1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <linux/cleanup.h>
31 #include <asm/processor.h>
32 #include <linux/cpumask.h>
33 #include <linux/context_tracking_irq.h>
34
35 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
36 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
37 #define ulong2long(a) (*(long *)(&(a)))
38 #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
39 #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b)))
40
41 /* Exported common interfaces */
42 void call_rcu(struct rcu_head *head, rcu_callback_t func);
43 void rcu_barrier_tasks(void);
44 void rcu_barrier_tasks_rude(void);
45 void synchronize_rcu(void);
46
47 struct rcu_gp_oldstate;
48 unsigned long get_completed_synchronize_rcu(void);
49 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
50
51 // Maximum number of unsigned long values corresponding to
52 // not-yet-completed RCU grace periods.
53 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
54
55 /**
56 * same_state_synchronize_rcu - Are two old-state values identical?
57 * @oldstate1: First old-state value.
58 * @oldstate2: Second old-state value.
59 *
60 * The two old-state values must have been obtained from either
61 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
62 * get_completed_synchronize_rcu(). Returns @true if the two values are
63 * identical and @false otherwise. This allows structures whose lifetimes
64 * are tracked by old-state values to push these values to a list header,
65 * allowing those structures to be slightly smaller.
66 */
same_state_synchronize_rcu(unsigned long oldstate1,unsigned long oldstate2)67 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
68 {
69 return oldstate1 == oldstate2;
70 }
71
72 #ifdef CONFIG_PREEMPT_RCU
73
74 void __rcu_read_lock(void);
75 void __rcu_read_unlock(void);
76
77 /*
78 * Defined as a macro as it is a very low level header included from
79 * areas that don't even know about current. This gives the rcu_read_lock()
80 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
81 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
82 */
83 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
84
85 #else /* #ifdef CONFIG_PREEMPT_RCU */
86
87 #ifdef CONFIG_TINY_RCU
88 #define rcu_read_unlock_strict() do { } while (0)
89 #else
90 void rcu_read_unlock_strict(void);
91 #endif
92
__rcu_read_lock(void)93 static inline void __rcu_read_lock(void)
94 {
95 preempt_disable();
96 }
97
__rcu_read_unlock(void)98 static inline void __rcu_read_unlock(void)
99 {
100 preempt_enable();
101 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
102 rcu_read_unlock_strict();
103 }
104
rcu_preempt_depth(void)105 static inline int rcu_preempt_depth(void)
106 {
107 return 0;
108 }
109
110 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
111
112 #ifdef CONFIG_RCU_LAZY
113 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
114 #else
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)115 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
116 {
117 call_rcu(head, func);
118 }
119 #endif
120
121 /* Internal to kernel */
122 void rcu_init(void);
123 extern int rcu_scheduler_active;
124 void rcu_sched_clock_irq(int user);
125 void rcu_report_dead(unsigned int cpu);
126 void rcutree_migrate_callbacks(int cpu);
127
128 #ifdef CONFIG_TASKS_RCU_GENERIC
129 void rcu_init_tasks_generic(void);
130 #else
rcu_init_tasks_generic(void)131 static inline void rcu_init_tasks_generic(void) { }
132 #endif
133
134 #ifdef CONFIG_RCU_STALL_COMMON
135 void rcu_sysrq_start(void);
136 void rcu_sysrq_end(void);
137 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)138 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)139 static inline void rcu_sysrq_end(void) { }
140 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
141
142 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
143 void rcu_irq_work_resched(void);
144 #else
rcu_irq_work_resched(void)145 static inline void rcu_irq_work_resched(void) { }
146 #endif
147
148 #ifdef CONFIG_RCU_NOCB_CPU
149 void rcu_init_nohz(void);
150 int rcu_nocb_cpu_offload(int cpu);
151 int rcu_nocb_cpu_deoffload(int cpu);
152 void rcu_nocb_flush_deferred_wakeup(void);
153 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)154 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)155 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)156 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)157 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
158 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
159
160 /*
161 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
162 * This is a macro rather than an inline function to avoid #include hell.
163 */
164 #ifdef CONFIG_TASKS_RCU_GENERIC
165
166 # ifdef CONFIG_TASKS_RCU
167 # define rcu_tasks_classic_qs(t, preempt) \
168 do { \
169 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
170 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
171 } while (0)
172 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
173 void synchronize_rcu_tasks(void);
174 # else
175 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
176 # define call_rcu_tasks call_rcu
177 # define synchronize_rcu_tasks synchronize_rcu
178 # endif
179
180 # ifdef CONFIG_TASKS_TRACE_RCU
181 // Bits for ->trc_reader_special.b.need_qs field.
182 #define TRC_NEED_QS 0x1 // Task needs a quiescent state.
183 #define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state.
184
185 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
186 void rcu_tasks_trace_qs_blkd(struct task_struct *t);
187
188 # define rcu_tasks_trace_qs(t) \
189 do { \
190 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \
191 \
192 if (likely(!READ_ONCE((t)->trc_reader_special.b.need_qs)) && \
193 likely(!___rttq_nesting)) { \
194 rcu_trc_cmpxchg_need_qs((t), 0, TRC_NEED_QS_CHECKED); \
195 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \
196 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \
197 rcu_tasks_trace_qs_blkd(t); \
198 } \
199 } while (0)
200 # else
201 # define rcu_tasks_trace_qs(t) do { } while (0)
202 # endif
203
204 #define rcu_tasks_qs(t, preempt) \
205 do { \
206 rcu_tasks_classic_qs((t), (preempt)); \
207 rcu_tasks_trace_qs(t); \
208 } while (0)
209
210 # ifdef CONFIG_TASKS_RUDE_RCU
211 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
212 void synchronize_rcu_tasks_rude(void);
213 # endif
214
215 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
216 void exit_tasks_rcu_start(void);
217 void exit_tasks_rcu_stop(void);
218 void exit_tasks_rcu_finish(void);
219 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
220 #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
221 #define rcu_tasks_qs(t, preempt) do { } while (0)
222 #define rcu_note_voluntary_context_switch(t) do { } while (0)
223 #define call_rcu_tasks call_rcu
224 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)225 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_stop(void)226 static inline void exit_tasks_rcu_stop(void) { }
exit_tasks_rcu_finish(void)227 static inline void exit_tasks_rcu_finish(void) { }
228 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
229
230 /**
231 * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
232 *
233 * As an accident of implementation, an RCU Tasks Trace grace period also
234 * acts as an RCU grace period. However, this could change at any time.
235 * Code relying on this accident must call this function to verify that
236 * this accident is still happening.
237 *
238 * You have been warned!
239 */
rcu_trace_implies_rcu_gp(void)240 static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
241
242 /**
243 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
244 *
245 * This macro resembles cond_resched(), except that it is defined to
246 * report potential quiescent states to RCU-tasks even if the cond_resched()
247 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
248 */
249 #define cond_resched_tasks_rcu_qs() \
250 do { \
251 rcu_tasks_qs(current, false); \
252 cond_resched(); \
253 } while (0)
254
255 /*
256 * Infrastructure to implement the synchronize_() primitives in
257 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
258 */
259
260 #if defined(CONFIG_TREE_RCU)
261 #include <linux/rcutree.h>
262 #elif defined(CONFIG_TINY_RCU)
263 #include <linux/rcutiny.h>
264 #else
265 #error "Unknown RCU implementation specified to kernel configuration"
266 #endif
267
268 /*
269 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
270 * are needed for dynamic initialization and destruction of rcu_head
271 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
272 * dynamic initialization and destruction of statically allocated rcu_head
273 * structures. However, rcu_head structures allocated dynamically in the
274 * heap don't need any initialization.
275 */
276 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
277 void init_rcu_head(struct rcu_head *head);
278 void destroy_rcu_head(struct rcu_head *head);
279 void init_rcu_head_on_stack(struct rcu_head *head);
280 void destroy_rcu_head_on_stack(struct rcu_head *head);
281 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)282 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)283 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)284 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)285 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
286 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
287
288 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
289 bool rcu_lockdep_current_cpu_online(void);
290 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)291 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
292 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
293
294 extern struct lockdep_map rcu_lock_map;
295 extern struct lockdep_map rcu_bh_lock_map;
296 extern struct lockdep_map rcu_sched_lock_map;
297 extern struct lockdep_map rcu_callback_map;
298
299 #ifdef CONFIG_DEBUG_LOCK_ALLOC
300
rcu_lock_acquire(struct lockdep_map * map)301 static inline void rcu_lock_acquire(struct lockdep_map *map)
302 {
303 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
304 }
305
rcu_try_lock_acquire(struct lockdep_map * map)306 static inline void rcu_try_lock_acquire(struct lockdep_map *map)
307 {
308 lock_acquire(map, 0, 1, 2, 0, NULL, _THIS_IP_);
309 }
310
rcu_lock_release(struct lockdep_map * map)311 static inline void rcu_lock_release(struct lockdep_map *map)
312 {
313 lock_release(map, _THIS_IP_);
314 }
315
316 int debug_lockdep_rcu_enabled(void);
317 int rcu_read_lock_held(void);
318 int rcu_read_lock_bh_held(void);
319 int rcu_read_lock_sched_held(void);
320 int rcu_read_lock_any_held(void);
321
322 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
323
324 # define rcu_lock_acquire(a) do { } while (0)
325 # define rcu_try_lock_acquire(a) do { } while (0)
326 # define rcu_lock_release(a) do { } while (0)
327
rcu_read_lock_held(void)328 static inline int rcu_read_lock_held(void)
329 {
330 return 1;
331 }
332
rcu_read_lock_bh_held(void)333 static inline int rcu_read_lock_bh_held(void)
334 {
335 return 1;
336 }
337
rcu_read_lock_sched_held(void)338 static inline int rcu_read_lock_sched_held(void)
339 {
340 return !preemptible();
341 }
342
rcu_read_lock_any_held(void)343 static inline int rcu_read_lock_any_held(void)
344 {
345 return !preemptible();
346 }
347
debug_lockdep_rcu_enabled(void)348 static inline int debug_lockdep_rcu_enabled(void)
349 {
350 return 0;
351 }
352
353 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
354
355 #ifdef CONFIG_PROVE_RCU
356
357 /**
358 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
359 * @c: condition to check
360 * @s: informative message
361 *
362 * This checks debug_lockdep_rcu_enabled() before checking (c) to
363 * prevent early boot splats due to lockdep not yet being initialized,
364 * and rechecks it after checking (c) to prevent false-positive splats
365 * due to races with lockdep being disabled. See commit 3066820034b5dd
366 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
367 */
368 #define RCU_LOCKDEP_WARN(c, s) \
369 do { \
370 static bool __section(".data.unlikely") __warned; \
371 if (debug_lockdep_rcu_enabled() && (c) && \
372 debug_lockdep_rcu_enabled() && !__warned) { \
373 __warned = true; \
374 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
375 } \
376 } while (0)
377
378 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)379 static inline void rcu_preempt_sleep_check(void)
380 {
381 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
382 "Illegal context switch in RCU read-side critical section");
383 }
384 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)385 static inline void rcu_preempt_sleep_check(void) { }
386 #endif /* #else #ifdef CONFIG_PROVE_RCU */
387
388 #define rcu_sleep_check() \
389 do { \
390 rcu_preempt_sleep_check(); \
391 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \
392 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
393 "Illegal context switch in RCU-bh read-side critical section"); \
394 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
395 "Illegal context switch in RCU-sched read-side critical section"); \
396 } while (0)
397
398 #else /* #ifdef CONFIG_PROVE_RCU */
399
400 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
401 #define rcu_sleep_check() do { } while (0)
402
403 #endif /* #else #ifdef CONFIG_PROVE_RCU */
404
405 /*
406 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
407 * and rcu_assign_pointer(). Some of these could be folded into their
408 * callers, but they are left separate in order to ease introduction of
409 * multiple pointers markings to match different RCU implementations
410 * (e.g., __srcu), should this make sense in the future.
411 */
412
413 #ifdef __CHECKER__
414 #define rcu_check_sparse(p, space) \
415 ((void)(((typeof(*p) space *)p) == p))
416 #else /* #ifdef __CHECKER__ */
417 #define rcu_check_sparse(p, space)
418 #endif /* #else #ifdef __CHECKER__ */
419
420 #define __unrcu_pointer(p, local) \
421 ({ \
422 typeof(*p) *local = (typeof(*p) *__force)(p); \
423 rcu_check_sparse(p, __rcu); \
424 ((typeof(*p) __force __kernel *)(local)); \
425 })
426 /**
427 * unrcu_pointer - mark a pointer as not being RCU protected
428 * @p: pointer needing to lose its __rcu property
429 *
430 * Converts @p from an __rcu pointer to a __kernel pointer.
431 * This allows an __rcu pointer to be used with xchg() and friends.
432 */
433 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
434
435 #define __rcu_access_pointer(p, local, space) \
436 ({ \
437 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
438 rcu_check_sparse(p, space); \
439 ((typeof(*p) __force __kernel *)(local)); \
440 })
441 #define __rcu_dereference_check(p, local, c, space) \
442 ({ \
443 /* Dependency order vs. p above. */ \
444 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
445 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
446 rcu_check_sparse(p, space); \
447 ((typeof(*p) __force __kernel *)(local)); \
448 })
449 #define __rcu_dereference_protected(p, local, c, space) \
450 ({ \
451 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
452 rcu_check_sparse(p, space); \
453 ((typeof(*p) __force __kernel *)(p)); \
454 })
455 #define __rcu_dereference_raw(p, local) \
456 ({ \
457 /* Dependency order vs. p above. */ \
458 typeof(p) local = READ_ONCE(p); \
459 ((typeof(*p) __force __kernel *)(local)); \
460 })
461 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
462
463 /**
464 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
465 * @v: The value to statically initialize with.
466 */
467 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
468
469 /**
470 * rcu_assign_pointer() - assign to RCU-protected pointer
471 * @p: pointer to assign to
472 * @v: value to assign (publish)
473 *
474 * Assigns the specified value to the specified RCU-protected
475 * pointer, ensuring that any concurrent RCU readers will see
476 * any prior initialization.
477 *
478 * Inserts memory barriers on architectures that require them
479 * (which is most of them), and also prevents the compiler from
480 * reordering the code that initializes the structure after the pointer
481 * assignment. More importantly, this call documents which pointers
482 * will be dereferenced by RCU read-side code.
483 *
484 * In some special cases, you may use RCU_INIT_POINTER() instead
485 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
486 * to the fact that it does not constrain either the CPU or the compiler.
487 * That said, using RCU_INIT_POINTER() when you should have used
488 * rcu_assign_pointer() is a very bad thing that results in
489 * impossible-to-diagnose memory corruption. So please be careful.
490 * See the RCU_INIT_POINTER() comment header for details.
491 *
492 * Note that rcu_assign_pointer() evaluates each of its arguments only
493 * once, appearances notwithstanding. One of the "extra" evaluations
494 * is in typeof() and the other visible only to sparse (__CHECKER__),
495 * neither of which actually execute the argument. As with most cpp
496 * macros, this execute-arguments-only-once property is important, so
497 * please be careful when making changes to rcu_assign_pointer() and the
498 * other macros that it invokes.
499 */
500 #define rcu_assign_pointer(p, v) \
501 do { \
502 uintptr_t _r_a_p__v = (uintptr_t)(v); \
503 rcu_check_sparse(p, __rcu); \
504 \
505 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
506 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
507 else \
508 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
509 } while (0)
510
511 /**
512 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
513 * @rcu_ptr: RCU pointer, whose old value is returned
514 * @ptr: regular pointer
515 * @c: the lockdep conditions under which the dereference will take place
516 *
517 * Perform a replacement, where @rcu_ptr is an RCU-annotated
518 * pointer and @c is the lockdep argument that is passed to the
519 * rcu_dereference_protected() call used to read that pointer. The old
520 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
521 */
522 #define rcu_replace_pointer(rcu_ptr, ptr, c) \
523 ({ \
524 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
525 rcu_assign_pointer((rcu_ptr), (ptr)); \
526 __tmp; \
527 })
528
529 /**
530 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
531 * @p: The pointer to read
532 *
533 * Return the value of the specified RCU-protected pointer, but omit the
534 * lockdep checks for being in an RCU read-side critical section. This is
535 * useful when the value of this pointer is accessed, but the pointer is
536 * not dereferenced, for example, when testing an RCU-protected pointer
537 * against NULL. Although rcu_access_pointer() may also be used in cases
538 * where update-side locks prevent the value of the pointer from changing,
539 * you should instead use rcu_dereference_protected() for this use case.
540 * Within an RCU read-side critical section, there is little reason to
541 * use rcu_access_pointer().
542 *
543 * It is usually best to test the rcu_access_pointer() return value
544 * directly in order to avoid accidental dereferences being introduced
545 * by later inattentive changes. In other words, assigning the
546 * rcu_access_pointer() return value to a local variable results in an
547 * accident waiting to happen.
548 *
549 * It is also permissible to use rcu_access_pointer() when read-side
550 * access to the pointer was removed at least one grace period ago, as is
551 * the case in the context of the RCU callback that is freeing up the data,
552 * or after a synchronize_rcu() returns. This can be useful when tearing
553 * down multi-linked structures after a grace period has elapsed. However,
554 * rcu_dereference_protected() is normally preferred for this use case.
555 */
556 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
557
558 /**
559 * rcu_dereference_check() - rcu_dereference with debug checking
560 * @p: The pointer to read, prior to dereferencing
561 * @c: The conditions under which the dereference will take place
562 *
563 * Do an rcu_dereference(), but check that the conditions under which the
564 * dereference will take place are correct. Typically the conditions
565 * indicate the various locking conditions that should be held at that
566 * point. The check should return true if the conditions are satisfied.
567 * An implicit check for being in an RCU read-side critical section
568 * (rcu_read_lock()) is included.
569 *
570 * For example:
571 *
572 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
573 *
574 * could be used to indicate to lockdep that foo->bar may only be dereferenced
575 * if either rcu_read_lock() is held, or that the lock required to replace
576 * the bar struct at foo->bar is held.
577 *
578 * Note that the list of conditions may also include indications of when a lock
579 * need not be held, for example during initialisation or destruction of the
580 * target struct:
581 *
582 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
583 * atomic_read(&foo->usage) == 0);
584 *
585 * Inserts memory barriers on architectures that require them
586 * (currently only the Alpha), prevents the compiler from refetching
587 * (and from merging fetches), and, more importantly, documents exactly
588 * which pointers are protected by RCU and checks that the pointer is
589 * annotated as __rcu.
590 */
591 #define rcu_dereference_check(p, c) \
592 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
593 (c) || rcu_read_lock_held(), __rcu)
594
595 /**
596 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
597 * @p: The pointer to read, prior to dereferencing
598 * @c: The conditions under which the dereference will take place
599 *
600 * This is the RCU-bh counterpart to rcu_dereference_check(). However,
601 * please note that starting in v5.0 kernels, vanilla RCU grace periods
602 * wait for local_bh_disable() regions of code in addition to regions of
603 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means
604 * that synchronize_rcu(), call_rcu, and friends all take not only
605 * rcu_read_lock() but also rcu_read_lock_bh() into account.
606 */
607 #define rcu_dereference_bh_check(p, c) \
608 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
609 (c) || rcu_read_lock_bh_held(), __rcu)
610
611 /**
612 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
613 * @p: The pointer to read, prior to dereferencing
614 * @c: The conditions under which the dereference will take place
615 *
616 * This is the RCU-sched counterpart to rcu_dereference_check().
617 * However, please note that starting in v5.0 kernels, vanilla RCU grace
618 * periods wait for preempt_disable() regions of code in addition to
619 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
620 * This means that synchronize_rcu(), call_rcu, and friends all take not
621 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
622 */
623 #define rcu_dereference_sched_check(p, c) \
624 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
625 (c) || rcu_read_lock_sched_held(), \
626 __rcu)
627
628 /*
629 * The tracing infrastructure traces RCU (we want that), but unfortunately
630 * some of the RCU checks causes tracing to lock up the system.
631 *
632 * The no-tracing version of rcu_dereference_raw() must not call
633 * rcu_read_lock_held().
634 */
635 #define rcu_dereference_raw_check(p) \
636 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
637
638 /**
639 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
640 * @p: The pointer to read, prior to dereferencing
641 * @c: The conditions under which the dereference will take place
642 *
643 * Return the value of the specified RCU-protected pointer, but omit
644 * the READ_ONCE(). This is useful in cases where update-side locks
645 * prevent the value of the pointer from changing. Please note that this
646 * primitive does *not* prevent the compiler from repeating this reference
647 * or combining it with other references, so it should not be used without
648 * protection of appropriate locks.
649 *
650 * This function is only for update-side use. Using this function
651 * when protected only by rcu_read_lock() will result in infrequent
652 * but very ugly failures.
653 */
654 #define rcu_dereference_protected(p, c) \
655 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
656
657
658 /**
659 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
660 * @p: The pointer to read, prior to dereferencing
661 *
662 * This is a simple wrapper around rcu_dereference_check().
663 */
664 #define rcu_dereference(p) rcu_dereference_check(p, 0)
665
666 /**
667 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
668 * @p: The pointer to read, prior to dereferencing
669 *
670 * Makes rcu_dereference_check() do the dirty work.
671 */
672 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
673
674 /**
675 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
676 * @p: The pointer to read, prior to dereferencing
677 *
678 * Makes rcu_dereference_check() do the dirty work.
679 */
680 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
681
682 /**
683 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
684 * @p: The pointer to hand off
685 *
686 * This is simply an identity function, but it documents where a pointer
687 * is handed off from RCU to some other synchronization mechanism, for
688 * example, reference counting or locking. In C11, it would map to
689 * kill_dependency(). It could be used as follows::
690 *
691 * rcu_read_lock();
692 * p = rcu_dereference(gp);
693 * long_lived = is_long_lived(p);
694 * if (long_lived) {
695 * if (!atomic_inc_not_zero(p->refcnt))
696 * long_lived = false;
697 * else
698 * p = rcu_pointer_handoff(p);
699 * }
700 * rcu_read_unlock();
701 */
702 #define rcu_pointer_handoff(p) (p)
703
704 /**
705 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
706 *
707 * When synchronize_rcu() is invoked on one CPU while other CPUs
708 * are within RCU read-side critical sections, then the
709 * synchronize_rcu() is guaranteed to block until after all the other
710 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
711 * on one CPU while other CPUs are within RCU read-side critical
712 * sections, invocation of the corresponding RCU callback is deferred
713 * until after the all the other CPUs exit their critical sections.
714 *
715 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
716 * wait for regions of code with preemption disabled, including regions of
717 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which
718 * define synchronize_sched(), only code enclosed within rcu_read_lock()
719 * and rcu_read_unlock() are guaranteed to be waited for.
720 *
721 * Note, however, that RCU callbacks are permitted to run concurrently
722 * with new RCU read-side critical sections. One way that this can happen
723 * is via the following sequence of events: (1) CPU 0 enters an RCU
724 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
725 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
726 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
727 * callback is invoked. This is legal, because the RCU read-side critical
728 * section that was running concurrently with the call_rcu() (and which
729 * therefore might be referencing something that the corresponding RCU
730 * callback would free up) has completed before the corresponding
731 * RCU callback is invoked.
732 *
733 * RCU read-side critical sections may be nested. Any deferred actions
734 * will be deferred until the outermost RCU read-side critical section
735 * completes.
736 *
737 * You can avoid reading and understanding the next paragraph by
738 * following this rule: don't put anything in an rcu_read_lock() RCU
739 * read-side critical section that would block in a !PREEMPTION kernel.
740 * But if you want the full story, read on!
741 *
742 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
743 * it is illegal to block while in an RCU read-side critical section.
744 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
745 * kernel builds, RCU read-side critical sections may be preempted,
746 * but explicit blocking is illegal. Finally, in preemptible RCU
747 * implementations in real-time (with -rt patchset) kernel builds, RCU
748 * read-side critical sections may be preempted and they may also block, but
749 * only when acquiring spinlocks that are subject to priority inheritance.
750 */
rcu_read_lock(void)751 static __always_inline void rcu_read_lock(void)
752 {
753 __rcu_read_lock();
754 __acquire(RCU);
755 rcu_lock_acquire(&rcu_lock_map);
756 RCU_LOCKDEP_WARN(!rcu_is_watching(),
757 "rcu_read_lock() used illegally while idle");
758 }
759
760 /*
761 * So where is rcu_write_lock()? It does not exist, as there is no
762 * way for writers to lock out RCU readers. This is a feature, not
763 * a bug -- this property is what provides RCU's performance benefits.
764 * Of course, writers must coordinate with each other. The normal
765 * spinlock primitives work well for this, but any other technique may be
766 * used as well. RCU does not care how the writers keep out of each
767 * others' way, as long as they do so.
768 */
769
770 /**
771 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
772 *
773 * In almost all situations, rcu_read_unlock() is immune from deadlock.
774 * In recent kernels that have consolidated synchronize_sched() and
775 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
776 * also extends to the scheduler's runqueue and priority-inheritance
777 * spinlocks, courtesy of the quiescent-state deferral that is carried
778 * out when rcu_read_unlock() is invoked with interrupts disabled.
779 *
780 * See rcu_read_lock() for more information.
781 */
rcu_read_unlock(void)782 static inline void rcu_read_unlock(void)
783 {
784 RCU_LOCKDEP_WARN(!rcu_is_watching(),
785 "rcu_read_unlock() used illegally while idle");
786 __release(RCU);
787 __rcu_read_unlock();
788 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
789 }
790
791 /**
792 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
793 *
794 * This is equivalent to rcu_read_lock(), but also disables softirqs.
795 * Note that anything else that disables softirqs can also serve as an RCU
796 * read-side critical section. However, please note that this equivalence
797 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and
798 * rcu_read_lock_bh() were unrelated.
799 *
800 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
801 * must occur in the same context, for example, it is illegal to invoke
802 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
803 * was invoked from some other task.
804 */
rcu_read_lock_bh(void)805 static inline void rcu_read_lock_bh(void)
806 {
807 local_bh_disable();
808 __acquire(RCU_BH);
809 rcu_lock_acquire(&rcu_bh_lock_map);
810 RCU_LOCKDEP_WARN(!rcu_is_watching(),
811 "rcu_read_lock_bh() used illegally while idle");
812 }
813
814 /**
815 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
816 *
817 * See rcu_read_lock_bh() for more information.
818 */
rcu_read_unlock_bh(void)819 static inline void rcu_read_unlock_bh(void)
820 {
821 RCU_LOCKDEP_WARN(!rcu_is_watching(),
822 "rcu_read_unlock_bh() used illegally while idle");
823 rcu_lock_release(&rcu_bh_lock_map);
824 __release(RCU_BH);
825 local_bh_enable();
826 }
827
828 /**
829 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
830 *
831 * This is equivalent to rcu_read_lock(), but also disables preemption.
832 * Read-side critical sections can also be introduced by anything else that
833 * disables preemption, including local_irq_disable() and friends. However,
834 * please note that the equivalence to rcu_read_lock() applies only to
835 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
836 * were unrelated.
837 *
838 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
839 * must occur in the same context, for example, it is illegal to invoke
840 * rcu_read_unlock_sched() from process context if the matching
841 * rcu_read_lock_sched() was invoked from an NMI handler.
842 */
rcu_read_lock_sched(void)843 static inline void rcu_read_lock_sched(void)
844 {
845 preempt_disable();
846 __acquire(RCU_SCHED);
847 rcu_lock_acquire(&rcu_sched_lock_map);
848 RCU_LOCKDEP_WARN(!rcu_is_watching(),
849 "rcu_read_lock_sched() used illegally while idle");
850 }
851
852 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)853 static inline notrace void rcu_read_lock_sched_notrace(void)
854 {
855 preempt_disable_notrace();
856 __acquire(RCU_SCHED);
857 }
858
859 /**
860 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
861 *
862 * See rcu_read_lock_sched() for more information.
863 */
rcu_read_unlock_sched(void)864 static inline void rcu_read_unlock_sched(void)
865 {
866 RCU_LOCKDEP_WARN(!rcu_is_watching(),
867 "rcu_read_unlock_sched() used illegally while idle");
868 rcu_lock_release(&rcu_sched_lock_map);
869 __release(RCU_SCHED);
870 preempt_enable();
871 }
872
873 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)874 static inline notrace void rcu_read_unlock_sched_notrace(void)
875 {
876 __release(RCU_SCHED);
877 preempt_enable_notrace();
878 }
879
880 /**
881 * RCU_INIT_POINTER() - initialize an RCU protected pointer
882 * @p: The pointer to be initialized.
883 * @v: The value to initialized the pointer to.
884 *
885 * Initialize an RCU-protected pointer in special cases where readers
886 * do not need ordering constraints on the CPU or the compiler. These
887 * special cases are:
888 *
889 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
890 * 2. The caller has taken whatever steps are required to prevent
891 * RCU readers from concurrently accessing this pointer *or*
892 * 3. The referenced data structure has already been exposed to
893 * readers either at compile time or via rcu_assign_pointer() *and*
894 *
895 * a. You have not made *any* reader-visible changes to
896 * this structure since then *or*
897 * b. It is OK for readers accessing this structure from its
898 * new location to see the old state of the structure. (For
899 * example, the changes were to statistical counters or to
900 * other state where exact synchronization is not required.)
901 *
902 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
903 * result in impossible-to-diagnose memory corruption. As in the structures
904 * will look OK in crash dumps, but any concurrent RCU readers might
905 * see pre-initialized values of the referenced data structure. So
906 * please be very careful how you use RCU_INIT_POINTER()!!!
907 *
908 * If you are creating an RCU-protected linked structure that is accessed
909 * by a single external-to-structure RCU-protected pointer, then you may
910 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
911 * pointers, but you must use rcu_assign_pointer() to initialize the
912 * external-to-structure pointer *after* you have completely initialized
913 * the reader-accessible portions of the linked structure.
914 *
915 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
916 * ordering guarantees for either the CPU or the compiler.
917 */
918 #define RCU_INIT_POINTER(p, v) \
919 do { \
920 rcu_check_sparse(p, __rcu); \
921 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
922 } while (0)
923
924 /**
925 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
926 * @p: The pointer to be initialized.
927 * @v: The value to initialized the pointer to.
928 *
929 * GCC-style initialization for an RCU-protected pointer in a structure field.
930 */
931 #define RCU_POINTER_INITIALIZER(p, v) \
932 .p = RCU_INITIALIZER(v)
933
934 /*
935 * Does the specified offset indicate that the corresponding rcu_head
936 * structure can be handled by kvfree_rcu()?
937 */
938 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
939
940 /**
941 * kfree_rcu() - kfree an object after a grace period.
942 * @ptr: pointer to kfree for double-argument invocations.
943 * @rhf: the name of the struct rcu_head within the type of @ptr.
944 *
945 * Many rcu callbacks functions just call kfree() on the base structure.
946 * These functions are trivial, but their size adds up, and furthermore
947 * when they are used in a kernel module, that module must invoke the
948 * high-latency rcu_barrier() function at module-unload time.
949 *
950 * The kfree_rcu() function handles this issue. Rather than encoding a
951 * function address in the embedded rcu_head structure, kfree_rcu() instead
952 * encodes the offset of the rcu_head structure within the base structure.
953 * Because the functions are not allowed in the low-order 4096 bytes of
954 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
955 * If the offset is larger than 4095 bytes, a compile-time error will
956 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
957 * either fall back to use of call_rcu() or rearrange the structure to
958 * position the rcu_head structure into the first 4096 bytes.
959 *
960 * The object to be freed can be allocated either by kmalloc() or
961 * kmem_cache_alloc().
962 *
963 * Note that the allowable offset might decrease in the future.
964 *
965 * The BUILD_BUG_ON check must not involve any function calls, hence the
966 * checks are done in macros here.
967 */
968 #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
969 #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
970
971 /**
972 * kfree_rcu_mightsleep() - kfree an object after a grace period.
973 * @ptr: pointer to kfree for single-argument invocations.
974 *
975 * When it comes to head-less variant, only one argument
976 * is passed and that is just a pointer which has to be
977 * freed after a grace period. Therefore the semantic is
978 *
979 * kfree_rcu_mightsleep(ptr);
980 *
981 * where @ptr is the pointer to be freed by kvfree().
982 *
983 * Please note, head-less way of freeing is permitted to
984 * use from a context that has to follow might_sleep()
985 * annotation. Otherwise, please switch and embed the
986 * rcu_head structure within the type of @ptr.
987 */
988 #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
989 #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
990
991 #define kvfree_rcu_arg_2(ptr, rhf) \
992 do { \
993 typeof (ptr) ___p = (ptr); \
994 \
995 if (___p) { \
996 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \
997 kvfree_call_rcu(&((___p)->rhf), (void *) (___p)); \
998 } \
999 } while (0)
1000
1001 #define kvfree_rcu_arg_1(ptr) \
1002 do { \
1003 typeof(ptr) ___p = (ptr); \
1004 \
1005 if (___p) \
1006 kvfree_call_rcu(NULL, (void *) (___p)); \
1007 } while (0)
1008
1009 /*
1010 * Place this after a lock-acquisition primitive to guarantee that
1011 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
1012 * if the UNLOCK and LOCK are executed by the same CPU or if the
1013 * UNLOCK and LOCK operate on the same lock variable.
1014 */
1015 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1016 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
1017 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1018 #define smp_mb__after_unlock_lock() do { } while (0)
1019 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1020
1021
1022 /* Has the specified rcu_head structure been handed to call_rcu()? */
1023
1024 /**
1025 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1026 * @rhp: The rcu_head structure to initialize.
1027 *
1028 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1029 * given rcu_head structure has already been passed to call_rcu(), then
1030 * you must also invoke this rcu_head_init() function on it just after
1031 * allocating that structure. Calls to this function must not race with
1032 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1033 */
rcu_head_init(struct rcu_head * rhp)1034 static inline void rcu_head_init(struct rcu_head *rhp)
1035 {
1036 rhp->func = (rcu_callback_t)~0L;
1037 }
1038
1039 /**
1040 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1041 * @rhp: The rcu_head structure to test.
1042 * @f: The function passed to call_rcu() along with @rhp.
1043 *
1044 * Returns @true if the @rhp has been passed to call_rcu() with @func,
1045 * and @false otherwise. Emits a warning in any other case, including
1046 * the case where @rhp has already been invoked after a grace period.
1047 * Calls to this function must not race with callback invocation. One way
1048 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1049 * in an RCU read-side critical section that includes a read-side fetch
1050 * of the pointer to the structure containing @rhp.
1051 */
1052 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1053 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1054 {
1055 rcu_callback_t func = READ_ONCE(rhp->func);
1056
1057 if (func == f)
1058 return true;
1059 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1060 return false;
1061 }
1062
1063 /* kernel/ksysfs.c definitions */
1064 extern int rcu_expedited;
1065 extern int rcu_normal;
1066
1067 DEFINE_LOCK_GUARD_0(rcu, rcu_read_lock(), rcu_read_unlock())
1068
1069 #endif /* __LINUX_RCUPDATE_H */
1070