1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <asm/processor.h>
31 #include <linux/cpumask.h>
32 #include <linux/context_tracking_irq.h>
33
34 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
35 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
36 #define ulong2long(a) (*(long *)(&(a)))
37 #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
38 #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b)))
39
40 /* Exported common interfaces */
41 void call_rcu(struct rcu_head *head, rcu_callback_t func);
42 void rcu_barrier_tasks(void);
43 void rcu_barrier_tasks_rude(void);
44 void synchronize_rcu(void);
45
46 struct rcu_gp_oldstate;
47 unsigned long get_completed_synchronize_rcu(void);
48 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
49
50 // Maximum number of unsigned long values corresponding to
51 // not-yet-completed RCU grace periods.
52 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
53
54 /**
55 * same_state_synchronize_rcu - Are two old-state values identical?
56 * @oldstate1: First old-state value.
57 * @oldstate2: Second old-state value.
58 *
59 * The two old-state values must have been obtained from either
60 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
61 * get_completed_synchronize_rcu(). Returns @true if the two values are
62 * identical and @false otherwise. This allows structures whose lifetimes
63 * are tracked by old-state values to push these values to a list header,
64 * allowing those structures to be slightly smaller.
65 */
same_state_synchronize_rcu(unsigned long oldstate1,unsigned long oldstate2)66 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
67 {
68 return oldstate1 == oldstate2;
69 }
70
71 #ifdef CONFIG_PREEMPT_RCU
72
73 void __rcu_read_lock(void);
74 void __rcu_read_unlock(void);
75
76 /*
77 * Defined as a macro as it is a very low level header included from
78 * areas that don't even know about current. This gives the rcu_read_lock()
79 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
80 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
81 */
82 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
83
84 #else /* #ifdef CONFIG_PREEMPT_RCU */
85
86 #ifdef CONFIG_TINY_RCU
87 #define rcu_read_unlock_strict() do { } while (0)
88 #else
89 void rcu_read_unlock_strict(void);
90 #endif
91
__rcu_read_lock(void)92 static inline void __rcu_read_lock(void)
93 {
94 preempt_disable();
95 }
96
__rcu_read_unlock(void)97 static inline void __rcu_read_unlock(void)
98 {
99 preempt_enable();
100 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
101 rcu_read_unlock_strict();
102 }
103
rcu_preempt_depth(void)104 static inline int rcu_preempt_depth(void)
105 {
106 return 0;
107 }
108
109 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
110
111 /* Internal to kernel */
112 void rcu_init(void);
113 extern int rcu_scheduler_active;
114 void rcu_sched_clock_irq(int user);
115 void rcu_report_dead(unsigned int cpu);
116 void rcutree_migrate_callbacks(int cpu);
117
118 #ifdef CONFIG_TASKS_RCU_GENERIC
119 void rcu_init_tasks_generic(void);
120 #else
rcu_init_tasks_generic(void)121 static inline void rcu_init_tasks_generic(void) { }
122 #endif
123
124 #ifdef CONFIG_RCU_STALL_COMMON
125 void rcu_sysrq_start(void);
126 void rcu_sysrq_end(void);
127 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)128 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)129 static inline void rcu_sysrq_end(void) { }
130 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
131
132 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
133 void rcu_irq_work_resched(void);
134 #else
rcu_irq_work_resched(void)135 static inline void rcu_irq_work_resched(void) { }
136 #endif
137
138 #ifdef CONFIG_RCU_NOCB_CPU
139 void rcu_init_nohz(void);
140 int rcu_nocb_cpu_offload(int cpu);
141 int rcu_nocb_cpu_deoffload(int cpu);
142 void rcu_nocb_flush_deferred_wakeup(void);
143 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)144 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)145 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)146 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)147 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
148 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
149
150 /**
151 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
152 * @a: Code that RCU needs to pay attention to.
153 *
154 * RCU read-side critical sections are forbidden in the inner idle loop,
155 * that is, between the ct_idle_enter() and the ct_idle_exit() -- RCU
156 * will happily ignore any such read-side critical sections. However,
157 * things like powertop need tracepoints in the inner idle loop.
158 *
159 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
160 * will tell RCU that it needs to pay attention, invoke its argument
161 * (in this example, calling the do_something_with_RCU() function),
162 * and then tell RCU to go back to ignoring this CPU. It is permissible
163 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
164 * on the order of a million or so, even on 32-bit systems). It is
165 * not legal to block within RCU_NONIDLE(), nor is it permissible to
166 * transfer control either into or out of RCU_NONIDLE()'s statement.
167 */
168 #define RCU_NONIDLE(a) \
169 do { \
170 ct_irq_enter_irqson(); \
171 do { a; } while (0); \
172 ct_irq_exit_irqson(); \
173 } while (0)
174
175 /*
176 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
177 * This is a macro rather than an inline function to avoid #include hell.
178 */
179 #ifdef CONFIG_TASKS_RCU_GENERIC
180
181 # ifdef CONFIG_TASKS_RCU
182 # define rcu_tasks_classic_qs(t, preempt) \
183 do { \
184 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
185 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
186 } while (0)
187 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
188 void synchronize_rcu_tasks(void);
189 # else
190 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
191 # define call_rcu_tasks call_rcu
192 # define synchronize_rcu_tasks synchronize_rcu
193 # endif
194
195 # ifdef CONFIG_TASKS_TRACE_RCU
196 // Bits for ->trc_reader_special.b.need_qs field.
197 #define TRC_NEED_QS 0x1 // Task needs a quiescent state.
198 #define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state.
199
200 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
201 void rcu_tasks_trace_qs_blkd(struct task_struct *t);
202
203 # define rcu_tasks_trace_qs(t) \
204 do { \
205 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \
206 \
207 if (likely(!READ_ONCE((t)->trc_reader_special.b.need_qs)) && \
208 likely(!___rttq_nesting)) { \
209 rcu_trc_cmpxchg_need_qs((t), 0, TRC_NEED_QS_CHECKED); \
210 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \
211 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \
212 rcu_tasks_trace_qs_blkd(t); \
213 } \
214 } while (0)
215 # else
216 # define rcu_tasks_trace_qs(t) do { } while (0)
217 # endif
218
219 #define rcu_tasks_qs(t, preempt) \
220 do { \
221 rcu_tasks_classic_qs((t), (preempt)); \
222 rcu_tasks_trace_qs(t); \
223 } while (0)
224
225 # ifdef CONFIG_TASKS_RUDE_RCU
226 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
227 void synchronize_rcu_tasks_rude(void);
228 # endif
229
230 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
231 void exit_tasks_rcu_start(void);
232 void exit_tasks_rcu_finish(void);
233 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
234 #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
235 #define rcu_tasks_qs(t, preempt) do { } while (0)
236 #define rcu_note_voluntary_context_switch(t) do { } while (0)
237 #define call_rcu_tasks call_rcu
238 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)239 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)240 static inline void exit_tasks_rcu_finish(void) { }
241 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
242
243 /**
244 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
245 *
246 * This macro resembles cond_resched(), except that it is defined to
247 * report potential quiescent states to RCU-tasks even if the cond_resched()
248 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
249 */
250 #define cond_resched_tasks_rcu_qs() \
251 do { \
252 rcu_tasks_qs(current, false); \
253 cond_resched(); \
254 } while (0)
255
256 /*
257 * Infrastructure to implement the synchronize_() primitives in
258 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
259 */
260
261 #if defined(CONFIG_TREE_RCU)
262 #include <linux/rcutree.h>
263 #elif defined(CONFIG_TINY_RCU)
264 #include <linux/rcutiny.h>
265 #else
266 #error "Unknown RCU implementation specified to kernel configuration"
267 #endif
268
269 /*
270 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
271 * are needed for dynamic initialization and destruction of rcu_head
272 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
273 * dynamic initialization and destruction of statically allocated rcu_head
274 * structures. However, rcu_head structures allocated dynamically in the
275 * heap don't need any initialization.
276 */
277 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
278 void init_rcu_head(struct rcu_head *head);
279 void destroy_rcu_head(struct rcu_head *head);
280 void init_rcu_head_on_stack(struct rcu_head *head);
281 void destroy_rcu_head_on_stack(struct rcu_head *head);
282 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)283 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)284 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)285 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)286 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
287 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
288
289 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
290 bool rcu_lockdep_current_cpu_online(void);
291 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)292 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
293 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
294
295 extern struct lockdep_map rcu_lock_map;
296 extern struct lockdep_map rcu_bh_lock_map;
297 extern struct lockdep_map rcu_sched_lock_map;
298 extern struct lockdep_map rcu_callback_map;
299
300 #ifdef CONFIG_DEBUG_LOCK_ALLOC
301
rcu_lock_acquire(struct lockdep_map * map)302 static inline void rcu_lock_acquire(struct lockdep_map *map)
303 {
304 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
305 }
306
rcu_lock_release(struct lockdep_map * map)307 static inline void rcu_lock_release(struct lockdep_map *map)
308 {
309 lock_release(map, _THIS_IP_);
310 }
311
312 int debug_lockdep_rcu_enabled(void);
313 int rcu_read_lock_held(void);
314 int rcu_read_lock_bh_held(void);
315 int rcu_read_lock_sched_held(void);
316 int rcu_read_lock_any_held(void);
317
318 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
319
320 # define rcu_lock_acquire(a) do { } while (0)
321 # define rcu_lock_release(a) do { } while (0)
322
rcu_read_lock_held(void)323 static inline int rcu_read_lock_held(void)
324 {
325 return 1;
326 }
327
rcu_read_lock_bh_held(void)328 static inline int rcu_read_lock_bh_held(void)
329 {
330 return 1;
331 }
332
rcu_read_lock_sched_held(void)333 static inline int rcu_read_lock_sched_held(void)
334 {
335 return !preemptible();
336 }
337
rcu_read_lock_any_held(void)338 static inline int rcu_read_lock_any_held(void)
339 {
340 return !preemptible();
341 }
342
343 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
344
345 #ifdef CONFIG_PROVE_RCU
346
347 /**
348 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
349 * @c: condition to check
350 * @s: informative message
351 */
352 #define RCU_LOCKDEP_WARN(c, s) \
353 do { \
354 static bool __section(".data.unlikely") __warned; \
355 if ((c) && debug_lockdep_rcu_enabled() && !__warned) { \
356 __warned = true; \
357 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
358 } \
359 } while (0)
360
361 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)362 static inline void rcu_preempt_sleep_check(void)
363 {
364 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
365 "Illegal context switch in RCU read-side critical section");
366 }
367 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)368 static inline void rcu_preempt_sleep_check(void) { }
369 #endif /* #else #ifdef CONFIG_PROVE_RCU */
370
371 #define rcu_sleep_check() \
372 do { \
373 rcu_preempt_sleep_check(); \
374 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \
375 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
376 "Illegal context switch in RCU-bh read-side critical section"); \
377 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
378 "Illegal context switch in RCU-sched read-side critical section"); \
379 } while (0)
380
381 #else /* #ifdef CONFIG_PROVE_RCU */
382
383 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
384 #define rcu_sleep_check() do { } while (0)
385
386 #endif /* #else #ifdef CONFIG_PROVE_RCU */
387
388 /*
389 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
390 * and rcu_assign_pointer(). Some of these could be folded into their
391 * callers, but they are left separate in order to ease introduction of
392 * multiple pointers markings to match different RCU implementations
393 * (e.g., __srcu), should this make sense in the future.
394 */
395
396 #ifdef __CHECKER__
397 #define rcu_check_sparse(p, space) \
398 ((void)(((typeof(*p) space *)p) == p))
399 #else /* #ifdef __CHECKER__ */
400 #define rcu_check_sparse(p, space)
401 #endif /* #else #ifdef __CHECKER__ */
402
403 #define __unrcu_pointer(p, local) \
404 ({ \
405 typeof(*p) *local = (typeof(*p) *__force)(p); \
406 rcu_check_sparse(p, __rcu); \
407 ((typeof(*p) __force __kernel *)(local)); \
408 })
409 /**
410 * unrcu_pointer - mark a pointer as not being RCU protected
411 * @p: pointer needing to lose its __rcu property
412 *
413 * Converts @p from an __rcu pointer to a __kernel pointer.
414 * This allows an __rcu pointer to be used with xchg() and friends.
415 */
416 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
417
418 #define __rcu_access_pointer(p, local, space) \
419 ({ \
420 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
421 rcu_check_sparse(p, space); \
422 ((typeof(*p) __force __kernel *)(local)); \
423 })
424 #define __rcu_dereference_check(p, local, c, space) \
425 ({ \
426 /* Dependency order vs. p above. */ \
427 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
428 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
429 rcu_check_sparse(p, space); \
430 ((typeof(*p) __force __kernel *)(local)); \
431 })
432 #define __rcu_dereference_protected(p, local, c, space) \
433 ({ \
434 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
435 rcu_check_sparse(p, space); \
436 ((typeof(*p) __force __kernel *)(p)); \
437 })
438 #define __rcu_dereference_raw(p, local) \
439 ({ \
440 /* Dependency order vs. p above. */ \
441 typeof(p) local = READ_ONCE(p); \
442 ((typeof(*p) __force __kernel *)(local)); \
443 })
444 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
445
446 /**
447 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
448 * @v: The value to statically initialize with.
449 */
450 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
451
452 /**
453 * rcu_assign_pointer() - assign to RCU-protected pointer
454 * @p: pointer to assign to
455 * @v: value to assign (publish)
456 *
457 * Assigns the specified value to the specified RCU-protected
458 * pointer, ensuring that any concurrent RCU readers will see
459 * any prior initialization.
460 *
461 * Inserts memory barriers on architectures that require them
462 * (which is most of them), and also prevents the compiler from
463 * reordering the code that initializes the structure after the pointer
464 * assignment. More importantly, this call documents which pointers
465 * will be dereferenced by RCU read-side code.
466 *
467 * In some special cases, you may use RCU_INIT_POINTER() instead
468 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
469 * to the fact that it does not constrain either the CPU or the compiler.
470 * That said, using RCU_INIT_POINTER() when you should have used
471 * rcu_assign_pointer() is a very bad thing that results in
472 * impossible-to-diagnose memory corruption. So please be careful.
473 * See the RCU_INIT_POINTER() comment header for details.
474 *
475 * Note that rcu_assign_pointer() evaluates each of its arguments only
476 * once, appearances notwithstanding. One of the "extra" evaluations
477 * is in typeof() and the other visible only to sparse (__CHECKER__),
478 * neither of which actually execute the argument. As with most cpp
479 * macros, this execute-arguments-only-once property is important, so
480 * please be careful when making changes to rcu_assign_pointer() and the
481 * other macros that it invokes.
482 */
483 #define rcu_assign_pointer(p, v) \
484 do { \
485 uintptr_t _r_a_p__v = (uintptr_t)(v); \
486 rcu_check_sparse(p, __rcu); \
487 \
488 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
489 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
490 else \
491 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
492 } while (0)
493
494 /**
495 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
496 * @rcu_ptr: RCU pointer, whose old value is returned
497 * @ptr: regular pointer
498 * @c: the lockdep conditions under which the dereference will take place
499 *
500 * Perform a replacement, where @rcu_ptr is an RCU-annotated
501 * pointer and @c is the lockdep argument that is passed to the
502 * rcu_dereference_protected() call used to read that pointer. The old
503 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
504 */
505 #define rcu_replace_pointer(rcu_ptr, ptr, c) \
506 ({ \
507 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
508 rcu_assign_pointer((rcu_ptr), (ptr)); \
509 __tmp; \
510 })
511
512 /**
513 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
514 * @p: The pointer to read
515 *
516 * Return the value of the specified RCU-protected pointer, but omit the
517 * lockdep checks for being in an RCU read-side critical section. This is
518 * useful when the value of this pointer is accessed, but the pointer is
519 * not dereferenced, for example, when testing an RCU-protected pointer
520 * against NULL. Although rcu_access_pointer() may also be used in cases
521 * where update-side locks prevent the value of the pointer from changing,
522 * you should instead use rcu_dereference_protected() for this use case.
523 * Within an RCU read-side critical section, there is little reason to
524 * use rcu_access_pointer().
525 *
526 * It is usually best to test the rcu_access_pointer() return value
527 * directly in order to avoid accidental dereferences being introduced
528 * by later inattentive changes. In other words, assigning the
529 * rcu_access_pointer() return value to a local variable results in an
530 * accident waiting to happen.
531 *
532 * It is also permissible to use rcu_access_pointer() when read-side
533 * access to the pointer was removed at least one grace period ago, as is
534 * the case in the context of the RCU callback that is freeing up the data,
535 * or after a synchronize_rcu() returns. This can be useful when tearing
536 * down multi-linked structures after a grace period has elapsed. However,
537 * rcu_dereference_protected() is normally preferred for this use case.
538 */
539 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
540
541 /**
542 * rcu_dereference_check() - rcu_dereference with debug checking
543 * @p: The pointer to read, prior to dereferencing
544 * @c: The conditions under which the dereference will take place
545 *
546 * Do an rcu_dereference(), but check that the conditions under which the
547 * dereference will take place are correct. Typically the conditions
548 * indicate the various locking conditions that should be held at that
549 * point. The check should return true if the conditions are satisfied.
550 * An implicit check for being in an RCU read-side critical section
551 * (rcu_read_lock()) is included.
552 *
553 * For example:
554 *
555 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
556 *
557 * could be used to indicate to lockdep that foo->bar may only be dereferenced
558 * if either rcu_read_lock() is held, or that the lock required to replace
559 * the bar struct at foo->bar is held.
560 *
561 * Note that the list of conditions may also include indications of when a lock
562 * need not be held, for example during initialisation or destruction of the
563 * target struct:
564 *
565 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
566 * atomic_read(&foo->usage) == 0);
567 *
568 * Inserts memory barriers on architectures that require them
569 * (currently only the Alpha), prevents the compiler from refetching
570 * (and from merging fetches), and, more importantly, documents exactly
571 * which pointers are protected by RCU and checks that the pointer is
572 * annotated as __rcu.
573 */
574 #define rcu_dereference_check(p, c) \
575 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
576 (c) || rcu_read_lock_held(), __rcu)
577
578 /**
579 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
580 * @p: The pointer to read, prior to dereferencing
581 * @c: The conditions under which the dereference will take place
582 *
583 * This is the RCU-bh counterpart to rcu_dereference_check(). However,
584 * please note that starting in v5.0 kernels, vanilla RCU grace periods
585 * wait for local_bh_disable() regions of code in addition to regions of
586 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means
587 * that synchronize_rcu(), call_rcu, and friends all take not only
588 * rcu_read_lock() but also rcu_read_lock_bh() into account.
589 */
590 #define rcu_dereference_bh_check(p, c) \
591 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
592 (c) || rcu_read_lock_bh_held(), __rcu)
593
594 /**
595 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
596 * @p: The pointer to read, prior to dereferencing
597 * @c: The conditions under which the dereference will take place
598 *
599 * This is the RCU-sched counterpart to rcu_dereference_check().
600 * However, please note that starting in v5.0 kernels, vanilla RCU grace
601 * periods wait for preempt_disable() regions of code in addition to
602 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
603 * This means that synchronize_rcu(), call_rcu, and friends all take not
604 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
605 */
606 #define rcu_dereference_sched_check(p, c) \
607 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
608 (c) || rcu_read_lock_sched_held(), \
609 __rcu)
610
611 /*
612 * The tracing infrastructure traces RCU (we want that), but unfortunately
613 * some of the RCU checks causes tracing to lock up the system.
614 *
615 * The no-tracing version of rcu_dereference_raw() must not call
616 * rcu_read_lock_held().
617 */
618 #define rcu_dereference_raw_check(p) \
619 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
620
621 /**
622 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
623 * @p: The pointer to read, prior to dereferencing
624 * @c: The conditions under which the dereference will take place
625 *
626 * Return the value of the specified RCU-protected pointer, but omit
627 * the READ_ONCE(). This is useful in cases where update-side locks
628 * prevent the value of the pointer from changing. Please note that this
629 * primitive does *not* prevent the compiler from repeating this reference
630 * or combining it with other references, so it should not be used without
631 * protection of appropriate locks.
632 *
633 * This function is only for update-side use. Using this function
634 * when protected only by rcu_read_lock() will result in infrequent
635 * but very ugly failures.
636 */
637 #define rcu_dereference_protected(p, c) \
638 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
639
640
641 /**
642 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
643 * @p: The pointer to read, prior to dereferencing
644 *
645 * This is a simple wrapper around rcu_dereference_check().
646 */
647 #define rcu_dereference(p) rcu_dereference_check(p, 0)
648
649 /**
650 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
651 * @p: The pointer to read, prior to dereferencing
652 *
653 * Makes rcu_dereference_check() do the dirty work.
654 */
655 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
656
657 /**
658 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
659 * @p: The pointer to read, prior to dereferencing
660 *
661 * Makes rcu_dereference_check() do the dirty work.
662 */
663 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
664
665 /**
666 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
667 * @p: The pointer to hand off
668 *
669 * This is simply an identity function, but it documents where a pointer
670 * is handed off from RCU to some other synchronization mechanism, for
671 * example, reference counting or locking. In C11, it would map to
672 * kill_dependency(). It could be used as follows::
673 *
674 * rcu_read_lock();
675 * p = rcu_dereference(gp);
676 * long_lived = is_long_lived(p);
677 * if (long_lived) {
678 * if (!atomic_inc_not_zero(p->refcnt))
679 * long_lived = false;
680 * else
681 * p = rcu_pointer_handoff(p);
682 * }
683 * rcu_read_unlock();
684 */
685 #define rcu_pointer_handoff(p) (p)
686
687 /**
688 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
689 *
690 * When synchronize_rcu() is invoked on one CPU while other CPUs
691 * are within RCU read-side critical sections, then the
692 * synchronize_rcu() is guaranteed to block until after all the other
693 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
694 * on one CPU while other CPUs are within RCU read-side critical
695 * sections, invocation of the corresponding RCU callback is deferred
696 * until after the all the other CPUs exit their critical sections.
697 *
698 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
699 * wait for regions of code with preemption disabled, including regions of
700 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which
701 * define synchronize_sched(), only code enclosed within rcu_read_lock()
702 * and rcu_read_unlock() are guaranteed to be waited for.
703 *
704 * Note, however, that RCU callbacks are permitted to run concurrently
705 * with new RCU read-side critical sections. One way that this can happen
706 * is via the following sequence of events: (1) CPU 0 enters an RCU
707 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
708 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
709 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
710 * callback is invoked. This is legal, because the RCU read-side critical
711 * section that was running concurrently with the call_rcu() (and which
712 * therefore might be referencing something that the corresponding RCU
713 * callback would free up) has completed before the corresponding
714 * RCU callback is invoked.
715 *
716 * RCU read-side critical sections may be nested. Any deferred actions
717 * will be deferred until the outermost RCU read-side critical section
718 * completes.
719 *
720 * You can avoid reading and understanding the next paragraph by
721 * following this rule: don't put anything in an rcu_read_lock() RCU
722 * read-side critical section that would block in a !PREEMPTION kernel.
723 * But if you want the full story, read on!
724 *
725 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
726 * it is illegal to block while in an RCU read-side critical section.
727 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
728 * kernel builds, RCU read-side critical sections may be preempted,
729 * but explicit blocking is illegal. Finally, in preemptible RCU
730 * implementations in real-time (with -rt patchset) kernel builds, RCU
731 * read-side critical sections may be preempted and they may also block, but
732 * only when acquiring spinlocks that are subject to priority inheritance.
733 */
rcu_read_lock(void)734 static __always_inline void rcu_read_lock(void)
735 {
736 __rcu_read_lock();
737 __acquire(RCU);
738 rcu_lock_acquire(&rcu_lock_map);
739 RCU_LOCKDEP_WARN(!rcu_is_watching(),
740 "rcu_read_lock() used illegally while idle");
741 }
742
743 /*
744 * So where is rcu_write_lock()? It does not exist, as there is no
745 * way for writers to lock out RCU readers. This is a feature, not
746 * a bug -- this property is what provides RCU's performance benefits.
747 * Of course, writers must coordinate with each other. The normal
748 * spinlock primitives work well for this, but any other technique may be
749 * used as well. RCU does not care how the writers keep out of each
750 * others' way, as long as they do so.
751 */
752
753 /**
754 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
755 *
756 * In almost all situations, rcu_read_unlock() is immune from deadlock.
757 * In recent kernels that have consolidated synchronize_sched() and
758 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
759 * also extends to the scheduler's runqueue and priority-inheritance
760 * spinlocks, courtesy of the quiescent-state deferral that is carried
761 * out when rcu_read_unlock() is invoked with interrupts disabled.
762 *
763 * See rcu_read_lock() for more information.
764 */
rcu_read_unlock(void)765 static inline void rcu_read_unlock(void)
766 {
767 RCU_LOCKDEP_WARN(!rcu_is_watching(),
768 "rcu_read_unlock() used illegally while idle");
769 __release(RCU);
770 __rcu_read_unlock();
771 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
772 }
773
774 /**
775 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
776 *
777 * This is equivalent to rcu_read_lock(), but also disables softirqs.
778 * Note that anything else that disables softirqs can also serve as an RCU
779 * read-side critical section. However, please note that this equivalence
780 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and
781 * rcu_read_lock_bh() were unrelated.
782 *
783 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
784 * must occur in the same context, for example, it is illegal to invoke
785 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
786 * was invoked from some other task.
787 */
rcu_read_lock_bh(void)788 static inline void rcu_read_lock_bh(void)
789 {
790 local_bh_disable();
791 __acquire(RCU_BH);
792 rcu_lock_acquire(&rcu_bh_lock_map);
793 RCU_LOCKDEP_WARN(!rcu_is_watching(),
794 "rcu_read_lock_bh() used illegally while idle");
795 }
796
797 /**
798 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
799 *
800 * See rcu_read_lock_bh() for more information.
801 */
rcu_read_unlock_bh(void)802 static inline void rcu_read_unlock_bh(void)
803 {
804 RCU_LOCKDEP_WARN(!rcu_is_watching(),
805 "rcu_read_unlock_bh() used illegally while idle");
806 rcu_lock_release(&rcu_bh_lock_map);
807 __release(RCU_BH);
808 local_bh_enable();
809 }
810
811 /**
812 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
813 *
814 * This is equivalent to rcu_read_lock(), but also disables preemption.
815 * Read-side critical sections can also be introduced by anything else that
816 * disables preemption, including local_irq_disable() and friends. However,
817 * please note that the equivalence to rcu_read_lock() applies only to
818 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
819 * were unrelated.
820 *
821 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
822 * must occur in the same context, for example, it is illegal to invoke
823 * rcu_read_unlock_sched() from process context if the matching
824 * rcu_read_lock_sched() was invoked from an NMI handler.
825 */
rcu_read_lock_sched(void)826 static inline void rcu_read_lock_sched(void)
827 {
828 preempt_disable();
829 __acquire(RCU_SCHED);
830 rcu_lock_acquire(&rcu_sched_lock_map);
831 RCU_LOCKDEP_WARN(!rcu_is_watching(),
832 "rcu_read_lock_sched() used illegally while idle");
833 }
834
835 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)836 static inline notrace void rcu_read_lock_sched_notrace(void)
837 {
838 preempt_disable_notrace();
839 __acquire(RCU_SCHED);
840 }
841
842 /**
843 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
844 *
845 * See rcu_read_lock_sched() for more information.
846 */
rcu_read_unlock_sched(void)847 static inline void rcu_read_unlock_sched(void)
848 {
849 RCU_LOCKDEP_WARN(!rcu_is_watching(),
850 "rcu_read_unlock_sched() used illegally while idle");
851 rcu_lock_release(&rcu_sched_lock_map);
852 __release(RCU_SCHED);
853 preempt_enable();
854 }
855
856 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)857 static inline notrace void rcu_read_unlock_sched_notrace(void)
858 {
859 __release(RCU_SCHED);
860 preempt_enable_notrace();
861 }
862
863 /**
864 * RCU_INIT_POINTER() - initialize an RCU protected pointer
865 * @p: The pointer to be initialized.
866 * @v: The value to initialized the pointer to.
867 *
868 * Initialize an RCU-protected pointer in special cases where readers
869 * do not need ordering constraints on the CPU or the compiler. These
870 * special cases are:
871 *
872 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
873 * 2. The caller has taken whatever steps are required to prevent
874 * RCU readers from concurrently accessing this pointer *or*
875 * 3. The referenced data structure has already been exposed to
876 * readers either at compile time or via rcu_assign_pointer() *and*
877 *
878 * a. You have not made *any* reader-visible changes to
879 * this structure since then *or*
880 * b. It is OK for readers accessing this structure from its
881 * new location to see the old state of the structure. (For
882 * example, the changes were to statistical counters or to
883 * other state where exact synchronization is not required.)
884 *
885 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
886 * result in impossible-to-diagnose memory corruption. As in the structures
887 * will look OK in crash dumps, but any concurrent RCU readers might
888 * see pre-initialized values of the referenced data structure. So
889 * please be very careful how you use RCU_INIT_POINTER()!!!
890 *
891 * If you are creating an RCU-protected linked structure that is accessed
892 * by a single external-to-structure RCU-protected pointer, then you may
893 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
894 * pointers, but you must use rcu_assign_pointer() to initialize the
895 * external-to-structure pointer *after* you have completely initialized
896 * the reader-accessible portions of the linked structure.
897 *
898 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
899 * ordering guarantees for either the CPU or the compiler.
900 */
901 #define RCU_INIT_POINTER(p, v) \
902 do { \
903 rcu_check_sparse(p, __rcu); \
904 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
905 } while (0)
906
907 /**
908 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
909 * @p: The pointer to be initialized.
910 * @v: The value to initialized the pointer to.
911 *
912 * GCC-style initialization for an RCU-protected pointer in a structure field.
913 */
914 #define RCU_POINTER_INITIALIZER(p, v) \
915 .p = RCU_INITIALIZER(v)
916
917 /*
918 * Does the specified offset indicate that the corresponding rcu_head
919 * structure can be handled by kvfree_rcu()?
920 */
921 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
922
923 /**
924 * kfree_rcu() - kfree an object after a grace period.
925 * @ptr: pointer to kfree for both single- and double-argument invocations.
926 * @rhf: the name of the struct rcu_head within the type of @ptr,
927 * but only for double-argument invocations.
928 *
929 * Many rcu callbacks functions just call kfree() on the base structure.
930 * These functions are trivial, but their size adds up, and furthermore
931 * when they are used in a kernel module, that module must invoke the
932 * high-latency rcu_barrier() function at module-unload time.
933 *
934 * The kfree_rcu() function handles this issue. Rather than encoding a
935 * function address in the embedded rcu_head structure, kfree_rcu() instead
936 * encodes the offset of the rcu_head structure within the base structure.
937 * Because the functions are not allowed in the low-order 4096 bytes of
938 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
939 * If the offset is larger than 4095 bytes, a compile-time error will
940 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
941 * either fall back to use of call_rcu() or rearrange the structure to
942 * position the rcu_head structure into the first 4096 bytes.
943 *
944 * Note that the allowable offset might decrease in the future, for example,
945 * to allow something like kmem_cache_free_rcu().
946 *
947 * The BUILD_BUG_ON check must not involve any function calls, hence the
948 * checks are done in macros here.
949 */
950 #define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf)
951
952 /**
953 * kvfree_rcu() - kvfree an object after a grace period.
954 *
955 * This macro consists of one or two arguments and it is
956 * based on whether an object is head-less or not. If it
957 * has a head then a semantic stays the same as it used
958 * to be before:
959 *
960 * kvfree_rcu(ptr, rhf);
961 *
962 * where @ptr is a pointer to kvfree(), @rhf is the name
963 * of the rcu_head structure within the type of @ptr.
964 *
965 * When it comes to head-less variant, only one argument
966 * is passed and that is just a pointer which has to be
967 * freed after a grace period. Therefore the semantic is
968 *
969 * kvfree_rcu(ptr);
970 *
971 * where @ptr is the pointer to be freed by kvfree().
972 *
973 * Please note, head-less way of freeing is permitted to
974 * use from a context that has to follow might_sleep()
975 * annotation. Otherwise, please switch and embed the
976 * rcu_head structure within the type of @ptr.
977 */
978 #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \
979 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
980
981 #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
982 #define kvfree_rcu_arg_2(ptr, rhf) \
983 do { \
984 typeof (ptr) ___p = (ptr); \
985 \
986 if (___p) { \
987 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \
988 kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long) \
989 (offsetof(typeof(*(ptr)), rhf))); \
990 } \
991 } while (0)
992
993 #define kvfree_rcu_arg_1(ptr) \
994 do { \
995 typeof(ptr) ___p = (ptr); \
996 \
997 if (___p) \
998 kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \
999 } while (0)
1000
1001 /*
1002 * Place this after a lock-acquisition primitive to guarantee that
1003 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
1004 * if the UNLOCK and LOCK are executed by the same CPU or if the
1005 * UNLOCK and LOCK operate on the same lock variable.
1006 */
1007 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1008 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
1009 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1010 #define smp_mb__after_unlock_lock() do { } while (0)
1011 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1012
1013
1014 /* Has the specified rcu_head structure been handed to call_rcu()? */
1015
1016 /**
1017 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1018 * @rhp: The rcu_head structure to initialize.
1019 *
1020 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1021 * given rcu_head structure has already been passed to call_rcu(), then
1022 * you must also invoke this rcu_head_init() function on it just after
1023 * allocating that structure. Calls to this function must not race with
1024 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1025 */
rcu_head_init(struct rcu_head * rhp)1026 static inline void rcu_head_init(struct rcu_head *rhp)
1027 {
1028 rhp->func = (rcu_callback_t)~0L;
1029 }
1030
1031 /**
1032 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1033 * @rhp: The rcu_head structure to test.
1034 * @f: The function passed to call_rcu() along with @rhp.
1035 *
1036 * Returns @true if the @rhp has been passed to call_rcu() with @func,
1037 * and @false otherwise. Emits a warning in any other case, including
1038 * the case where @rhp has already been invoked after a grace period.
1039 * Calls to this function must not race with callback invocation. One way
1040 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1041 * in an RCU read-side critical section that includes a read-side fetch
1042 * of the pointer to the structure containing @rhp.
1043 */
1044 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1045 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1046 {
1047 rcu_callback_t func = READ_ONCE(rhp->func);
1048
1049 if (func == f)
1050 return true;
1051 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1052 return false;
1053 }
1054
1055 /* kernel/ksysfs.c definitions */
1056 extern int rcu_expedited;
1057 extern int rcu_normal;
1058
1059 #endif /* __LINUX_RCUPDATE_H */
1060