1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2001
6  *
7  * Author: Dipankar Sarma <dipankar@in.ibm.com>
8  *
9  * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11  * Papers:
12  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14  *
15  * For detailed explanation of Read-Copy Update mechanism see -
16  *		http://lse.sourceforge.net/locking/rcupdate.html
17  *
18  */
19 
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22 
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <linux/cleanup.h>
31 #include <asm/processor.h>
32 #include <linux/cpumask.h>
33 #include <linux/context_tracking_irq.h>
34 
35 #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
36 #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
37 #define ulong2long(a)		(*(long *)(&(a)))
38 #define USHORT_CMP_GE(a, b)	(USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
39 #define USHORT_CMP_LT(a, b)	(USHRT_MAX / 2 < (unsigned short)((a) - (b)))
40 
41 /* Exported common interfaces */
42 void call_rcu(struct rcu_head *head, rcu_callback_t func);
43 void rcu_barrier_tasks(void);
44 void rcu_barrier_tasks_rude(void);
45 void synchronize_rcu(void);
46 
47 struct rcu_gp_oldstate;
48 unsigned long get_completed_synchronize_rcu(void);
49 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
50 
51 // Maximum number of unsigned long values corresponding to
52 // not-yet-completed RCU grace periods.
53 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
54 
55 /**
56  * same_state_synchronize_rcu - Are two old-state values identical?
57  * @oldstate1: First old-state value.
58  * @oldstate2: Second old-state value.
59  *
60  * The two old-state values must have been obtained from either
61  * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
62  * get_completed_synchronize_rcu().  Returns @true if the two values are
63  * identical and @false otherwise.  This allows structures whose lifetimes
64  * are tracked by old-state values to push these values to a list header,
65  * allowing those structures to be slightly smaller.
66  */
same_state_synchronize_rcu(unsigned long oldstate1,unsigned long oldstate2)67 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
68 {
69 	return oldstate1 == oldstate2;
70 }
71 
72 #ifdef CONFIG_PREEMPT_RCU
73 
74 void __rcu_read_lock(void);
75 void __rcu_read_unlock(void);
76 
77 /*
78  * Defined as a macro as it is a very low level header included from
79  * areas that don't even know about current.  This gives the rcu_read_lock()
80  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
81  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
82  */
83 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
84 
85 #else /* #ifdef CONFIG_PREEMPT_RCU */
86 
87 #ifdef CONFIG_TINY_RCU
88 #define rcu_read_unlock_strict() do { } while (0)
89 #else
90 void rcu_read_unlock_strict(void);
91 #endif
92 
__rcu_read_lock(void)93 static inline void __rcu_read_lock(void)
94 {
95 	preempt_disable();
96 }
97 
__rcu_read_unlock(void)98 static inline void __rcu_read_unlock(void)
99 {
100 	preempt_enable();
101 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
102 		rcu_read_unlock_strict();
103 }
104 
rcu_preempt_depth(void)105 static inline int rcu_preempt_depth(void)
106 {
107 	return 0;
108 }
109 
110 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
111 
112 #ifdef CONFIG_RCU_LAZY
113 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
114 #else
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)115 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
116 {
117 	call_rcu(head, func);
118 }
119 #endif
120 
121 /* Internal to kernel */
122 void rcu_init(void);
123 extern int rcu_scheduler_active;
124 void rcu_sched_clock_irq(int user);
125 void rcu_report_dead(unsigned int cpu);
126 void rcutree_migrate_callbacks(int cpu);
127 
128 #ifdef CONFIG_TASKS_RCU_GENERIC
129 void rcu_init_tasks_generic(void);
130 #else
rcu_init_tasks_generic(void)131 static inline void rcu_init_tasks_generic(void) { }
132 #endif
133 
134 #ifdef CONFIG_RCU_STALL_COMMON
135 void rcu_sysrq_start(void);
136 void rcu_sysrq_end(void);
137 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)138 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)139 static inline void rcu_sysrq_end(void) { }
140 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
141 
142 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
143 void rcu_irq_work_resched(void);
144 #else
rcu_irq_work_resched(void)145 static inline void rcu_irq_work_resched(void) { }
146 #endif
147 
148 #ifdef CONFIG_RCU_NOCB_CPU
149 void rcu_init_nohz(void);
150 int rcu_nocb_cpu_offload(int cpu);
151 int rcu_nocb_cpu_deoffload(int cpu);
152 void rcu_nocb_flush_deferred_wakeup(void);
153 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)154 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)155 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)156 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)157 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
158 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
159 
160 /*
161  * Note a quasi-voluntary context switch for RCU-tasks's benefit.
162  * This is a macro rather than an inline function to avoid #include hell.
163  */
164 #ifdef CONFIG_TASKS_RCU_GENERIC
165 
166 # ifdef CONFIG_TASKS_RCU
167 # define rcu_tasks_classic_qs(t, preempt)				\
168 	do {								\
169 		if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))	\
170 			WRITE_ONCE((t)->rcu_tasks_holdout, false);	\
171 	} while (0)
172 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
173 void synchronize_rcu_tasks(void);
174 # else
175 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
176 # define call_rcu_tasks call_rcu
177 # define synchronize_rcu_tasks synchronize_rcu
178 # endif
179 
180 # ifdef CONFIG_TASKS_TRACE_RCU
181 // Bits for ->trc_reader_special.b.need_qs field.
182 #define TRC_NEED_QS		0x1  // Task needs a quiescent state.
183 #define TRC_NEED_QS_CHECKED	0x2  // Task has been checked for needing quiescent state.
184 
185 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
186 void rcu_tasks_trace_qs_blkd(struct task_struct *t);
187 
188 # define rcu_tasks_trace_qs(t)							\
189 	do {									\
190 		int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting);	\
191 										\
192 		if (likely(!READ_ONCE((t)->trc_reader_special.b.need_qs)) &&	\
193 		    likely(!___rttq_nesting)) {					\
194 			rcu_trc_cmpxchg_need_qs((t), 0,	TRC_NEED_QS_CHECKED);	\
195 		} else if (___rttq_nesting && ___rttq_nesting != INT_MIN &&	\
196 			   !READ_ONCE((t)->trc_reader_special.b.blocked)) {	\
197 			rcu_tasks_trace_qs_blkd(t);				\
198 		}								\
199 	} while (0)
200 # else
201 # define rcu_tasks_trace_qs(t) do { } while (0)
202 # endif
203 
204 #define rcu_tasks_qs(t, preempt)					\
205 do {									\
206 	rcu_tasks_classic_qs((t), (preempt));				\
207 	rcu_tasks_trace_qs(t);						\
208 } while (0)
209 
210 # ifdef CONFIG_TASKS_RUDE_RCU
211 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
212 void synchronize_rcu_tasks_rude(void);
213 # endif
214 
215 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
216 void exit_tasks_rcu_start(void);
217 void exit_tasks_rcu_stop(void);
218 void exit_tasks_rcu_finish(void);
219 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
220 #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
221 #define rcu_tasks_qs(t, preempt) do { } while (0)
222 #define rcu_note_voluntary_context_switch(t) do { } while (0)
223 #define call_rcu_tasks call_rcu
224 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)225 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_stop(void)226 static inline void exit_tasks_rcu_stop(void) { }
exit_tasks_rcu_finish(void)227 static inline void exit_tasks_rcu_finish(void) { }
228 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
229 
230 /**
231  * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
232  *
233  * As an accident of implementation, an RCU Tasks Trace grace period also
234  * acts as an RCU grace period.  However, this could change at any time.
235  * Code relying on this accident must call this function to verify that
236  * this accident is still happening.
237  *
238  * You have been warned!
239  */
rcu_trace_implies_rcu_gp(void)240 static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
241 
242 /**
243  * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
244  *
245  * This macro resembles cond_resched(), except that it is defined to
246  * report potential quiescent states to RCU-tasks even if the cond_resched()
247  * machinery were to be shut off, as some advocate for PREEMPTION kernels.
248  */
249 #define cond_resched_tasks_rcu_qs() \
250 do { \
251 	rcu_tasks_qs(current, false); \
252 	cond_resched(); \
253 } while (0)
254 
255 /*
256  * Infrastructure to implement the synchronize_() primitives in
257  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
258  */
259 
260 #if defined(CONFIG_TREE_RCU)
261 #include <linux/rcutree.h>
262 #elif defined(CONFIG_TINY_RCU)
263 #include <linux/rcutiny.h>
264 #else
265 #error "Unknown RCU implementation specified to kernel configuration"
266 #endif
267 
268 /*
269  * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
270  * are needed for dynamic initialization and destruction of rcu_head
271  * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
272  * dynamic initialization and destruction of statically allocated rcu_head
273  * structures.  However, rcu_head structures allocated dynamically in the
274  * heap don't need any initialization.
275  */
276 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
277 void init_rcu_head(struct rcu_head *head);
278 void destroy_rcu_head(struct rcu_head *head);
279 void init_rcu_head_on_stack(struct rcu_head *head);
280 void destroy_rcu_head_on_stack(struct rcu_head *head);
281 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)282 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)283 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)284 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)285 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
286 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
287 
288 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
289 bool rcu_lockdep_current_cpu_online(void);
290 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)291 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
292 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
293 
294 extern struct lockdep_map rcu_lock_map;
295 extern struct lockdep_map rcu_bh_lock_map;
296 extern struct lockdep_map rcu_sched_lock_map;
297 extern struct lockdep_map rcu_callback_map;
298 
299 #ifdef CONFIG_DEBUG_LOCK_ALLOC
300 
rcu_lock_acquire(struct lockdep_map * map)301 static inline void rcu_lock_acquire(struct lockdep_map *map)
302 {
303 	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
304 }
305 
rcu_try_lock_acquire(struct lockdep_map * map)306 static inline void rcu_try_lock_acquire(struct lockdep_map *map)
307 {
308 	lock_acquire(map, 0, 1, 2, 0, NULL, _THIS_IP_);
309 }
310 
rcu_lock_release(struct lockdep_map * map)311 static inline void rcu_lock_release(struct lockdep_map *map)
312 {
313 	lock_release(map, _THIS_IP_);
314 }
315 
316 int debug_lockdep_rcu_enabled(void);
317 int rcu_read_lock_held(void);
318 int rcu_read_lock_bh_held(void);
319 int rcu_read_lock_sched_held(void);
320 int rcu_read_lock_any_held(void);
321 
322 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
323 
324 # define rcu_lock_acquire(a)		do { } while (0)
325 # define rcu_try_lock_acquire(a)	do { } while (0)
326 # define rcu_lock_release(a)		do { } while (0)
327 
rcu_read_lock_held(void)328 static inline int rcu_read_lock_held(void)
329 {
330 	return 1;
331 }
332 
rcu_read_lock_bh_held(void)333 static inline int rcu_read_lock_bh_held(void)
334 {
335 	return 1;
336 }
337 
rcu_read_lock_sched_held(void)338 static inline int rcu_read_lock_sched_held(void)
339 {
340 	return !preemptible();
341 }
342 
rcu_read_lock_any_held(void)343 static inline int rcu_read_lock_any_held(void)
344 {
345 	return !preemptible();
346 }
347 
debug_lockdep_rcu_enabled(void)348 static inline int debug_lockdep_rcu_enabled(void)
349 {
350 	return 0;
351 }
352 
353 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
354 
355 #ifdef CONFIG_PROVE_RCU
356 
357 /**
358  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
359  * @c: condition to check
360  * @s: informative message
361  *
362  * This checks debug_lockdep_rcu_enabled() before checking (c) to
363  * prevent early boot splats due to lockdep not yet being initialized,
364  * and rechecks it after checking (c) to prevent false-positive splats
365  * due to races with lockdep being disabled.  See commit 3066820034b5dd
366  * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
367  */
368 #define RCU_LOCKDEP_WARN(c, s)						\
369 	do {								\
370 		static bool __section(".data.unlikely") __warned;	\
371 		if (debug_lockdep_rcu_enabled() && (c) &&		\
372 		    debug_lockdep_rcu_enabled() && !__warned) {		\
373 			__warned = true;				\
374 			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
375 		}							\
376 	} while (0)
377 
378 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)379 static inline void rcu_preempt_sleep_check(void)
380 {
381 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
382 			 "Illegal context switch in RCU read-side critical section");
383 }
384 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)385 static inline void rcu_preempt_sleep_check(void) { }
386 #endif /* #else #ifdef CONFIG_PROVE_RCU */
387 
388 #define rcu_sleep_check()						\
389 	do {								\
390 		rcu_preempt_sleep_check();				\
391 		if (!IS_ENABLED(CONFIG_PREEMPT_RT))			\
392 		    RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
393 				 "Illegal context switch in RCU-bh read-side critical section"); \
394 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
395 				 "Illegal context switch in RCU-sched read-side critical section"); \
396 	} while (0)
397 
398 #else /* #ifdef CONFIG_PROVE_RCU */
399 
400 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
401 #define rcu_sleep_check() do { } while (0)
402 
403 #endif /* #else #ifdef CONFIG_PROVE_RCU */
404 
405 /*
406  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
407  * and rcu_assign_pointer().  Some of these could be folded into their
408  * callers, but they are left separate in order to ease introduction of
409  * multiple pointers markings to match different RCU implementations
410  * (e.g., __srcu), should this make sense in the future.
411  */
412 
413 #ifdef __CHECKER__
414 #define rcu_check_sparse(p, space) \
415 	((void)(((typeof(*p) space *)p) == p))
416 #else /* #ifdef __CHECKER__ */
417 #define rcu_check_sparse(p, space)
418 #endif /* #else #ifdef __CHECKER__ */
419 
420 #define __unrcu_pointer(p, local)					\
421 ({									\
422 	typeof(*p) *local = (typeof(*p) *__force)(p);			\
423 	rcu_check_sparse(p, __rcu);					\
424 	((typeof(*p) __force __kernel *)(local)); 			\
425 })
426 /**
427  * unrcu_pointer - mark a pointer as not being RCU protected
428  * @p: pointer needing to lose its __rcu property
429  *
430  * Converts @p from an __rcu pointer to a __kernel pointer.
431  * This allows an __rcu pointer to be used with xchg() and friends.
432  */
433 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
434 
435 #define __rcu_access_pointer(p, local, space) \
436 ({ \
437 	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
438 	rcu_check_sparse(p, space); \
439 	((typeof(*p) __force __kernel *)(local)); \
440 })
441 #define __rcu_dereference_check(p, local, c, space) \
442 ({ \
443 	/* Dependency order vs. p above. */ \
444 	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
445 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
446 	rcu_check_sparse(p, space); \
447 	((typeof(*p) __force __kernel *)(local)); \
448 })
449 #define __rcu_dereference_protected(p, local, c, space) \
450 ({ \
451 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
452 	rcu_check_sparse(p, space); \
453 	((typeof(*p) __force __kernel *)(p)); \
454 })
455 #define __rcu_dereference_raw(p, local) \
456 ({ \
457 	/* Dependency order vs. p above. */ \
458 	typeof(p) local = READ_ONCE(p); \
459 	((typeof(*p) __force __kernel *)(local)); \
460 })
461 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
462 
463 /**
464  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
465  * @v: The value to statically initialize with.
466  */
467 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
468 
469 /**
470  * rcu_assign_pointer() - assign to RCU-protected pointer
471  * @p: pointer to assign to
472  * @v: value to assign (publish)
473  *
474  * Assigns the specified value to the specified RCU-protected
475  * pointer, ensuring that any concurrent RCU readers will see
476  * any prior initialization.
477  *
478  * Inserts memory barriers on architectures that require them
479  * (which is most of them), and also prevents the compiler from
480  * reordering the code that initializes the structure after the pointer
481  * assignment.  More importantly, this call documents which pointers
482  * will be dereferenced by RCU read-side code.
483  *
484  * In some special cases, you may use RCU_INIT_POINTER() instead
485  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
486  * to the fact that it does not constrain either the CPU or the compiler.
487  * That said, using RCU_INIT_POINTER() when you should have used
488  * rcu_assign_pointer() is a very bad thing that results in
489  * impossible-to-diagnose memory corruption.  So please be careful.
490  * See the RCU_INIT_POINTER() comment header for details.
491  *
492  * Note that rcu_assign_pointer() evaluates each of its arguments only
493  * once, appearances notwithstanding.  One of the "extra" evaluations
494  * is in typeof() and the other visible only to sparse (__CHECKER__),
495  * neither of which actually execute the argument.  As with most cpp
496  * macros, this execute-arguments-only-once property is important, so
497  * please be careful when making changes to rcu_assign_pointer() and the
498  * other macros that it invokes.
499  */
500 #define rcu_assign_pointer(p, v)					      \
501 do {									      \
502 	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
503 	rcu_check_sparse(p, __rcu);					      \
504 									      \
505 	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
506 		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
507 	else								      \
508 		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
509 } while (0)
510 
511 /**
512  * rcu_replace_pointer() - replace an RCU pointer, returning its old value
513  * @rcu_ptr: RCU pointer, whose old value is returned
514  * @ptr: regular pointer
515  * @c: the lockdep conditions under which the dereference will take place
516  *
517  * Perform a replacement, where @rcu_ptr is an RCU-annotated
518  * pointer and @c is the lockdep argument that is passed to the
519  * rcu_dereference_protected() call used to read that pointer.  The old
520  * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
521  */
522 #define rcu_replace_pointer(rcu_ptr, ptr, c)				\
523 ({									\
524 	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
525 	rcu_assign_pointer((rcu_ptr), (ptr));				\
526 	__tmp;								\
527 })
528 
529 /**
530  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
531  * @p: The pointer to read
532  *
533  * Return the value of the specified RCU-protected pointer, but omit the
534  * lockdep checks for being in an RCU read-side critical section.  This is
535  * useful when the value of this pointer is accessed, but the pointer is
536  * not dereferenced, for example, when testing an RCU-protected pointer
537  * against NULL.  Although rcu_access_pointer() may also be used in cases
538  * where update-side locks prevent the value of the pointer from changing,
539  * you should instead use rcu_dereference_protected() for this use case.
540  * Within an RCU read-side critical section, there is little reason to
541  * use rcu_access_pointer().
542  *
543  * It is usually best to test the rcu_access_pointer() return value
544  * directly in order to avoid accidental dereferences being introduced
545  * by later inattentive changes.  In other words, assigning the
546  * rcu_access_pointer() return value to a local variable results in an
547  * accident waiting to happen.
548  *
549  * It is also permissible to use rcu_access_pointer() when read-side
550  * access to the pointer was removed at least one grace period ago, as is
551  * the case in the context of the RCU callback that is freeing up the data,
552  * or after a synchronize_rcu() returns.  This can be useful when tearing
553  * down multi-linked structures after a grace period has elapsed.  However,
554  * rcu_dereference_protected() is normally preferred for this use case.
555  */
556 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
557 
558 /**
559  * rcu_dereference_check() - rcu_dereference with debug checking
560  * @p: The pointer to read, prior to dereferencing
561  * @c: The conditions under which the dereference will take place
562  *
563  * Do an rcu_dereference(), but check that the conditions under which the
564  * dereference will take place are correct.  Typically the conditions
565  * indicate the various locking conditions that should be held at that
566  * point.  The check should return true if the conditions are satisfied.
567  * An implicit check for being in an RCU read-side critical section
568  * (rcu_read_lock()) is included.
569  *
570  * For example:
571  *
572  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
573  *
574  * could be used to indicate to lockdep that foo->bar may only be dereferenced
575  * if either rcu_read_lock() is held, or that the lock required to replace
576  * the bar struct at foo->bar is held.
577  *
578  * Note that the list of conditions may also include indications of when a lock
579  * need not be held, for example during initialisation or destruction of the
580  * target struct:
581  *
582  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
583  *					      atomic_read(&foo->usage) == 0);
584  *
585  * Inserts memory barriers on architectures that require them
586  * (currently only the Alpha), prevents the compiler from refetching
587  * (and from merging fetches), and, more importantly, documents exactly
588  * which pointers are protected by RCU and checks that the pointer is
589  * annotated as __rcu.
590  */
591 #define rcu_dereference_check(p, c) \
592 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
593 				(c) || rcu_read_lock_held(), __rcu)
594 
595 /**
596  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
597  * @p: The pointer to read, prior to dereferencing
598  * @c: The conditions under which the dereference will take place
599  *
600  * This is the RCU-bh counterpart to rcu_dereference_check().  However,
601  * please note that starting in v5.0 kernels, vanilla RCU grace periods
602  * wait for local_bh_disable() regions of code in addition to regions of
603  * code demarked by rcu_read_lock() and rcu_read_unlock().  This means
604  * that synchronize_rcu(), call_rcu, and friends all take not only
605  * rcu_read_lock() but also rcu_read_lock_bh() into account.
606  */
607 #define rcu_dereference_bh_check(p, c) \
608 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
609 				(c) || rcu_read_lock_bh_held(), __rcu)
610 
611 /**
612  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
613  * @p: The pointer to read, prior to dereferencing
614  * @c: The conditions under which the dereference will take place
615  *
616  * This is the RCU-sched counterpart to rcu_dereference_check().
617  * However, please note that starting in v5.0 kernels, vanilla RCU grace
618  * periods wait for preempt_disable() regions of code in addition to
619  * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
620  * This means that synchronize_rcu(), call_rcu, and friends all take not
621  * only rcu_read_lock() but also rcu_read_lock_sched() into account.
622  */
623 #define rcu_dereference_sched_check(p, c) \
624 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
625 				(c) || rcu_read_lock_sched_held(), \
626 				__rcu)
627 
628 /*
629  * The tracing infrastructure traces RCU (we want that), but unfortunately
630  * some of the RCU checks causes tracing to lock up the system.
631  *
632  * The no-tracing version of rcu_dereference_raw() must not call
633  * rcu_read_lock_held().
634  */
635 #define rcu_dereference_raw_check(p) \
636 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
637 
638 /**
639  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
640  * @p: The pointer to read, prior to dereferencing
641  * @c: The conditions under which the dereference will take place
642  *
643  * Return the value of the specified RCU-protected pointer, but omit
644  * the READ_ONCE().  This is useful in cases where update-side locks
645  * prevent the value of the pointer from changing.  Please note that this
646  * primitive does *not* prevent the compiler from repeating this reference
647  * or combining it with other references, so it should not be used without
648  * protection of appropriate locks.
649  *
650  * This function is only for update-side use.  Using this function
651  * when protected only by rcu_read_lock() will result in infrequent
652  * but very ugly failures.
653  */
654 #define rcu_dereference_protected(p, c) \
655 	__rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
656 
657 
658 /**
659  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
660  * @p: The pointer to read, prior to dereferencing
661  *
662  * This is a simple wrapper around rcu_dereference_check().
663  */
664 #define rcu_dereference(p) rcu_dereference_check(p, 0)
665 
666 /**
667  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
668  * @p: The pointer to read, prior to dereferencing
669  *
670  * Makes rcu_dereference_check() do the dirty work.
671  */
672 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
673 
674 /**
675  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
676  * @p: The pointer to read, prior to dereferencing
677  *
678  * Makes rcu_dereference_check() do the dirty work.
679  */
680 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
681 
682 /**
683  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
684  * @p: The pointer to hand off
685  *
686  * This is simply an identity function, but it documents where a pointer
687  * is handed off from RCU to some other synchronization mechanism, for
688  * example, reference counting or locking.  In C11, it would map to
689  * kill_dependency().  It could be used as follows::
690  *
691  *	rcu_read_lock();
692  *	p = rcu_dereference(gp);
693  *	long_lived = is_long_lived(p);
694  *	if (long_lived) {
695  *		if (!atomic_inc_not_zero(p->refcnt))
696  *			long_lived = false;
697  *		else
698  *			p = rcu_pointer_handoff(p);
699  *	}
700  *	rcu_read_unlock();
701  */
702 #define rcu_pointer_handoff(p) (p)
703 
704 /**
705  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
706  *
707  * When synchronize_rcu() is invoked on one CPU while other CPUs
708  * are within RCU read-side critical sections, then the
709  * synchronize_rcu() is guaranteed to block until after all the other
710  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
711  * on one CPU while other CPUs are within RCU read-side critical
712  * sections, invocation of the corresponding RCU callback is deferred
713  * until after the all the other CPUs exit their critical sections.
714  *
715  * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
716  * wait for regions of code with preemption disabled, including regions of
717  * code with interrupts or softirqs disabled.  In pre-v5.0 kernels, which
718  * define synchronize_sched(), only code enclosed within rcu_read_lock()
719  * and rcu_read_unlock() are guaranteed to be waited for.
720  *
721  * Note, however, that RCU callbacks are permitted to run concurrently
722  * with new RCU read-side critical sections.  One way that this can happen
723  * is via the following sequence of events: (1) CPU 0 enters an RCU
724  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
725  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
726  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
727  * callback is invoked.  This is legal, because the RCU read-side critical
728  * section that was running concurrently with the call_rcu() (and which
729  * therefore might be referencing something that the corresponding RCU
730  * callback would free up) has completed before the corresponding
731  * RCU callback is invoked.
732  *
733  * RCU read-side critical sections may be nested.  Any deferred actions
734  * will be deferred until the outermost RCU read-side critical section
735  * completes.
736  *
737  * You can avoid reading and understanding the next paragraph by
738  * following this rule: don't put anything in an rcu_read_lock() RCU
739  * read-side critical section that would block in a !PREEMPTION kernel.
740  * But if you want the full story, read on!
741  *
742  * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
743  * it is illegal to block while in an RCU read-side critical section.
744  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
745  * kernel builds, RCU read-side critical sections may be preempted,
746  * but explicit blocking is illegal.  Finally, in preemptible RCU
747  * implementations in real-time (with -rt patchset) kernel builds, RCU
748  * read-side critical sections may be preempted and they may also block, but
749  * only when acquiring spinlocks that are subject to priority inheritance.
750  */
rcu_read_lock(void)751 static __always_inline void rcu_read_lock(void)
752 {
753 	__rcu_read_lock();
754 	__acquire(RCU);
755 	rcu_lock_acquire(&rcu_lock_map);
756 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
757 			 "rcu_read_lock() used illegally while idle");
758 }
759 
760 /*
761  * So where is rcu_write_lock()?  It does not exist, as there is no
762  * way for writers to lock out RCU readers.  This is a feature, not
763  * a bug -- this property is what provides RCU's performance benefits.
764  * Of course, writers must coordinate with each other.  The normal
765  * spinlock primitives work well for this, but any other technique may be
766  * used as well.  RCU does not care how the writers keep out of each
767  * others' way, as long as they do so.
768  */
769 
770 /**
771  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
772  *
773  * In almost all situations, rcu_read_unlock() is immune from deadlock.
774  * In recent kernels that have consolidated synchronize_sched() and
775  * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
776  * also extends to the scheduler's runqueue and priority-inheritance
777  * spinlocks, courtesy of the quiescent-state deferral that is carried
778  * out when rcu_read_unlock() is invoked with interrupts disabled.
779  *
780  * See rcu_read_lock() for more information.
781  */
rcu_read_unlock(void)782 static inline void rcu_read_unlock(void)
783 {
784 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
785 			 "rcu_read_unlock() used illegally while idle");
786 	__release(RCU);
787 	__rcu_read_unlock();
788 	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
789 }
790 
791 /**
792  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
793  *
794  * This is equivalent to rcu_read_lock(), but also disables softirqs.
795  * Note that anything else that disables softirqs can also serve as an RCU
796  * read-side critical section.  However, please note that this equivalence
797  * applies only to v5.0 and later.  Before v5.0, rcu_read_lock() and
798  * rcu_read_lock_bh() were unrelated.
799  *
800  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
801  * must occur in the same context, for example, it is illegal to invoke
802  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
803  * was invoked from some other task.
804  */
rcu_read_lock_bh(void)805 static inline void rcu_read_lock_bh(void)
806 {
807 	local_bh_disable();
808 	__acquire(RCU_BH);
809 	rcu_lock_acquire(&rcu_bh_lock_map);
810 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
811 			 "rcu_read_lock_bh() used illegally while idle");
812 }
813 
814 /**
815  * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
816  *
817  * See rcu_read_lock_bh() for more information.
818  */
rcu_read_unlock_bh(void)819 static inline void rcu_read_unlock_bh(void)
820 {
821 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
822 			 "rcu_read_unlock_bh() used illegally while idle");
823 	rcu_lock_release(&rcu_bh_lock_map);
824 	__release(RCU_BH);
825 	local_bh_enable();
826 }
827 
828 /**
829  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
830  *
831  * This is equivalent to rcu_read_lock(), but also disables preemption.
832  * Read-side critical sections can also be introduced by anything else that
833  * disables preemption, including local_irq_disable() and friends.  However,
834  * please note that the equivalence to rcu_read_lock() applies only to
835  * v5.0 and later.  Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
836  * were unrelated.
837  *
838  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
839  * must occur in the same context, for example, it is illegal to invoke
840  * rcu_read_unlock_sched() from process context if the matching
841  * rcu_read_lock_sched() was invoked from an NMI handler.
842  */
rcu_read_lock_sched(void)843 static inline void rcu_read_lock_sched(void)
844 {
845 	preempt_disable();
846 	__acquire(RCU_SCHED);
847 	rcu_lock_acquire(&rcu_sched_lock_map);
848 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
849 			 "rcu_read_lock_sched() used illegally while idle");
850 }
851 
852 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)853 static inline notrace void rcu_read_lock_sched_notrace(void)
854 {
855 	preempt_disable_notrace();
856 	__acquire(RCU_SCHED);
857 }
858 
859 /**
860  * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
861  *
862  * See rcu_read_lock_sched() for more information.
863  */
rcu_read_unlock_sched(void)864 static inline void rcu_read_unlock_sched(void)
865 {
866 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
867 			 "rcu_read_unlock_sched() used illegally while idle");
868 	rcu_lock_release(&rcu_sched_lock_map);
869 	__release(RCU_SCHED);
870 	preempt_enable();
871 }
872 
873 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)874 static inline notrace void rcu_read_unlock_sched_notrace(void)
875 {
876 	__release(RCU_SCHED);
877 	preempt_enable_notrace();
878 }
879 
880 /**
881  * RCU_INIT_POINTER() - initialize an RCU protected pointer
882  * @p: The pointer to be initialized.
883  * @v: The value to initialized the pointer to.
884  *
885  * Initialize an RCU-protected pointer in special cases where readers
886  * do not need ordering constraints on the CPU or the compiler.  These
887  * special cases are:
888  *
889  * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
890  * 2.	The caller has taken whatever steps are required to prevent
891  *	RCU readers from concurrently accessing this pointer *or*
892  * 3.	The referenced data structure has already been exposed to
893  *	readers either at compile time or via rcu_assign_pointer() *and*
894  *
895  *	a.	You have not made *any* reader-visible changes to
896  *		this structure since then *or*
897  *	b.	It is OK for readers accessing this structure from its
898  *		new location to see the old state of the structure.  (For
899  *		example, the changes were to statistical counters or to
900  *		other state where exact synchronization is not required.)
901  *
902  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
903  * result in impossible-to-diagnose memory corruption.  As in the structures
904  * will look OK in crash dumps, but any concurrent RCU readers might
905  * see pre-initialized values of the referenced data structure.  So
906  * please be very careful how you use RCU_INIT_POINTER()!!!
907  *
908  * If you are creating an RCU-protected linked structure that is accessed
909  * by a single external-to-structure RCU-protected pointer, then you may
910  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
911  * pointers, but you must use rcu_assign_pointer() to initialize the
912  * external-to-structure pointer *after* you have completely initialized
913  * the reader-accessible portions of the linked structure.
914  *
915  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
916  * ordering guarantees for either the CPU or the compiler.
917  */
918 #define RCU_INIT_POINTER(p, v) \
919 	do { \
920 		rcu_check_sparse(p, __rcu); \
921 		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
922 	} while (0)
923 
924 /**
925  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
926  * @p: The pointer to be initialized.
927  * @v: The value to initialized the pointer to.
928  *
929  * GCC-style initialization for an RCU-protected pointer in a structure field.
930  */
931 #define RCU_POINTER_INITIALIZER(p, v) \
932 		.p = RCU_INITIALIZER(v)
933 
934 /*
935  * Does the specified offset indicate that the corresponding rcu_head
936  * structure can be handled by kvfree_rcu()?
937  */
938 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
939 
940 /**
941  * kfree_rcu() - kfree an object after a grace period.
942  * @ptr: pointer to kfree for double-argument invocations.
943  * @rhf: the name of the struct rcu_head within the type of @ptr.
944  *
945  * Many rcu callbacks functions just call kfree() on the base structure.
946  * These functions are trivial, but their size adds up, and furthermore
947  * when they are used in a kernel module, that module must invoke the
948  * high-latency rcu_barrier() function at module-unload time.
949  *
950  * The kfree_rcu() function handles this issue.  Rather than encoding a
951  * function address in the embedded rcu_head structure, kfree_rcu() instead
952  * encodes the offset of the rcu_head structure within the base structure.
953  * Because the functions are not allowed in the low-order 4096 bytes of
954  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
955  * If the offset is larger than 4095 bytes, a compile-time error will
956  * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
957  * either fall back to use of call_rcu() or rearrange the structure to
958  * position the rcu_head structure into the first 4096 bytes.
959  *
960  * The object to be freed can be allocated either by kmalloc() or
961  * kmem_cache_alloc().
962  *
963  * Note that the allowable offset might decrease in the future.
964  *
965  * The BUILD_BUG_ON check must not involve any function calls, hence the
966  * checks are done in macros here.
967  */
968 #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
969 #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
970 
971 /**
972  * kfree_rcu_mightsleep() - kfree an object after a grace period.
973  * @ptr: pointer to kfree for single-argument invocations.
974  *
975  * When it comes to head-less variant, only one argument
976  * is passed and that is just a pointer which has to be
977  * freed after a grace period. Therefore the semantic is
978  *
979  *     kfree_rcu_mightsleep(ptr);
980  *
981  * where @ptr is the pointer to be freed by kvfree().
982  *
983  * Please note, head-less way of freeing is permitted to
984  * use from a context that has to follow might_sleep()
985  * annotation. Otherwise, please switch and embed the
986  * rcu_head structure within the type of @ptr.
987  */
988 #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
989 #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
990 
991 #define kvfree_rcu_arg_2(ptr, rhf)					\
992 do {									\
993 	typeof (ptr) ___p = (ptr);					\
994 									\
995 	if (___p) {									\
996 		BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf)));	\
997 		kvfree_call_rcu(&((___p)->rhf), (void *) (___p));			\
998 	}										\
999 } while (0)
1000 
1001 #define kvfree_rcu_arg_1(ptr)					\
1002 do {								\
1003 	typeof(ptr) ___p = (ptr);				\
1004 								\
1005 	if (___p)						\
1006 		kvfree_call_rcu(NULL, (void *) (___p));		\
1007 } while (0)
1008 
1009 /*
1010  * Place this after a lock-acquisition primitive to guarantee that
1011  * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
1012  * if the UNLOCK and LOCK are executed by the same CPU or if the
1013  * UNLOCK and LOCK operate on the same lock variable.
1014  */
1015 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1016 #define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
1017 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1018 #define smp_mb__after_unlock_lock()	do { } while (0)
1019 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1020 
1021 
1022 /* Has the specified rcu_head structure been handed to call_rcu()? */
1023 
1024 /**
1025  * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1026  * @rhp: The rcu_head structure to initialize.
1027  *
1028  * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1029  * given rcu_head structure has already been passed to call_rcu(), then
1030  * you must also invoke this rcu_head_init() function on it just after
1031  * allocating that structure.  Calls to this function must not race with
1032  * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1033  */
rcu_head_init(struct rcu_head * rhp)1034 static inline void rcu_head_init(struct rcu_head *rhp)
1035 {
1036 	rhp->func = (rcu_callback_t)~0L;
1037 }
1038 
1039 /**
1040  * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1041  * @rhp: The rcu_head structure to test.
1042  * @f: The function passed to call_rcu() along with @rhp.
1043  *
1044  * Returns @true if the @rhp has been passed to call_rcu() with @func,
1045  * and @false otherwise.  Emits a warning in any other case, including
1046  * the case where @rhp has already been invoked after a grace period.
1047  * Calls to this function must not race with callback invocation.  One way
1048  * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1049  * in an RCU read-side critical section that includes a read-side fetch
1050  * of the pointer to the structure containing @rhp.
1051  */
1052 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1053 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1054 {
1055 	rcu_callback_t func = READ_ONCE(rhp->func);
1056 
1057 	if (func == f)
1058 		return true;
1059 	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1060 	return false;
1061 }
1062 
1063 /* kernel/ksysfs.c definitions */
1064 extern int rcu_expedited;
1065 extern int rcu_normal;
1066 
1067 DEFINE_LOCK_GUARD_0(rcu, rcu_read_lock(), rcu_read_unlock())
1068 
1069 #endif /* __LINUX_RCUPDATE_H */
1070