcu_enabled(void);
291
292 /**
293 * rcu_read_lock_held() - might we be in RCU read-side critical section?
294 *
295 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
296 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
297 * this assumes we are in an RCU read-side critical section unless it can
298 * prove otherwise. This is useful for debug checks in functions that
299 * require that they be called within an RCU read-side critical section.
300 *
301 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
302 * and while lockdep is disabled.
303 *
304 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
305 * occur in the same context, for example, it is illegal to invoke
306 * rcu_read_unlock() in process context if the matching rcu_read_lock()
307 * was invoked from within an irq handler.
308 *
309 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
310 * offline from an RCU perspective, so check for those as well.
311 */
rcu_read_lock_held(void)312 static inline int rcu_read_lock_held(void)
313 {
314 if (!debug_lockdep_rcu_enabled())
315 return 1;
316 if (rcu_is_cpu_idle())
317 return 0;
318 if (!rcu_lockdep_current_cpu_online())
319 return 0;
320 return lock_is_held(&rcu_lock_map);
321 }
322
323 /*
324 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
325 * hell.
326 */
327 extern int rcu_read_lock_bh_held(void);
328
329 /**
330 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
331 *
332 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
333 * RCU-sched read-side critical section. In absence of
334 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
335 * critical section unless it can prove otherwise. Note that disabling
336 * of preemption (including disabling irqs) counts as an RCU-sched
337 * read-side critical section. This is useful for debug checks in functions
338 * that required that they be called within an RCU-sched read-side
339 * critical section.
340 *
341 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
342 * and while lockdep is disabled.
343 *
344 * Note that if the CPU is in the idle loop from an RCU point of
345 * view (ie: that we are in the section between rcu_idle_enter() and
346 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
347 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
348 * that are in such a section, considering these as in extended quiescent
349 * state, so such a CPU is effectively never in an RCU read-side critical
350 * section regardless of what RCU primitives it invokes. This state of
351 * affairs is required --- we need to keep an RCU-free window in idle
352 * where the CPU may possibly enter into low power mode. This way we can
353 * notice an extended quiescent state to other CPUs that started a grace
354 * period. Otherwise we would delay any grace period as long as we run in
355 * the idle task.
356 *
357 * Similarly, we avoid claiming an SRCU read lock held if the current
358 * CPU is offline.
359 */
360 #ifdef CONFIG_PREEMPT_COUNT
rcu_read_lock_sched_held(void)361 static inline int rcu_read_lock_sched_held(void)
362 {
363 int lockdep_opinion = 0;
364
365 if (!debug_lockdep_rcu_enabled())
366 return 1;
367 if (rcu_is_cpu_idle())
368 return 0;
369 if (!rcu_lockdep_current_cpu_online())
370 return 0;
371 if (debug_locks)
372 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
373 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
374 }
375 #else /* #ifdef CONFIG_PREEMPT_COUNT */
rcu_read_lock_sched_held(void)376 static inline int rcu_read_lock_sched_held(void)
377 {
378 return 1;
379 }
380 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
381
382 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
383
384 # define rcu_lock_acquire(a) do { } while (0)
385 # define rcu_lock_release(a) do { } while (0)
386
rcu_read_lock_held(void)387 static inline int rcu_read_lock_held(void)
388 {
389 return 1;
390 }
391
rcu_read_lock_bh_held(void)392 static inline int rcu_read_lock_bh_held(void)
393 {
394 return 1;
395 }
396
397 #ifdef CONFIG_PREEMPT_COUNT
rcu_read_lock_sched_held(void)398 static inline int rcu_read_lock_sched_held(void)
399 {
400 return preempt_count() != 0 || irqs_disabled();
401 }
402 #else /* #ifdef CONFIG_PREEMPT_COUNT */
rcu_read_lock_sched_held(void)403 static inline int rcu_read_lock_sched_held(void)
404 {
405 return 1;
406 }
407 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
408
409 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
410
411 #ifdef CONFIG_PROVE_RCU
412
413 extern int rcu_my_thread_group_empty(void);
414
415 /**
416 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
417 * @c: condition to check
418 * @s: informative message
419 */
420 #define rcu_lockdep_assert(c, s) \
421 do { \
422 static bool __section(.data.unlikely) __warned; \
423 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
424 __warned = true; \
425 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
426 } \
427 } while (0)
428
429 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)430 static inline void rcu_preempt_sleep_check(void)
431 {
432 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
433 "Illegal context switch in RCU read-side "
434 "critical section");
435 }
436 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)437 static inline void rcu_preempt_sleep_check(void)
438 {
439 }
440 #endif /* #else #ifdef CONFIG_PROVE_RCU */
441
442 #define rcu_sleep_check() \
443 do { \
444 rcu_preempt_sleep_check(); \
445 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
446 "Illegal context switch in RCU-bh" \
447 " read-side critical section"); \
448 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
449 "Illegal context switch in RCU-sched"\
450 " read-side critical section"); \
451 } while (0)
452
453 #else /* #ifdef CONFIG_PROVE_RCU */
454
455 #define rcu_lockdep_assert(c, s) do { } while (0)
456 #define rcu_sleep_check() do { } while (0)
457
458 #endif /* #else #ifdef CONFIG_PROVE_RCU */
459
460 /*
461 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
462 * and rcu_assign_pointer(). Some of these could be folded into their
463 * callers, but they are left separate in order to ease introduction of
464 * multiple flavors of pointers to match the multiple flavors of RCU
465 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
466 * the future.
467 */
468
469 #ifdef __CHECKER__
470 #define rcu_dereference_sparse(p, space) \
471 ((void)(((typeof(*p) space *)p) == p))
472 #else /* #ifdef __CHECKER__ */
473 #define rcu_dereference_sparse(p, space)
474 #endif /* #else #ifdef __CHECKER__ */
475
476 #define __rcu_access_pointer(p, space) \
477 ({ \
478 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
479 rcu_dereference_sparse(p, space); \
480 ((typeof(*p) __force __kernel *)(_________p1)); \
481 })
482 #define __rcu_dereference_check(p, c, space) \
483 ({ \
484 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
485 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
486 " usage"); \
487 rcu_dereference_sparse(p, space); \
488 smp_read_barrier_depends(); \
489 ((typeof(*p) __force __kernel *)(_________p1)); \
490 })
491 #define __rcu_dereference_protected(p, c, space) \
492 ({ \
493 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
494 " usage"); \
495 rcu_dereference_sparse(p, space); \
496 ((typeof(*p) __force __kernel *)(p)); \
497 })
498
499 #define __rcu_access_index(p, space) \
500 ({ \
501 typeof(p) _________p1 = ACCESS_ONCE(p); \
502 rcu_dereference_sparse(p, space); \
503 (_________p1); \
504 })
505 #define __rcu_dereference_index_check(p, c) \
506 ({ \
507 typeof(p) _________p1 = ACCESS_ONCE(p); \
508 rcu_lockdep_assert(c, \
509 "suspicious rcu_dereference_index_check()" \
510 " usage"); \
511 smp_read_barrier_depends(); \
512 (_________p1); \
513 })
514 #define __rcu_assign_pointer(p, v, space) \
515 ({ \
516 smp_wmb(); \
517 (p) = (typeof(*v) __force space *)(v); \
518 })
519
520
521 /**
522 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
523 * @p: The pointer to read
524 *
525 * Return the value of the specified RCU-protected pointer, but omit the
526 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
527 * when the value of this pointer is accessed, but the pointer is not
528 * dereferenced, for example, when testing an RCU-protected pointer against
529 * NULL. Although rcu_access_pointer() may also be used in cases where
530 * update-side locks prevent the value of the pointer from changing, you
531 * should instead use rcu_dereference_protected() for this use case.
532 *
533 * It is also permissible to use rcu_access_pointer() when read-side
534 * access to the pointer was removed at least one grace period ago, as
535 * is the case in the context of the RCU callback that is freeing up
536 * the data, or after a synchronize_rcu() returns. This can be useful
537 * when tearing down multi-linked structures after a grace period
538 * has elapsed.
539 */
540 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
541
542 /**
543 * rcu_dereference_check() - rcu_dereference with debug checking
544 * @p: The pointer to read, prior to dereferencing
545 * @c: The conditions under which the dereference will take place
546 *
547 * Do an rcu_dereference(), but check that the conditions under which the
548 * dereference will take place are correct. Typically the conditions
549 * indicate the various locking conditions that should be held at that
550 * point. The check should return true if the conditions are satisfied.
551 * An implicit check for being in an RCU read-side critical section
552 * (rcu_read_lock()) is included.
553 *
554 * For example:
555 *
556 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
557 *
558 * could be used to indicate to lockdep that foo->bar may only be dereferenced
559 * if either rcu_read_lock() is held, or that the lock required to replace
560 * the bar struct at foo->bar is held.
561 *
562 * Note that the list of conditions may also include indications of when a lock
563 * need not be held, for example during initialisation or destruction of the
564 * target struct:
565 *
566 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
567 * atomic_read(&foo->usage) == 0);
568 *
569 * Inserts memory barriers on architectures that require them
570 * (currently only the Alpha), prevents the compiler from refetching
571 * (and from merging fetches), and, more importantly, documents exactly
572 * which pointers are protected by RCU and checks that the pointer is
573 * annotated as __rcu.
574 */
575 #define rcu_dereference_check(p, c) \
576 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
577
578 /**
579 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
580 * @p: The pointer to read, prior to dereferencing
581 * @c: The conditions under which the dereference will take place
582 *
583 * This is the RCU-bh counterpart to rcu_dereference_check().
584 */
585 #define rcu_dereference_bh_check(p, c) \
586 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
587
588 /**
589 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
590 * @p: The pointer to read, prior to dereferencing
591 * @c: The conditions under which the dereference will take place
592 *
593 * This is the RCU-sched counterpart to rcu_dereference_check().
594 */
595 #define rcu_dereference_sched_check(p, c) \
596 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
597 __rcu)
598
599 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
600
601 /**
602 * rcu_access_index() - fetch RCU index with no dereferencing
603 * @p: The index to read
604 *
605 * Return the value of the specified RCU-protected index, but omit the
606 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
607 * when the value of this index is accessed, but the index is not
608 * dereferenced, for example, when testing an RCU-protected index against
609 * -1. Although rcu_access_index() may also be used in cases where
610 * update-side locks prevent the value of the index from changing, you
611 * should instead use rcu_dereference_index_protected() for this use case.
612 */
613 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
614
615 /**
616 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
617 * @p: The pointer to read, prior to dereferencing
618 * @c: The conditions under which the dereference will take place
619 *
620 * Similar to rcu_dereference_check(), but omits the sparse checking.
621 * This allows rcu_dereference_index_check() to be used on integers,
622 * which can then be used as array indices. Attempting to use
623 * rcu_dereference_check() on an integer will give compiler warnings
624 * because the sparse address-space mechanism relies on dereferencing
625 * the RCU-protected pointer. Dereferencing integers is not something
626 * that even gcc will put up with.
627 *
628 * Note that this function does not implicitly check for RCU read-side
629 * critical sections. If this function gains lots of uses, it might
630 * make sense to provide versions for each flavor of RCU, but it does
631 * not make sense as of early 2010.
632 */
633 #define rcu_dereference_index_check(p, c) \
634 __rcu_dereference_index_check((p), (c))
635
636 /**
637 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
638 * @p: The pointer to read, prior to dereferencing
639 * @c: The conditions under which the dereference will take place
640 *
641 * Return the value of the specified RCU-protected pointer, but omit
642 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
643 * is useful in cases where update-side locks prevent the value of the
644 * pointer from changing. Please note that this primitive does -not-
645 * prevent the compiler from repeating this reference or combining it
646 * with other references, so it should not be used without protection
647 * of appropriate locks.
648 *
649 * This function is only for update-side use. Using this function
650 * when protected only by rcu_read_lock() will result in infrequent
651 * but very ugly failures.
652 */
653 #define rcu_dereference_protected(p, c) \
654 __rcu_dereference_protected((p), (c), __rcu)
655
656
657 /**
658 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
659 * @p: The pointer to read, prior to dereferencing
660 *
661 * This is a simple wrapper around rcu_dereference_check().
662 */
663 #define rcu_dereference(p) rcu_dereference_check(p, 0)
664
665 /**
666 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
667 * @p: The pointer to read, prior to dereferencing
668 *
669 * Makes rcu_dereference_check() do the dirty work.
670 */
671 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
672
673 /**
674 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
675 * @p: The pointer to read, prior to dereferencing
676 *
677 * Makes rcu_dereference_check() do the dirty work.
678 */
679 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
680
681 /**
682 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
683 *
684 * When synchronize_rcu() is invoked on one CPU while other CPUs
685 * are within RCU read-side critical sections, then the
686 * synchronize_rcu() is guaranteed to block until after all the other
687 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
688 * on one CPU while other CPUs are within RCU read-side critical
689 * sections, invocation of the corresponding RCU callback is deferred
690 * until after the all the other CPUs exit their critical sections.
691 *
692 * Note, however, that RCU callbacks are permitted to run concurrently
693 * with new RCU read-side critical sections. One way that this can happen
694 * is via the following sequence of events: (1) CPU 0 enters an RCU
695 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
696 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
697 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
698 * callback is invoked. This is legal, because the RCU read-side critical
699 * section that was running concurrently with the call_rcu() (and which
700 * therefore might be referencing something that the corresponding RCU
701 * callback would free up) has completed before the corresponding
702 * RCU callback is invoked.
703 *
704 * RCU read-side critical sections may be nested. Any deferred actions
705 * will be deferred until the outermost RCU read-side critical section
706 * completes.
707 *
708 * You can avoid reading and understanding the next paragraph by
709 * following this rule: don't put anything in an rcu_read_lock() RCU
710 * read-side critical section that would block in a !PREEMPT kernel.
711 * But if you want the full story, read on!
712 *
713 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
714 * is illegal to block while in an RCU read-side critical section. In
715 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
716 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
717 * be preempted, but explicit blocking is illegal. Finally, in preemptible
718 * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds,
719 * RCU read-side critical sections may be preempted and they may also
720 * block, but only when acquiring spinlocks that are subject to priority
721 * inheritance.
722 */
rcu_read_lock(void)723 static inline void rcu_read_lock(void)
724 {
725 __rcu_read_lock();
726 __acquire(RCU);
727 rcu_lock_acquire(&rcu_lock_map);
728 rcu_lockdep_assert(!rcu_is_cpu_idle(),
729 "rcu_read_lock() used illegally while idle");
730 }
731
732 /*
733 * So where is rcu_write_lock()? It does not exist, as there is no
734 * way for writers to lock out RCU readers. This is a feature, not
735 * a bug -- this property is what provides RCU's performance benefits.
736 * Of course, writers must coordinate with each other. The normal
737 * spinlock primitives work well for this, but any other technique may be
738 * used as well. RCU does not care how the writers keep out of each
739 * others' way, as long as they do so.
740 */
741
742 /**
743 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
744 *
745 * See rcu_read_lock() for more information.
746 */
rcu_read_unlock(void)747 static inline void rcu_read_unlock(void)
748 {
749 rcu_lockdep_assert(!rcu_is_cpu_idle(),
750 "rcu_read_unlock() used illegally while idle");
751 rcu_lock_release(&rcu_lock_map);
752 __release(RCU);
753 __rcu_read_unlock();
754 }
755
756 /**
757 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
758 *
759 * This is equivalent of rcu_read_lock(), but to be used when updates
760 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
761 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
762 * softirq handler to be a quiescent state, a process in RCU read-side
763 * critical section must be protected by disabling softirqs. Read-side
764 * critical sections in interrupt context can use just rcu_read_lock(),
765 * though this should at least be commented to avoid confusing people
766 * reading the code.
767 *
768 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
769 * must occur in the same context, for example, it is illegal to invoke
770 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
771 * was invoked from some other task.
772 */
rcu_read_lock_bh(void)773 static inline void rcu_read_lock_bh(void)
774 {
775 local_bh_disable();
776 __acquire(RCU_BH);
777 rcu_lock_acquire(&rcu_bh_lock_map);
778 rcu_lockdep_assert(!rcu_is_cpu_idle(),
779 "rcu_read_lock_bh() used illegally while idle");
780 }
781
782 /*
783 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
784 *
785 * See rcu_read_lock_bh() for more information.
786 */
rcu_read_unlock_bh(void)787 static inline void rcu_read_unlock_bh(void)
788 {
789 rcu_lockdep_assert(!rcu_is_cpu_idle(),
790 "rcu_read_unlock_bh() used illegally while idle");
791 rcu_lock_release(&rcu_bh_lock_map);
792 __release(RCU_BH);
793 local_bh_enable();
794 }
795
796 /**
797 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
798 *
799 * This is equivalent of rcu_read_lock(), but to be used when updates
800 * are being done using call_rcu_sched() or synchronize_rcu_sched().
801 * Read-side critical sections can also be introduced by anything that
802 * disables preemption, including local_irq_disable() and friends.
803 *
804 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
805 * must occur in the same context, for example, it is illegal to invoke
806 * rcu_read_unlock_sched() from process context if the matching
807 * rcu_read_lock_sched() was invoked from an NMI handler.
808 */
rcu_read_lock_sched(void)809 static inline void rcu_read_lock_sched(void)
810 {
811 preempt_disable();
812 __acquire(RCU_SCHED);
813 rcu_lock_acquire(&rcu_sched_lock_map);
814 rcu_lockdep_assert(!rcu_is_cpu_idle(),
815 "rcu_read_lock_sched() used illegally while idle");
816 }
817
818 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)819 static inline notrace void rcu_read_lock_sched_notrace(void)
820 {
821 preempt_disable_notrace();
822 __acquire(RCU_SCHED);
823 }
824
825 /*
826 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
827 *
828 * See rcu_read_lock_sched for more information.
829 */
rcu_read_unlock_sched(void)830 static inline void rcu_read_unlock_sched(void)
831 {
832 rcu_lockdep_assert(!rcu_is_cpu_idle(),
833 "rcu_read_unlock_sched() used illegally while idle");
834 rcu_lock_release(&rcu_sched_lock_map);
835 __release(RCU_SCHED);
836 preempt_enable();
837 }
838
839 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)840 static inline notrace void rcu_read_unlock_sched_notrace(void)
841 {
842 __release(RCU_SCHED);
843 preempt_enable_notrace();
844 }
845
846 /**
847 * rcu_assign_pointer() - assign to RCU-protected pointer
848 * @p: pointer to assign to
849 * @v: value to assign (publish)
850 *
851 * Assigns the specified value to the specified RCU-protected
852 * pointer, ensuring that any concurrent RCU readers will see
853 * any prior initialization. Returns the value assigned.
854 *
855 * Inserts memory barriers on architectures that require them
856 * (which is most of them), and also prevents the compiler from
857 * reordering the code that initializes the structure after the pointer
858 * assignment. More importantly, this call documents which pointers
859 * will be dereferenced by RCU read-side code.
860 *
861 * In some special cases, you may use RCU_INIT_POINTER() instead
862 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
863 * to the fact that it does not constrain either the CPU or the compiler.
864 * That said, using RCU_INIT_POINTER() when you should have used
865 * rcu_assign_pointer() is a very bad thing that results in
866 * impossible-to-diagnose memory corruption. So please be careful.
867 * See the RCU_INIT_POINTER() comment header for details.
868 */
869 #define rcu_assign_pointer(p, v) \
870 __rcu_assign_pointer((p), (v), __rcu)
871
872 /**
873 * RCU_INIT_POINTER() - initialize an RCU protected pointer
874 *
875 * Initialize an RCU-protected pointer in special cases where readers
876 * do not need ordering constraints on the CPU or the compiler. These
877 * special cases are:
878 *
879 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
880 * 2. The caller has taken whatever steps are required to prevent
881 * RCU readers from concurrently accessing this pointer -or-
882 * 3. The referenced data structure has already been exposed to
883 * readers either at compile time or via rcu_assign_pointer() -and-
884 * a. You have not made -any- reader-visible changes to
885 * this structure since then -or-
886 * b. It is OK for readers accessing this structure from its
887 * new location to see the old state of the structure. (For
888 * example, the changes were to statistical counters or to
889 * other state where exact synchronization is not required.)
890 *
891 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
892 * result in impossible-to-diagnose memory corruption. As in the structures
893 * will look OK in crash dumps, but any concurrent RCU readers might
894 * see pre-initialized values of the referenced data structure. So
895 * please be very careful how you use RCU_INIT_POINTER()!!!
896 *
897 * If you are creating an RCU-protected linked structure that is accessed
898 * by a single external-to-structure RCU-protected pointer, then you may
899 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
900 * pointers, but you must use rcu_assign_pointer() to initialize the
901 * external-to-structure pointer -after- you have completely initialized
902 * the reader-accessible portions of the linked structure.
903 */
904 #define RCU_INIT_POINTER(p, v) \
905 p = (typeof(*v) __force __rcu *)(v)
906
__is_kfree_rcu_offset(unsigned long offset)907 static __always_inline bool __is_kfree_rcu_offset(unsigned long offset)
908 {
909 return offset < 4096;
910 }
911
912 static __always_inline
__kfree_rcu(struct rcu_head * head,unsigned long offset)913 void __kfree_rcu(struct rcu_head *head, unsigned long offset)
914 {
915 typedef void (*rcu_callback)(struct rcu_head *);
916
917 BUILD_BUG_ON(!__builtin_constant_p(offset));
918
919 /* See the kfree_rcu() header comment. */
920 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset));
921
922 kfree_call_rcu(head, (rcu_callback)offset);
923 }
924
925 /**
926 * kfree_rcu() - kfree an object after a grace period.
927 * @ptr: pointer to kfree
928 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
929 *
930 * Many rcu callbacks functions just call kfree() on the base structure.
931 * These functions are trivial, but their size adds up, and furthermore
932 * when they are used in a kernel module, that module must invoke the
933 * high-latency rcu_barrier() function at module-unload time.
934 *
935 * The kfree_rcu() function handles this issue. Rather than encoding a
936 * function address in the embedded rcu_head structure, kfree_rcu() instead
937 * encodes the offset of the rcu_head structure within the base structure.
938 * Because the functions are not allowed in the low-order 4096 bytes of
939 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
940 * If the offset is larger than 4095 bytes, a compile-time error will
941 * be generated in __kfree_rcu(). If this error is triggered, you can
942 * either fall back to use of call_rcu() or rearrange the structure to
943 * position the rcu_head structure into the first 4096 bytes.
944 *
945 * Note that the allowable offset might decrease in the future, for example,
946 * to allow something like kmem_cache_free_rcu().
947 */
948 #define kfree_rcu(ptr, rcu_head) \
949 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
950
951 #endif /* __LINUX_RCUPDATE_H */
952