1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Portions Copyright (C) 1992 Drew Eckhardt
4 */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27
28 struct module;
29 struct request_queue;
30 struct elevator_queue;
31 struct blk_trace;
32 struct request;
33 struct sg_io_hdr;
34 struct blkcg_gq;
35 struct blk_flush_queue;
36 struct kiocb;
37 struct pr_ops;
38 struct rq_qos;
39 struct blk_queue_stats;
40 struct blk_stat_callback;
41 struct blk_crypto_profile;
42
43 extern const struct device_type disk_type;
44 extern const struct device_type part_type;
45 extern struct class block_class;
46
47 /*
48 * Maximum number of blkcg policies allowed to be registered concurrently.
49 * Defined here to simplify include dependency.
50 */
51 #define BLKCG_MAX_POLS 6
52
53 #define DISK_MAX_PARTS 256
54 #define DISK_NAME_LEN 32
55
56 #define PARTITION_META_INFO_VOLNAMELTH 64
57 /*
58 * Enough for the string representation of any kind of UUID plus NULL.
59 * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
60 */
61 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1)
62
63 struct partition_meta_info {
64 char uuid[PARTITION_META_INFO_UUIDLTH];
65 u8 volname[PARTITION_META_INFO_VOLNAMELTH];
66 };
67
68 /**
69 * DOC: genhd capability flags
70 *
71 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
72 * removable media. When set, the device remains present even when media is not
73 * inserted. Shall not be set for devices which are removed entirely when the
74 * media is removed.
75 *
76 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
77 * doesn't appear in sysfs, and can't be opened from userspace or using
78 * blkdev_get*. Used for the underlying components of multipath devices.
79 *
80 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not
81 * scan for partitions from add_disk, and users can't add partitions manually.
82 *
83 */
84 enum {
85 GENHD_FL_REMOVABLE = 1 << 0,
86 GENHD_FL_HIDDEN = 1 << 1,
87 GENHD_FL_NO_PART = 1 << 2,
88 };
89
90 enum {
91 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */
92 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */
93 };
94
95 enum {
96 /* Poll even if events_poll_msecs is unset */
97 DISK_EVENT_FLAG_POLL = 1 << 0,
98 /* Forward events to udev */
99 DISK_EVENT_FLAG_UEVENT = 1 << 1,
100 /* Block event polling when open for exclusive write */
101 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2,
102 };
103
104 struct disk_events;
105 struct badblocks;
106
107 struct blk_integrity {
108 const struct blk_integrity_profile *profile;
109 unsigned char flags;
110 unsigned char tuple_size;
111 unsigned char interval_exp;
112 unsigned char tag_size;
113 };
114
115 typedef unsigned int __bitwise blk_mode_t;
116
117 /* open for reading */
118 #define BLK_OPEN_READ ((__force blk_mode_t)(1 << 0))
119 /* open for writing */
120 #define BLK_OPEN_WRITE ((__force blk_mode_t)(1 << 1))
121 /* open exclusively (vs other exclusive openers */
122 #define BLK_OPEN_EXCL ((__force blk_mode_t)(1 << 2))
123 /* opened with O_NDELAY */
124 #define BLK_OPEN_NDELAY ((__force blk_mode_t)(1 << 3))
125 /* open for "writes" only for ioctls (specialy hack for floppy.c) */
126 #define BLK_OPEN_WRITE_IOCTL ((__force blk_mode_t)(1 << 4))
127
128 struct gendisk {
129 /*
130 * major/first_minor/minors should not be set by any new driver, the
131 * block core will take care of allocating them automatically.
132 */
133 int major;
134 int first_minor;
135 int minors;
136
137 char disk_name[DISK_NAME_LEN]; /* name of major driver */
138
139 unsigned short events; /* supported events */
140 unsigned short event_flags; /* flags related to event processing */
141
142 struct xarray part_tbl;
143 struct block_device *part0;
144
145 const struct block_device_operations *fops;
146 struct request_queue *queue;
147 void *private_data;
148
149 struct bio_set bio_split;
150
151 int flags;
152 unsigned long state;
153 #define GD_NEED_PART_SCAN 0
154 #define GD_READ_ONLY 1
155 #define GD_DEAD 2
156 #define GD_NATIVE_CAPACITY 3
157 #define GD_ADDED 4
158 #define GD_SUPPRESS_PART_SCAN 5
159 #define GD_OWNS_QUEUE 6
160
161 struct mutex open_mutex; /* open/close mutex */
162 unsigned open_partitions; /* number of open partitions */
163
164 struct backing_dev_info *bdi;
165 struct kobject queue_kobj; /* the queue/ directory */
166 struct kobject *slave_dir;
167 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
168 struct list_head slave_bdevs;
169 #endif
170 struct timer_rand_state *random;
171 atomic_t sync_io; /* RAID */
172 struct disk_events *ev;
173
174 #ifdef CONFIG_BLK_DEV_ZONED
175 /*
176 * Zoned block device information for request dispatch control.
177 * nr_zones is the total number of zones of the device. This is always
178 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
179 * bits which indicates if a zone is conventional (bit set) or
180 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
181 * bits which indicates if a zone is write locked, that is, if a write
182 * request targeting the zone was dispatched.
183 *
184 * Reads of this information must be protected with blk_queue_enter() /
185 * blk_queue_exit(). Modifying this information is only allowed while
186 * no requests are being processed. See also blk_mq_freeze_queue() and
187 * blk_mq_unfreeze_queue().
188 */
189 unsigned int nr_zones;
190 unsigned int max_open_zones;
191 unsigned int max_active_zones;
192 unsigned long *conv_zones_bitmap;
193 unsigned long *seq_zones_wlock;
194 #endif /* CONFIG_BLK_DEV_ZONED */
195
196 #if IS_ENABLED(CONFIG_CDROM)
197 struct cdrom_device_info *cdi;
198 #endif
199 int node_id;
200 struct badblocks *bb;
201 struct lockdep_map lockdep_map;
202 u64 diskseq;
203 blk_mode_t open_mode;
204
205 /*
206 * Independent sector access ranges. This is always NULL for
207 * devices that do not have multiple independent access ranges.
208 */
209 struct blk_independent_access_ranges *ia_ranges;
210 };
211
disk_live(struct gendisk * disk)212 static inline bool disk_live(struct gendisk *disk)
213 {
214 return !inode_unhashed(disk->part0->bd_inode);
215 }
216
217 /**
218 * disk_openers - returns how many openers are there for a disk
219 * @disk: disk to check
220 *
221 * This returns the number of openers for a disk. Note that this value is only
222 * stable if disk->open_mutex is held.
223 *
224 * Note: Due to a quirk in the block layer open code, each open partition is
225 * only counted once even if there are multiple openers.
226 */
disk_openers(struct gendisk * disk)227 static inline unsigned int disk_openers(struct gendisk *disk)
228 {
229 return atomic_read(&disk->part0->bd_openers);
230 }
231
232 /*
233 * The gendisk is refcounted by the part0 block_device, and the bd_device
234 * therein is also used for device model presentation in sysfs.
235 */
236 #define dev_to_disk(device) \
237 (dev_to_bdev(device)->bd_disk)
238 #define disk_to_dev(disk) \
239 (&((disk)->part0->bd_device))
240
241 #if IS_REACHABLE(CONFIG_CDROM)
242 #define disk_to_cdi(disk) ((disk)->cdi)
243 #else
244 #define disk_to_cdi(disk) NULL
245 #endif
246
disk_devt(struct gendisk * disk)247 static inline dev_t disk_devt(struct gendisk *disk)
248 {
249 return MKDEV(disk->major, disk->first_minor);
250 }
251
blk_validate_block_size(unsigned long bsize)252 static inline int blk_validate_block_size(unsigned long bsize)
253 {
254 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
255 return -EINVAL;
256
257 return 0;
258 }
259
blk_op_is_passthrough(blk_opf_t op)260 static inline bool blk_op_is_passthrough(blk_opf_t op)
261 {
262 op &= REQ_OP_MASK;
263 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
264 }
265
266 /*
267 * Zoned block device models (zoned limit).
268 *
269 * Note: This needs to be ordered from the least to the most severe
270 * restrictions for the inheritance in blk_stack_limits() to work.
271 */
272 enum blk_zoned_model {
273 BLK_ZONED_NONE = 0, /* Regular block device */
274 BLK_ZONED_HA, /* Host-aware zoned block device */
275 BLK_ZONED_HM, /* Host-managed zoned block device */
276 };
277
278 /*
279 * BLK_BOUNCE_NONE: never bounce (default)
280 * BLK_BOUNCE_HIGH: bounce all highmem pages
281 */
282 enum blk_bounce {
283 BLK_BOUNCE_NONE,
284 BLK_BOUNCE_HIGH,
285 };
286
287 struct queue_limits {
288 enum blk_bounce bounce;
289 unsigned long seg_boundary_mask;
290 unsigned long virt_boundary_mask;
291
292 unsigned int max_hw_sectors;
293 unsigned int max_dev_sectors;
294 unsigned int chunk_sectors;
295 unsigned int max_sectors;
296 unsigned int max_user_sectors;
297 unsigned int max_segment_size;
298 unsigned int physical_block_size;
299 unsigned int logical_block_size;
300 unsigned int alignment_offset;
301 unsigned int io_min;
302 unsigned int io_opt;
303 unsigned int max_discard_sectors;
304 unsigned int max_hw_discard_sectors;
305 unsigned int max_secure_erase_sectors;
306 unsigned int max_write_zeroes_sectors;
307 unsigned int max_zone_append_sectors;
308 unsigned int discard_granularity;
309 unsigned int discard_alignment;
310 unsigned int zone_write_granularity;
311
312 unsigned short max_segments;
313 unsigned short max_integrity_segments;
314 unsigned short max_discard_segments;
315
316 unsigned char misaligned;
317 unsigned char discard_misaligned;
318 unsigned char raid_partial_stripes_expensive;
319 enum blk_zoned_model zoned;
320
321 /*
322 * Drivers that set dma_alignment to less than 511 must be prepared to
323 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
324 * due to possible offsets.
325 */
326 unsigned int dma_alignment;
327 };
328
329 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
330 void *data);
331
332 void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
333
334 #ifdef CONFIG_BLK_DEV_ZONED
335 #define BLK_ALL_ZONES ((unsigned int)-1)
336 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
337 unsigned int nr_zones, report_zones_cb cb, void *data);
338 unsigned int bdev_nr_zones(struct block_device *bdev);
339 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
340 sector_t sectors, sector_t nr_sectors,
341 gfp_t gfp_mask);
342 int blk_revalidate_disk_zones(struct gendisk *disk,
343 void (*update_driver_data)(struct gendisk *disk));
344 #else /* CONFIG_BLK_DEV_ZONED */
bdev_nr_zones(struct block_device * bdev)345 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
346 {
347 return 0;
348 }
349 #endif /* CONFIG_BLK_DEV_ZONED */
350
351 /*
352 * Independent access ranges: struct blk_independent_access_range describes
353 * a range of contiguous sectors that can be accessed using device command
354 * execution resources that are independent from the resources used for
355 * other access ranges. This is typically found with single-LUN multi-actuator
356 * HDDs where each access range is served by a different set of heads.
357 * The set of independent ranges supported by the device is defined using
358 * struct blk_independent_access_ranges. The independent ranges must not overlap
359 * and must include all sectors within the disk capacity (no sector holes
360 * allowed).
361 * For a device with multiple ranges, requests targeting sectors in different
362 * ranges can be executed in parallel. A request can straddle an access range
363 * boundary.
364 */
365 struct blk_independent_access_range {
366 struct kobject kobj;
367 sector_t sector;
368 sector_t nr_sectors;
369 };
370
371 struct blk_independent_access_ranges {
372 struct kobject kobj;
373 bool sysfs_registered;
374 unsigned int nr_ia_ranges;
375 struct blk_independent_access_range ia_range[];
376 };
377
378 struct request_queue {
379 struct request *last_merge;
380 struct elevator_queue *elevator;
381
382 struct percpu_ref q_usage_counter;
383
384 struct blk_queue_stats *stats;
385 struct rq_qos *rq_qos;
386 struct mutex rq_qos_mutex;
387
388 const struct blk_mq_ops *mq_ops;
389
390 /* sw queues */
391 struct blk_mq_ctx __percpu *queue_ctx;
392
393 unsigned int queue_depth;
394
395 /* hw dispatch queues */
396 struct xarray hctx_table;
397 unsigned int nr_hw_queues;
398
399 /*
400 * The queue owner gets to use this for whatever they like.
401 * ll_rw_blk doesn't touch it.
402 */
403 void *queuedata;
404
405 /*
406 * various queue flags, see QUEUE_* below
407 */
408 unsigned long queue_flags;
409 /*
410 * Number of contexts that have called blk_set_pm_only(). If this
411 * counter is above zero then only RQF_PM requests are processed.
412 */
413 atomic_t pm_only;
414
415 /*
416 * ida allocated id for this queue. Used to index queues from
417 * ioctx.
418 */
419 int id;
420
421 spinlock_t queue_lock;
422
423 struct gendisk *disk;
424
425 refcount_t refs;
426
427 /*
428 * mq queue kobject
429 */
430 struct kobject *mq_kobj;
431
432 #ifdef CONFIG_BLK_DEV_INTEGRITY
433 struct blk_integrity integrity;
434 #endif /* CONFIG_BLK_DEV_INTEGRITY */
435
436 #ifdef CONFIG_PM
437 struct device *dev;
438 enum rpm_status rpm_status;
439 #endif
440
441 /*
442 * queue settings
443 */
444 unsigned long nr_requests; /* Max # of requests */
445
446 unsigned int dma_pad_mask;
447
448 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
449 struct blk_crypto_profile *crypto_profile;
450 struct kobject *crypto_kobject;
451 #endif
452
453 unsigned int rq_timeout;
454
455 struct timer_list timeout;
456 struct work_struct timeout_work;
457
458 atomic_t nr_active_requests_shared_tags;
459
460 struct blk_mq_tags *sched_shared_tags;
461
462 struct list_head icq_list;
463 #ifdef CONFIG_BLK_CGROUP
464 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
465 struct blkcg_gq *root_blkg;
466 struct list_head blkg_list;
467 struct mutex blkcg_mutex;
468 #endif
469
470 struct queue_limits limits;
471
472 unsigned int required_elevator_features;
473
474 int node;
475 #ifdef CONFIG_BLK_DEV_IO_TRACE
476 struct blk_trace __rcu *blk_trace;
477 #endif
478 /*
479 * for flush operations
480 */
481 struct blk_flush_queue *fq;
482 struct list_head flush_list;
483
484 struct list_head requeue_list;
485 spinlock_t requeue_lock;
486 struct delayed_work requeue_work;
487
488 struct mutex sysfs_lock;
489 struct mutex sysfs_dir_lock;
490
491 /*
492 * for reusing dead hctx instance in case of updating
493 * nr_hw_queues
494 */
495 struct list_head unused_hctx_list;
496 spinlock_t unused_hctx_lock;
497
498 int mq_freeze_depth;
499
500 #ifdef CONFIG_BLK_DEV_THROTTLING
501 /* Throttle data */
502 struct throtl_data *td;
503 #endif
504 struct rcu_head rcu_head;
505 wait_queue_head_t mq_freeze_wq;
506 /*
507 * Protect concurrent access to q_usage_counter by
508 * percpu_ref_kill() and percpu_ref_reinit().
509 */
510 struct mutex mq_freeze_lock;
511
512 int quiesce_depth;
513
514 struct blk_mq_tag_set *tag_set;
515 struct list_head tag_set_list;
516
517 struct dentry *debugfs_dir;
518 struct dentry *sched_debugfs_dir;
519 struct dentry *rqos_debugfs_dir;
520 /*
521 * Serializes all debugfs metadata operations using the above dentries.
522 */
523 struct mutex debugfs_mutex;
524
525 bool mq_sysfs_init_done;
526 };
527
528 /* Keep blk_queue_flag_name[] in sync with the definitions below */
529 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */
530 #define QUEUE_FLAG_DYING 1 /* queue being torn down */
531 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */
532 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */
533 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */
534 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */
535 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
536 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */
537 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */
538 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */
539 #define QUEUE_FLAG_SYNCHRONOUS 11 /* always completes in submit context */
540 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */
541 #define QUEUE_FLAG_HW_WC 13 /* Write back caching supported */
542 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */
543 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */
544 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */
545 #define QUEUE_FLAG_WC 17 /* Write back caching */
546 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */
547 #define QUEUE_FLAG_DAX 19 /* device supports DAX */
548 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */
549 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */
550 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */
551 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */
552 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */
553 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */
554 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */
555 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */
556 #define QUEUE_FLAG_SQ_SCHED 30 /* single queue style io dispatch */
557 #define QUEUE_FLAG_SKIP_TAGSET_QUIESCE 31 /* quiesce_tagset skip the queue*/
558
559 #define QUEUE_FLAG_MQ_DEFAULT ((1UL << QUEUE_FLAG_IO_STAT) | \
560 (1UL << QUEUE_FLAG_SAME_COMP) | \
561 (1UL << QUEUE_FLAG_NOWAIT))
562
563 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
564 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
565 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
566
567 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
568 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
569 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
570 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
571 #define blk_queue_noxmerges(q) \
572 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
573 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
574 #define blk_queue_stable_writes(q) \
575 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
576 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
577 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
578 #define blk_queue_zone_resetall(q) \
579 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
580 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
581 #define blk_queue_pci_p2pdma(q) \
582 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
583 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
584 #define blk_queue_rq_alloc_time(q) \
585 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
586 #else
587 #define blk_queue_rq_alloc_time(q) false
588 #endif
589
590 #define blk_noretry_request(rq) \
591 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
592 REQ_FAILFAST_DRIVER))
593 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
594 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
595 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
596 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
597 #define blk_queue_skip_tagset_quiesce(q) \
598 test_bit(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, &(q)->queue_flags)
599
600 extern void blk_set_pm_only(struct request_queue *q);
601 extern void blk_clear_pm_only(struct request_queue *q);
602
603 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
604
605 #define dma_map_bvec(dev, bv, dir, attrs) \
606 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
607 (dir), (attrs))
608
queue_is_mq(struct request_queue * q)609 static inline bool queue_is_mq(struct request_queue *q)
610 {
611 return q->mq_ops;
612 }
613
614 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)615 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
616 {
617 return q->rpm_status;
618 }
619 #else
queue_rpm_status(struct request_queue * q)620 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
621 {
622 return RPM_ACTIVE;
623 }
624 #endif
625
626 static inline enum blk_zoned_model
blk_queue_zoned_model(struct request_queue * q)627 blk_queue_zoned_model(struct request_queue *q)
628 {
629 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
630 return q->limits.zoned;
631 return BLK_ZONED_NONE;
632 }
633
blk_queue_is_zoned(struct request_queue * q)634 static inline bool blk_queue_is_zoned(struct request_queue *q)
635 {
636 switch (blk_queue_zoned_model(q)) {
637 case BLK_ZONED_HA:
638 case BLK_ZONED_HM:
639 return true;
640 default:
641 return false;
642 }
643 }
644
645 #ifdef CONFIG_BLK_DEV_ZONED
disk_nr_zones(struct gendisk * disk)646 static inline unsigned int disk_nr_zones(struct gendisk *disk)
647 {
648 return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0;
649 }
650
disk_zone_no(struct gendisk * disk,sector_t sector)651 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
652 {
653 if (!blk_queue_is_zoned(disk->queue))
654 return 0;
655 return sector >> ilog2(disk->queue->limits.chunk_sectors);
656 }
657
disk_zone_is_seq(struct gendisk * disk,sector_t sector)658 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector)
659 {
660 if (!blk_queue_is_zoned(disk->queue))
661 return false;
662 if (!disk->conv_zones_bitmap)
663 return true;
664 return !test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap);
665 }
666
disk_set_max_open_zones(struct gendisk * disk,unsigned int max_open_zones)667 static inline void disk_set_max_open_zones(struct gendisk *disk,
668 unsigned int max_open_zones)
669 {
670 disk->max_open_zones = max_open_zones;
671 }
672
disk_set_max_active_zones(struct gendisk * disk,unsigned int max_active_zones)673 static inline void disk_set_max_active_zones(struct gendisk *disk,
674 unsigned int max_active_zones)
675 {
676 disk->max_active_zones = max_active_zones;
677 }
678
bdev_max_open_zones(struct block_device * bdev)679 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
680 {
681 return bdev->bd_disk->max_open_zones;
682 }
683
bdev_max_active_zones(struct block_device * bdev)684 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
685 {
686 return bdev->bd_disk->max_active_zones;
687 }
688
689 #else /* CONFIG_BLK_DEV_ZONED */
disk_nr_zones(struct gendisk * disk)690 static inline unsigned int disk_nr_zones(struct gendisk *disk)
691 {
692 return 0;
693 }
disk_zone_is_seq(struct gendisk * disk,sector_t sector)694 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector)
695 {
696 return false;
697 }
disk_zone_no(struct gendisk * disk,sector_t sector)698 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
699 {
700 return 0;
701 }
bdev_max_open_zones(struct block_device * bdev)702 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
703 {
704 return 0;
705 }
706
bdev_max_active_zones(struct block_device * bdev)707 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
708 {
709 return 0;
710 }
711 #endif /* CONFIG_BLK_DEV_ZONED */
712
blk_queue_depth(struct request_queue * q)713 static inline unsigned int blk_queue_depth(struct request_queue *q)
714 {
715 if (q->queue_depth)
716 return q->queue_depth;
717
718 return q->nr_requests;
719 }
720
721 /*
722 * default timeout for SG_IO if none specified
723 */
724 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
725 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
726
727 /* This should not be used directly - use rq_for_each_segment */
728 #define for_each_bio(_bio) \
729 for (; _bio; _bio = _bio->bi_next)
730
731 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
732 const struct attribute_group **groups);
add_disk(struct gendisk * disk)733 static inline int __must_check add_disk(struct gendisk *disk)
734 {
735 return device_add_disk(NULL, disk, NULL);
736 }
737 void del_gendisk(struct gendisk *gp);
738 void invalidate_disk(struct gendisk *disk);
739 void set_disk_ro(struct gendisk *disk, bool read_only);
740 void disk_uevent(struct gendisk *disk, enum kobject_action action);
741
get_disk_ro(struct gendisk * disk)742 static inline int get_disk_ro(struct gendisk *disk)
743 {
744 return disk->part0->bd_read_only ||
745 test_bit(GD_READ_ONLY, &disk->state);
746 }
747
bdev_read_only(struct block_device * bdev)748 static inline int bdev_read_only(struct block_device *bdev)
749 {
750 return bdev->bd_read_only || get_disk_ro(bdev->bd_disk);
751 }
752
753 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
754 void disk_force_media_change(struct gendisk *disk);
755 void bdev_mark_dead(struct block_device *bdev, bool surprise);
756
757 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
758 void rand_initialize_disk(struct gendisk *disk);
759
get_start_sect(struct block_device * bdev)760 static inline sector_t get_start_sect(struct block_device *bdev)
761 {
762 return bdev->bd_start_sect;
763 }
764
bdev_nr_sectors(struct block_device * bdev)765 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
766 {
767 return bdev->bd_nr_sectors;
768 }
769
bdev_nr_bytes(struct block_device * bdev)770 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
771 {
772 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
773 }
774
get_capacity(struct gendisk * disk)775 static inline sector_t get_capacity(struct gendisk *disk)
776 {
777 return bdev_nr_sectors(disk->part0);
778 }
779
sb_bdev_nr_blocks(struct super_block * sb)780 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
781 {
782 return bdev_nr_sectors(sb->s_bdev) >>
783 (sb->s_blocksize_bits - SECTOR_SHIFT);
784 }
785
786 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
787
788 void put_disk(struct gendisk *disk);
789 struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass);
790
791 /**
792 * blk_alloc_disk - allocate a gendisk structure
793 * @node_id: numa node to allocate on
794 *
795 * Allocate and pre-initialize a gendisk structure for use with BIO based
796 * drivers.
797 *
798 * Context: can sleep
799 */
800 #define blk_alloc_disk(node_id) \
801 ({ \
802 static struct lock_class_key __key; \
803 \
804 __blk_alloc_disk(node_id, &__key); \
805 })
806
807 int __register_blkdev(unsigned int major, const char *name,
808 void (*probe)(dev_t devt));
809 #define register_blkdev(major, name) \
810 __register_blkdev(major, name, NULL)
811 void unregister_blkdev(unsigned int major, const char *name);
812
813 bool disk_check_media_change(struct gendisk *disk);
814 void set_capacity(struct gendisk *disk, sector_t size);
815
816 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
817 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
818 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
819 #else
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)820 static inline int bd_link_disk_holder(struct block_device *bdev,
821 struct gendisk *disk)
822 {
823 return 0;
824 }
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)825 static inline void bd_unlink_disk_holder(struct block_device *bdev,
826 struct gendisk *disk)
827 {
828 }
829 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
830
831 dev_t part_devt(struct gendisk *disk, u8 partno);
832 void inc_diskseq(struct gendisk *disk);
833 void blk_request_module(dev_t devt);
834
835 extern int blk_register_queue(struct gendisk *disk);
836 extern void blk_unregister_queue(struct gendisk *disk);
837 void submit_bio_noacct(struct bio *bio);
838 struct bio *bio_split_to_limits(struct bio *bio);
839
840 extern int blk_lld_busy(struct request_queue *q);
841 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
842 extern void blk_queue_exit(struct request_queue *q);
843 extern void blk_sync_queue(struct request_queue *q);
844
845 /* Helper to convert REQ_OP_XXX to its string format XXX */
846 extern const char *blk_op_str(enum req_op op);
847
848 int blk_status_to_errno(blk_status_t status);
849 blk_status_t errno_to_blk_status(int errno);
850 const char *blk_status_to_str(blk_status_t status);
851
852 /* only poll the hardware once, don't continue until a completion was found */
853 #define BLK_POLL_ONESHOT (1 << 0)
854 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
855 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
856 unsigned int flags);
857
bdev_get_queue(struct block_device * bdev)858 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
859 {
860 return bdev->bd_queue; /* this is never NULL */
861 }
862
863 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
864 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
865
bio_zone_no(struct bio * bio)866 static inline unsigned int bio_zone_no(struct bio *bio)
867 {
868 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
869 }
870
bio_zone_is_seq(struct bio * bio)871 static inline unsigned int bio_zone_is_seq(struct bio *bio)
872 {
873 return disk_zone_is_seq(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
874 }
875
876 /*
877 * Return how much of the chunk is left to be used for I/O at a given offset.
878 */
blk_chunk_sectors_left(sector_t offset,unsigned int chunk_sectors)879 static inline unsigned int blk_chunk_sectors_left(sector_t offset,
880 unsigned int chunk_sectors)
881 {
882 if (unlikely(!is_power_of_2(chunk_sectors)))
883 return chunk_sectors - sector_div(offset, chunk_sectors);
884 return chunk_sectors - (offset & (chunk_sectors - 1));
885 }
886
887 /*
888 * Access functions for manipulating queue properties
889 */
890 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit);
891 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
892 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
893 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
894 extern void blk_queue_max_discard_segments(struct request_queue *,
895 unsigned short);
896 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
897 unsigned int max_sectors);
898 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
899 extern void blk_queue_max_discard_sectors(struct request_queue *q,
900 unsigned int max_discard_sectors);
901 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
902 unsigned int max_write_same_sectors);
903 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
904 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
905 unsigned int max_zone_append_sectors);
906 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
907 void blk_queue_zone_write_granularity(struct request_queue *q,
908 unsigned int size);
909 extern void blk_queue_alignment_offset(struct request_queue *q,
910 unsigned int alignment);
911 void disk_update_readahead(struct gendisk *disk);
912 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
913 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
914 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
915 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
916 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
917 extern void blk_set_stacking_limits(struct queue_limits *lim);
918 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
919 sector_t offset);
920 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
921 sector_t offset);
922 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
923 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
924 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
925 extern void blk_queue_dma_alignment(struct request_queue *, int);
926 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
927 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
928 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
929
930 struct blk_independent_access_ranges *
931 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
932 void disk_set_independent_access_ranges(struct gendisk *disk,
933 struct blk_independent_access_ranges *iars);
934
935 /*
936 * Elevator features for blk_queue_required_elevator_features:
937 */
938 /* Supports zoned block devices sequential write constraint */
939 #define ELEVATOR_F_ZBD_SEQ_WRITE (1U << 0)
940
941 extern void blk_queue_required_elevator_features(struct request_queue *q,
942 unsigned int features);
943 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
944 struct device *dev);
945
946 bool __must_check blk_get_queue(struct request_queue *);
947 extern void blk_put_queue(struct request_queue *);
948
949 void blk_mark_disk_dead(struct gendisk *disk);
950
951 #ifdef CONFIG_BLOCK
952 /*
953 * blk_plug permits building a queue of related requests by holding the I/O
954 * fragments for a short period. This allows merging of sequential requests
955 * into single larger request. As the requests are moved from a per-task list to
956 * the device's request_queue in a batch, this results in improved scalability
957 * as the lock contention for request_queue lock is reduced.
958 *
959 * It is ok not to disable preemption when adding the request to the plug list
960 * or when attempting a merge. For details, please see schedule() where
961 * blk_flush_plug() is called.
962 */
963 struct blk_plug {
964 struct request *mq_list; /* blk-mq requests */
965
966 /* if ios_left is > 1, we can batch tag/rq allocations */
967 struct request *cached_rq;
968 unsigned short nr_ios;
969
970 unsigned short rq_count;
971
972 bool multiple_queues;
973 bool has_elevator;
974
975 struct list_head cb_list; /* md requires an unplug callback */
976 };
977
978 struct blk_plug_cb;
979 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
980 struct blk_plug_cb {
981 struct list_head list;
982 blk_plug_cb_fn callback;
983 void *data;
984 };
985 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
986 void *data, int size);
987 extern void blk_start_plug(struct blk_plug *);
988 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
989 extern void blk_finish_plug(struct blk_plug *);
990
991 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
blk_flush_plug(struct blk_plug * plug,bool async)992 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
993 {
994 if (plug)
995 __blk_flush_plug(plug, async);
996 }
997
998 int blkdev_issue_flush(struct block_device *bdev);
999 long nr_blockdev_pages(void);
1000 #else /* CONFIG_BLOCK */
1001 struct blk_plug {
1002 };
1003
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1004 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1005 unsigned short nr_ios)
1006 {
1007 }
1008
blk_start_plug(struct blk_plug * plug)1009 static inline void blk_start_plug(struct blk_plug *plug)
1010 {
1011 }
1012
blk_finish_plug(struct blk_plug * plug)1013 static inline void blk_finish_plug(struct blk_plug *plug)
1014 {
1015 }
1016
blk_flush_plug(struct blk_plug * plug,bool async)1017 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1018 {
1019 }
1020
blkdev_issue_flush(struct block_device * bdev)1021 static inline int blkdev_issue_flush(struct block_device *bdev)
1022 {
1023 return 0;
1024 }
1025
nr_blockdev_pages(void)1026 static inline long nr_blockdev_pages(void)
1027 {
1028 return 0;
1029 }
1030 #endif /* CONFIG_BLOCK */
1031
1032 extern void blk_io_schedule(void);
1033
1034 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1035 sector_t nr_sects, gfp_t gfp_mask);
1036 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1037 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1038 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1039 sector_t nr_sects, gfp_t gfp);
1040
1041 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1042 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1043
1044 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1045 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1046 unsigned flags);
1047 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1048 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1049
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1050 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1051 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1052 {
1053 return blkdev_issue_discard(sb->s_bdev,
1054 block << (sb->s_blocksize_bits -
1055 SECTOR_SHIFT),
1056 nr_blocks << (sb->s_blocksize_bits -
1057 SECTOR_SHIFT),
1058 gfp_mask);
1059 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1060 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1061 sector_t nr_blocks, gfp_t gfp_mask)
1062 {
1063 return blkdev_issue_zeroout(sb->s_bdev,
1064 block << (sb->s_blocksize_bits -
1065 SECTOR_SHIFT),
1066 nr_blocks << (sb->s_blocksize_bits -
1067 SECTOR_SHIFT),
1068 gfp_mask, 0);
1069 }
1070
bdev_is_partition(struct block_device * bdev)1071 static inline bool bdev_is_partition(struct block_device *bdev)
1072 {
1073 return bdev->bd_partno;
1074 }
1075
1076 enum blk_default_limits {
1077 BLK_MAX_SEGMENTS = 128,
1078 BLK_SAFE_MAX_SECTORS = 255,
1079 BLK_MAX_SEGMENT_SIZE = 65536,
1080 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1081 };
1082
1083 #define BLK_DEF_MAX_SECTORS 2560u
1084
queue_segment_boundary(const struct request_queue * q)1085 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1086 {
1087 return q->limits.seg_boundary_mask;
1088 }
1089
queue_virt_boundary(const struct request_queue * q)1090 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1091 {
1092 return q->limits.virt_boundary_mask;
1093 }
1094
queue_max_sectors(const struct request_queue * q)1095 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1096 {
1097 return q->limits.max_sectors;
1098 }
1099
queue_max_bytes(struct request_queue * q)1100 static inline unsigned int queue_max_bytes(struct request_queue *q)
1101 {
1102 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1103 }
1104
queue_max_hw_sectors(const struct request_queue * q)1105 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1106 {
1107 return q->limits.max_hw_sectors;
1108 }
1109
queue_max_segments(const struct request_queue * q)1110 static inline unsigned short queue_max_segments(const struct request_queue *q)
1111 {
1112 return q->limits.max_segments;
1113 }
1114
queue_max_discard_segments(const struct request_queue * q)1115 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1116 {
1117 return q->limits.max_discard_segments;
1118 }
1119
queue_max_segment_size(const struct request_queue * q)1120 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1121 {
1122 return q->limits.max_segment_size;
1123 }
1124
queue_max_zone_append_sectors(const struct request_queue * q)1125 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1126 {
1127
1128 const struct queue_limits *l = &q->limits;
1129
1130 return min(l->max_zone_append_sectors, l->max_sectors);
1131 }
1132
1133 static inline unsigned int
bdev_max_zone_append_sectors(struct block_device * bdev)1134 bdev_max_zone_append_sectors(struct block_device *bdev)
1135 {
1136 return queue_max_zone_append_sectors(bdev_get_queue(bdev));
1137 }
1138
bdev_max_segments(struct block_device * bdev)1139 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1140 {
1141 return queue_max_segments(bdev_get_queue(bdev));
1142 }
1143
queue_logical_block_size(const struct request_queue * q)1144 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1145 {
1146 int retval = 512;
1147
1148 if (q && q->limits.logical_block_size)
1149 retval = q->limits.logical_block_size;
1150
1151 return retval;
1152 }
1153
bdev_logical_block_size(struct block_device * bdev)1154 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1155 {
1156 return queue_logical_block_size(bdev_get_queue(bdev));
1157 }
1158
queue_physical_block_size(const struct request_queue * q)1159 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1160 {
1161 return q->limits.physical_block_size;
1162 }
1163
bdev_physical_block_size(struct block_device * bdev)1164 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1165 {
1166 return queue_physical_block_size(bdev_get_queue(bdev));
1167 }
1168
queue_io_min(const struct request_queue * q)1169 static inline unsigned int queue_io_min(const struct request_queue *q)
1170 {
1171 return q->limits.io_min;
1172 }
1173
bdev_io_min(struct block_device * bdev)1174 static inline int bdev_io_min(struct block_device *bdev)
1175 {
1176 return queue_io_min(bdev_get_queue(bdev));
1177 }
1178
queue_io_opt(const struct request_queue * q)1179 static inline unsigned int queue_io_opt(const struct request_queue *q)
1180 {
1181 return q->limits.io_opt;
1182 }
1183
bdev_io_opt(struct block_device * bdev)1184 static inline int bdev_io_opt(struct block_device *bdev)
1185 {
1186 return queue_io_opt(bdev_get_queue(bdev));
1187 }
1188
1189 static inline unsigned int
queue_zone_write_granularity(const struct request_queue * q)1190 queue_zone_write_granularity(const struct request_queue *q)
1191 {
1192 return q->limits.zone_write_granularity;
1193 }
1194
1195 static inline unsigned int
bdev_zone_write_granularity(struct block_device * bdev)1196 bdev_zone_write_granularity(struct block_device *bdev)
1197 {
1198 return queue_zone_write_granularity(bdev_get_queue(bdev));
1199 }
1200
1201 int bdev_alignment_offset(struct block_device *bdev);
1202 unsigned int bdev_discard_alignment(struct block_device *bdev);
1203
bdev_max_discard_sectors(struct block_device * bdev)1204 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1205 {
1206 return bdev_get_queue(bdev)->limits.max_discard_sectors;
1207 }
1208
bdev_discard_granularity(struct block_device * bdev)1209 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1210 {
1211 return bdev_get_queue(bdev)->limits.discard_granularity;
1212 }
1213
1214 static inline unsigned int
bdev_max_secure_erase_sectors(struct block_device * bdev)1215 bdev_max_secure_erase_sectors(struct block_device *bdev)
1216 {
1217 return bdev_get_queue(bdev)->limits.max_secure_erase_sectors;
1218 }
1219
bdev_write_zeroes_sectors(struct block_device * bdev)1220 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1221 {
1222 struct request_queue *q = bdev_get_queue(bdev);
1223
1224 if (q)
1225 return q->limits.max_write_zeroes_sectors;
1226
1227 return 0;
1228 }
1229
bdev_nonrot(struct block_device * bdev)1230 static inline bool bdev_nonrot(struct block_device *bdev)
1231 {
1232 return blk_queue_nonrot(bdev_get_queue(bdev));
1233 }
1234
bdev_synchronous(struct block_device * bdev)1235 static inline bool bdev_synchronous(struct block_device *bdev)
1236 {
1237 return test_bit(QUEUE_FLAG_SYNCHRONOUS,
1238 &bdev_get_queue(bdev)->queue_flags);
1239 }
1240
bdev_stable_writes(struct block_device * bdev)1241 static inline bool bdev_stable_writes(struct block_device *bdev)
1242 {
1243 return test_bit(QUEUE_FLAG_STABLE_WRITES,
1244 &bdev_get_queue(bdev)->queue_flags);
1245 }
1246
bdev_write_cache(struct block_device * bdev)1247 static inline bool bdev_write_cache(struct block_device *bdev)
1248 {
1249 return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags);
1250 }
1251
bdev_fua(struct block_device * bdev)1252 static inline bool bdev_fua(struct block_device *bdev)
1253 {
1254 return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags);
1255 }
1256
bdev_nowait(struct block_device * bdev)1257 static inline bool bdev_nowait(struct block_device *bdev)
1258 {
1259 return test_bit(QUEUE_FLAG_NOWAIT, &bdev_get_queue(bdev)->queue_flags);
1260 }
1261
bdev_zoned_model(struct block_device * bdev)1262 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1263 {
1264 return blk_queue_zoned_model(bdev_get_queue(bdev));
1265 }
1266
bdev_is_zoned(struct block_device * bdev)1267 static inline bool bdev_is_zoned(struct block_device *bdev)
1268 {
1269 return blk_queue_is_zoned(bdev_get_queue(bdev));
1270 }
1271
bdev_zone_no(struct block_device * bdev,sector_t sec)1272 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1273 {
1274 return disk_zone_no(bdev->bd_disk, sec);
1275 }
1276
1277 /* Whether write serialization is required for @op on zoned devices. */
op_needs_zoned_write_locking(enum req_op op)1278 static inline bool op_needs_zoned_write_locking(enum req_op op)
1279 {
1280 return op == REQ_OP_WRITE || op == REQ_OP_WRITE_ZEROES;
1281 }
1282
bdev_op_is_zoned_write(struct block_device * bdev,enum req_op op)1283 static inline bool bdev_op_is_zoned_write(struct block_device *bdev,
1284 enum req_op op)
1285 {
1286 return bdev_is_zoned(bdev) && op_needs_zoned_write_locking(op);
1287 }
1288
bdev_zone_sectors(struct block_device * bdev)1289 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1290 {
1291 struct request_queue *q = bdev_get_queue(bdev);
1292
1293 if (!blk_queue_is_zoned(q))
1294 return 0;
1295 return q->limits.chunk_sectors;
1296 }
1297
bdev_offset_from_zone_start(struct block_device * bdev,sector_t sector)1298 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1299 sector_t sector)
1300 {
1301 return sector & (bdev_zone_sectors(bdev) - 1);
1302 }
1303
bdev_is_zone_start(struct block_device * bdev,sector_t sector)1304 static inline bool bdev_is_zone_start(struct block_device *bdev,
1305 sector_t sector)
1306 {
1307 return bdev_offset_from_zone_start(bdev, sector) == 0;
1308 }
1309
queue_dma_alignment(const struct request_queue * q)1310 static inline int queue_dma_alignment(const struct request_queue *q)
1311 {
1312 return q ? q->limits.dma_alignment : 511;
1313 }
1314
bdev_dma_alignment(struct block_device * bdev)1315 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1316 {
1317 return queue_dma_alignment(bdev_get_queue(bdev));
1318 }
1319
bdev_iter_is_aligned(struct block_device * bdev,struct iov_iter * iter)1320 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1321 struct iov_iter *iter)
1322 {
1323 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1324 bdev_logical_block_size(bdev) - 1);
1325 }
1326
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1327 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1328 unsigned int len)
1329 {
1330 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1331 return !(addr & alignment) && !(len & alignment);
1332 }
1333
1334 /* assumes size > 256 */
blksize_bits(unsigned int size)1335 static inline unsigned int blksize_bits(unsigned int size)
1336 {
1337 return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1338 }
1339
block_size(struct block_device * bdev)1340 static inline unsigned int block_size(struct block_device *bdev)
1341 {
1342 return 1 << bdev->bd_inode->i_blkbits;
1343 }
1344
1345 int kblockd_schedule_work(struct work_struct *work);
1346 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1347
1348 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1349 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1350 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1351 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1352
1353 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1354
1355 bool blk_crypto_register(struct blk_crypto_profile *profile,
1356 struct request_queue *q);
1357
1358 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1359
blk_crypto_register(struct blk_crypto_profile * profile,struct request_queue * q)1360 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1361 struct request_queue *q)
1362 {
1363 return true;
1364 }
1365
1366 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1367
1368 enum blk_unique_id {
1369 /* these match the Designator Types specified in SPC */
1370 BLK_UID_T10 = 1,
1371 BLK_UID_EUI64 = 2,
1372 BLK_UID_NAA = 3,
1373 };
1374
1375 struct block_device_operations {
1376 void (*submit_bio)(struct bio *bio);
1377 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1378 unsigned int flags);
1379 int (*open)(struct gendisk *disk, blk_mode_t mode);
1380 void (*release)(struct gendisk *disk);
1381 int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
1382 unsigned cmd, unsigned long arg);
1383 int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
1384 unsigned cmd, unsigned long arg);
1385 unsigned int (*check_events) (struct gendisk *disk,
1386 unsigned int clearing);
1387 void (*unlock_native_capacity) (struct gendisk *);
1388 int (*getgeo)(struct block_device *, struct hd_geometry *);
1389 int (*set_read_only)(struct block_device *bdev, bool ro);
1390 void (*free_disk)(struct gendisk *disk);
1391 /* this callback is with swap_lock and sometimes page table lock held */
1392 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1393 int (*report_zones)(struct gendisk *, sector_t sector,
1394 unsigned int nr_zones, report_zones_cb cb, void *data);
1395 char *(*devnode)(struct gendisk *disk, umode_t *mode);
1396 /* returns the length of the identifier or a negative errno: */
1397 int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1398 enum blk_unique_id id_type);
1399 struct module *owner;
1400 const struct pr_ops *pr_ops;
1401
1402 /*
1403 * Special callback for probing GPT entry at a given sector.
1404 * Needed by Android devices, used by GPT scanner and MMC blk
1405 * driver.
1406 */
1407 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1408 };
1409
1410 #ifdef CONFIG_COMPAT
1411 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
1412 unsigned int, unsigned long);
1413 #else
1414 #define blkdev_compat_ptr_ioctl NULL
1415 #endif
1416
blk_wake_io_task(struct task_struct * waiter)1417 static inline void blk_wake_io_task(struct task_struct *waiter)
1418 {
1419 /*
1420 * If we're polling, the task itself is doing the completions. For
1421 * that case, we don't need to signal a wakeup, it's enough to just
1422 * mark us as RUNNING.
1423 */
1424 if (waiter == current)
1425 __set_current_state(TASK_RUNNING);
1426 else
1427 wake_up_process(waiter);
1428 }
1429
1430 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1431 unsigned long start_time);
1432 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1433 unsigned int sectors, unsigned long start_time);
1434
1435 unsigned long bio_start_io_acct(struct bio *bio);
1436 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1437 struct block_device *orig_bdev);
1438
1439 /**
1440 * bio_end_io_acct - end I/O accounting for bio based drivers
1441 * @bio: bio to end account for
1442 * @start_time: start time returned by bio_start_io_acct()
1443 */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1444 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1445 {
1446 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1447 }
1448
1449 int bdev_read_only(struct block_device *bdev);
1450 int set_blocksize(struct block_device *bdev, int size);
1451
1452 int lookup_bdev(const char *pathname, dev_t *dev);
1453
1454 void blkdev_show(struct seq_file *seqf, off_t offset);
1455
1456 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
1457 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
1458 #ifdef CONFIG_BLOCK
1459 #define BLKDEV_MAJOR_MAX 512
1460 #else
1461 #define BLKDEV_MAJOR_MAX 0
1462 #endif
1463
1464 struct blk_holder_ops {
1465 void (*mark_dead)(struct block_device *bdev, bool surprise);
1466
1467 /*
1468 * Sync the file system mounted on the block device.
1469 */
1470 void (*sync)(struct block_device *bdev);
1471 };
1472
1473 extern const struct blk_holder_ops fs_holder_ops;
1474
1475 /*
1476 * Return the correct open flags for blkdev_get_by_* for super block flags
1477 * as stored in sb->s_flags.
1478 */
1479 #define sb_open_mode(flags) \
1480 (BLK_OPEN_READ | (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
1481
1482 struct block_device *blkdev_get_by_dev(dev_t dev, blk_mode_t mode, void *holder,
1483 const struct blk_holder_ops *hops);
1484 struct block_device *blkdev_get_by_path(const char *path, blk_mode_t mode,
1485 void *holder, const struct blk_holder_ops *hops);
1486 int bd_prepare_to_claim(struct block_device *bdev, void *holder,
1487 const struct blk_holder_ops *hops);
1488 void bd_abort_claiming(struct block_device *bdev, void *holder);
1489 void blkdev_put(struct block_device *bdev, void *holder);
1490
1491 /* just for blk-cgroup, don't use elsewhere */
1492 struct block_device *blkdev_get_no_open(dev_t dev);
1493 void blkdev_put_no_open(struct block_device *bdev);
1494
1495 struct block_device *I_BDEV(struct inode *inode);
1496
1497 #ifdef CONFIG_BLOCK
1498 void invalidate_bdev(struct block_device *bdev);
1499 int sync_blockdev(struct block_device *bdev);
1500 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1501 int sync_blockdev_nowait(struct block_device *bdev);
1502 void sync_bdevs(bool wait);
1503 void bdev_statx_dioalign(struct inode *inode, struct kstat *stat);
1504 void printk_all_partitions(void);
1505 int __init early_lookup_bdev(const char *pathname, dev_t *dev);
1506 #else
invalidate_bdev(struct block_device * bdev)1507 static inline void invalidate_bdev(struct block_device *bdev)
1508 {
1509 }
sync_blockdev(struct block_device * bdev)1510 static inline int sync_blockdev(struct block_device *bdev)
1511 {
1512 return 0;
1513 }
sync_blockdev_nowait(struct block_device * bdev)1514 static inline int sync_blockdev_nowait(struct block_device *bdev)
1515 {
1516 return 0;
1517 }
sync_bdevs(bool wait)1518 static inline void sync_bdevs(bool wait)
1519 {
1520 }
bdev_statx_dioalign(struct inode * inode,struct kstat * stat)1521 static inline void bdev_statx_dioalign(struct inode *inode, struct kstat *stat)
1522 {
1523 }
printk_all_partitions(void)1524 static inline void printk_all_partitions(void)
1525 {
1526 }
early_lookup_bdev(const char * pathname,dev_t * dev)1527 static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
1528 {
1529 return -EINVAL;
1530 }
1531 #endif /* CONFIG_BLOCK */
1532
1533 int freeze_bdev(struct block_device *bdev);
1534 int thaw_bdev(struct block_device *bdev);
1535
1536 struct io_comp_batch {
1537 struct request *req_list;
1538 bool need_ts;
1539 void (*complete)(struct io_comp_batch *);
1540 };
1541
1542 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { }
1543
1544 #endif /* _LINUX_BLKDEV_H */
1545