1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Page table handling routines for radix page table.
4 *
5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6 */
7
8 #define pr_fmt(fmt) "radix-mmu: " fmt
9
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/sched/mm.h>
13 #include <linux/memblock.h>
14 #include <linux/of.h>
15 #include <linux/of_fdt.h>
16 #include <linux/mm.h>
17 #include <linux/hugetlb.h>
18 #include <linux/string_helpers.h>
19 #include <linux/memory.h>
20
21 #include <asm/pgalloc.h>
22 #include <asm/mmu_context.h>
23 #include <asm/dma.h>
24 #include <asm/machdep.h>
25 #include <asm/mmu.h>
26 #include <asm/firmware.h>
27 #include <asm/powernv.h>
28 #include <asm/sections.h>
29 #include <asm/smp.h>
30 #include <asm/trace.h>
31 #include <asm/uaccess.h>
32 #include <asm/ultravisor.h>
33 #include <asm/set_memory.h>
34
35 #include <trace/events/thp.h>
36
37 #include <mm/mmu_decl.h>
38
39 unsigned int mmu_base_pid;
40 unsigned long radix_mem_block_size __ro_after_init;
41
early_alloc_pgtable(unsigned long size,int nid,unsigned long region_start,unsigned long region_end)42 static __ref void *early_alloc_pgtable(unsigned long size, int nid,
43 unsigned long region_start, unsigned long region_end)
44 {
45 phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
46 phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
47 void *ptr;
48
49 if (region_start)
50 min_addr = region_start;
51 if (region_end)
52 max_addr = region_end;
53
54 ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
55
56 if (!ptr)
57 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
58 __func__, size, size, nid, &min_addr, &max_addr);
59
60 return ptr;
61 }
62
63 /*
64 * When allocating pud or pmd pointers, we allocate a complete page
65 * of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This
66 * is to ensure that the page obtained from the memblock allocator
67 * can be completely used as page table page and can be freed
68 * correctly when the page table entries are removed.
69 */
early_map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size,int nid,unsigned long region_start,unsigned long region_end)70 static int early_map_kernel_page(unsigned long ea, unsigned long pa,
71 pgprot_t flags,
72 unsigned int map_page_size,
73 int nid,
74 unsigned long region_start, unsigned long region_end)
75 {
76 unsigned long pfn = pa >> PAGE_SHIFT;
77 pgd_t *pgdp;
78 p4d_t *p4dp;
79 pud_t *pudp;
80 pmd_t *pmdp;
81 pte_t *ptep;
82
83 pgdp = pgd_offset_k(ea);
84 p4dp = p4d_offset(pgdp, ea);
85 if (p4d_none(*p4dp)) {
86 pudp = early_alloc_pgtable(PAGE_SIZE, nid,
87 region_start, region_end);
88 p4d_populate(&init_mm, p4dp, pudp);
89 }
90 pudp = pud_offset(p4dp, ea);
91 if (map_page_size == PUD_SIZE) {
92 ptep = (pte_t *)pudp;
93 goto set_the_pte;
94 }
95 if (pud_none(*pudp)) {
96 pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start,
97 region_end);
98 pud_populate(&init_mm, pudp, pmdp);
99 }
100 pmdp = pmd_offset(pudp, ea);
101 if (map_page_size == PMD_SIZE) {
102 ptep = pmdp_ptep(pmdp);
103 goto set_the_pte;
104 }
105 if (!pmd_present(*pmdp)) {
106 ptep = early_alloc_pgtable(PAGE_SIZE, nid,
107 region_start, region_end);
108 pmd_populate_kernel(&init_mm, pmdp, ptep);
109 }
110 ptep = pte_offset_kernel(pmdp, ea);
111
112 set_the_pte:
113 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
114 asm volatile("ptesync": : :"memory");
115 return 0;
116 }
117
118 /*
119 * nid, region_start, and region_end are hints to try to place the page
120 * table memory in the same node or region.
121 */
__map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size,int nid,unsigned long region_start,unsigned long region_end)122 static int __map_kernel_page(unsigned long ea, unsigned long pa,
123 pgprot_t flags,
124 unsigned int map_page_size,
125 int nid,
126 unsigned long region_start, unsigned long region_end)
127 {
128 unsigned long pfn = pa >> PAGE_SHIFT;
129 pgd_t *pgdp;
130 p4d_t *p4dp;
131 pud_t *pudp;
132 pmd_t *pmdp;
133 pte_t *ptep;
134 /*
135 * Make sure task size is correct as per the max adddr
136 */
137 BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
138
139 #ifdef CONFIG_PPC_64K_PAGES
140 BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
141 #endif
142
143 if (unlikely(!slab_is_available()))
144 return early_map_kernel_page(ea, pa, flags, map_page_size,
145 nid, region_start, region_end);
146
147 /*
148 * Should make page table allocation functions be able to take a
149 * node, so we can place kernel page tables on the right nodes after
150 * boot.
151 */
152 pgdp = pgd_offset_k(ea);
153 p4dp = p4d_offset(pgdp, ea);
154 pudp = pud_alloc(&init_mm, p4dp, ea);
155 if (!pudp)
156 return -ENOMEM;
157 if (map_page_size == PUD_SIZE) {
158 ptep = (pte_t *)pudp;
159 goto set_the_pte;
160 }
161 pmdp = pmd_alloc(&init_mm, pudp, ea);
162 if (!pmdp)
163 return -ENOMEM;
164 if (map_page_size == PMD_SIZE) {
165 ptep = pmdp_ptep(pmdp);
166 goto set_the_pte;
167 }
168 ptep = pte_alloc_kernel(pmdp, ea);
169 if (!ptep)
170 return -ENOMEM;
171
172 set_the_pte:
173 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
174 asm volatile("ptesync": : :"memory");
175 return 0;
176 }
177
radix__map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size)178 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
179 pgprot_t flags,
180 unsigned int map_page_size)
181 {
182 return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
183 }
184
185 #ifdef CONFIG_STRICT_KERNEL_RWX
radix__change_memory_range(unsigned long start,unsigned long end,unsigned long clear)186 static void radix__change_memory_range(unsigned long start, unsigned long end,
187 unsigned long clear)
188 {
189 unsigned long idx;
190 pgd_t *pgdp;
191 p4d_t *p4dp;
192 pud_t *pudp;
193 pmd_t *pmdp;
194 pte_t *ptep;
195
196 start = ALIGN_DOWN(start, PAGE_SIZE);
197 end = PAGE_ALIGN(end); // aligns up
198
199 pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
200 start, end, clear);
201
202 for (idx = start; idx < end; idx += PAGE_SIZE) {
203 pgdp = pgd_offset_k(idx);
204 p4dp = p4d_offset(pgdp, idx);
205 pudp = pud_alloc(&init_mm, p4dp, idx);
206 if (!pudp)
207 continue;
208 if (pud_is_leaf(*pudp)) {
209 ptep = (pte_t *)pudp;
210 goto update_the_pte;
211 }
212 pmdp = pmd_alloc(&init_mm, pudp, idx);
213 if (!pmdp)
214 continue;
215 if (pmd_is_leaf(*pmdp)) {
216 ptep = pmdp_ptep(pmdp);
217 goto update_the_pte;
218 }
219 ptep = pte_alloc_kernel(pmdp, idx);
220 if (!ptep)
221 continue;
222 update_the_pte:
223 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
224 }
225
226 radix__flush_tlb_kernel_range(start, end);
227 }
228
radix__mark_rodata_ro(void)229 void radix__mark_rodata_ro(void)
230 {
231 unsigned long start, end;
232
233 start = (unsigned long)_stext;
234 end = (unsigned long)__end_rodata;
235
236 radix__change_memory_range(start, end, _PAGE_WRITE);
237 }
238
radix__mark_initmem_nx(void)239 void radix__mark_initmem_nx(void)
240 {
241 unsigned long start = (unsigned long)__init_begin;
242 unsigned long end = (unsigned long)__init_end;
243
244 radix__change_memory_range(start, end, _PAGE_EXEC);
245 }
246 #endif /* CONFIG_STRICT_KERNEL_RWX */
247
248 static inline void __meminit
print_mapping(unsigned long start,unsigned long end,unsigned long size,bool exec)249 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
250 {
251 char buf[10];
252
253 if (end <= start)
254 return;
255
256 string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
257
258 pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
259 exec ? " (exec)" : "");
260 }
261
next_boundary(unsigned long addr,unsigned long end)262 static unsigned long next_boundary(unsigned long addr, unsigned long end)
263 {
264 #ifdef CONFIG_STRICT_KERNEL_RWX
265 if (addr < __pa_symbol(__srwx_boundary))
266 return __pa_symbol(__srwx_boundary);
267 #endif
268 return end;
269 }
270
create_physical_mapping(unsigned long start,unsigned long end,int nid,pgprot_t _prot)271 static int __meminit create_physical_mapping(unsigned long start,
272 unsigned long end,
273 int nid, pgprot_t _prot)
274 {
275 unsigned long vaddr, addr, mapping_size = 0;
276 bool prev_exec, exec = false;
277 pgprot_t prot;
278 int psize;
279 unsigned long max_mapping_size = radix_mem_block_size;
280
281 if (debug_pagealloc_enabled_or_kfence())
282 max_mapping_size = PAGE_SIZE;
283
284 start = ALIGN(start, PAGE_SIZE);
285 end = ALIGN_DOWN(end, PAGE_SIZE);
286 for (addr = start; addr < end; addr += mapping_size) {
287 unsigned long gap, previous_size;
288 int rc;
289
290 gap = next_boundary(addr, end) - addr;
291 if (gap > max_mapping_size)
292 gap = max_mapping_size;
293 previous_size = mapping_size;
294 prev_exec = exec;
295
296 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
297 mmu_psize_defs[MMU_PAGE_1G].shift) {
298 mapping_size = PUD_SIZE;
299 psize = MMU_PAGE_1G;
300 } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
301 mmu_psize_defs[MMU_PAGE_2M].shift) {
302 mapping_size = PMD_SIZE;
303 psize = MMU_PAGE_2M;
304 } else {
305 mapping_size = PAGE_SIZE;
306 psize = mmu_virtual_psize;
307 }
308
309 vaddr = (unsigned long)__va(addr);
310
311 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
312 overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
313 prot = PAGE_KERNEL_X;
314 exec = true;
315 } else {
316 prot = _prot;
317 exec = false;
318 }
319
320 if (mapping_size != previous_size || exec != prev_exec) {
321 print_mapping(start, addr, previous_size, prev_exec);
322 start = addr;
323 }
324
325 rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
326 if (rc)
327 return rc;
328
329 update_page_count(psize, 1);
330 }
331
332 print_mapping(start, addr, mapping_size, exec);
333 return 0;
334 }
335
radix_init_pgtable(void)336 static void __init radix_init_pgtable(void)
337 {
338 unsigned long rts_field;
339 phys_addr_t start, end;
340 u64 i;
341
342 /* We don't support slb for radix */
343 slb_set_size(0);
344
345 /*
346 * Create the linear mapping
347 */
348 for_each_mem_range(i, &start, &end) {
349 /*
350 * The memblock allocator is up at this point, so the
351 * page tables will be allocated within the range. No
352 * need or a node (which we don't have yet).
353 */
354
355 if (end >= RADIX_VMALLOC_START) {
356 pr_warn("Outside the supported range\n");
357 continue;
358 }
359
360 WARN_ON(create_physical_mapping(start, end,
361 -1, PAGE_KERNEL));
362 }
363
364 if (!cpu_has_feature(CPU_FTR_HVMODE) &&
365 cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
366 /*
367 * Older versions of KVM on these machines prefer if the
368 * guest only uses the low 19 PID bits.
369 */
370 mmu_pid_bits = 19;
371 }
372 mmu_base_pid = 1;
373
374 /*
375 * Allocate Partition table and process table for the
376 * host.
377 */
378 BUG_ON(PRTB_SIZE_SHIFT > 36);
379 process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
380 /*
381 * Fill in the process table.
382 */
383 rts_field = radix__get_tree_size();
384 process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
385
386 /*
387 * The init_mm context is given the first available (non-zero) PID,
388 * which is the "guard PID" and contains no page table. PIDR should
389 * never be set to zero because that duplicates the kernel address
390 * space at the 0x0... offset (quadrant 0)!
391 *
392 * An arbitrary PID that may later be allocated by the PID allocator
393 * for userspace processes must not be used either, because that
394 * would cause stale user mappings for that PID on CPUs outside of
395 * the TLB invalidation scheme (because it won't be in mm_cpumask).
396 *
397 * So permanently carve out one PID for the purpose of a guard PID.
398 */
399 init_mm.context.id = mmu_base_pid;
400 mmu_base_pid++;
401 }
402
radix_init_partition_table(void)403 static void __init radix_init_partition_table(void)
404 {
405 unsigned long rts_field, dw0, dw1;
406
407 mmu_partition_table_init();
408 rts_field = radix__get_tree_size();
409 dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
410 dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR;
411 mmu_partition_table_set_entry(0, dw0, dw1, false);
412
413 pr_info("Initializing Radix MMU\n");
414 }
415
get_idx_from_shift(unsigned int shift)416 static int __init get_idx_from_shift(unsigned int shift)
417 {
418 int idx = -1;
419
420 switch (shift) {
421 case 0xc:
422 idx = MMU_PAGE_4K;
423 break;
424 case 0x10:
425 idx = MMU_PAGE_64K;
426 break;
427 case 0x15:
428 idx = MMU_PAGE_2M;
429 break;
430 case 0x1e:
431 idx = MMU_PAGE_1G;
432 break;
433 }
434 return idx;
435 }
436
radix_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)437 static int __init radix_dt_scan_page_sizes(unsigned long node,
438 const char *uname, int depth,
439 void *data)
440 {
441 int size = 0;
442 int shift, idx;
443 unsigned int ap;
444 const __be32 *prop;
445 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
446
447 /* We are scanning "cpu" nodes only */
448 if (type == NULL || strcmp(type, "cpu") != 0)
449 return 0;
450
451 /* Grab page size encodings */
452 prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
453 if (!prop)
454 return 0;
455
456 pr_info("Page sizes from device-tree:\n");
457 for (; size >= 4; size -= 4, ++prop) {
458
459 struct mmu_psize_def *def;
460
461 /* top 3 bit is AP encoding */
462 shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
463 ap = be32_to_cpu(prop[0]) >> 29;
464 pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
465
466 idx = get_idx_from_shift(shift);
467 if (idx < 0)
468 continue;
469
470 def = &mmu_psize_defs[idx];
471 def->shift = shift;
472 def->ap = ap;
473 def->h_rpt_pgsize = psize_to_rpti_pgsize(idx);
474 }
475
476 /* needed ? */
477 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
478 return 1;
479 }
480
481 #ifdef CONFIG_MEMORY_HOTPLUG
probe_memory_block_size(unsigned long node,const char * uname,int depth,void * data)482 static int __init probe_memory_block_size(unsigned long node, const char *uname, int
483 depth, void *data)
484 {
485 unsigned long *mem_block_size = (unsigned long *)data;
486 const __be32 *prop;
487 int len;
488
489 if (depth != 1)
490 return 0;
491
492 if (strcmp(uname, "ibm,dynamic-reconfiguration-memory"))
493 return 0;
494
495 prop = of_get_flat_dt_prop(node, "ibm,lmb-size", &len);
496
497 if (!prop || len < dt_root_size_cells * sizeof(__be32))
498 /*
499 * Nothing in the device tree
500 */
501 *mem_block_size = MIN_MEMORY_BLOCK_SIZE;
502 else
503 *mem_block_size = of_read_number(prop, dt_root_size_cells);
504 return 1;
505 }
506
radix_memory_block_size(void)507 static unsigned long __init radix_memory_block_size(void)
508 {
509 unsigned long mem_block_size = MIN_MEMORY_BLOCK_SIZE;
510
511 /*
512 * OPAL firmware feature is set by now. Hence we are ok
513 * to test OPAL feature.
514 */
515 if (firmware_has_feature(FW_FEATURE_OPAL))
516 mem_block_size = 1UL * 1024 * 1024 * 1024;
517 else
518 of_scan_flat_dt(probe_memory_block_size, &mem_block_size);
519
520 return mem_block_size;
521 }
522
523 #else /* CONFIG_MEMORY_HOTPLUG */
524
radix_memory_block_size(void)525 static unsigned long __init radix_memory_block_size(void)
526 {
527 return 1UL * 1024 * 1024 * 1024;
528 }
529
530 #endif /* CONFIG_MEMORY_HOTPLUG */
531
532
radix__early_init_devtree(void)533 void __init radix__early_init_devtree(void)
534 {
535 int rc;
536
537 /*
538 * Try to find the available page sizes in the device-tree
539 */
540 rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
541 if (!rc) {
542 /*
543 * No page size details found in device tree.
544 * Let's assume we have page 4k and 64k support
545 */
546 mmu_psize_defs[MMU_PAGE_4K].shift = 12;
547 mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
548 mmu_psize_defs[MMU_PAGE_4K].h_rpt_pgsize =
549 psize_to_rpti_pgsize(MMU_PAGE_4K);
550
551 mmu_psize_defs[MMU_PAGE_64K].shift = 16;
552 mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
553 mmu_psize_defs[MMU_PAGE_64K].h_rpt_pgsize =
554 psize_to_rpti_pgsize(MMU_PAGE_64K);
555 }
556
557 /*
558 * Max mapping size used when mapping pages. We don't use
559 * ppc_md.memory_block_size() here because this get called
560 * early and we don't have machine probe called yet. Also
561 * the pseries implementation only check for ibm,lmb-size.
562 * All hypervisor supporting radix do expose that device
563 * tree node.
564 */
565 radix_mem_block_size = radix_memory_block_size();
566 return;
567 }
568
radix__early_init_mmu(void)569 void __init radix__early_init_mmu(void)
570 {
571 unsigned long lpcr;
572
573 #ifdef CONFIG_PPC_64S_HASH_MMU
574 #ifdef CONFIG_PPC_64K_PAGES
575 /* PAGE_SIZE mappings */
576 mmu_virtual_psize = MMU_PAGE_64K;
577 #else
578 mmu_virtual_psize = MMU_PAGE_4K;
579 #endif
580
581 #ifdef CONFIG_SPARSEMEM_VMEMMAP
582 /* vmemmap mapping */
583 if (mmu_psize_defs[MMU_PAGE_2M].shift) {
584 /*
585 * map vmemmap using 2M if available
586 */
587 mmu_vmemmap_psize = MMU_PAGE_2M;
588 } else
589 mmu_vmemmap_psize = mmu_virtual_psize;
590 #endif
591 #endif
592 /*
593 * initialize page table size
594 */
595 __pte_index_size = RADIX_PTE_INDEX_SIZE;
596 __pmd_index_size = RADIX_PMD_INDEX_SIZE;
597 __pud_index_size = RADIX_PUD_INDEX_SIZE;
598 __pgd_index_size = RADIX_PGD_INDEX_SIZE;
599 __pud_cache_index = RADIX_PUD_INDEX_SIZE;
600 __pte_table_size = RADIX_PTE_TABLE_SIZE;
601 __pmd_table_size = RADIX_PMD_TABLE_SIZE;
602 __pud_table_size = RADIX_PUD_TABLE_SIZE;
603 __pgd_table_size = RADIX_PGD_TABLE_SIZE;
604
605 __pmd_val_bits = RADIX_PMD_VAL_BITS;
606 __pud_val_bits = RADIX_PUD_VAL_BITS;
607 __pgd_val_bits = RADIX_PGD_VAL_BITS;
608
609 __kernel_virt_start = RADIX_KERN_VIRT_START;
610 __vmalloc_start = RADIX_VMALLOC_START;
611 __vmalloc_end = RADIX_VMALLOC_END;
612 __kernel_io_start = RADIX_KERN_IO_START;
613 __kernel_io_end = RADIX_KERN_IO_END;
614 vmemmap = (struct page *)RADIX_VMEMMAP_START;
615 ioremap_bot = IOREMAP_BASE;
616
617 #ifdef CONFIG_PCI
618 pci_io_base = ISA_IO_BASE;
619 #endif
620 __pte_frag_nr = RADIX_PTE_FRAG_NR;
621 __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
622 __pmd_frag_nr = RADIX_PMD_FRAG_NR;
623 __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
624
625 radix_init_pgtable();
626
627 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
628 lpcr = mfspr(SPRN_LPCR);
629 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
630 radix_init_partition_table();
631 } else {
632 radix_init_pseries();
633 }
634
635 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
636
637 /* Switch to the guard PID before turning on MMU */
638 radix__switch_mmu_context(NULL, &init_mm);
639 tlbiel_all();
640 }
641
radix__early_init_mmu_secondary(void)642 void radix__early_init_mmu_secondary(void)
643 {
644 unsigned long lpcr;
645 /*
646 * update partition table control register and UPRT
647 */
648 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
649 lpcr = mfspr(SPRN_LPCR);
650 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
651
652 set_ptcr_when_no_uv(__pa(partition_tb) |
653 (PATB_SIZE_SHIFT - 12));
654 }
655
656 radix__switch_mmu_context(NULL, &init_mm);
657 tlbiel_all();
658
659 /* Make sure userspace can't change the AMR */
660 mtspr(SPRN_UAMOR, 0);
661 }
662
663 /* Called during kexec sequence with MMU off */
radix__mmu_cleanup_all(void)664 notrace void radix__mmu_cleanup_all(void)
665 {
666 unsigned long lpcr;
667
668 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
669 lpcr = mfspr(SPRN_LPCR);
670 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
671 set_ptcr_when_no_uv(0);
672 powernv_set_nmmu_ptcr(0);
673 radix__flush_tlb_all();
674 }
675 }
676
677 #ifdef CONFIG_MEMORY_HOTPLUG
free_pte_table(pte_t * pte_start,pmd_t * pmd)678 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
679 {
680 pte_t *pte;
681 int i;
682
683 for (i = 0; i < PTRS_PER_PTE; i++) {
684 pte = pte_start + i;
685 if (!pte_none(*pte))
686 return;
687 }
688
689 pte_free_kernel(&init_mm, pte_start);
690 pmd_clear(pmd);
691 }
692
free_pmd_table(pmd_t * pmd_start,pud_t * pud)693 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
694 {
695 pmd_t *pmd;
696 int i;
697
698 for (i = 0; i < PTRS_PER_PMD; i++) {
699 pmd = pmd_start + i;
700 if (!pmd_none(*pmd))
701 return;
702 }
703
704 pmd_free(&init_mm, pmd_start);
705 pud_clear(pud);
706 }
707
free_pud_table(pud_t * pud_start,p4d_t * p4d)708 static void free_pud_table(pud_t *pud_start, p4d_t *p4d)
709 {
710 pud_t *pud;
711 int i;
712
713 for (i = 0; i < PTRS_PER_PUD; i++) {
714 pud = pud_start + i;
715 if (!pud_none(*pud))
716 return;
717 }
718
719 pud_free(&init_mm, pud_start);
720 p4d_clear(p4d);
721 }
722
remove_pte_table(pte_t * pte_start,unsigned long addr,unsigned long end)723 static void remove_pte_table(pte_t *pte_start, unsigned long addr,
724 unsigned long end)
725 {
726 unsigned long next;
727 pte_t *pte;
728
729 pte = pte_start + pte_index(addr);
730 for (; addr < end; addr = next, pte++) {
731 next = (addr + PAGE_SIZE) & PAGE_MASK;
732 if (next > end)
733 next = end;
734
735 if (!pte_present(*pte))
736 continue;
737
738 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
739 /*
740 * The vmemmap_free() and remove_section_mapping()
741 * codepaths call us with aligned addresses.
742 */
743 WARN_ONCE(1, "%s: unaligned range\n", __func__);
744 continue;
745 }
746
747 pte_clear(&init_mm, addr, pte);
748 }
749 }
750
remove_pmd_table(pmd_t * pmd_start,unsigned long addr,unsigned long end)751 static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
752 unsigned long end)
753 {
754 unsigned long next;
755 pte_t *pte_base;
756 pmd_t *pmd;
757
758 pmd = pmd_start + pmd_index(addr);
759 for (; addr < end; addr = next, pmd++) {
760 next = pmd_addr_end(addr, end);
761
762 if (!pmd_present(*pmd))
763 continue;
764
765 if (pmd_is_leaf(*pmd)) {
766 if (!IS_ALIGNED(addr, PMD_SIZE) ||
767 !IS_ALIGNED(next, PMD_SIZE)) {
768 WARN_ONCE(1, "%s: unaligned range\n", __func__);
769 continue;
770 }
771 pte_clear(&init_mm, addr, (pte_t *)pmd);
772 continue;
773 }
774
775 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
776 remove_pte_table(pte_base, addr, next);
777 free_pte_table(pte_base, pmd);
778 }
779 }
780
remove_pud_table(pud_t * pud_start,unsigned long addr,unsigned long end)781 static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr,
782 unsigned long end)
783 {
784 unsigned long next;
785 pmd_t *pmd_base;
786 pud_t *pud;
787
788 pud = pud_start + pud_index(addr);
789 for (; addr < end; addr = next, pud++) {
790 next = pud_addr_end(addr, end);
791
792 if (!pud_present(*pud))
793 continue;
794
795 if (pud_is_leaf(*pud)) {
796 if (!IS_ALIGNED(addr, PUD_SIZE) ||
797 !IS_ALIGNED(next, PUD_SIZE)) {
798 WARN_ONCE(1, "%s: unaligned range\n", __func__);
799 continue;
800 }
801 pte_clear(&init_mm, addr, (pte_t *)pud);
802 continue;
803 }
804
805 pmd_base = pud_pgtable(*pud);
806 remove_pmd_table(pmd_base, addr, next);
807 free_pmd_table(pmd_base, pud);
808 }
809 }
810
remove_pagetable(unsigned long start,unsigned long end)811 static void __meminit remove_pagetable(unsigned long start, unsigned long end)
812 {
813 unsigned long addr, next;
814 pud_t *pud_base;
815 pgd_t *pgd;
816 p4d_t *p4d;
817
818 spin_lock(&init_mm.page_table_lock);
819
820 for (addr = start; addr < end; addr = next) {
821 next = pgd_addr_end(addr, end);
822
823 pgd = pgd_offset_k(addr);
824 p4d = p4d_offset(pgd, addr);
825 if (!p4d_present(*p4d))
826 continue;
827
828 if (p4d_is_leaf(*p4d)) {
829 if (!IS_ALIGNED(addr, P4D_SIZE) ||
830 !IS_ALIGNED(next, P4D_SIZE)) {
831 WARN_ONCE(1, "%s: unaligned range\n", __func__);
832 continue;
833 }
834
835 pte_clear(&init_mm, addr, (pte_t *)pgd);
836 continue;
837 }
838
839 pud_base = p4d_pgtable(*p4d);
840 remove_pud_table(pud_base, addr, next);
841 free_pud_table(pud_base, p4d);
842 }
843
844 spin_unlock(&init_mm.page_table_lock);
845 radix__flush_tlb_kernel_range(start, end);
846 }
847
radix__create_section_mapping(unsigned long start,unsigned long end,int nid,pgprot_t prot)848 int __meminit radix__create_section_mapping(unsigned long start,
849 unsigned long end, int nid,
850 pgprot_t prot)
851 {
852 if (end >= RADIX_VMALLOC_START) {
853 pr_warn("Outside the supported range\n");
854 return -1;
855 }
856
857 return create_physical_mapping(__pa(start), __pa(end),
858 nid, prot);
859 }
860
radix__remove_section_mapping(unsigned long start,unsigned long end)861 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
862 {
863 remove_pagetable(start, end);
864 return 0;
865 }
866 #endif /* CONFIG_MEMORY_HOTPLUG */
867
868 #ifdef CONFIG_SPARSEMEM_VMEMMAP
__map_kernel_page_nid(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size,int nid)869 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
870 pgprot_t flags, unsigned int map_page_size,
871 int nid)
872 {
873 return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
874 }
875
radix__vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)876 int __meminit radix__vmemmap_create_mapping(unsigned long start,
877 unsigned long page_size,
878 unsigned long phys)
879 {
880 /* Create a PTE encoding */
881 unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
882 int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
883 int ret;
884
885 if ((start + page_size) >= RADIX_VMEMMAP_END) {
886 pr_warn("Outside the supported range\n");
887 return -1;
888 }
889
890 ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
891 BUG_ON(ret);
892
893 return 0;
894 }
895
896 #ifdef CONFIG_MEMORY_HOTPLUG
radix__vmemmap_remove_mapping(unsigned long start,unsigned long page_size)897 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
898 {
899 remove_pagetable(start, start + page_size);
900 }
901 #endif
902 #endif
903
904 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
radix__kernel_map_pages(struct page * page,int numpages,int enable)905 void radix__kernel_map_pages(struct page *page, int numpages, int enable)
906 {
907 unsigned long addr;
908
909 addr = (unsigned long)page_address(page);
910
911 if (enable)
912 set_memory_p(addr, numpages);
913 else
914 set_memory_np(addr, numpages);
915 }
916 #endif
917
918 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
919
radix__pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)920 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
921 pmd_t *pmdp, unsigned long clr,
922 unsigned long set)
923 {
924 unsigned long old;
925
926 #ifdef CONFIG_DEBUG_VM
927 WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
928 assert_spin_locked(pmd_lockptr(mm, pmdp));
929 #endif
930
931 old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
932 trace_hugepage_update(addr, old, clr, set);
933
934 return old;
935 }
936
radix__pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)937 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
938 pmd_t *pmdp)
939
940 {
941 pmd_t pmd;
942
943 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
944 VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
945 VM_BUG_ON(pmd_devmap(*pmdp));
946 /*
947 * khugepaged calls this for normal pmd
948 */
949 pmd = *pmdp;
950 pmd_clear(pmdp);
951
952 radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
953
954 return pmd;
955 }
956
957 /*
958 * For us pgtable_t is pte_t *. Inorder to save the deposisted
959 * page table, we consider the allocated page table as a list
960 * head. On withdraw we need to make sure we zero out the used
961 * list_head memory area.
962 */
radix__pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)963 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
964 pgtable_t pgtable)
965 {
966 struct list_head *lh = (struct list_head *) pgtable;
967
968 assert_spin_locked(pmd_lockptr(mm, pmdp));
969
970 /* FIFO */
971 if (!pmd_huge_pte(mm, pmdp))
972 INIT_LIST_HEAD(lh);
973 else
974 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
975 pmd_huge_pte(mm, pmdp) = pgtable;
976 }
977
radix__pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)978 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
979 {
980 pte_t *ptep;
981 pgtable_t pgtable;
982 struct list_head *lh;
983
984 assert_spin_locked(pmd_lockptr(mm, pmdp));
985
986 /* FIFO */
987 pgtable = pmd_huge_pte(mm, pmdp);
988 lh = (struct list_head *) pgtable;
989 if (list_empty(lh))
990 pmd_huge_pte(mm, pmdp) = NULL;
991 else {
992 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
993 list_del(lh);
994 }
995 ptep = (pte_t *) pgtable;
996 *ptep = __pte(0);
997 ptep++;
998 *ptep = __pte(0);
999 return pgtable;
1000 }
1001
radix__pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1002 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1003 unsigned long addr, pmd_t *pmdp)
1004 {
1005 pmd_t old_pmd;
1006 unsigned long old;
1007
1008 old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1009 old_pmd = __pmd(old);
1010 return old_pmd;
1011 }
1012
1013 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1014
radix__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)1015 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1016 pte_t entry, unsigned long address, int psize)
1017 {
1018 struct mm_struct *mm = vma->vm_mm;
1019 unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
1020 _PAGE_RW | _PAGE_EXEC);
1021
1022 unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1023 /*
1024 * On POWER9, the NMMU is not able to relax PTE access permissions
1025 * for a translation with a TLB. The PTE must be invalidated, TLB
1026 * flushed before the new PTE is installed.
1027 *
1028 * This only needs to be done for radix, because hash translation does
1029 * flush when updating the linux pte (and we don't support NMMU
1030 * accelerators on HPT on POWER9 anyway XXX: do we?).
1031 *
1032 * POWER10 (and P9P) NMMU does behave as per ISA.
1033 */
1034 if (!cpu_has_feature(CPU_FTR_ARCH_31) && (change & _PAGE_RW) &&
1035 atomic_read(&mm->context.copros) > 0) {
1036 unsigned long old_pte, new_pte;
1037
1038 old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1039 new_pte = old_pte | set;
1040 radix__flush_tlb_page_psize(mm, address, psize);
1041 __radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1042 } else {
1043 __radix_pte_update(ptep, 0, set);
1044 /*
1045 * Book3S does not require a TLB flush when relaxing access
1046 * restrictions when the address space (modulo the POWER9 nest
1047 * MMU issue above) because the MMU will reload the PTE after
1048 * taking an access fault, as defined by the architecture. See
1049 * "Setting a Reference or Change Bit or Upgrading Access
1050 * Authority (PTE Subject to Atomic Hardware Updates)" in
1051 * Power ISA Version 3.1B.
1052 */
1053 }
1054 /* See ptesync comment in radix__set_pte_at */
1055 }
1056
radix__ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1057 void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
1058 unsigned long addr, pte_t *ptep,
1059 pte_t old_pte, pte_t pte)
1060 {
1061 struct mm_struct *mm = vma->vm_mm;
1062
1063 /*
1064 * POWER9 NMMU must flush the TLB after clearing the PTE before
1065 * installing a PTE with more relaxed access permissions, see
1066 * radix__ptep_set_access_flags.
1067 */
1068 if (!cpu_has_feature(CPU_FTR_ARCH_31) &&
1069 is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
1070 (atomic_read(&mm->context.copros) > 0))
1071 radix__flush_tlb_page(vma, addr);
1072
1073 set_pte_at(mm, addr, ptep, pte);
1074 }
1075
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1076 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1077 {
1078 pte_t *ptep = (pte_t *)pud;
1079 pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
1080
1081 if (!radix_enabled())
1082 return 0;
1083
1084 set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
1085
1086 return 1;
1087 }
1088
pud_clear_huge(pud_t * pud)1089 int pud_clear_huge(pud_t *pud)
1090 {
1091 if (pud_is_leaf(*pud)) {
1092 pud_clear(pud);
1093 return 1;
1094 }
1095
1096 return 0;
1097 }
1098
pud_free_pmd_page(pud_t * pud,unsigned long addr)1099 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1100 {
1101 pmd_t *pmd;
1102 int i;
1103
1104 pmd = pud_pgtable(*pud);
1105 pud_clear(pud);
1106
1107 flush_tlb_kernel_range(addr, addr + PUD_SIZE);
1108
1109 for (i = 0; i < PTRS_PER_PMD; i++) {
1110 if (!pmd_none(pmd[i])) {
1111 pte_t *pte;
1112 pte = (pte_t *)pmd_page_vaddr(pmd[i]);
1113
1114 pte_free_kernel(&init_mm, pte);
1115 }
1116 }
1117
1118 pmd_free(&init_mm, pmd);
1119
1120 return 1;
1121 }
1122
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1123 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1124 {
1125 pte_t *ptep = (pte_t *)pmd;
1126 pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
1127
1128 if (!radix_enabled())
1129 return 0;
1130
1131 set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
1132
1133 return 1;
1134 }
1135
pmd_clear_huge(pmd_t * pmd)1136 int pmd_clear_huge(pmd_t *pmd)
1137 {
1138 if (pmd_is_leaf(*pmd)) {
1139 pmd_clear(pmd);
1140 return 1;
1141 }
1142
1143 return 0;
1144 }
1145
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1146 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1147 {
1148 pte_t *pte;
1149
1150 pte = (pte_t *)pmd_page_vaddr(*pmd);
1151 pmd_clear(pmd);
1152
1153 flush_tlb_kernel_range(addr, addr + PMD_SIZE);
1154
1155 pte_free_kernel(&init_mm, pte);
1156
1157 return 1;
1158 }
1159