1 /*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
4 *
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 *
7 * This driver is derived from the Linux sym53c8xx driver.
8 * Copyright (C) 1998-2000 Gerard Roudier
9 *
10 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
11 * a port of the FreeBSD ncr driver to Linux-1.2.13.
12 *
13 * The original ncr driver has been written for 386bsd and FreeBSD by
14 * Wolfgang Stanglmeier <wolf@cologne.de>
15 * Stefan Esser <se@mi.Uni-Koeln.de>
16 * Copyright (C) 1994 Wolfgang Stanglmeier
17 *
18 * Other major contributions:
19 *
20 * NVRAM detection and reading.
21 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
22 *
23 *-----------------------------------------------------------------------------
24 *
25 * This program is free software; you can redistribute it and/or modify
26 * it under the terms of the GNU General Public License as published by
27 * the Free Software Foundation; either version 2 of the License, or
28 * (at your option) any later version.
29 *
30 * This program is distributed in the hope that it will be useful,
31 * but WITHOUT ANY WARRANTY; without even the implied warranty of
32 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
33 * GNU General Public License for more details.
34 *
35 * You should have received a copy of the GNU General Public License
36 * along with this program; if not, write to the Free Software
37 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
38 */
39
40 #include <linux/gfp.h>
41
42 #ifndef SYM_HIPD_H
43 #define SYM_HIPD_H
44
45 /*
46 * Generic driver options.
47 *
48 * They may be defined in platform specific headers, if they
49 * are useful.
50 *
51 * SYM_OPT_HANDLE_DEVICE_QUEUEING
52 * When this option is set, the driver will use a queue per
53 * device and handle QUEUE FULL status requeuing internally.
54 *
55 * SYM_OPT_LIMIT_COMMAND_REORDERING
56 * When this option is set, the driver tries to limit tagged
57 * command reordering to some reasonable value.
58 * (set for Linux)
59 */
60 #if 0
61 #define SYM_OPT_HANDLE_DEVICE_QUEUEING
62 #define SYM_OPT_LIMIT_COMMAND_REORDERING
63 #endif
64
65 /*
66 * Active debugging tags and verbosity.
67 * Both DEBUG_FLAGS and sym_verbose can be redefined
68 * by the platform specific code to something else.
69 */
70 #define DEBUG_ALLOC (0x0001)
71 #define DEBUG_PHASE (0x0002)
72 #define DEBUG_POLL (0x0004)
73 #define DEBUG_QUEUE (0x0008)
74 #define DEBUG_RESULT (0x0010)
75 #define DEBUG_SCATTER (0x0020)
76 #define DEBUG_SCRIPT (0x0040)
77 #define DEBUG_TINY (0x0080)
78 #define DEBUG_TIMING (0x0100)
79 #define DEBUG_NEGO (0x0200)
80 #define DEBUG_TAGS (0x0400)
81 #define DEBUG_POINTER (0x0800)
82
83 #ifndef DEBUG_FLAGS
84 #define DEBUG_FLAGS (0x0000)
85 #endif
86
87 #ifndef sym_verbose
88 #define sym_verbose (np->verbose)
89 #endif
90
91 /*
92 * These ones should have been already defined.
93 */
94 #ifndef assert
95 #define assert(expression) { \
96 if (!(expression)) { \
97 (void)panic( \
98 "assertion \"%s\" failed: file \"%s\", line %d\n", \
99 #expression, \
100 __FILE__, __LINE__); \
101 } \
102 }
103 #endif
104
105 /*
106 * Number of tasks per device we want to handle.
107 */
108 #if SYM_CONF_MAX_TAG_ORDER > 8
109 #error "more than 256 tags per logical unit not allowed."
110 #endif
111 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER)
112
113 /*
114 * Donnot use more tasks that we can handle.
115 */
116 #ifndef SYM_CONF_MAX_TAG
117 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
118 #endif
119 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
120 #undef SYM_CONF_MAX_TAG
121 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
122 #endif
123
124 /*
125 * This one means 'NO TAG for this job'
126 */
127 #define NO_TAG (256)
128
129 /*
130 * Number of SCSI targets.
131 */
132 #if SYM_CONF_MAX_TARGET > 16
133 #error "more than 16 targets not allowed."
134 #endif
135
136 /*
137 * Number of logical units per target.
138 */
139 #if SYM_CONF_MAX_LUN > 64
140 #error "more than 64 logical units per target not allowed."
141 #endif
142
143 /*
144 * Asynchronous pre-scaler (ns). Shall be 40 for
145 * the SCSI timings to be compliant.
146 */
147 #define SYM_CONF_MIN_ASYNC (40)
148
149
150 /*
151 * MEMORY ALLOCATOR.
152 */
153
154 #define SYM_MEM_WARN 1 /* Warn on failed operations */
155
156 #define SYM_MEM_PAGE_ORDER 0 /* 1 PAGE maximum */
157 #define SYM_MEM_CLUSTER_SHIFT (PAGE_SHIFT+SYM_MEM_PAGE_ORDER)
158 #define SYM_MEM_FREE_UNUSED /* Free unused pages immediately */
159 /*
160 * Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16.
161 * Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized.
162 * (1 PAGE at a time is just fine).
163 */
164 #define SYM_MEM_SHIFT 4
165 #define SYM_MEM_CLUSTER_SIZE (1UL << SYM_MEM_CLUSTER_SHIFT)
166 #define SYM_MEM_CLUSTER_MASK (SYM_MEM_CLUSTER_SIZE-1)
167
168 /*
169 * Number of entries in the START and DONE queues.
170 *
171 * We limit to 1 PAGE in order to succeed allocation of
172 * these queues. Each entry is 8 bytes long (2 DWORDS).
173 */
174 #ifdef SYM_CONF_MAX_START
175 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
176 #else
177 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
178 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
179 #endif
180
181 #if SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8
182 #undef SYM_CONF_MAX_QUEUE
183 #define SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8)
184 #undef SYM_CONF_MAX_START
185 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
186 #endif
187
188 /*
189 * For this one, we want a short name :-)
190 */
191 #define MAX_QUEUE SYM_CONF_MAX_QUEUE
192
193 /*
194 * Common definitions for both bus space based and legacy IO methods.
195 */
196
197 #define INB_OFF(np, o) ioread8(np->s.ioaddr + (o))
198 #define INW_OFF(np, o) ioread16(np->s.ioaddr + (o))
199 #define INL_OFF(np, o) ioread32(np->s.ioaddr + (o))
200
201 #define OUTB_OFF(np, o, val) iowrite8((val), np->s.ioaddr + (o))
202 #define OUTW_OFF(np, o, val) iowrite16((val), np->s.ioaddr + (o))
203 #define OUTL_OFF(np, o, val) iowrite32((val), np->s.ioaddr + (o))
204
205 #define INB(np, r) INB_OFF(np, offsetof(struct sym_reg, r))
206 #define INW(np, r) INW_OFF(np, offsetof(struct sym_reg, r))
207 #define INL(np, r) INL_OFF(np, offsetof(struct sym_reg, r))
208
209 #define OUTB(np, r, v) OUTB_OFF(np, offsetof(struct sym_reg, r), (v))
210 #define OUTW(np, r, v) OUTW_OFF(np, offsetof(struct sym_reg, r), (v))
211 #define OUTL(np, r, v) OUTL_OFF(np, offsetof(struct sym_reg, r), (v))
212
213 #define OUTONB(np, r, m) OUTB(np, r, INB(np, r) | (m))
214 #define OUTOFFB(np, r, m) OUTB(np, r, INB(np, r) & ~(m))
215 #define OUTONW(np, r, m) OUTW(np, r, INW(np, r) | (m))
216 #define OUTOFFW(np, r, m) OUTW(np, r, INW(np, r) & ~(m))
217 #define OUTONL(np, r, m) OUTL(np, r, INL(np, r) | (m))
218 #define OUTOFFL(np, r, m) OUTL(np, r, INL(np, r) & ~(m))
219
220 /*
221 * We normally want the chip to have a consistent view
222 * of driver internal data structures when we restart it.
223 * Thus these macros.
224 */
225 #define OUTL_DSP(np, v) \
226 do { \
227 MEMORY_WRITE_BARRIER(); \
228 OUTL(np, nc_dsp, (v)); \
229 } while (0)
230
231 #define OUTONB_STD() \
232 do { \
233 MEMORY_WRITE_BARRIER(); \
234 OUTONB(np, nc_dcntl, (STD|NOCOM)); \
235 } while (0)
236
237 /*
238 * Command control block states.
239 */
240 #define HS_IDLE (0)
241 #define HS_BUSY (1)
242 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/
243 #define HS_DISCONNECT (3) /* Disconnected by target */
244 #define HS_WAIT (4) /* waiting for resource */
245
246 #define HS_DONEMASK (0x80)
247 #define HS_COMPLETE (4|HS_DONEMASK)
248 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
249 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */
250 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */
251
252 /*
253 * Software Interrupt Codes
254 */
255 #define SIR_BAD_SCSI_STATUS (1)
256 #define SIR_SEL_ATN_NO_MSG_OUT (2)
257 #define SIR_MSG_RECEIVED (3)
258 #define SIR_MSG_WEIRD (4)
259 #define SIR_NEGO_FAILED (5)
260 #define SIR_NEGO_PROTO (6)
261 #define SIR_SCRIPT_STOPPED (7)
262 #define SIR_REJECT_TO_SEND (8)
263 #define SIR_SWIDE_OVERRUN (9)
264 #define SIR_SODL_UNDERRUN (10)
265 #define SIR_RESEL_NO_MSG_IN (11)
266 #define SIR_RESEL_NO_IDENTIFY (12)
267 #define SIR_RESEL_BAD_LUN (13)
268 #define SIR_TARGET_SELECTED (14)
269 #define SIR_RESEL_BAD_I_T_L (15)
270 #define SIR_RESEL_BAD_I_T_L_Q (16)
271 #define SIR_ABORT_SENT (17)
272 #define SIR_RESEL_ABORTED (18)
273 #define SIR_MSG_OUT_DONE (19)
274 #define SIR_COMPLETE_ERROR (20)
275 #define SIR_DATA_OVERRUN (21)
276 #define SIR_BAD_PHASE (22)
277 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
278 #define SIR_DMAP_DIRTY (23)
279 #define SIR_MAX (23)
280 #else
281 #define SIR_MAX (22)
282 #endif
283
284 /*
285 * Extended error bit codes.
286 * xerr_status field of struct sym_ccb.
287 */
288 #define XE_EXTRA_DATA (1) /* unexpected data phase */
289 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */
290 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */
291 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */
292 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */
293
294 /*
295 * Negotiation status.
296 * nego_status field of struct sym_ccb.
297 */
298 #define NS_SYNC (1)
299 #define NS_WIDE (2)
300 #define NS_PPR (3)
301
302 /*
303 * A CCB hashed table is used to retrieve CCB address
304 * from DSA value.
305 */
306 #define CCB_HASH_SHIFT 8
307 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT)
308 #define CCB_HASH_MASK (CCB_HASH_SIZE-1)
309 #if 1
310 #define CCB_HASH_CODE(dsa) \
311 (((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK)
312 #else
313 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK)
314 #endif
315
316 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
317 /*
318 * We may want to use segment registers for 64 bit DMA.
319 * 16 segments registers -> up to 64 GB addressable.
320 */
321 #define SYM_DMAP_SHIFT (4)
322 #define SYM_DMAP_SIZE (1u<<SYM_DMAP_SHIFT)
323 #define SYM_DMAP_MASK (SYM_DMAP_SIZE-1)
324 #endif
325
326 /*
327 * Device flags.
328 */
329 #define SYM_DISC_ENABLED (1)
330 #define SYM_TAGS_ENABLED (1<<1)
331 #define SYM_SCAN_BOOT_DISABLED (1<<2)
332 #define SYM_SCAN_LUNS_DISABLED (1<<3)
333
334 /*
335 * Host adapter miscellaneous flags.
336 */
337 #define SYM_AVOID_BUS_RESET (1)
338
339 /*
340 * Misc.
341 */
342 #define SYM_SNOOP_TIMEOUT (10000000)
343 #define BUS_8_BIT 0
344 #define BUS_16_BIT 1
345
346 /*
347 * Gather negotiable parameters value
348 */
349 struct sym_trans {
350 u8 period;
351 u8 offset;
352 unsigned int width:1;
353 unsigned int iu:1;
354 unsigned int dt:1;
355 unsigned int qas:1;
356 unsigned int check_nego:1;
357 unsigned int renego:2;
358 };
359
360 /*
361 * Global TCB HEADER.
362 *
363 * Due to lack of indirect addressing on earlier NCR chips,
364 * this substructure is copied from the TCB to a global
365 * address after selection.
366 * For SYMBIOS chips that support LOAD/STORE this copy is
367 * not needed and thus not performed.
368 */
369 struct sym_tcbh {
370 /*
371 * Scripts bus addresses of LUN table accessed from scripts.
372 * LUN #0 is a special case, since multi-lun devices are rare,
373 * and we we want to speed-up the general case and not waste
374 * resources.
375 */
376 u32 luntbl_sa; /* bus address of this table */
377 u32 lun0_sa; /* bus address of LCB #0 */
378 /*
379 * Actual SYNC/WIDE IO registers value for this target.
380 * 'sval', 'wval' and 'uval' are read from SCRIPTS and
381 * so have alignment constraints.
382 */
383 /*0*/ u_char uval; /* -> SCNTL4 register */
384 /*1*/ u_char sval; /* -> SXFER io register */
385 /*2*/ u_char filler1;
386 /*3*/ u_char wval; /* -> SCNTL3 io register */
387 };
388
389 /*
390 * Target Control Block
391 */
392 struct sym_tcb {
393 /*
394 * TCB header.
395 * Assumed at offset 0.
396 */
397 /*0*/ struct sym_tcbh head;
398
399 /*
400 * LUN table used by the SCRIPTS processor.
401 * An array of bus addresses is used on reselection.
402 */
403 u32 *luntbl; /* LCBs bus address table */
404 int nlcb; /* Number of valid LCBs (including LUN #0) */
405
406 /*
407 * LUN table used by the C code.
408 */
409 struct sym_lcb *lun0p; /* LCB of LUN #0 (usual case) */
410 #if SYM_CONF_MAX_LUN > 1
411 struct sym_lcb **lunmp; /* Other LCBs [1..MAX_LUN] */
412 #endif
413
414 #ifdef SYM_HAVE_STCB
415 /*
416 * O/S specific data structure.
417 */
418 struct sym_stcb s;
419 #endif
420
421 /* Transfer goal */
422 struct sym_trans tgoal;
423
424 /* Last printed transfer speed */
425 struct sym_trans tprint;
426
427 /*
428 * Keep track of the CCB used for the negotiation in order
429 * to ensure that only 1 negotiation is queued at a time.
430 */
431 struct sym_ccb * nego_cp; /* CCB used for the nego */
432
433 /*
434 * Set when we want to reset the device.
435 */
436 u_char to_reset;
437
438 /*
439 * Other user settable limits and options.
440 * These limits are read from the NVRAM if present.
441 */
442 unsigned char usrflags;
443 unsigned char usr_period;
444 unsigned char usr_width;
445 unsigned short usrtags;
446 struct scsi_target *starget;
447 };
448
449 /*
450 * Global LCB HEADER.
451 *
452 * Due to lack of indirect addressing on earlier NCR chips,
453 * this substructure is copied from the LCB to a global
454 * address after selection.
455 * For SYMBIOS chips that support LOAD/STORE this copy is
456 * not needed and thus not performed.
457 */
458 struct sym_lcbh {
459 /*
460 * SCRIPTS address jumped by SCRIPTS on reselection.
461 * For not probed logical units, this address points to
462 * SCRIPTS that deal with bad LU handling (must be at
463 * offset zero of the LCB for that reason).
464 */
465 /*0*/ u32 resel_sa;
466
467 /*
468 * Task (bus address of a CCB) read from SCRIPTS that points
469 * to the unique ITL nexus allowed to be disconnected.
470 */
471 u32 itl_task_sa;
472
473 /*
474 * Task table bus address (read from SCRIPTS).
475 */
476 u32 itlq_tbl_sa;
477 };
478
479 /*
480 * Logical Unit Control Block
481 */
482 struct sym_lcb {
483 /*
484 * TCB header.
485 * Assumed at offset 0.
486 */
487 /*0*/ struct sym_lcbh head;
488
489 /*
490 * Task table read from SCRIPTS that contains pointers to
491 * ITLQ nexuses. The bus address read from SCRIPTS is
492 * inside the header.
493 */
494 u32 *itlq_tbl; /* Kernel virtual address */
495
496 /*
497 * Busy CCBs management.
498 */
499 u_short busy_itlq; /* Number of busy tagged CCBs */
500 u_short busy_itl; /* Number of busy untagged CCBs */
501
502 /*
503 * Circular tag allocation buffer.
504 */
505 u_short ia_tag; /* Tag allocation index */
506 u_short if_tag; /* Tag release index */
507 u_char *cb_tags; /* Circular tags buffer */
508
509 /*
510 * O/S specific data structure.
511 */
512 #ifdef SYM_HAVE_SLCB
513 struct sym_slcb s;
514 #endif
515
516 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
517 /*
518 * Optionnaly the driver can handle device queueing,
519 * and requeues internally command to redo.
520 */
521 SYM_QUEHEAD waiting_ccbq;
522 SYM_QUEHEAD started_ccbq;
523 int num_sgood;
524 u_short started_tags;
525 u_short started_no_tag;
526 u_short started_max;
527 u_short started_limit;
528 #endif
529
530 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
531 /*
532 * Optionally the driver can try to prevent SCSI
533 * IOs from being reordered too much.
534 */
535 u_char tags_si; /* Current index to tags sum */
536 u_short tags_sum[2]; /* Tags sum counters */
537 u_short tags_since; /* # of tags since last switch */
538 #endif
539
540 /*
541 * Set when we want to clear all tasks.
542 */
543 u_char to_clear;
544
545 /*
546 * Capabilities.
547 */
548 u_char user_flags;
549 u_char curr_flags;
550 };
551
552 /*
553 * Action from SCRIPTS on a task.
554 * Is part of the CCB, but is also used separately to plug
555 * error handling action to perform from SCRIPTS.
556 */
557 struct sym_actscr {
558 u32 start; /* Jumped by SCRIPTS after selection */
559 u32 restart; /* Jumped by SCRIPTS on relection */
560 };
561
562 /*
563 * Phase mismatch context.
564 *
565 * It is part of the CCB and is used as parameters for the
566 * DATA pointer. We need two contexts to handle correctly the
567 * SAVED DATA POINTER.
568 */
569 struct sym_pmc {
570 struct sym_tblmove sg; /* Updated interrupted SG block */
571 u32 ret; /* SCRIPT return address */
572 };
573
574 /*
575 * LUN control block lookup.
576 * We use a direct pointer for LUN #0, and a table of
577 * pointers which is only allocated for devices that support
578 * LUN(s) > 0.
579 */
580 #if SYM_CONF_MAX_LUN <= 1
581 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL
582 #else
583 #define sym_lp(tp, lun) \
584 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : NULL
585 #endif
586
587 /*
588 * Status are used by the host and the script processor.
589 *
590 * The last four bytes (status[4]) are copied to the
591 * scratchb register (declared as scr0..scr3) just after the
592 * select/reselect, and copied back just after disconnecting.
593 * Inside the script the XX_REG are used.
594 */
595
596 /*
597 * Last four bytes (script)
598 */
599 #define HX_REG scr0
600 #define HX_PRT nc_scr0
601 #define HS_REG scr1
602 #define HS_PRT nc_scr1
603 #define SS_REG scr2
604 #define SS_PRT nc_scr2
605 #define HF_REG scr3
606 #define HF_PRT nc_scr3
607
608 /*
609 * Last four bytes (host)
610 */
611 #define host_xflags phys.head.status[0]
612 #define host_status phys.head.status[1]
613 #define ssss_status phys.head.status[2]
614 #define host_flags phys.head.status[3]
615
616 /*
617 * Host flags
618 */
619 #define HF_IN_PM0 1u
620 #define HF_IN_PM1 (1u<<1)
621 #define HF_ACT_PM (1u<<2)
622 #define HF_DP_SAVED (1u<<3)
623 #define HF_SENSE (1u<<4)
624 #define HF_EXT_ERR (1u<<5)
625 #define HF_DATA_IN (1u<<6)
626 #ifdef SYM_CONF_IARB_SUPPORT
627 #define HF_HINT_IARB (1u<<7)
628 #endif
629
630 /*
631 * More host flags
632 */
633 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
634 #define HX_DMAP_DIRTY (1u<<7)
635 #endif
636
637 /*
638 * Global CCB HEADER.
639 *
640 * Due to lack of indirect addressing on earlier NCR chips,
641 * this substructure is copied from the ccb to a global
642 * address after selection (or reselection) and copied back
643 * before disconnect.
644 * For SYMBIOS chips that support LOAD/STORE this copy is
645 * not needed and thus not performed.
646 */
647
648 struct sym_ccbh {
649 /*
650 * Start and restart SCRIPTS addresses (must be at 0).
651 */
652 /*0*/ struct sym_actscr go;
653
654 /*
655 * SCRIPTS jump address that deal with data pointers.
656 * 'savep' points to the position in the script responsible
657 * for the actual transfer of data.
658 * It's written on reception of a SAVE_DATA_POINTER message.
659 */
660 u32 savep; /* Jump address to saved data pointer */
661 u32 lastp; /* SCRIPTS address at end of data */
662
663 /*
664 * Status fields.
665 */
666 u8 status[4];
667 };
668
669 /*
670 * GET/SET the value of the data pointer used by SCRIPTS.
671 *
672 * We must distinguish between the LOAD/STORE-based SCRIPTS
673 * that use directly the header in the CCB, and the NCR-GENERIC
674 * SCRIPTS that use the copy of the header in the HCB.
675 */
676 #if SYM_CONF_GENERIC_SUPPORT
677 #define sym_set_script_dp(np, cp, dp) \
678 do { \
679 if (np->features & FE_LDSTR) \
680 cp->phys.head.lastp = cpu_to_scr(dp); \
681 else \
682 np->ccb_head.lastp = cpu_to_scr(dp); \
683 } while (0)
684 #define sym_get_script_dp(np, cp) \
685 scr_to_cpu((np->features & FE_LDSTR) ? \
686 cp->phys.head.lastp : np->ccb_head.lastp)
687 #else
688 #define sym_set_script_dp(np, cp, dp) \
689 do { \
690 cp->phys.head.lastp = cpu_to_scr(dp); \
691 } while (0)
692
693 #define sym_get_script_dp(np, cp) (cp->phys.head.lastp)
694 #endif
695
696 /*
697 * Data Structure Block
698 *
699 * During execution of a ccb by the script processor, the
700 * DSA (data structure address) register points to this
701 * substructure of the ccb.
702 */
703 struct sym_dsb {
704 /*
705 * CCB header.
706 * Also assumed at offset 0 of the sym_ccb structure.
707 */
708 /*0*/ struct sym_ccbh head;
709
710 /*
711 * Phase mismatch contexts.
712 * We need two to handle correctly the SAVED DATA POINTER.
713 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
714 * for address calculation from SCRIPTS.
715 */
716 struct sym_pmc pm0;
717 struct sym_pmc pm1;
718
719 /*
720 * Table data for Script
721 */
722 struct sym_tblsel select;
723 struct sym_tblmove smsg;
724 struct sym_tblmove smsg_ext;
725 struct sym_tblmove cmd;
726 struct sym_tblmove sense;
727 struct sym_tblmove wresid;
728 struct sym_tblmove data [SYM_CONF_MAX_SG];
729 };
730
731 /*
732 * Our Command Control Block
733 */
734 struct sym_ccb {
735 /*
736 * This is the data structure which is pointed by the DSA
737 * register when it is executed by the script processor.
738 * It must be the first entry.
739 */
740 struct sym_dsb phys;
741
742 /*
743 * Pointer to CAM ccb and related stuff.
744 */
745 struct scsi_cmnd *cmd; /* CAM scsiio ccb */
746 u8 cdb_buf[16]; /* Copy of CDB */
747 #define SYM_SNS_BBUF_LEN 32
748 u8 sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */
749 int data_len; /* Total data length */
750 int segments; /* Number of SG segments */
751
752 u8 order; /* Tag type (if tagged command) */
753 unsigned char odd_byte_adjustment; /* odd-sized req on wide bus */
754
755 u_char nego_status; /* Negotiation status */
756 u_char xerr_status; /* Extended error flags */
757 u32 extra_bytes; /* Extraneous bytes transferred */
758
759 /*
760 * Message areas.
761 * We prepare a message to be sent after selection.
762 * We may use a second one if the command is rescheduled
763 * due to CHECK_CONDITION or COMMAND TERMINATED.
764 * Contents are IDENTIFY and SIMPLE_TAG.
765 * While negotiating sync or wide transfer,
766 * a SDTR or WDTR message is appended.
767 */
768 u_char scsi_smsg [12];
769 u_char scsi_smsg2[12];
770
771 /*
772 * Auto request sense related fields.
773 */
774 u_char sensecmd[6]; /* Request Sense command */
775 u_char sv_scsi_status; /* Saved SCSI status */
776 u_char sv_xerr_status; /* Saved extended status */
777 int sv_resid; /* Saved residual */
778
779 /*
780 * Other fields.
781 */
782 u32 ccb_ba; /* BUS address of this CCB */
783 u_short tag; /* Tag for this transfer */
784 /* NO_TAG means no tag */
785 u_char target;
786 u_char lun;
787 struct sym_ccb *link_ccbh; /* Host adapter CCB hash chain */
788 SYM_QUEHEAD link_ccbq; /* Link to free/busy CCB queue */
789 u32 startp; /* Initial data pointer */
790 u32 goalp; /* Expected last data pointer */
791 int ext_sg; /* Extreme data pointer, used */
792 int ext_ofs; /* to calculate the residual. */
793 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
794 SYM_QUEHEAD link2_ccbq; /* Link for device queueing */
795 u_char started; /* CCB queued to the squeue */
796 #endif
797 u_char to_abort; /* Want this IO to be aborted */
798 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
799 u_char tags_si; /* Lun tags sum index (0,1) */
800 #endif
801 };
802
803 #define CCB_BA(cp,lbl) cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
804
805 typedef struct device *m_pool_ident_t;
806
807 /*
808 * Host Control Block
809 */
810 struct sym_hcb {
811 /*
812 * Global headers.
813 * Due to poorness of addressing capabilities, earlier
814 * chips (810, 815, 825) copy part of the data structures
815 * (CCB, TCB and LCB) in fixed areas.
816 */
817 #if SYM_CONF_GENERIC_SUPPORT
818 struct sym_ccbh ccb_head;
819 struct sym_tcbh tcb_head;
820 struct sym_lcbh lcb_head;
821 #endif
822 /*
823 * Idle task and invalid task actions and
824 * their bus addresses.
825 */
826 struct sym_actscr idletask, notask, bad_itl, bad_itlq;
827 u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
828
829 /*
830 * Dummy lun table to protect us against target
831 * returning bad lun number on reselection.
832 */
833 u32 *badluntbl; /* Table physical address */
834 u32 badlun_sa; /* SCRIPT handler BUS address */
835
836 /*
837 * Bus address of this host control block.
838 */
839 u32 hcb_ba;
840
841 /*
842 * Bit 32-63 of the on-chip RAM bus address in LE format.
843 * The START_RAM64 script loads the MMRS and MMWS from this
844 * field.
845 */
846 u32 scr_ram_seg;
847
848 /*
849 * Initial value of some IO register bits.
850 * These values are assumed to have been set by BIOS, and may
851 * be used to probe adapter implementation differences.
852 */
853 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
854 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
855 sv_stest1;
856
857 /*
858 * Actual initial value of IO register bits used by the
859 * driver. They are loaded at initialisation according to
860 * features that are to be enabled/disabled.
861 */
862 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
863 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
864
865 /*
866 * Target data.
867 */
868 struct sym_tcb target[SYM_CONF_MAX_TARGET];
869
870 /*
871 * Target control block bus address array used by the SCRIPT
872 * on reselection.
873 */
874 u32 *targtbl;
875 u32 targtbl_ba;
876
877 /*
878 * DMA pool handle for this HBA.
879 */
880 m_pool_ident_t bus_dmat;
881
882 /*
883 * O/S specific data structure
884 */
885 struct sym_shcb s;
886
887 /*
888 * Physical bus addresses of the chip.
889 */
890 u32 mmio_ba; /* MMIO 32 bit BUS address */
891 u32 ram_ba; /* RAM 32 bit BUS address */
892
893 /*
894 * SCRIPTS virtual and physical bus addresses.
895 * 'script' is loaded in the on-chip RAM if present.
896 * 'scripth' stays in main memory for all chips except the
897 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
898 */
899 u_char *scripta0; /* Copy of scripts A, B, Z */
900 u_char *scriptb0;
901 u_char *scriptz0;
902 u32 scripta_ba; /* Actual scripts A, B, Z */
903 u32 scriptb_ba; /* 32 bit bus addresses. */
904 u32 scriptz_ba;
905 u_short scripta_sz; /* Actual size of script A, B, Z*/
906 u_short scriptb_sz;
907 u_short scriptz_sz;
908
909 /*
910 * Bus addresses, setup and patch methods for
911 * the selected firmware.
912 */
913 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */
914 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */
915 struct sym_fwz_ba fwz_bas; /* Useful SCRIPTZ bus addresses */
916 void (*fw_setup)(struct sym_hcb *np, struct sym_fw *fw);
917 void (*fw_patch)(struct Scsi_Host *);
918 char *fw_name;
919
920 /*
921 * General controller parameters and configuration.
922 */
923 u_int features; /* Chip features map */
924 u_char myaddr; /* SCSI id of the adapter */
925 u_char maxburst; /* log base 2 of dwords burst */
926 u_char maxwide; /* Maximum transfer width */
927 u_char minsync; /* Min sync period factor (ST) */
928 u_char maxsync; /* Max sync period factor (ST) */
929 u_char maxoffs; /* Max scsi offset (ST) */
930 u_char minsync_dt; /* Min sync period factor (DT) */
931 u_char maxsync_dt; /* Max sync period factor (DT) */
932 u_char maxoffs_dt; /* Max scsi offset (DT) */
933 u_char multiplier; /* Clock multiplier (1,2,4) */
934 u_char clock_divn; /* Number of clock divisors */
935 u32 clock_khz; /* SCSI clock frequency in KHz */
936 u32 pciclk_khz; /* Estimated PCI clock in KHz */
937 /*
938 * Start queue management.
939 * It is filled up by the host processor and accessed by the
940 * SCRIPTS processor in order to start SCSI commands.
941 */
942 volatile /* Prevent code optimizations */
943 u32 *squeue; /* Start queue virtual address */
944 u32 squeue_ba; /* Start queue BUS address */
945 u_short squeueput; /* Next free slot of the queue */
946 u_short actccbs; /* Number of allocated CCBs */
947
948 /*
949 * Command completion queue.
950 * It is the same size as the start queue to avoid overflow.
951 */
952 u_short dqueueget; /* Next position to scan */
953 volatile /* Prevent code optimizations */
954 u32 *dqueue; /* Completion (done) queue */
955 u32 dqueue_ba; /* Done queue BUS address */
956
957 /*
958 * Miscellaneous buffers accessed by the scripts-processor.
959 * They shall be DWORD aligned, because they may be read or
960 * written with a script command.
961 */
962 u_char msgout[8]; /* Buffer for MESSAGE OUT */
963 u_char msgin [8]; /* Buffer for MESSAGE IN */
964 u32 lastmsg; /* Last SCSI message sent */
965 u32 scratch; /* Scratch for SCSI receive */
966 /* Also used for cache test */
967 /*
968 * Miscellaneous configuration and status parameters.
969 */
970 u_char usrflags; /* Miscellaneous user flags */
971 u_char scsi_mode; /* Current SCSI BUS mode */
972 u_char verbose; /* Verbosity for this controller*/
973
974 /*
975 * CCB lists and queue.
976 */
977 struct sym_ccb **ccbh; /* CCBs hashed by DSA value */
978 /* CCB_HASH_SIZE lists of CCBs */
979 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */
980 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */
981
982 /*
983 * During error handling and/or recovery,
984 * active CCBs that are to be completed with
985 * error or requeued are moved from the busy_ccbq
986 * to the comp_ccbq prior to completion.
987 */
988 SYM_QUEHEAD comp_ccbq;
989
990 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
991 SYM_QUEHEAD dummy_ccbq;
992 #endif
993
994 /*
995 * IMMEDIATE ARBITRATION (IARB) control.
996 *
997 * We keep track in 'last_cp' of the last CCB that has been
998 * queued to the SCRIPTS processor and clear 'last_cp' when
999 * this CCB completes. If last_cp is not zero at the moment
1000 * we queue a new CCB, we set a flag in 'last_cp' that is
1001 * used by the SCRIPTS as a hint for setting IARB.
1002 * We donnot set more than 'iarb_max' consecutive hints for
1003 * IARB in order to leave devices a chance to reselect.
1004 * By the way, any non zero value of 'iarb_max' is unfair. :)
1005 */
1006 #ifdef SYM_CONF_IARB_SUPPORT
1007 u_short iarb_max; /* Max. # consecutive IARB hints*/
1008 u_short iarb_count; /* Actual # of these hints */
1009 struct sym_ccb * last_cp;
1010 #endif
1011
1012 /*
1013 * Command abort handling.
1014 * We need to synchronize tightly with the SCRIPTS
1015 * processor in order to handle things correctly.
1016 */
1017 u_char abrt_msg[4]; /* Message to send buffer */
1018 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */
1019 struct sym_tblsel abrt_sel; /* Sync params for selection */
1020 u_char istat_sem; /* Tells the chip to stop (SEM) */
1021
1022 /*
1023 * 64 bit DMA handling.
1024 */
1025 #if SYM_CONF_DMA_ADDRESSING_MODE != 0
1026 u_char use_dac; /* Use PCI DAC cycles */
1027 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1028 u_char dmap_dirty; /* Dma segments registers dirty */
1029 u32 dmap_bah[SYM_DMAP_SIZE];/* Segment registers map */
1030 #endif
1031 #endif
1032 };
1033
1034 #if SYM_CONF_DMA_ADDRESSING_MODE == 0
1035 #define use_dac(np) 0
1036 #define set_dac(np) do { } while (0)
1037 #else
1038 #define use_dac(np) (np)->use_dac
1039 #define set_dac(np) (np)->use_dac = 1
1040 #endif
1041
1042 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl))
1043
1044
1045 /*
1046 * FIRMWARES (sym_fw.c)
1047 */
1048 struct sym_fw * sym_find_firmware(struct sym_chip *chip);
1049 void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len);
1050
1051 /*
1052 * Driver methods called from O/S specific code.
1053 */
1054 char *sym_driver_name(void);
1055 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status);
1056 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int);
1057 struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision);
1058 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1059 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn);
1060 #else
1061 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp);
1062 #endif
1063 void sym_start_up(struct Scsi_Host *, int reason);
1064 irqreturn_t sym_interrupt(struct Scsi_Host *);
1065 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task);
1066 struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order);
1067 void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp);
1068 struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln);
1069 int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln);
1070 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
1071 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out);
1072 int sym_reset_scsi_target(struct sym_hcb *np, int target);
1073 void sym_hcb_free(struct sym_hcb *np);
1074 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram);
1075
1076 /*
1077 * Build a scatter/gather entry.
1078 *
1079 * For 64 bit systems, we use the 8 upper bits of the size field
1080 * to provide bus address bits 32-39 to the SCRIPTS processor.
1081 * This allows the 895A, 896, 1010 to address up to 1 TB of memory.
1082 */
1083
1084 #if SYM_CONF_DMA_ADDRESSING_MODE == 0
1085 #define DMA_DAC_MASK DMA_BIT_MASK(32)
1086 #define sym_build_sge(np, data, badd, len) \
1087 do { \
1088 (data)->addr = cpu_to_scr(badd); \
1089 (data)->size = cpu_to_scr(len); \
1090 } while (0)
1091 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1
1092 #define DMA_DAC_MASK DMA_BIT_MASK(40)
1093 #define sym_build_sge(np, data, badd, len) \
1094 do { \
1095 (data)->addr = cpu_to_scr(badd); \
1096 (data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len); \
1097 } while (0)
1098 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
1099 #define DMA_DAC_MASK DMA_BIT_MASK(64)
1100 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s);
1101 static inline void
sym_build_sge(struct sym_hcb * np,struct sym_tblmove * data,u64 badd,int len)1102 sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len)
1103 {
1104 u32 h = (badd>>32);
1105 int s = (h&SYM_DMAP_MASK);
1106
1107 if (h != np->dmap_bah[s])
1108 goto bad;
1109 good:
1110 (data)->addr = cpu_to_scr(badd);
1111 (data)->size = cpu_to_scr((s<<24) + len);
1112 return;
1113 bad:
1114 s = sym_lookup_dmap(np, h, s);
1115 goto good;
1116 }
1117 #else
1118 #error "Unsupported DMA addressing mode"
1119 #endif
1120
1121 /*
1122 * MEMORY ALLOCATOR.
1123 */
1124
1125 #define sym_get_mem_cluster() \
1126 (void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER)
1127 #define sym_free_mem_cluster(p) \
1128 free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER)
1129
1130 /*
1131 * Link between free memory chunks of a given size.
1132 */
1133 typedef struct sym_m_link {
1134 struct sym_m_link *next;
1135 } *m_link_p;
1136
1137 /*
1138 * Virtual to bus physical translation for a given cluster.
1139 * Such a structure is only useful with DMA abstraction.
1140 */
1141 typedef struct sym_m_vtob { /* Virtual to Bus address translation */
1142 struct sym_m_vtob *next;
1143 void *vaddr; /* Virtual address */
1144 dma_addr_t baddr; /* Bus physical address */
1145 } *m_vtob_p;
1146
1147 /* Hash this stuff a bit to speed up translations */
1148 #define VTOB_HASH_SHIFT 5
1149 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
1150 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
1151 #define VTOB_HASH_CODE(m) \
1152 ((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK)
1153
1154 /*
1155 * Memory pool of a given kind.
1156 * Ideally, we want to use:
1157 * 1) 1 pool for memory we donnot need to involve in DMA.
1158 * 2) The same pool for controllers that require same DMA
1159 * constraints and features.
1160 * The OS specific m_pool_id_t thing and the sym_m_pool_match()
1161 * method are expected to tell the driver about.
1162 */
1163 typedef struct sym_m_pool {
1164 m_pool_ident_t dev_dmat; /* Identifies the pool (see above) */
1165 void * (*get_mem_cluster)(struct sym_m_pool *);
1166 #ifdef SYM_MEM_FREE_UNUSED
1167 void (*free_mem_cluster)(struct sym_m_pool *, void *);
1168 #endif
1169 #define M_GET_MEM_CLUSTER() mp->get_mem_cluster(mp)
1170 #define M_FREE_MEM_CLUSTER(p) mp->free_mem_cluster(mp, p)
1171 int nump;
1172 m_vtob_p vtob[VTOB_HASH_SIZE];
1173 struct sym_m_pool *next;
1174 struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1];
1175 } *m_pool_p;
1176
1177 /*
1178 * Alloc, free and translate addresses to bus physical
1179 * for DMAable memory.
1180 */
1181 void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name);
1182 void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name);
1183 dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m);
1184
1185 /*
1186 * Verbs used by the driver code for DMAable memory handling.
1187 * The _uvptv_ macro avoids a nasty warning about pointer to volatile
1188 * being discarded.
1189 */
1190 #define _uvptv_(p) ((void *)((u_long)(p)))
1191
1192 #define _sym_calloc_dma(np, l, n) __sym_calloc_dma(np->bus_dmat, l, n)
1193 #define _sym_mfree_dma(np, p, l, n) \
1194 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n)
1195 #define sym_calloc_dma(l, n) _sym_calloc_dma(np, l, n)
1196 #define sym_mfree_dma(p, l, n) _sym_mfree_dma(np, p, l, n)
1197 #define vtobus(p) __vtobus(np->bus_dmat, _uvptv_(p))
1198
1199 /*
1200 * We have to provide the driver memory allocator with methods for
1201 * it to maintain virtual to bus physical address translations.
1202 */
1203
1204 #define sym_m_pool_match(mp_id1, mp_id2) (mp_id1 == mp_id2)
1205
sym_m_get_dma_mem_cluster(m_pool_p mp,m_vtob_p vbp)1206 static inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1207 {
1208 void *vaddr = NULL;
1209 dma_addr_t baddr = 0;
1210
1211 vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr,
1212 GFP_ATOMIC);
1213 if (vaddr) {
1214 vbp->vaddr = vaddr;
1215 vbp->baddr = baddr;
1216 }
1217 return vaddr;
1218 }
1219
sym_m_free_dma_mem_cluster(m_pool_p mp,m_vtob_p vbp)1220 static inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1221 {
1222 dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr,
1223 vbp->baddr);
1224 }
1225
1226 #endif /* SYM_HIPD_H */
1227