1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * R-Car Display Unit CRTCs
4  *
5  * Copyright (C) 2013-2015 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/mutex.h>
12 #include <linux/platform_device.h>
13 #include <linux/sys_soc.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_atomic_helper.h>
17 #include <drm/drm_bridge.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_device.h>
20 #include <drm/drm_gem_dma_helper.h>
21 #include <drm/drm_vblank.h>
22 
23 #include "rcar_cmm.h"
24 #include "rcar_du_crtc.h"
25 #include "rcar_du_drv.h"
26 #include "rcar_du_encoder.h"
27 #include "rcar_du_kms.h"
28 #include "rcar_du_plane.h"
29 #include "rcar_du_regs.h"
30 #include "rcar_du_vsp.h"
31 #include "rcar_lvds.h"
32 #include "rcar_mipi_dsi.h"
33 
rcar_du_crtc_read(struct rcar_du_crtc * rcrtc,u32 reg)34 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
35 {
36 	struct rcar_du_device *rcdu = rcrtc->dev;
37 
38 	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
39 }
40 
rcar_du_crtc_write(struct rcar_du_crtc * rcrtc,u32 reg,u32 data)41 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
42 {
43 	struct rcar_du_device *rcdu = rcrtc->dev;
44 
45 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
46 }
47 
rcar_du_crtc_clr(struct rcar_du_crtc * rcrtc,u32 reg,u32 clr)48 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
49 {
50 	struct rcar_du_device *rcdu = rcrtc->dev;
51 
52 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
53 		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
54 }
55 
rcar_du_crtc_set(struct rcar_du_crtc * rcrtc,u32 reg,u32 set)56 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
57 {
58 	struct rcar_du_device *rcdu = rcrtc->dev;
59 
60 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
61 		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
62 }
63 
rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc * rcrtc,u32 clr,u32 set)64 void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
65 {
66 	struct rcar_du_device *rcdu = rcrtc->dev;
67 
68 	rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
69 	rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
70 }
71 
72 /* -----------------------------------------------------------------------------
73  * Hardware Setup
74  */
75 
76 struct dpll_info {
77 	unsigned int output;
78 	unsigned int fdpll;
79 	unsigned int n;
80 	unsigned int m;
81 };
82 
rcar_du_dpll_divider(struct rcar_du_crtc * rcrtc,struct dpll_info * dpll,unsigned long input,unsigned long target)83 static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
84 				 struct dpll_info *dpll,
85 				 unsigned long input,
86 				 unsigned long target)
87 {
88 	unsigned long best_diff = (unsigned long)-1;
89 	unsigned long diff;
90 	unsigned int fdpll;
91 	unsigned int m;
92 	unsigned int n;
93 
94 	/*
95 	 *   fin                                 fvco        fout       fclkout
96 	 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
97 	 *              +-> |  |                             |
98 	 *              |                                    |
99 	 *              +---------------- [1/N] <------------+
100 	 *
101 	 *	fclkout = fvco / P / FDPLL -- (1)
102 	 *
103 	 * fin/M = fvco/P/N
104 	 *
105 	 *	fvco = fin * P *  N / M -- (2)
106 	 *
107 	 * (1) + (2) indicates
108 	 *
109 	 *	fclkout = fin * N / M / FDPLL
110 	 *
111 	 * NOTES
112 	 *	N	: (n + 1)
113 	 *	M	: (m + 1)
114 	 *	FDPLL	: (fdpll + 1)
115 	 *	P	: 2
116 	 *	2kHz < fvco < 4096MHz
117 	 *
118 	 * To minimize the jitter,
119 	 * N : as large as possible
120 	 * M : as small as possible
121 	 */
122 	for (m = 0; m < 4; m++) {
123 		for (n = 119; n > 38; n--) {
124 			/*
125 			 * This code only runs on 64-bit architectures, the
126 			 * unsigned long type can thus be used for 64-bit
127 			 * computation. It will still compile without any
128 			 * warning on 32-bit architectures.
129 			 *
130 			 * To optimize calculations, use fout instead of fvco
131 			 * to verify the VCO frequency constraint.
132 			 */
133 			unsigned long fout = input * (n + 1) / (m + 1);
134 
135 			if (fout < 1000 || fout > 2048 * 1000 * 1000U)
136 				continue;
137 
138 			for (fdpll = 1; fdpll < 32; fdpll++) {
139 				unsigned long output;
140 
141 				output = fout / (fdpll + 1);
142 				if (output >= 400 * 1000 * 1000)
143 					continue;
144 
145 				diff = abs((long)output - (long)target);
146 				if (best_diff > diff) {
147 					best_diff = diff;
148 					dpll->n = n;
149 					dpll->m = m;
150 					dpll->fdpll = fdpll;
151 					dpll->output = output;
152 				}
153 
154 				if (diff == 0)
155 					goto done;
156 			}
157 		}
158 	}
159 
160 done:
161 	dev_dbg(rcrtc->dev->dev,
162 		"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
163 		 dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
164 }
165 
166 struct du_clk_params {
167 	struct clk *clk;
168 	unsigned long rate;
169 	unsigned long diff;
170 	u32 escr;
171 };
172 
rcar_du_escr_divider(struct clk * clk,unsigned long target,u32 escr,struct du_clk_params * params)173 static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
174 				 u32 escr, struct du_clk_params *params)
175 {
176 	unsigned long rate;
177 	unsigned long diff;
178 	u32 div;
179 
180 	/*
181 	 * If the target rate has already been achieved perfectly we can't do
182 	 * better.
183 	 */
184 	if (params->diff == 0)
185 		return;
186 
187 	/*
188 	 * Compute the input clock rate and internal divisor values to obtain
189 	 * the clock rate closest to the target frequency.
190 	 */
191 	rate = clk_round_rate(clk, target);
192 	div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
193 	diff = abs(rate / (div + 1) - target);
194 
195 	/*
196 	 * Store the parameters if the resulting frequency is better than any
197 	 * previously calculated value.
198 	 */
199 	if (diff < params->diff) {
200 		params->clk = clk;
201 		params->rate = rate;
202 		params->diff = diff;
203 		params->escr = escr | div;
204 	}
205 }
206 
207 static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
208 	{ .soc_id = "r8a7795", .revision = "ES1.*" },
209 	{ /* sentinel */ }
210 };
211 
rcar_du_crtc_set_display_timing(struct rcar_du_crtc * rcrtc)212 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
213 {
214 	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
215 	struct rcar_du_device *rcdu = rcrtc->dev;
216 	unsigned long mode_clock = mode->clock * 1000;
217 	unsigned int hdse_offset;
218 	u32 dsmr;
219 	u32 escr;
220 
221 	if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
222 		unsigned long target = mode_clock;
223 		struct dpll_info dpll = { 0 };
224 		unsigned long extclk;
225 		u32 dpllcr;
226 		u32 div = 0;
227 
228 		/*
229 		 * DU channels that have a display PLL can't use the internal
230 		 * system clock, and have no internal clock divider.
231 		 */
232 
233 		/*
234 		 * The H3 ES1.x exhibits dot clock duty cycle stability issues.
235 		 * We can work around them by configuring the DPLL to twice the
236 		 * desired frequency, coupled with a /2 post-divider. Restrict
237 		 * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
238 		 * no post-divider when a display PLL is present (as shown by
239 		 * the workaround breaking HDMI output on M3-W during testing).
240 		 */
241 		if (soc_device_match(rcar_du_r8a7795_es1)) {
242 			target *= 2;
243 			div = 1;
244 		}
245 
246 		extclk = clk_get_rate(rcrtc->extclock);
247 		rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
248 
249 		dpllcr = DPLLCR_CODE | DPLLCR_CLKE
250 		       | DPLLCR_FDPLL(dpll.fdpll)
251 		       | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
252 		       | DPLLCR_STBY;
253 
254 		if (rcrtc->index == 1)
255 			dpllcr |= DPLLCR_PLCS1
256 			       |  DPLLCR_INCS_DOTCLKIN1;
257 		else
258 			dpllcr |= DPLLCR_PLCS0
259 			       |  DPLLCR_INCS_DOTCLKIN0;
260 
261 		rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
262 
263 		escr = ESCR_DCLKSEL_DCLKIN | div;
264 	} else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) ||
265 		   rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) {
266 		/*
267 		 * Use the external LVDS or DSI PLL output as the dot clock when
268 		 * outputting to the LVDS or DSI encoder on an SoC that supports
269 		 * this clock routing option. We use the clock directly in that
270 		 * case, without any additional divider.
271 		 */
272 		escr = ESCR_DCLKSEL_DCLKIN;
273 	} else {
274 		struct du_clk_params params = { .diff = (unsigned long)-1 };
275 
276 		rcar_du_escr_divider(rcrtc->clock, mode_clock,
277 				     ESCR_DCLKSEL_CLKS, &params);
278 		if (rcrtc->extclock)
279 			rcar_du_escr_divider(rcrtc->extclock, mode_clock,
280 					     ESCR_DCLKSEL_DCLKIN, &params);
281 
282 		dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
283 			mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
284 			params.rate);
285 
286 		clk_set_rate(params.clk, params.rate);
287 		escr = params.escr;
288 	}
289 
290 	dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
291 
292 	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
293 	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
294 
295 	/* Signal polarities */
296 	dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
297 	     | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
298 	     | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
299 	     | DSMR_DIPM_DISP | DSMR_CSPM;
300 	rcar_du_crtc_write(rcrtc, DSMR, dsmr);
301 
302 	/*
303 	 * When the CMM is enabled, an additional offset of 25 pixels must be
304 	 * subtracted from the HDS (horizontal display start) and HDE
305 	 * (horizontal display end) registers.
306 	 */
307 	hdse_offset = 19;
308 	if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2))
309 		hdse_offset += 25;
310 
311 	/* Display timings */
312 	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start -
313 					hdse_offset);
314 	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
315 					mode->hdisplay - hdse_offset);
316 	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
317 					mode->hsync_start - 1);
318 	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
319 
320 	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
321 					mode->crtc_vsync_end - 2);
322 	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
323 					mode->crtc_vsync_end +
324 					mode->crtc_vdisplay - 2);
325 	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
326 					mode->crtc_vsync_end +
327 					mode->crtc_vsync_start - 1);
328 	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
329 
330 	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
331 	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
332 }
333 
plane_zpos(struct rcar_du_plane * plane)334 static unsigned int plane_zpos(struct rcar_du_plane *plane)
335 {
336 	return plane->plane.state->normalized_zpos;
337 }
338 
339 static const struct rcar_du_format_info *
plane_format(struct rcar_du_plane * plane)340 plane_format(struct rcar_du_plane *plane)
341 {
342 	return to_rcar_plane_state(plane->plane.state)->format;
343 }
344 
rcar_du_crtc_update_planes(struct rcar_du_crtc * rcrtc)345 static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
346 {
347 	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
348 	struct rcar_du_device *rcdu = rcrtc->dev;
349 	unsigned int num_planes = 0;
350 	unsigned int dptsr_planes;
351 	unsigned int hwplanes = 0;
352 	unsigned int prio = 0;
353 	unsigned int i;
354 	u32 dspr = 0;
355 
356 	for (i = 0; i < rcrtc->group->num_planes; ++i) {
357 		struct rcar_du_plane *plane = &rcrtc->group->planes[i];
358 		unsigned int j;
359 
360 		if (plane->plane.state->crtc != &rcrtc->crtc ||
361 		    !plane->plane.state->visible)
362 			continue;
363 
364 		/* Insert the plane in the sorted planes array. */
365 		for (j = num_planes++; j > 0; --j) {
366 			if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
367 				break;
368 			planes[j] = planes[j-1];
369 		}
370 
371 		planes[j] = plane;
372 		prio += plane_format(plane)->planes * 4;
373 	}
374 
375 	for (i = 0; i < num_planes; ++i) {
376 		struct rcar_du_plane *plane = planes[i];
377 		struct drm_plane_state *state = plane->plane.state;
378 		unsigned int index = to_rcar_plane_state(state)->hwindex;
379 
380 		prio -= 4;
381 		dspr |= (index + 1) << prio;
382 		hwplanes |= 1 << index;
383 
384 		if (plane_format(plane)->planes == 2) {
385 			index = (index + 1) % 8;
386 
387 			prio -= 4;
388 			dspr |= (index + 1) << prio;
389 			hwplanes |= 1 << index;
390 		}
391 	}
392 
393 	/* If VSP+DU integration is enabled the plane assignment is fixed. */
394 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
395 		if (rcdu->info->gen < 3) {
396 			dspr = (rcrtc->index % 2) + 1;
397 			hwplanes = 1 << (rcrtc->index % 2);
398 		} else {
399 			dspr = (rcrtc->index % 2) ? 3 : 1;
400 			hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
401 		}
402 	}
403 
404 	/*
405 	 * Update the planes to display timing and dot clock generator
406 	 * associations.
407 	 *
408 	 * Updating the DPTSR register requires restarting the CRTC group,
409 	 * resulting in visible flicker. To mitigate the issue only update the
410 	 * association if needed by enabled planes. Planes being disabled will
411 	 * keep their current association.
412 	 */
413 	mutex_lock(&rcrtc->group->lock);
414 
415 	dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
416 		     : rcrtc->group->dptsr_planes & ~hwplanes;
417 
418 	if (dptsr_planes != rcrtc->group->dptsr_planes) {
419 		rcar_du_group_write(rcrtc->group, DPTSR,
420 				    (dptsr_planes << 16) | dptsr_planes);
421 		rcrtc->group->dptsr_planes = dptsr_planes;
422 
423 		if (rcrtc->group->used_crtcs)
424 			rcar_du_group_restart(rcrtc->group);
425 	}
426 
427 	/* Restart the group if plane sources have changed. */
428 	if (rcrtc->group->need_restart)
429 		rcar_du_group_restart(rcrtc->group);
430 
431 	mutex_unlock(&rcrtc->group->lock);
432 
433 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
434 			    dspr);
435 }
436 
437 /* -----------------------------------------------------------------------------
438  * Page Flip
439  */
440 
rcar_du_crtc_finish_page_flip(struct rcar_du_crtc * rcrtc)441 void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
442 {
443 	struct drm_pending_vblank_event *event;
444 	struct drm_device *dev = rcrtc->crtc.dev;
445 	unsigned long flags;
446 
447 	spin_lock_irqsave(&dev->event_lock, flags);
448 	event = rcrtc->event;
449 	rcrtc->event = NULL;
450 	spin_unlock_irqrestore(&dev->event_lock, flags);
451 
452 	if (event == NULL)
453 		return;
454 
455 	spin_lock_irqsave(&dev->event_lock, flags);
456 	drm_crtc_send_vblank_event(&rcrtc->crtc, event);
457 	wake_up(&rcrtc->flip_wait);
458 	spin_unlock_irqrestore(&dev->event_lock, flags);
459 
460 	drm_crtc_vblank_put(&rcrtc->crtc);
461 }
462 
rcar_du_crtc_page_flip_pending(struct rcar_du_crtc * rcrtc)463 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
464 {
465 	struct drm_device *dev = rcrtc->crtc.dev;
466 	unsigned long flags;
467 	bool pending;
468 
469 	spin_lock_irqsave(&dev->event_lock, flags);
470 	pending = rcrtc->event != NULL;
471 	spin_unlock_irqrestore(&dev->event_lock, flags);
472 
473 	return pending;
474 }
475 
rcar_du_crtc_wait_page_flip(struct rcar_du_crtc * rcrtc)476 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
477 {
478 	struct rcar_du_device *rcdu = rcrtc->dev;
479 
480 	if (wait_event_timeout(rcrtc->flip_wait,
481 			       !rcar_du_crtc_page_flip_pending(rcrtc),
482 			       msecs_to_jiffies(50)))
483 		return;
484 
485 	dev_warn(rcdu->dev, "page flip timeout\n");
486 
487 	rcar_du_crtc_finish_page_flip(rcrtc);
488 }
489 
490 /* -----------------------------------------------------------------------------
491  * Color Management Module (CMM)
492  */
493 
rcar_du_cmm_check(struct drm_crtc * crtc,struct drm_crtc_state * state)494 static int rcar_du_cmm_check(struct drm_crtc *crtc,
495 			     struct drm_crtc_state *state)
496 {
497 	struct drm_property_blob *drm_lut = state->gamma_lut;
498 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
499 	struct device *dev = rcrtc->dev->dev;
500 
501 	if (!drm_lut)
502 		return 0;
503 
504 	/* We only accept fully populated LUT tables. */
505 	if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) {
506 		dev_err(dev, "invalid gamma lut size: %zu bytes\n",
507 			drm_lut->length);
508 		return -EINVAL;
509 	}
510 
511 	return 0;
512 }
513 
rcar_du_cmm_setup(struct drm_crtc * crtc)514 static void rcar_du_cmm_setup(struct drm_crtc *crtc)
515 {
516 	struct drm_property_blob *drm_lut = crtc->state->gamma_lut;
517 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
518 	struct rcar_cmm_config cmm_config = {};
519 
520 	if (!rcrtc->cmm)
521 		return;
522 
523 	if (drm_lut)
524 		cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data;
525 
526 	rcar_cmm_setup(rcrtc->cmm, &cmm_config);
527 }
528 
529 /* -----------------------------------------------------------------------------
530  * Start/Stop and Suspend/Resume
531  */
532 
rcar_du_crtc_setup(struct rcar_du_crtc * rcrtc)533 static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
534 {
535 	/* Set display off and background to black */
536 	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
537 	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
538 
539 	/* Configure display timings and output routing */
540 	rcar_du_crtc_set_display_timing(rcrtc);
541 	rcar_du_group_set_routing(rcrtc->group);
542 
543 	/* Start with all planes disabled. */
544 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
545 
546 	/* Enable the VSP compositor. */
547 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
548 		rcar_du_vsp_enable(rcrtc);
549 
550 	/* Turn vertical blanking interrupt reporting on. */
551 	drm_crtc_vblank_on(&rcrtc->crtc);
552 }
553 
rcar_du_crtc_get(struct rcar_du_crtc * rcrtc)554 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
555 {
556 	int ret;
557 
558 	/*
559 	 * Guard against double-get, as the function is called from both the
560 	 * .atomic_enable() and .atomic_begin() handlers.
561 	 */
562 	if (rcrtc->initialized)
563 		return 0;
564 
565 	ret = clk_prepare_enable(rcrtc->clock);
566 	if (ret < 0)
567 		return ret;
568 
569 	ret = clk_prepare_enable(rcrtc->extclock);
570 	if (ret < 0)
571 		goto error_clock;
572 
573 	ret = rcar_du_group_get(rcrtc->group);
574 	if (ret < 0)
575 		goto error_group;
576 
577 	rcar_du_crtc_setup(rcrtc);
578 	rcrtc->initialized = true;
579 
580 	return 0;
581 
582 error_group:
583 	clk_disable_unprepare(rcrtc->extclock);
584 error_clock:
585 	clk_disable_unprepare(rcrtc->clock);
586 	return ret;
587 }
588 
rcar_du_crtc_put(struct rcar_du_crtc * rcrtc)589 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
590 {
591 	rcar_du_group_put(rcrtc->group);
592 
593 	clk_disable_unprepare(rcrtc->extclock);
594 	clk_disable_unprepare(rcrtc->clock);
595 
596 	rcrtc->initialized = false;
597 }
598 
rcar_du_crtc_start(struct rcar_du_crtc * rcrtc)599 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
600 {
601 	bool interlaced;
602 
603 	/*
604 	 * Select master sync mode. This enables display operation in master
605 	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
606 	 * actively driven).
607 	 */
608 	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
609 	rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
610 				   (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
611 				   DSYSR_TVM_MASTER);
612 
613 	rcar_du_group_start_stop(rcrtc->group, true);
614 }
615 
rcar_du_crtc_disable_planes(struct rcar_du_crtc * rcrtc)616 static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
617 {
618 	struct rcar_du_device *rcdu = rcrtc->dev;
619 	struct drm_crtc *crtc = &rcrtc->crtc;
620 	u32 status;
621 
622 	/* Make sure vblank interrupts are enabled. */
623 	drm_crtc_vblank_get(crtc);
624 
625 	/*
626 	 * Disable planes and calculate how many vertical blanking interrupts we
627 	 * have to wait for. If a vertical blanking interrupt has been triggered
628 	 * but not processed yet, we don't know whether it occurred before or
629 	 * after the planes got disabled. We thus have to wait for two vblank
630 	 * interrupts in that case.
631 	 */
632 	spin_lock_irq(&rcrtc->vblank_lock);
633 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
634 	status = rcar_du_crtc_read(rcrtc, DSSR);
635 	rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
636 	spin_unlock_irq(&rcrtc->vblank_lock);
637 
638 	if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
639 				msecs_to_jiffies(100)))
640 		dev_warn(rcdu->dev, "vertical blanking timeout\n");
641 
642 	drm_crtc_vblank_put(crtc);
643 }
644 
rcar_du_crtc_stop(struct rcar_du_crtc * rcrtc)645 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
646 {
647 	struct drm_crtc *crtc = &rcrtc->crtc;
648 
649 	/*
650 	 * Disable all planes and wait for the change to take effect. This is
651 	 * required as the plane enable registers are updated on vblank, and no
652 	 * vblank will occur once the CRTC is stopped. Disabling planes when
653 	 * starting the CRTC thus wouldn't be enough as it would start scanning
654 	 * out immediately from old frame buffers until the next vblank.
655 	 *
656 	 * This increases the CRTC stop delay, especially when multiple CRTCs
657 	 * are stopped in one operation as we now wait for one vblank per CRTC.
658 	 * Whether this can be improved needs to be researched.
659 	 */
660 	rcar_du_crtc_disable_planes(rcrtc);
661 
662 	/*
663 	 * Disable vertical blanking interrupt reporting. We first need to wait
664 	 * for page flip completion before stopping the CRTC as userspace
665 	 * expects page flips to eventually complete.
666 	 */
667 	rcar_du_crtc_wait_page_flip(rcrtc);
668 	drm_crtc_vblank_off(crtc);
669 
670 	/* Disable the VSP compositor. */
671 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
672 		rcar_du_vsp_disable(rcrtc);
673 
674 	if (rcrtc->cmm)
675 		rcar_cmm_disable(rcrtc->cmm);
676 
677 	/*
678 	 * Select switch sync mode. This stops display operation and configures
679 	 * the HSYNC and VSYNC signals as inputs.
680 	 *
681 	 * TODO: Find another way to stop the display for DUs that don't support
682 	 * TVM sync.
683 	 */
684 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
685 		rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
686 					   DSYSR_TVM_SWITCH);
687 
688 	rcar_du_group_start_stop(rcrtc->group, false);
689 }
690 
691 /* -----------------------------------------------------------------------------
692  * CRTC Functions
693  */
694 
rcar_du_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)695 static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
696 				     struct drm_atomic_state *state)
697 {
698 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
699 									  crtc);
700 	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc_state);
701 	struct drm_encoder *encoder;
702 	int ret;
703 
704 	ret = rcar_du_cmm_check(crtc, crtc_state);
705 	if (ret)
706 		return ret;
707 
708 	/* Store the routes from the CRTC output to the DU outputs. */
709 	rstate->outputs = 0;
710 
711 	drm_for_each_encoder_mask(encoder, crtc->dev,
712 				  crtc_state->encoder_mask) {
713 		struct rcar_du_encoder *renc;
714 
715 		/* Skip the writeback encoder. */
716 		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
717 			continue;
718 
719 		renc = to_rcar_encoder(encoder);
720 		rstate->outputs |= BIT(renc->output);
721 	}
722 
723 	return 0;
724 }
725 
rcar_du_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)726 static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
727 				       struct drm_atomic_state *state)
728 {
729 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
730 	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
731 	struct rcar_du_device *rcdu = rcrtc->dev;
732 
733 	if (rcrtc->cmm)
734 		rcar_cmm_enable(rcrtc->cmm);
735 	rcar_du_crtc_get(rcrtc);
736 
737 	/*
738 	 * On D3/E3 the dot clock is provided by the LVDS encoder attached to
739 	 * the DU channel. We need to enable its clock output explicitly if
740 	 * the LVDS output is disabled.
741 	 */
742 	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
743 	    rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
744 		struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
745 		const struct drm_display_mode *mode =
746 			&crtc->state->adjusted_mode;
747 
748 		rcar_lvds_pclk_enable(bridge, mode->clock * 1000);
749 	}
750 
751 	/*
752 	 * Similarly to LVDS, on V3U the dot clock is provided by the DSI
753 	 * encoder, and we need to enable the DSI clocks before enabling the CRTC.
754 	 */
755 	if ((rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) &&
756 	    (rstate->outputs &
757 	     (BIT(RCAR_DU_OUTPUT_DSI0) | BIT(RCAR_DU_OUTPUT_DSI1)))) {
758 		struct drm_bridge *bridge = rcdu->dsi[rcrtc->index];
759 
760 		rcar_mipi_dsi_pclk_enable(bridge, state);
761 	}
762 
763 	rcar_du_crtc_start(rcrtc);
764 
765 	/*
766 	 * TODO: The chip manual indicates that CMM tables should be written
767 	 * after the DU channel has been activated. Investigate the impact
768 	 * of this restriction on the first displayed frame.
769 	 */
770 	rcar_du_cmm_setup(crtc);
771 }
772 
rcar_du_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)773 static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
774 					struct drm_atomic_state *state)
775 {
776 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
777 									 crtc);
778 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
779 	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
780 	struct rcar_du_device *rcdu = rcrtc->dev;
781 
782 	rcar_du_crtc_stop(rcrtc);
783 	rcar_du_crtc_put(rcrtc);
784 
785 	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
786 	    rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
787 		struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
788 
789 		/*
790 		 * Disable the LVDS clock output, see
791 		 * rcar_du_crtc_atomic_enable().
792 		 */
793 		rcar_lvds_pclk_disable(bridge);
794 	}
795 
796 	if ((rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) &&
797 	    (rstate->outputs &
798 	     (BIT(RCAR_DU_OUTPUT_DSI0) | BIT(RCAR_DU_OUTPUT_DSI1)))) {
799 		struct drm_bridge *bridge = rcdu->dsi[rcrtc->index];
800 
801 		/*
802 		 * Disable the DSI clock output, see
803 		 * rcar_du_crtc_atomic_enable().
804 		 */
805 
806 		rcar_mipi_dsi_pclk_disable(bridge);
807 	}
808 
809 	spin_lock_irq(&crtc->dev->event_lock);
810 	if (crtc->state->event) {
811 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
812 		crtc->state->event = NULL;
813 	}
814 	spin_unlock_irq(&crtc->dev->event_lock);
815 }
816 
rcar_du_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_atomic_state * state)817 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
818 				      struct drm_atomic_state *state)
819 {
820 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
821 
822 	WARN_ON(!crtc->state->enable);
823 
824 	/*
825 	 * If a mode set is in progress we can be called with the CRTC disabled.
826 	 * We thus need to first get and setup the CRTC in order to configure
827 	 * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
828 	 * kept awake until the .atomic_enable() call that will follow. The get
829 	 * operation in .atomic_enable() will in that case be a no-op, and the
830 	 * CRTC will be put later in .atomic_disable().
831 	 *
832 	 * If a mode set is not in progress the CRTC is enabled, and the
833 	 * following get call will be a no-op. There is thus no need to balance
834 	 * it in .atomic_flush() either.
835 	 */
836 	rcar_du_crtc_get(rcrtc);
837 
838 	/* If the active state changed, we let .atomic_enable handle CMM. */
839 	if (crtc->state->color_mgmt_changed && !crtc->state->active_changed)
840 		rcar_du_cmm_setup(crtc);
841 
842 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
843 		rcar_du_vsp_atomic_begin(rcrtc);
844 }
845 
rcar_du_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)846 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
847 				      struct drm_atomic_state *state)
848 {
849 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
850 	struct drm_device *dev = rcrtc->crtc.dev;
851 	unsigned long flags;
852 
853 	rcar_du_crtc_update_planes(rcrtc);
854 
855 	if (crtc->state->event) {
856 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
857 
858 		spin_lock_irqsave(&dev->event_lock, flags);
859 		rcrtc->event = crtc->state->event;
860 		crtc->state->event = NULL;
861 		spin_unlock_irqrestore(&dev->event_lock, flags);
862 	}
863 
864 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
865 		rcar_du_vsp_atomic_flush(rcrtc);
866 }
867 
868 static enum drm_mode_status
rcar_du_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)869 rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
870 			const struct drm_display_mode *mode)
871 {
872 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
873 	struct rcar_du_device *rcdu = rcrtc->dev;
874 	bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
875 	unsigned int min_sync_porch;
876 	unsigned int vbp;
877 
878 	if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
879 		return MODE_NO_INTERLACE;
880 
881 	/*
882 	 * The hardware requires a minimum combined horizontal sync and back
883 	 * porch of 20 pixels (when CMM isn't used) or 45 pixels (when CMM is
884 	 * used), and a minimum vertical back porch of 3 lines.
885 	 */
886 	min_sync_porch = 20;
887 	if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2))
888 		min_sync_porch += 25;
889 
890 	if (mode->htotal - mode->hsync_start < min_sync_porch)
891 		return MODE_HBLANK_NARROW;
892 
893 	vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
894 	if (vbp < 3)
895 		return MODE_VBLANK_NARROW;
896 
897 	return MODE_OK;
898 }
899 
900 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
901 	.atomic_check = rcar_du_crtc_atomic_check,
902 	.atomic_begin = rcar_du_crtc_atomic_begin,
903 	.atomic_flush = rcar_du_crtc_atomic_flush,
904 	.atomic_enable = rcar_du_crtc_atomic_enable,
905 	.atomic_disable = rcar_du_crtc_atomic_disable,
906 	.mode_valid = rcar_du_crtc_mode_valid,
907 };
908 
rcar_du_crtc_crc_init(struct rcar_du_crtc * rcrtc)909 static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
910 {
911 	struct rcar_du_device *rcdu = rcrtc->dev;
912 	const char **sources;
913 	unsigned int count;
914 	int i = -1;
915 
916 	/* CRC available only on Gen3 HW. */
917 	if (rcdu->info->gen < 3)
918 		return;
919 
920 	/* Reserve 1 for "auto" source. */
921 	count = rcrtc->vsp->num_planes + 1;
922 
923 	sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
924 	if (!sources)
925 		return;
926 
927 	sources[0] = kstrdup("auto", GFP_KERNEL);
928 	if (!sources[0])
929 		goto error;
930 
931 	for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
932 		struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
933 		char name[16];
934 
935 		sprintf(name, "plane%u", plane->base.id);
936 		sources[i + 1] = kstrdup(name, GFP_KERNEL);
937 		if (!sources[i + 1])
938 			goto error;
939 	}
940 
941 	rcrtc->sources = sources;
942 	rcrtc->sources_count = count;
943 	return;
944 
945 error:
946 	while (i >= 0) {
947 		kfree(sources[i]);
948 		i--;
949 	}
950 	kfree(sources);
951 }
952 
rcar_du_crtc_crc_cleanup(struct rcar_du_crtc * rcrtc)953 static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
954 {
955 	unsigned int i;
956 
957 	if (!rcrtc->sources)
958 		return;
959 
960 	for (i = 0; i < rcrtc->sources_count; i++)
961 		kfree(rcrtc->sources[i]);
962 	kfree(rcrtc->sources);
963 
964 	rcrtc->sources = NULL;
965 	rcrtc->sources_count = 0;
966 }
967 
968 static struct drm_crtc_state *
rcar_du_crtc_atomic_duplicate_state(struct drm_crtc * crtc)969 rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
970 {
971 	struct rcar_du_crtc_state *state;
972 	struct rcar_du_crtc_state *copy;
973 
974 	if (WARN_ON(!crtc->state))
975 		return NULL;
976 
977 	state = to_rcar_crtc_state(crtc->state);
978 	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
979 	if (copy == NULL)
980 		return NULL;
981 
982 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);
983 
984 	return &copy->state;
985 }
986 
rcar_du_crtc_atomic_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)987 static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
988 					      struct drm_crtc_state *state)
989 {
990 	__drm_atomic_helper_crtc_destroy_state(state);
991 	kfree(to_rcar_crtc_state(state));
992 }
993 
rcar_du_crtc_cleanup(struct drm_crtc * crtc)994 static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
995 {
996 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
997 
998 	rcar_du_crtc_crc_cleanup(rcrtc);
999 
1000 	return drm_crtc_cleanup(crtc);
1001 }
1002 
rcar_du_crtc_reset(struct drm_crtc * crtc)1003 static void rcar_du_crtc_reset(struct drm_crtc *crtc)
1004 {
1005 	struct rcar_du_crtc_state *state;
1006 
1007 	if (crtc->state) {
1008 		rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
1009 		crtc->state = NULL;
1010 	}
1011 
1012 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1013 	if (state == NULL)
1014 		return;
1015 
1016 	state->crc.source = VSP1_DU_CRC_NONE;
1017 	state->crc.index = 0;
1018 
1019 	__drm_atomic_helper_crtc_reset(crtc, &state->state);
1020 }
1021 
rcar_du_crtc_enable_vblank(struct drm_crtc * crtc)1022 static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
1023 {
1024 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1025 
1026 	rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
1027 	rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
1028 	rcrtc->vblank_enable = true;
1029 
1030 	return 0;
1031 }
1032 
rcar_du_crtc_disable_vblank(struct drm_crtc * crtc)1033 static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
1034 {
1035 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1036 
1037 	rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
1038 	rcrtc->vblank_enable = false;
1039 }
1040 
rcar_du_crtc_parse_crc_source(struct rcar_du_crtc * rcrtc,const char * source_name,enum vsp1_du_crc_source * source)1041 static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
1042 					 const char *source_name,
1043 					 enum vsp1_du_crc_source *source)
1044 {
1045 	unsigned int index;
1046 	int ret;
1047 
1048 	/*
1049 	 * Parse the source name. Supported values are "plane%u" to compute the
1050 	 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
1051 	 * CRC on the composer (VSP) output.
1052 	 */
1053 
1054 	if (!source_name) {
1055 		*source = VSP1_DU_CRC_NONE;
1056 		return 0;
1057 	} else if (!strcmp(source_name, "auto")) {
1058 		*source = VSP1_DU_CRC_OUTPUT;
1059 		return 0;
1060 	} else if (strstarts(source_name, "plane")) {
1061 		unsigned int i;
1062 
1063 		*source = VSP1_DU_CRC_PLANE;
1064 
1065 		ret = kstrtouint(source_name + strlen("plane"), 10, &index);
1066 		if (ret < 0)
1067 			return ret;
1068 
1069 		for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
1070 			if (index == rcrtc->vsp->planes[i].plane.base.id)
1071 				return i;
1072 		}
1073 	}
1074 
1075 	return -EINVAL;
1076 }
1077 
rcar_du_crtc_verify_crc_source(struct drm_crtc * crtc,const char * source_name,size_t * values_cnt)1078 static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
1079 					  const char *source_name,
1080 					  size_t *values_cnt)
1081 {
1082 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1083 	enum vsp1_du_crc_source source;
1084 
1085 	if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
1086 		DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
1087 		return -EINVAL;
1088 	}
1089 
1090 	*values_cnt = 1;
1091 	return 0;
1092 }
1093 
1094 static const char *const *
rcar_du_crtc_get_crc_sources(struct drm_crtc * crtc,size_t * count)1095 rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
1096 {
1097 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1098 
1099 	*count = rcrtc->sources_count;
1100 	return rcrtc->sources;
1101 }
1102 
rcar_du_crtc_set_crc_source(struct drm_crtc * crtc,const char * source_name)1103 static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
1104 				       const char *source_name)
1105 {
1106 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1107 	struct drm_modeset_acquire_ctx ctx;
1108 	struct drm_crtc_state *crtc_state;
1109 	struct drm_atomic_state *state;
1110 	enum vsp1_du_crc_source source;
1111 	unsigned int index;
1112 	int ret;
1113 
1114 	ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
1115 	if (ret < 0)
1116 		return ret;
1117 
1118 	index = ret;
1119 
1120 	/* Perform an atomic commit to set the CRC source. */
1121 	drm_modeset_acquire_init(&ctx, 0);
1122 
1123 	state = drm_atomic_state_alloc(crtc->dev);
1124 	if (!state) {
1125 		ret = -ENOMEM;
1126 		goto unlock;
1127 	}
1128 
1129 	state->acquire_ctx = &ctx;
1130 
1131 retry:
1132 	crtc_state = drm_atomic_get_crtc_state(state, crtc);
1133 	if (!IS_ERR(crtc_state)) {
1134 		struct rcar_du_crtc_state *rcrtc_state;
1135 
1136 		rcrtc_state = to_rcar_crtc_state(crtc_state);
1137 		rcrtc_state->crc.source = source;
1138 		rcrtc_state->crc.index = index;
1139 
1140 		ret = drm_atomic_commit(state);
1141 	} else {
1142 		ret = PTR_ERR(crtc_state);
1143 	}
1144 
1145 	if (ret == -EDEADLK) {
1146 		drm_atomic_state_clear(state);
1147 		drm_modeset_backoff(&ctx);
1148 		goto retry;
1149 	}
1150 
1151 	drm_atomic_state_put(state);
1152 
1153 unlock:
1154 	drm_modeset_drop_locks(&ctx);
1155 	drm_modeset_acquire_fini(&ctx);
1156 
1157 	return ret;
1158 }
1159 
1160 static const struct drm_crtc_funcs crtc_funcs_gen2 = {
1161 	.reset = rcar_du_crtc_reset,
1162 	.destroy = drm_crtc_cleanup,
1163 	.set_config = drm_atomic_helper_set_config,
1164 	.page_flip = drm_atomic_helper_page_flip,
1165 	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1166 	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1167 	.enable_vblank = rcar_du_crtc_enable_vblank,
1168 	.disable_vblank = rcar_du_crtc_disable_vblank,
1169 };
1170 
1171 static const struct drm_crtc_funcs crtc_funcs_gen3 = {
1172 	.reset = rcar_du_crtc_reset,
1173 	.destroy = rcar_du_crtc_cleanup,
1174 	.set_config = drm_atomic_helper_set_config,
1175 	.page_flip = drm_atomic_helper_page_flip,
1176 	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1177 	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1178 	.enable_vblank = rcar_du_crtc_enable_vblank,
1179 	.disable_vblank = rcar_du_crtc_disable_vblank,
1180 	.set_crc_source = rcar_du_crtc_set_crc_source,
1181 	.verify_crc_source = rcar_du_crtc_verify_crc_source,
1182 	.get_crc_sources = rcar_du_crtc_get_crc_sources,
1183 };
1184 
1185 /* -----------------------------------------------------------------------------
1186  * Interrupt Handling
1187  */
1188 
rcar_du_crtc_irq(int irq,void * arg)1189 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
1190 {
1191 	struct rcar_du_crtc *rcrtc = arg;
1192 	struct rcar_du_device *rcdu = rcrtc->dev;
1193 	irqreturn_t ret = IRQ_NONE;
1194 	u32 status;
1195 
1196 	spin_lock(&rcrtc->vblank_lock);
1197 
1198 	status = rcar_du_crtc_read(rcrtc, DSSR);
1199 	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
1200 
1201 	if (status & DSSR_VBK) {
1202 		/*
1203 		 * Wake up the vblank wait if the counter reaches 0. This must
1204 		 * be protected by the vblank_lock to avoid races in
1205 		 * rcar_du_crtc_disable_planes().
1206 		 */
1207 		if (rcrtc->vblank_count) {
1208 			if (--rcrtc->vblank_count == 0)
1209 				wake_up(&rcrtc->vblank_wait);
1210 		}
1211 	}
1212 
1213 	spin_unlock(&rcrtc->vblank_lock);
1214 
1215 	if (status & DSSR_VBK) {
1216 		if (rcdu->info->gen < 3) {
1217 			drm_crtc_handle_vblank(&rcrtc->crtc);
1218 			rcar_du_crtc_finish_page_flip(rcrtc);
1219 		}
1220 
1221 		ret = IRQ_HANDLED;
1222 	}
1223 
1224 	return ret;
1225 }
1226 
1227 /* -----------------------------------------------------------------------------
1228  * Initialization
1229  */
1230 
rcar_du_crtc_create(struct rcar_du_group * rgrp,unsigned int swindex,unsigned int hwindex)1231 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
1232 			unsigned int hwindex)
1233 {
1234 	static const unsigned int mmio_offsets[] = {
1235 		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1236 	};
1237 
1238 	struct rcar_du_device *rcdu = rgrp->dev;
1239 	struct platform_device *pdev = to_platform_device(rcdu->dev);
1240 	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1241 	struct drm_crtc *crtc = &rcrtc->crtc;
1242 	struct drm_plane *primary;
1243 	unsigned int irqflags;
1244 	struct clk *clk;
1245 	char clk_name[9];
1246 	char *name;
1247 	int irq;
1248 	int ret;
1249 
1250 	/* Get the CRTC clock and the optional external clock. */
1251 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_CLOCK)) {
1252 		sprintf(clk_name, "du.%u", hwindex);
1253 		name = clk_name;
1254 	} else {
1255 		name = NULL;
1256 	}
1257 
1258 	rcrtc->clock = devm_clk_get(rcdu->dev, name);
1259 	if (IS_ERR(rcrtc->clock)) {
1260 		dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1261 		return PTR_ERR(rcrtc->clock);
1262 	}
1263 
1264 	sprintf(clk_name, "dclkin.%u", hwindex);
1265 	clk = devm_clk_get(rcdu->dev, clk_name);
1266 	if (!IS_ERR(clk)) {
1267 		rcrtc->extclock = clk;
1268 	} else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1269 		return -EPROBE_DEFER;
1270 	} else if (rcdu->info->dpll_mask & BIT(hwindex)) {
1271 		/*
1272 		 * DU channels that have a display PLL can't use the internal
1273 		 * system clock and thus require an external clock.
1274 		 */
1275 		ret = PTR_ERR(clk);
1276 		dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
1277 		return ret;
1278 	}
1279 
1280 	init_waitqueue_head(&rcrtc->flip_wait);
1281 	init_waitqueue_head(&rcrtc->vblank_wait);
1282 	spin_lock_init(&rcrtc->vblank_lock);
1283 
1284 	rcrtc->dev = rcdu;
1285 	rcrtc->group = rgrp;
1286 	rcrtc->mmio_offset = mmio_offsets[hwindex];
1287 	rcrtc->index = hwindex;
1288 	rcrtc->dsysr = rcrtc->index % 2 ? 0 : DSYSR_DRES;
1289 
1290 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_TVM_SYNC))
1291 		rcrtc->dsysr |= DSYSR_TVM_TVSYNC;
1292 
1293 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1294 		primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1295 	else
1296 		primary = &rgrp->planes[swindex % 2].plane;
1297 
1298 	ret = drm_crtc_init_with_planes(&rcdu->ddev, crtc, primary, NULL,
1299 					rcdu->info->gen <= 2 ?
1300 					&crtc_funcs_gen2 : &crtc_funcs_gen3,
1301 					NULL);
1302 	if (ret < 0)
1303 		return ret;
1304 
1305 	/* CMM might be disabled for this CRTC. */
1306 	if (rcdu->cmms[swindex]) {
1307 		rcrtc->cmm = rcdu->cmms[swindex];
1308 		rgrp->cmms_mask |= BIT(hwindex % 2);
1309 
1310 		drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE);
1311 		drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE);
1312 	}
1313 
1314 	drm_crtc_helper_add(crtc, &crtc_helper_funcs);
1315 
1316 	/* Register the interrupt handler. */
1317 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ)) {
1318 		/* The IRQ's are associated with the CRTC (sw)index. */
1319 		irq = platform_get_irq(pdev, swindex);
1320 		irqflags = 0;
1321 	} else {
1322 		irq = platform_get_irq(pdev, 0);
1323 		irqflags = IRQF_SHARED;
1324 	}
1325 
1326 	if (irq < 0) {
1327 		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
1328 		return irq;
1329 	}
1330 
1331 	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
1332 			       dev_name(rcdu->dev), rcrtc);
1333 	if (ret < 0) {
1334 		dev_err(rcdu->dev,
1335 			"failed to register IRQ for CRTC %u\n", swindex);
1336 		return ret;
1337 	}
1338 
1339 	rcar_du_crtc_crc_init(rcrtc);
1340 
1341 	return 0;
1342 }
1343