1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/bitops.h>
11 #include <linux/types.h>
12 #include <linux/module.h>
13 #include <linux/list.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/pagemap.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/dmapool.h>
20 #include <linux/mempool.h>
21 #include <linux/spinlock.h>
22 #include <linux/kthread.h>
23 #include <linux/interrupt.h>
24 #include <linux/errno.h>
25 #include <linux/ioport.h>
26 #include <linux/in.h>
27 #include <linux/ip.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include <linux/tcp.h>
31 #include <linux/udp.h>
32 #include <linux/if_arp.h>
33 #include <linux/if_ether.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/ethtool.h>
37 #include <linux/if_vlan.h>
38 #include <linux/skbuff.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/prefetch.h>
43 #include <net/ip6_checksum.h>
44
45 #include "qlge.h"
46
47 char qlge_driver_name[] = DRV_NAME;
48 const char qlge_driver_version[] = DRV_VERSION;
49
50 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
51 MODULE_DESCRIPTION(DRV_STRING " ");
52 MODULE_LICENSE("GPL");
53 MODULE_VERSION(DRV_VERSION);
54
55 static const u32 default_msg =
56 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
57 /* NETIF_MSG_TIMER | */
58 NETIF_MSG_IFDOWN |
59 NETIF_MSG_IFUP |
60 NETIF_MSG_RX_ERR |
61 NETIF_MSG_TX_ERR |
62 /* NETIF_MSG_TX_QUEUED | */
63 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
64 /* NETIF_MSG_PKTDATA | */
65 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66
67 static int debug = -1; /* defaults above */
68 module_param(debug, int, 0664);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71 #define MSIX_IRQ 0
72 #define MSI_IRQ 1
73 #define LEG_IRQ 2
74 static int qlge_irq_type = MSIX_IRQ;
75 module_param(qlge_irq_type, int, 0664);
76 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77
78 static int qlge_mpi_coredump;
79 module_param(qlge_mpi_coredump, int, 0);
80 MODULE_PARM_DESC(qlge_mpi_coredump,
81 "Option to enable MPI firmware dump. "
82 "Default is OFF - Do Not allocate memory. ");
83
84 static int qlge_force_coredump;
85 module_param(qlge_force_coredump, int, 0);
86 MODULE_PARM_DESC(qlge_force_coredump,
87 "Option to allow force of firmware core dump. "
88 "Default is OFF - Do not allow.");
89
90 static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
92 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
93 /* required last entry */
94 {0,}
95 };
96
97 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
98
99 static int ql_wol(struct ql_adapter *qdev);
100 static void qlge_set_multicast_list(struct net_device *ndev);
101
102 /* This hardware semaphore causes exclusive access to
103 * resources shared between the NIC driver, MPI firmware,
104 * FCOE firmware and the FC driver.
105 */
ql_sem_trylock(struct ql_adapter * qdev,u32 sem_mask)106 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
107 {
108 u32 sem_bits = 0;
109
110 switch (sem_mask) {
111 case SEM_XGMAC0_MASK:
112 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
113 break;
114 case SEM_XGMAC1_MASK:
115 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
116 break;
117 case SEM_ICB_MASK:
118 sem_bits = SEM_SET << SEM_ICB_SHIFT;
119 break;
120 case SEM_MAC_ADDR_MASK:
121 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
122 break;
123 case SEM_FLASH_MASK:
124 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
125 break;
126 case SEM_PROBE_MASK:
127 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
128 break;
129 case SEM_RT_IDX_MASK:
130 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
131 break;
132 case SEM_PROC_REG_MASK:
133 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
134 break;
135 default:
136 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
137 return -EINVAL;
138 }
139
140 ql_write32(qdev, SEM, sem_bits | sem_mask);
141 return !(ql_read32(qdev, SEM) & sem_bits);
142 }
143
ql_sem_spinlock(struct ql_adapter * qdev,u32 sem_mask)144 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
145 {
146 unsigned int wait_count = 30;
147 do {
148 if (!ql_sem_trylock(qdev, sem_mask))
149 return 0;
150 udelay(100);
151 } while (--wait_count);
152 return -ETIMEDOUT;
153 }
154
ql_sem_unlock(struct ql_adapter * qdev,u32 sem_mask)155 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
156 {
157 ql_write32(qdev, SEM, sem_mask);
158 ql_read32(qdev, SEM); /* flush */
159 }
160
161 /* This function waits for a specific bit to come ready
162 * in a given register. It is used mostly by the initialize
163 * process, but is also used in kernel thread API such as
164 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
165 */
ql_wait_reg_rdy(struct ql_adapter * qdev,u32 reg,u32 bit,u32 err_bit)166 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
167 {
168 u32 temp;
169 int count = UDELAY_COUNT;
170
171 while (count) {
172 temp = ql_read32(qdev, reg);
173
174 /* check for errors */
175 if (temp & err_bit) {
176 netif_alert(qdev, probe, qdev->ndev,
177 "register 0x%.08x access error, value = 0x%.08x!.\n",
178 reg, temp);
179 return -EIO;
180 } else if (temp & bit)
181 return 0;
182 udelay(UDELAY_DELAY);
183 count--;
184 }
185 netif_alert(qdev, probe, qdev->ndev,
186 "Timed out waiting for reg %x to come ready.\n", reg);
187 return -ETIMEDOUT;
188 }
189
190 /* The CFG register is used to download TX and RX control blocks
191 * to the chip. This function waits for an operation to complete.
192 */
ql_wait_cfg(struct ql_adapter * qdev,u32 bit)193 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
194 {
195 int count = UDELAY_COUNT;
196 u32 temp;
197
198 while (count) {
199 temp = ql_read32(qdev, CFG);
200 if (temp & CFG_LE)
201 return -EIO;
202 if (!(temp & bit))
203 return 0;
204 udelay(UDELAY_DELAY);
205 count--;
206 }
207 return -ETIMEDOUT;
208 }
209
210
211 /* Used to issue init control blocks to hw. Maps control block,
212 * sets address, triggers download, waits for completion.
213 */
ql_write_cfg(struct ql_adapter * qdev,void * ptr,int size,u32 bit,u16 q_id)214 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
215 u16 q_id)
216 {
217 u64 map;
218 int status = 0;
219 int direction;
220 u32 mask;
221 u32 value;
222
223 direction =
224 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
225 PCI_DMA_FROMDEVICE;
226
227 map = pci_map_single(qdev->pdev, ptr, size, direction);
228 if (pci_dma_mapping_error(qdev->pdev, map)) {
229 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
230 return -ENOMEM;
231 }
232
233 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
234 if (status)
235 return status;
236
237 status = ql_wait_cfg(qdev, bit);
238 if (status) {
239 netif_err(qdev, ifup, qdev->ndev,
240 "Timed out waiting for CFG to come ready.\n");
241 goto exit;
242 }
243
244 ql_write32(qdev, ICB_L, (u32) map);
245 ql_write32(qdev, ICB_H, (u32) (map >> 32));
246
247 mask = CFG_Q_MASK | (bit << 16);
248 value = bit | (q_id << CFG_Q_SHIFT);
249 ql_write32(qdev, CFG, (mask | value));
250
251 /*
252 * Wait for the bit to clear after signaling hw.
253 */
254 status = ql_wait_cfg(qdev, bit);
255 exit:
256 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
257 pci_unmap_single(qdev->pdev, map, size, direction);
258 return status;
259 }
260
261 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
ql_get_mac_addr_reg(struct ql_adapter * qdev,u32 type,u16 index,u32 * value)262 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
263 u32 *value)
264 {
265 u32 offset = 0;
266 int status;
267
268 switch (type) {
269 case MAC_ADDR_TYPE_MULTI_MAC:
270 case MAC_ADDR_TYPE_CAM_MAC:
271 {
272 status =
273 ql_wait_reg_rdy(qdev,
274 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
275 if (status)
276 goto exit;
277 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
278 (index << MAC_ADDR_IDX_SHIFT) | /* index */
279 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280 status =
281 ql_wait_reg_rdy(qdev,
282 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
283 if (status)
284 goto exit;
285 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
286 status =
287 ql_wait_reg_rdy(qdev,
288 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
289 if (status)
290 goto exit;
291 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292 (index << MAC_ADDR_IDX_SHIFT) | /* index */
293 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294 status =
295 ql_wait_reg_rdy(qdev,
296 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
297 if (status)
298 goto exit;
299 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300 if (type == MAC_ADDR_TYPE_CAM_MAC) {
301 status =
302 ql_wait_reg_rdy(qdev,
303 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
304 if (status)
305 goto exit;
306 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
307 (index << MAC_ADDR_IDX_SHIFT) | /* index */
308 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
309 status =
310 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
311 MAC_ADDR_MR, 0);
312 if (status)
313 goto exit;
314 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
315 }
316 break;
317 }
318 case MAC_ADDR_TYPE_VLAN:
319 case MAC_ADDR_TYPE_MULTI_FLTR:
320 default:
321 netif_crit(qdev, ifup, qdev->ndev,
322 "Address type %d not yet supported.\n", type);
323 status = -EPERM;
324 }
325 exit:
326 return status;
327 }
328
329 /* Set up a MAC, multicast or VLAN address for the
330 * inbound frame matching.
331 */
ql_set_mac_addr_reg(struct ql_adapter * qdev,u8 * addr,u32 type,u16 index)332 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
333 u16 index)
334 {
335 u32 offset = 0;
336 int status = 0;
337
338 switch (type) {
339 case MAC_ADDR_TYPE_MULTI_MAC:
340 {
341 u32 upper = (addr[0] << 8) | addr[1];
342 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
343 (addr[4] << 8) | (addr[5]);
344
345 status =
346 ql_wait_reg_rdy(qdev,
347 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
348 if (status)
349 goto exit;
350 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
351 (index << MAC_ADDR_IDX_SHIFT) |
352 type | MAC_ADDR_E);
353 ql_write32(qdev, MAC_ADDR_DATA, lower);
354 status =
355 ql_wait_reg_rdy(qdev,
356 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
357 if (status)
358 goto exit;
359 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
360 (index << MAC_ADDR_IDX_SHIFT) |
361 type | MAC_ADDR_E);
362
363 ql_write32(qdev, MAC_ADDR_DATA, upper);
364 status =
365 ql_wait_reg_rdy(qdev,
366 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
367 if (status)
368 goto exit;
369 break;
370 }
371 case MAC_ADDR_TYPE_CAM_MAC:
372 {
373 u32 cam_output;
374 u32 upper = (addr[0] << 8) | addr[1];
375 u32 lower =
376 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
377 (addr[5]);
378 status =
379 ql_wait_reg_rdy(qdev,
380 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
381 if (status)
382 goto exit;
383 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
384 (index << MAC_ADDR_IDX_SHIFT) | /* index */
385 type); /* type */
386 ql_write32(qdev, MAC_ADDR_DATA, lower);
387 status =
388 ql_wait_reg_rdy(qdev,
389 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
390 if (status)
391 goto exit;
392 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
393 (index << MAC_ADDR_IDX_SHIFT) | /* index */
394 type); /* type */
395 ql_write32(qdev, MAC_ADDR_DATA, upper);
396 status =
397 ql_wait_reg_rdy(qdev,
398 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
399 if (status)
400 goto exit;
401 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
402 (index << MAC_ADDR_IDX_SHIFT) | /* index */
403 type); /* type */
404 /* This field should also include the queue id
405 and possibly the function id. Right now we hardcode
406 the route field to NIC core.
407 */
408 cam_output = (CAM_OUT_ROUTE_NIC |
409 (qdev->
410 func << CAM_OUT_FUNC_SHIFT) |
411 (0 << CAM_OUT_CQ_ID_SHIFT));
412 if (qdev->ndev->features & NETIF_F_HW_VLAN_RX)
413 cam_output |= CAM_OUT_RV;
414 /* route to NIC core */
415 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
416 break;
417 }
418 case MAC_ADDR_TYPE_VLAN:
419 {
420 u32 enable_bit = *((u32 *) &addr[0]);
421 /* For VLAN, the addr actually holds a bit that
422 * either enables or disables the vlan id we are
423 * addressing. It's either MAC_ADDR_E on or off.
424 * That's bit-27 we're talking about.
425 */
426 status =
427 ql_wait_reg_rdy(qdev,
428 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
429 if (status)
430 goto exit;
431 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
432 (index << MAC_ADDR_IDX_SHIFT) | /* index */
433 type | /* type */
434 enable_bit); /* enable/disable */
435 break;
436 }
437 case MAC_ADDR_TYPE_MULTI_FLTR:
438 default:
439 netif_crit(qdev, ifup, qdev->ndev,
440 "Address type %d not yet supported.\n", type);
441 status = -EPERM;
442 }
443 exit:
444 return status;
445 }
446
447 /* Set or clear MAC address in hardware. We sometimes
448 * have to clear it to prevent wrong frame routing
449 * especially in a bonding environment.
450 */
ql_set_mac_addr(struct ql_adapter * qdev,int set)451 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
452 {
453 int status;
454 char zero_mac_addr[ETH_ALEN];
455 char *addr;
456
457 if (set) {
458 addr = &qdev->current_mac_addr[0];
459 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
460 "Set Mac addr %pM\n", addr);
461 } else {
462 memset(zero_mac_addr, 0, ETH_ALEN);
463 addr = &zero_mac_addr[0];
464 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
465 "Clearing MAC address\n");
466 }
467 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
468 if (status)
469 return status;
470 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
471 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
472 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
473 if (status)
474 netif_err(qdev, ifup, qdev->ndev,
475 "Failed to init mac address.\n");
476 return status;
477 }
478
ql_link_on(struct ql_adapter * qdev)479 void ql_link_on(struct ql_adapter *qdev)
480 {
481 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
482 netif_carrier_on(qdev->ndev);
483 ql_set_mac_addr(qdev, 1);
484 }
485
ql_link_off(struct ql_adapter * qdev)486 void ql_link_off(struct ql_adapter *qdev)
487 {
488 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
489 netif_carrier_off(qdev->ndev);
490 ql_set_mac_addr(qdev, 0);
491 }
492
493 /* Get a specific frame routing value from the CAM.
494 * Used for debug and reg dump.
495 */
ql_get_routing_reg(struct ql_adapter * qdev,u32 index,u32 * value)496 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
497 {
498 int status = 0;
499
500 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
501 if (status)
502 goto exit;
503
504 ql_write32(qdev, RT_IDX,
505 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
506 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
507 if (status)
508 goto exit;
509 *value = ql_read32(qdev, RT_DATA);
510 exit:
511 return status;
512 }
513
514 /* The NIC function for this chip has 16 routing indexes. Each one can be used
515 * to route different frame types to various inbound queues. We send broadcast/
516 * multicast/error frames to the default queue for slow handling,
517 * and CAM hit/RSS frames to the fast handling queues.
518 */
ql_set_routing_reg(struct ql_adapter * qdev,u32 index,u32 mask,int enable)519 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
520 int enable)
521 {
522 int status = -EINVAL; /* Return error if no mask match. */
523 u32 value = 0;
524
525 switch (mask) {
526 case RT_IDX_CAM_HIT:
527 {
528 value = RT_IDX_DST_CAM_Q | /* dest */
529 RT_IDX_TYPE_NICQ | /* type */
530 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
531 break;
532 }
533 case RT_IDX_VALID: /* Promiscuous Mode frames. */
534 {
535 value = RT_IDX_DST_DFLT_Q | /* dest */
536 RT_IDX_TYPE_NICQ | /* type */
537 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
538 break;
539 }
540 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
541 {
542 value = RT_IDX_DST_DFLT_Q | /* dest */
543 RT_IDX_TYPE_NICQ | /* type */
544 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
545 break;
546 }
547 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
548 {
549 value = RT_IDX_DST_DFLT_Q | /* dest */
550 RT_IDX_TYPE_NICQ | /* type */
551 (RT_IDX_IP_CSUM_ERR_SLOT <<
552 RT_IDX_IDX_SHIFT); /* index */
553 break;
554 }
555 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
556 {
557 value = RT_IDX_DST_DFLT_Q | /* dest */
558 RT_IDX_TYPE_NICQ | /* type */
559 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
560 RT_IDX_IDX_SHIFT); /* index */
561 break;
562 }
563 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
564 {
565 value = RT_IDX_DST_DFLT_Q | /* dest */
566 RT_IDX_TYPE_NICQ | /* type */
567 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
568 break;
569 }
570 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
571 {
572 value = RT_IDX_DST_DFLT_Q | /* dest */
573 RT_IDX_TYPE_NICQ | /* type */
574 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
575 break;
576 }
577 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
578 {
579 value = RT_IDX_DST_DFLT_Q | /* dest */
580 RT_IDX_TYPE_NICQ | /* type */
581 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
582 break;
583 }
584 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
585 {
586 value = RT_IDX_DST_RSS | /* dest */
587 RT_IDX_TYPE_NICQ | /* type */
588 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
589 break;
590 }
591 case 0: /* Clear the E-bit on an entry. */
592 {
593 value = RT_IDX_DST_DFLT_Q | /* dest */
594 RT_IDX_TYPE_NICQ | /* type */
595 (index << RT_IDX_IDX_SHIFT);/* index */
596 break;
597 }
598 default:
599 netif_err(qdev, ifup, qdev->ndev,
600 "Mask type %d not yet supported.\n", mask);
601 status = -EPERM;
602 goto exit;
603 }
604
605 if (value) {
606 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
607 if (status)
608 goto exit;
609 value |= (enable ? RT_IDX_E : 0);
610 ql_write32(qdev, RT_IDX, value);
611 ql_write32(qdev, RT_DATA, enable ? mask : 0);
612 }
613 exit:
614 return status;
615 }
616
ql_enable_interrupts(struct ql_adapter * qdev)617 static void ql_enable_interrupts(struct ql_adapter *qdev)
618 {
619 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
620 }
621
ql_disable_interrupts(struct ql_adapter * qdev)622 static void ql_disable_interrupts(struct ql_adapter *qdev)
623 {
624 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
625 }
626
627 /* If we're running with multiple MSI-X vectors then we enable on the fly.
628 * Otherwise, we may have multiple outstanding workers and don't want to
629 * enable until the last one finishes. In this case, the irq_cnt gets
630 * incremented every time we queue a worker and decremented every time
631 * a worker finishes. Once it hits zero we enable the interrupt.
632 */
ql_enable_completion_interrupt(struct ql_adapter * qdev,u32 intr)633 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
634 {
635 u32 var = 0;
636 unsigned long hw_flags = 0;
637 struct intr_context *ctx = qdev->intr_context + intr;
638
639 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
640 /* Always enable if we're MSIX multi interrupts and
641 * it's not the default (zeroeth) interrupt.
642 */
643 ql_write32(qdev, INTR_EN,
644 ctx->intr_en_mask);
645 var = ql_read32(qdev, STS);
646 return var;
647 }
648
649 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
650 if (atomic_dec_and_test(&ctx->irq_cnt)) {
651 ql_write32(qdev, INTR_EN,
652 ctx->intr_en_mask);
653 var = ql_read32(qdev, STS);
654 }
655 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
656 return var;
657 }
658
ql_disable_completion_interrupt(struct ql_adapter * qdev,u32 intr)659 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
660 {
661 u32 var = 0;
662 struct intr_context *ctx;
663
664 /* HW disables for us if we're MSIX multi interrupts and
665 * it's not the default (zeroeth) interrupt.
666 */
667 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
668 return 0;
669
670 ctx = qdev->intr_context + intr;
671 spin_lock(&qdev->hw_lock);
672 if (!atomic_read(&ctx->irq_cnt)) {
673 ql_write32(qdev, INTR_EN,
674 ctx->intr_dis_mask);
675 var = ql_read32(qdev, STS);
676 }
677 atomic_inc(&ctx->irq_cnt);
678 spin_unlock(&qdev->hw_lock);
679 return var;
680 }
681
ql_enable_all_completion_interrupts(struct ql_adapter * qdev)682 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
683 {
684 int i;
685 for (i = 0; i < qdev->intr_count; i++) {
686 /* The enable call does a atomic_dec_and_test
687 * and enables only if the result is zero.
688 * So we precharge it here.
689 */
690 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
691 i == 0))
692 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
693 ql_enable_completion_interrupt(qdev, i);
694 }
695
696 }
697
ql_validate_flash(struct ql_adapter * qdev,u32 size,const char * str)698 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
699 {
700 int status, i;
701 u16 csum = 0;
702 __le16 *flash = (__le16 *)&qdev->flash;
703
704 status = strncmp((char *)&qdev->flash, str, 4);
705 if (status) {
706 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
707 return status;
708 }
709
710 for (i = 0; i < size; i++)
711 csum += le16_to_cpu(*flash++);
712
713 if (csum)
714 netif_err(qdev, ifup, qdev->ndev,
715 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
716
717 return csum;
718 }
719
ql_read_flash_word(struct ql_adapter * qdev,int offset,__le32 * data)720 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
721 {
722 int status = 0;
723 /* wait for reg to come ready */
724 status = ql_wait_reg_rdy(qdev,
725 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
726 if (status)
727 goto exit;
728 /* set up for reg read */
729 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
730 /* wait for reg to come ready */
731 status = ql_wait_reg_rdy(qdev,
732 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
733 if (status)
734 goto exit;
735 /* This data is stored on flash as an array of
736 * __le32. Since ql_read32() returns cpu endian
737 * we need to swap it back.
738 */
739 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
740 exit:
741 return status;
742 }
743
ql_get_8000_flash_params(struct ql_adapter * qdev)744 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
745 {
746 u32 i, size;
747 int status;
748 __le32 *p = (__le32 *)&qdev->flash;
749 u32 offset;
750 u8 mac_addr[6];
751
752 /* Get flash offset for function and adjust
753 * for dword access.
754 */
755 if (!qdev->port)
756 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
757 else
758 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
759
760 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
761 return -ETIMEDOUT;
762
763 size = sizeof(struct flash_params_8000) / sizeof(u32);
764 for (i = 0; i < size; i++, p++) {
765 status = ql_read_flash_word(qdev, i+offset, p);
766 if (status) {
767 netif_err(qdev, ifup, qdev->ndev,
768 "Error reading flash.\n");
769 goto exit;
770 }
771 }
772
773 status = ql_validate_flash(qdev,
774 sizeof(struct flash_params_8000) / sizeof(u16),
775 "8000");
776 if (status) {
777 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
778 status = -EINVAL;
779 goto exit;
780 }
781
782 /* Extract either manufacturer or BOFM modified
783 * MAC address.
784 */
785 if (qdev->flash.flash_params_8000.data_type1 == 2)
786 memcpy(mac_addr,
787 qdev->flash.flash_params_8000.mac_addr1,
788 qdev->ndev->addr_len);
789 else
790 memcpy(mac_addr,
791 qdev->flash.flash_params_8000.mac_addr,
792 qdev->ndev->addr_len);
793
794 if (!is_valid_ether_addr(mac_addr)) {
795 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
796 status = -EINVAL;
797 goto exit;
798 }
799
800 memcpy(qdev->ndev->dev_addr,
801 mac_addr,
802 qdev->ndev->addr_len);
803
804 exit:
805 ql_sem_unlock(qdev, SEM_FLASH_MASK);
806 return status;
807 }
808
ql_get_8012_flash_params(struct ql_adapter * qdev)809 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
810 {
811 int i;
812 int status;
813 __le32 *p = (__le32 *)&qdev->flash;
814 u32 offset = 0;
815 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
816
817 /* Second function's parameters follow the first
818 * function's.
819 */
820 if (qdev->port)
821 offset = size;
822
823 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
824 return -ETIMEDOUT;
825
826 for (i = 0; i < size; i++, p++) {
827 status = ql_read_flash_word(qdev, i+offset, p);
828 if (status) {
829 netif_err(qdev, ifup, qdev->ndev,
830 "Error reading flash.\n");
831 goto exit;
832 }
833
834 }
835
836 status = ql_validate_flash(qdev,
837 sizeof(struct flash_params_8012) / sizeof(u16),
838 "8012");
839 if (status) {
840 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
841 status = -EINVAL;
842 goto exit;
843 }
844
845 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
846 status = -EINVAL;
847 goto exit;
848 }
849
850 memcpy(qdev->ndev->dev_addr,
851 qdev->flash.flash_params_8012.mac_addr,
852 qdev->ndev->addr_len);
853
854 exit:
855 ql_sem_unlock(qdev, SEM_FLASH_MASK);
856 return status;
857 }
858
859 /* xgmac register are located behind the xgmac_addr and xgmac_data
860 * register pair. Each read/write requires us to wait for the ready
861 * bit before reading/writing the data.
862 */
ql_write_xgmac_reg(struct ql_adapter * qdev,u32 reg,u32 data)863 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
864 {
865 int status;
866 /* wait for reg to come ready */
867 status = ql_wait_reg_rdy(qdev,
868 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
869 if (status)
870 return status;
871 /* write the data to the data reg */
872 ql_write32(qdev, XGMAC_DATA, data);
873 /* trigger the write */
874 ql_write32(qdev, XGMAC_ADDR, reg);
875 return status;
876 }
877
878 /* xgmac register are located behind the xgmac_addr and xgmac_data
879 * register pair. Each read/write requires us to wait for the ready
880 * bit before reading/writing the data.
881 */
ql_read_xgmac_reg(struct ql_adapter * qdev,u32 reg,u32 * data)882 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
883 {
884 int status = 0;
885 /* wait for reg to come ready */
886 status = ql_wait_reg_rdy(qdev,
887 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
888 if (status)
889 goto exit;
890 /* set up for reg read */
891 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
892 /* wait for reg to come ready */
893 status = ql_wait_reg_rdy(qdev,
894 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
895 if (status)
896 goto exit;
897 /* get the data */
898 *data = ql_read32(qdev, XGMAC_DATA);
899 exit:
900 return status;
901 }
902
903 /* This is used for reading the 64-bit statistics regs. */
ql_read_xgmac_reg64(struct ql_adapter * qdev,u32 reg,u64 * data)904 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
905 {
906 int status = 0;
907 u32 hi = 0;
908 u32 lo = 0;
909
910 status = ql_read_xgmac_reg(qdev, reg, &lo);
911 if (status)
912 goto exit;
913
914 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
915 if (status)
916 goto exit;
917
918 *data = (u64) lo | ((u64) hi << 32);
919
920 exit:
921 return status;
922 }
923
ql_8000_port_initialize(struct ql_adapter * qdev)924 static int ql_8000_port_initialize(struct ql_adapter *qdev)
925 {
926 int status;
927 /*
928 * Get MPI firmware version for driver banner
929 * and ethool info.
930 */
931 status = ql_mb_about_fw(qdev);
932 if (status)
933 goto exit;
934 status = ql_mb_get_fw_state(qdev);
935 if (status)
936 goto exit;
937 /* Wake up a worker to get/set the TX/RX frame sizes. */
938 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
939 exit:
940 return status;
941 }
942
943 /* Take the MAC Core out of reset.
944 * Enable statistics counting.
945 * Take the transmitter/receiver out of reset.
946 * This functionality may be done in the MPI firmware at a
947 * later date.
948 */
ql_8012_port_initialize(struct ql_adapter * qdev)949 static int ql_8012_port_initialize(struct ql_adapter *qdev)
950 {
951 int status = 0;
952 u32 data;
953
954 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
955 /* Another function has the semaphore, so
956 * wait for the port init bit to come ready.
957 */
958 netif_info(qdev, link, qdev->ndev,
959 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
960 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
961 if (status) {
962 netif_crit(qdev, link, qdev->ndev,
963 "Port initialize timed out.\n");
964 }
965 return status;
966 }
967
968 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
969 /* Set the core reset. */
970 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
971 if (status)
972 goto end;
973 data |= GLOBAL_CFG_RESET;
974 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
975 if (status)
976 goto end;
977
978 /* Clear the core reset and turn on jumbo for receiver. */
979 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
980 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
981 data |= GLOBAL_CFG_TX_STAT_EN;
982 data |= GLOBAL_CFG_RX_STAT_EN;
983 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
984 if (status)
985 goto end;
986
987 /* Enable transmitter, and clear it's reset. */
988 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
989 if (status)
990 goto end;
991 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
992 data |= TX_CFG_EN; /* Enable the transmitter. */
993 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
994 if (status)
995 goto end;
996
997 /* Enable receiver and clear it's reset. */
998 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
999 if (status)
1000 goto end;
1001 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1002 data |= RX_CFG_EN; /* Enable the receiver. */
1003 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1004 if (status)
1005 goto end;
1006
1007 /* Turn on jumbo. */
1008 status =
1009 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1010 if (status)
1011 goto end;
1012 status =
1013 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1014 if (status)
1015 goto end;
1016
1017 /* Signal to the world that the port is enabled. */
1018 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1019 end:
1020 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1021 return status;
1022 }
1023
ql_lbq_block_size(struct ql_adapter * qdev)1024 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1025 {
1026 return PAGE_SIZE << qdev->lbq_buf_order;
1027 }
1028
1029 /* Get the next large buffer. */
ql_get_curr_lbuf(struct rx_ring * rx_ring)1030 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1031 {
1032 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1033 rx_ring->lbq_curr_idx++;
1034 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1035 rx_ring->lbq_curr_idx = 0;
1036 rx_ring->lbq_free_cnt++;
1037 return lbq_desc;
1038 }
1039
ql_get_curr_lchunk(struct ql_adapter * qdev,struct rx_ring * rx_ring)1040 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1041 struct rx_ring *rx_ring)
1042 {
1043 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1044
1045 pci_dma_sync_single_for_cpu(qdev->pdev,
1046 dma_unmap_addr(lbq_desc, mapaddr),
1047 rx_ring->lbq_buf_size,
1048 PCI_DMA_FROMDEVICE);
1049
1050 /* If it's the last chunk of our master page then
1051 * we unmap it.
1052 */
1053 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1054 == ql_lbq_block_size(qdev))
1055 pci_unmap_page(qdev->pdev,
1056 lbq_desc->p.pg_chunk.map,
1057 ql_lbq_block_size(qdev),
1058 PCI_DMA_FROMDEVICE);
1059 return lbq_desc;
1060 }
1061
1062 /* Get the next small buffer. */
ql_get_curr_sbuf(struct rx_ring * rx_ring)1063 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1064 {
1065 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1066 rx_ring->sbq_curr_idx++;
1067 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1068 rx_ring->sbq_curr_idx = 0;
1069 rx_ring->sbq_free_cnt++;
1070 return sbq_desc;
1071 }
1072
1073 /* Update an rx ring index. */
ql_update_cq(struct rx_ring * rx_ring)1074 static void ql_update_cq(struct rx_ring *rx_ring)
1075 {
1076 rx_ring->cnsmr_idx++;
1077 rx_ring->curr_entry++;
1078 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1079 rx_ring->cnsmr_idx = 0;
1080 rx_ring->curr_entry = rx_ring->cq_base;
1081 }
1082 }
1083
ql_write_cq_idx(struct rx_ring * rx_ring)1084 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1085 {
1086 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1087 }
1088
ql_get_next_chunk(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct bq_desc * lbq_desc)1089 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1090 struct bq_desc *lbq_desc)
1091 {
1092 if (!rx_ring->pg_chunk.page) {
1093 u64 map;
1094 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1095 GFP_ATOMIC,
1096 qdev->lbq_buf_order);
1097 if (unlikely(!rx_ring->pg_chunk.page)) {
1098 netif_err(qdev, drv, qdev->ndev,
1099 "page allocation failed.\n");
1100 return -ENOMEM;
1101 }
1102 rx_ring->pg_chunk.offset = 0;
1103 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1104 0, ql_lbq_block_size(qdev),
1105 PCI_DMA_FROMDEVICE);
1106 if (pci_dma_mapping_error(qdev->pdev, map)) {
1107 __free_pages(rx_ring->pg_chunk.page,
1108 qdev->lbq_buf_order);
1109 netif_err(qdev, drv, qdev->ndev,
1110 "PCI mapping failed.\n");
1111 return -ENOMEM;
1112 }
1113 rx_ring->pg_chunk.map = map;
1114 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1115 }
1116
1117 /* Copy the current master pg_chunk info
1118 * to the current descriptor.
1119 */
1120 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1121
1122 /* Adjust the master page chunk for next
1123 * buffer get.
1124 */
1125 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1126 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1127 rx_ring->pg_chunk.page = NULL;
1128 lbq_desc->p.pg_chunk.last_flag = 1;
1129 } else {
1130 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1131 get_page(rx_ring->pg_chunk.page);
1132 lbq_desc->p.pg_chunk.last_flag = 0;
1133 }
1134 return 0;
1135 }
1136 /* Process (refill) a large buffer queue. */
ql_update_lbq(struct ql_adapter * qdev,struct rx_ring * rx_ring)1137 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1138 {
1139 u32 clean_idx = rx_ring->lbq_clean_idx;
1140 u32 start_idx = clean_idx;
1141 struct bq_desc *lbq_desc;
1142 u64 map;
1143 int i;
1144
1145 while (rx_ring->lbq_free_cnt > 32) {
1146 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1147 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1148 "lbq: try cleaning clean_idx = %d.\n",
1149 clean_idx);
1150 lbq_desc = &rx_ring->lbq[clean_idx];
1151 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1152 rx_ring->lbq_clean_idx = clean_idx;
1153 netif_err(qdev, ifup, qdev->ndev,
1154 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1155 i, clean_idx);
1156 return;
1157 }
1158
1159 map = lbq_desc->p.pg_chunk.map +
1160 lbq_desc->p.pg_chunk.offset;
1161 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1162 dma_unmap_len_set(lbq_desc, maplen,
1163 rx_ring->lbq_buf_size);
1164 *lbq_desc->addr = cpu_to_le64(map);
1165
1166 pci_dma_sync_single_for_device(qdev->pdev, map,
1167 rx_ring->lbq_buf_size,
1168 PCI_DMA_FROMDEVICE);
1169 clean_idx++;
1170 if (clean_idx == rx_ring->lbq_len)
1171 clean_idx = 0;
1172 }
1173
1174 rx_ring->lbq_clean_idx = clean_idx;
1175 rx_ring->lbq_prod_idx += 16;
1176 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1177 rx_ring->lbq_prod_idx = 0;
1178 rx_ring->lbq_free_cnt -= 16;
1179 }
1180
1181 if (start_idx != clean_idx) {
1182 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1183 "lbq: updating prod idx = %d.\n",
1184 rx_ring->lbq_prod_idx);
1185 ql_write_db_reg(rx_ring->lbq_prod_idx,
1186 rx_ring->lbq_prod_idx_db_reg);
1187 }
1188 }
1189
1190 /* Process (refill) a small buffer queue. */
ql_update_sbq(struct ql_adapter * qdev,struct rx_ring * rx_ring)1191 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1192 {
1193 u32 clean_idx = rx_ring->sbq_clean_idx;
1194 u32 start_idx = clean_idx;
1195 struct bq_desc *sbq_desc;
1196 u64 map;
1197 int i;
1198
1199 while (rx_ring->sbq_free_cnt > 16) {
1200 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1201 sbq_desc = &rx_ring->sbq[clean_idx];
1202 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1203 "sbq: try cleaning clean_idx = %d.\n",
1204 clean_idx);
1205 if (sbq_desc->p.skb == NULL) {
1206 netif_printk(qdev, rx_status, KERN_DEBUG,
1207 qdev->ndev,
1208 "sbq: getting new skb for index %d.\n",
1209 sbq_desc->index);
1210 sbq_desc->p.skb =
1211 netdev_alloc_skb(qdev->ndev,
1212 SMALL_BUFFER_SIZE);
1213 if (sbq_desc->p.skb == NULL) {
1214 netif_err(qdev, probe, qdev->ndev,
1215 "Couldn't get an skb.\n");
1216 rx_ring->sbq_clean_idx = clean_idx;
1217 return;
1218 }
1219 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220 map = pci_map_single(qdev->pdev,
1221 sbq_desc->p.skb->data,
1222 rx_ring->sbq_buf_size,
1223 PCI_DMA_FROMDEVICE);
1224 if (pci_dma_mapping_error(qdev->pdev, map)) {
1225 netif_err(qdev, ifup, qdev->ndev,
1226 "PCI mapping failed.\n");
1227 rx_ring->sbq_clean_idx = clean_idx;
1228 dev_kfree_skb_any(sbq_desc->p.skb);
1229 sbq_desc->p.skb = NULL;
1230 return;
1231 }
1232 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233 dma_unmap_len_set(sbq_desc, maplen,
1234 rx_ring->sbq_buf_size);
1235 *sbq_desc->addr = cpu_to_le64(map);
1236 }
1237
1238 clean_idx++;
1239 if (clean_idx == rx_ring->sbq_len)
1240 clean_idx = 0;
1241 }
1242 rx_ring->sbq_clean_idx = clean_idx;
1243 rx_ring->sbq_prod_idx += 16;
1244 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245 rx_ring->sbq_prod_idx = 0;
1246 rx_ring->sbq_free_cnt -= 16;
1247 }
1248
1249 if (start_idx != clean_idx) {
1250 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251 "sbq: updating prod idx = %d.\n",
1252 rx_ring->sbq_prod_idx);
1253 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254 rx_ring->sbq_prod_idx_db_reg);
1255 }
1256 }
1257
ql_update_buffer_queues(struct ql_adapter * qdev,struct rx_ring * rx_ring)1258 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259 struct rx_ring *rx_ring)
1260 {
1261 ql_update_sbq(qdev, rx_ring);
1262 ql_update_lbq(qdev, rx_ring);
1263 }
1264
1265 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1266 * fails at some stage, or from the interrupt when a tx completes.
1267 */
ql_unmap_send(struct ql_adapter * qdev,struct tx_ring_desc * tx_ring_desc,int mapped)1268 static void ql_unmap_send(struct ql_adapter *qdev,
1269 struct tx_ring_desc *tx_ring_desc, int mapped)
1270 {
1271 int i;
1272 for (i = 0; i < mapped; i++) {
1273 if (i == 0 || (i == 7 && mapped > 7)) {
1274 /*
1275 * Unmap the skb->data area, or the
1276 * external sglist (AKA the Outbound
1277 * Address List (OAL)).
1278 * If its the zeroeth element, then it's
1279 * the skb->data area. If it's the 7th
1280 * element and there is more than 6 frags,
1281 * then its an OAL.
1282 */
1283 if (i == 7) {
1284 netif_printk(qdev, tx_done, KERN_DEBUG,
1285 qdev->ndev,
1286 "unmapping OAL area.\n");
1287 }
1288 pci_unmap_single(qdev->pdev,
1289 dma_unmap_addr(&tx_ring_desc->map[i],
1290 mapaddr),
1291 dma_unmap_len(&tx_ring_desc->map[i],
1292 maplen),
1293 PCI_DMA_TODEVICE);
1294 } else {
1295 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296 "unmapping frag %d.\n", i);
1297 pci_unmap_page(qdev->pdev,
1298 dma_unmap_addr(&tx_ring_desc->map[i],
1299 mapaddr),
1300 dma_unmap_len(&tx_ring_desc->map[i],
1301 maplen), PCI_DMA_TODEVICE);
1302 }
1303 }
1304
1305 }
1306
1307 /* Map the buffers for this transmit. This will return
1308 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309 */
ql_map_send(struct ql_adapter * qdev,struct ob_mac_iocb_req * mac_iocb_ptr,struct sk_buff * skb,struct tx_ring_desc * tx_ring_desc)1310 static int ql_map_send(struct ql_adapter *qdev,
1311 struct ob_mac_iocb_req *mac_iocb_ptr,
1312 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313 {
1314 int len = skb_headlen(skb);
1315 dma_addr_t map;
1316 int frag_idx, err, map_idx = 0;
1317 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318 int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320 if (frag_cnt) {
1321 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322 "frag_cnt = %d.\n", frag_cnt);
1323 }
1324 /*
1325 * Map the skb buffer first.
1326 */
1327 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329 err = pci_dma_mapping_error(qdev->pdev, map);
1330 if (err) {
1331 netif_err(qdev, tx_queued, qdev->ndev,
1332 "PCI mapping failed with error: %d\n", err);
1333
1334 return NETDEV_TX_BUSY;
1335 }
1336
1337 tbd->len = cpu_to_le32(len);
1338 tbd->addr = cpu_to_le64(map);
1339 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1341 map_idx++;
1342
1343 /*
1344 * This loop fills the remainder of the 8 address descriptors
1345 * in the IOCB. If there are more than 7 fragments, then the
1346 * eighth address desc will point to an external list (OAL).
1347 * When this happens, the remainder of the frags will be stored
1348 * in this list.
1349 */
1350 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352 tbd++;
1353 if (frag_idx == 6 && frag_cnt > 7) {
1354 /* Let's tack on an sglist.
1355 * Our control block will now
1356 * look like this:
1357 * iocb->seg[0] = skb->data
1358 * iocb->seg[1] = frag[0]
1359 * iocb->seg[2] = frag[1]
1360 * iocb->seg[3] = frag[2]
1361 * iocb->seg[4] = frag[3]
1362 * iocb->seg[5] = frag[4]
1363 * iocb->seg[6] = frag[5]
1364 * iocb->seg[7] = ptr to OAL (external sglist)
1365 * oal->seg[0] = frag[6]
1366 * oal->seg[1] = frag[7]
1367 * oal->seg[2] = frag[8]
1368 * oal->seg[3] = frag[9]
1369 * oal->seg[4] = frag[10]
1370 * etc...
1371 */
1372 /* Tack on the OAL in the eighth segment of IOCB. */
1373 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374 sizeof(struct oal),
1375 PCI_DMA_TODEVICE);
1376 err = pci_dma_mapping_error(qdev->pdev, map);
1377 if (err) {
1378 netif_err(qdev, tx_queued, qdev->ndev,
1379 "PCI mapping outbound address list with error: %d\n",
1380 err);
1381 goto map_error;
1382 }
1383
1384 tbd->addr = cpu_to_le64(map);
1385 /*
1386 * The length is the number of fragments
1387 * that remain to be mapped times the length
1388 * of our sglist (OAL).
1389 */
1390 tbd->len =
1391 cpu_to_le32((sizeof(struct tx_buf_desc) *
1392 (frag_cnt - frag_idx)) | TX_DESC_C);
1393 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1394 map);
1395 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396 sizeof(struct oal));
1397 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398 map_idx++;
1399 }
1400
1401 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1402 DMA_TO_DEVICE);
1403
1404 err = dma_mapping_error(&qdev->pdev->dev, map);
1405 if (err) {
1406 netif_err(qdev, tx_queued, qdev->ndev,
1407 "PCI mapping frags failed with error: %d.\n",
1408 err);
1409 goto map_error;
1410 }
1411
1412 tbd->addr = cpu_to_le64(map);
1413 tbd->len = cpu_to_le32(skb_frag_size(frag));
1414 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416 skb_frag_size(frag));
1417
1418 }
1419 /* Save the number of segments we've mapped. */
1420 tx_ring_desc->map_cnt = map_idx;
1421 /* Terminate the last segment. */
1422 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423 return NETDEV_TX_OK;
1424
1425 map_error:
1426 /*
1427 * If the first frag mapping failed, then i will be zero.
1428 * This causes the unmap of the skb->data area. Otherwise
1429 * we pass in the number of frags that mapped successfully
1430 * so they can be umapped.
1431 */
1432 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433 return NETDEV_TX_BUSY;
1434 }
1435
1436 /* Process an inbound completion from an rx ring. */
ql_process_mac_rx_gro_page(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp,u32 length,u16 vlan_id)1437 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1438 struct rx_ring *rx_ring,
1439 struct ib_mac_iocb_rsp *ib_mac_rsp,
1440 u32 length,
1441 u16 vlan_id)
1442 {
1443 struct sk_buff *skb;
1444 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1445 struct napi_struct *napi = &rx_ring->napi;
1446
1447 napi->dev = qdev->ndev;
1448
1449 skb = napi_get_frags(napi);
1450 if (!skb) {
1451 netif_err(qdev, drv, qdev->ndev,
1452 "Couldn't get an skb, exiting.\n");
1453 rx_ring->rx_dropped++;
1454 put_page(lbq_desc->p.pg_chunk.page);
1455 return;
1456 }
1457 prefetch(lbq_desc->p.pg_chunk.va);
1458 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1459 lbq_desc->p.pg_chunk.page,
1460 lbq_desc->p.pg_chunk.offset,
1461 length);
1462
1463 skb->len += length;
1464 skb->data_len += length;
1465 skb->truesize += length;
1466 skb_shinfo(skb)->nr_frags++;
1467
1468 rx_ring->rx_packets++;
1469 rx_ring->rx_bytes += length;
1470 skb->ip_summed = CHECKSUM_UNNECESSARY;
1471 skb_record_rx_queue(skb, rx_ring->cq_id);
1472 if (vlan_id != 0xffff)
1473 __vlan_hwaccel_put_tag(skb, vlan_id);
1474 napi_gro_frags(napi);
1475 }
1476
1477 /* Process an inbound completion from an rx ring. */
ql_process_mac_rx_page(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp,u32 length,u16 vlan_id)1478 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1479 struct rx_ring *rx_ring,
1480 struct ib_mac_iocb_rsp *ib_mac_rsp,
1481 u32 length,
1482 u16 vlan_id)
1483 {
1484 struct net_device *ndev = qdev->ndev;
1485 struct sk_buff *skb = NULL;
1486 void *addr;
1487 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1488 struct napi_struct *napi = &rx_ring->napi;
1489
1490 skb = netdev_alloc_skb(ndev, length);
1491 if (!skb) {
1492 netif_err(qdev, drv, qdev->ndev,
1493 "Couldn't get an skb, need to unwind!.\n");
1494 rx_ring->rx_dropped++;
1495 put_page(lbq_desc->p.pg_chunk.page);
1496 return;
1497 }
1498
1499 addr = lbq_desc->p.pg_chunk.va;
1500 prefetch(addr);
1501
1502
1503 /* Frame error, so drop the packet. */
1504 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1505 netif_info(qdev, drv, qdev->ndev,
1506 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1507 rx_ring->rx_errors++;
1508 goto err_out;
1509 }
1510
1511 /* The max framesize filter on this chip is set higher than
1512 * MTU since FCoE uses 2k frames.
1513 */
1514 if (skb->len > ndev->mtu + ETH_HLEN) {
1515 netif_err(qdev, drv, qdev->ndev,
1516 "Segment too small, dropping.\n");
1517 rx_ring->rx_dropped++;
1518 goto err_out;
1519 }
1520 memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
1521 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1522 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1523 length);
1524 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1525 lbq_desc->p.pg_chunk.offset+ETH_HLEN,
1526 length-ETH_HLEN);
1527 skb->len += length-ETH_HLEN;
1528 skb->data_len += length-ETH_HLEN;
1529 skb->truesize += length-ETH_HLEN;
1530
1531 rx_ring->rx_packets++;
1532 rx_ring->rx_bytes += skb->len;
1533 skb->protocol = eth_type_trans(skb, ndev);
1534 skb_checksum_none_assert(skb);
1535
1536 if ((ndev->features & NETIF_F_RXCSUM) &&
1537 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1538 /* TCP frame. */
1539 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1540 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1541 "TCP checksum done!\n");
1542 skb->ip_summed = CHECKSUM_UNNECESSARY;
1543 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1544 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1545 /* Unfragmented ipv4 UDP frame. */
1546 struct iphdr *iph =
1547 (struct iphdr *) ((u8 *)addr + ETH_HLEN);
1548 if (!(iph->frag_off &
1549 cpu_to_be16(IP_MF|IP_OFFSET))) {
1550 skb->ip_summed = CHECKSUM_UNNECESSARY;
1551 netif_printk(qdev, rx_status, KERN_DEBUG,
1552 qdev->ndev,
1553 "UDP checksum done!\n");
1554 }
1555 }
1556 }
1557
1558 skb_record_rx_queue(skb, rx_ring->cq_id);
1559 if (vlan_id != 0xffff)
1560 __vlan_hwaccel_put_tag(skb, vlan_id);
1561 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1562 napi_gro_receive(napi, skb);
1563 else
1564 netif_receive_skb(skb);
1565 return;
1566 err_out:
1567 dev_kfree_skb_any(skb);
1568 put_page(lbq_desc->p.pg_chunk.page);
1569 }
1570
1571 /* Process an inbound completion from an rx ring. */
ql_process_mac_rx_skb(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp,u32 length,u16 vlan_id)1572 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1573 struct rx_ring *rx_ring,
1574 struct ib_mac_iocb_rsp *ib_mac_rsp,
1575 u32 length,
1576 u16 vlan_id)
1577 {
1578 struct net_device *ndev = qdev->ndev;
1579 struct sk_buff *skb = NULL;
1580 struct sk_buff *new_skb = NULL;
1581 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1582
1583 skb = sbq_desc->p.skb;
1584 /* Allocate new_skb and copy */
1585 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1586 if (new_skb == NULL) {
1587 netif_err(qdev, probe, qdev->ndev,
1588 "No skb available, drop the packet.\n");
1589 rx_ring->rx_dropped++;
1590 return;
1591 }
1592 skb_reserve(new_skb, NET_IP_ALIGN);
1593 memcpy(skb_put(new_skb, length), skb->data, length);
1594 skb = new_skb;
1595
1596 /* Frame error, so drop the packet. */
1597 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1598 netif_info(qdev, drv, qdev->ndev,
1599 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1600 dev_kfree_skb_any(skb);
1601 rx_ring->rx_errors++;
1602 return;
1603 }
1604
1605 /* loopback self test for ethtool */
1606 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1607 ql_check_lb_frame(qdev, skb);
1608 dev_kfree_skb_any(skb);
1609 return;
1610 }
1611
1612 /* The max framesize filter on this chip is set higher than
1613 * MTU since FCoE uses 2k frames.
1614 */
1615 if (skb->len > ndev->mtu + ETH_HLEN) {
1616 dev_kfree_skb_any(skb);
1617 rx_ring->rx_dropped++;
1618 return;
1619 }
1620
1621 prefetch(skb->data);
1622 skb->dev = ndev;
1623 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1624 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1625 "%s Multicast.\n",
1626 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1627 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1628 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1629 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1630 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1631 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1632 }
1633 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1634 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1635 "Promiscuous Packet.\n");
1636
1637 rx_ring->rx_packets++;
1638 rx_ring->rx_bytes += skb->len;
1639 skb->protocol = eth_type_trans(skb, ndev);
1640 skb_checksum_none_assert(skb);
1641
1642 /* If rx checksum is on, and there are no
1643 * csum or frame errors.
1644 */
1645 if ((ndev->features & NETIF_F_RXCSUM) &&
1646 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1647 /* TCP frame. */
1648 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1649 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1650 "TCP checksum done!\n");
1651 skb->ip_summed = CHECKSUM_UNNECESSARY;
1652 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1653 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1654 /* Unfragmented ipv4 UDP frame. */
1655 struct iphdr *iph = (struct iphdr *) skb->data;
1656 if (!(iph->frag_off &
1657 ntohs(IP_MF|IP_OFFSET))) {
1658 skb->ip_summed = CHECKSUM_UNNECESSARY;
1659 netif_printk(qdev, rx_status, KERN_DEBUG,
1660 qdev->ndev,
1661 "UDP checksum done!\n");
1662 }
1663 }
1664 }
1665
1666 skb_record_rx_queue(skb, rx_ring->cq_id);
1667 if (vlan_id != 0xffff)
1668 __vlan_hwaccel_put_tag(skb, vlan_id);
1669 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1670 napi_gro_receive(&rx_ring->napi, skb);
1671 else
1672 netif_receive_skb(skb);
1673 }
1674
ql_realign_skb(struct sk_buff * skb,int len)1675 static void ql_realign_skb(struct sk_buff *skb, int len)
1676 {
1677 void *temp_addr = skb->data;
1678
1679 /* Undo the skb_reserve(skb,32) we did before
1680 * giving to hardware, and realign data on
1681 * a 2-byte boundary.
1682 */
1683 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1684 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1685 skb_copy_to_linear_data(skb, temp_addr,
1686 (unsigned int)len);
1687 }
1688
1689 /*
1690 * This function builds an skb for the given inbound
1691 * completion. It will be rewritten for readability in the near
1692 * future, but for not it works well.
1693 */
ql_build_rx_skb(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp)1694 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1695 struct rx_ring *rx_ring,
1696 struct ib_mac_iocb_rsp *ib_mac_rsp)
1697 {
1698 struct bq_desc *lbq_desc;
1699 struct bq_desc *sbq_desc;
1700 struct sk_buff *skb = NULL;
1701 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1702 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1703
1704 /*
1705 * Handle the header buffer if present.
1706 */
1707 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1708 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1709 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1710 "Header of %d bytes in small buffer.\n", hdr_len);
1711 /*
1712 * Headers fit nicely into a small buffer.
1713 */
1714 sbq_desc = ql_get_curr_sbuf(rx_ring);
1715 pci_unmap_single(qdev->pdev,
1716 dma_unmap_addr(sbq_desc, mapaddr),
1717 dma_unmap_len(sbq_desc, maplen),
1718 PCI_DMA_FROMDEVICE);
1719 skb = sbq_desc->p.skb;
1720 ql_realign_skb(skb, hdr_len);
1721 skb_put(skb, hdr_len);
1722 sbq_desc->p.skb = NULL;
1723 }
1724
1725 /*
1726 * Handle the data buffer(s).
1727 */
1728 if (unlikely(!length)) { /* Is there data too? */
1729 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1730 "No Data buffer in this packet.\n");
1731 return skb;
1732 }
1733
1734 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1735 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1736 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1737 "Headers in small, data of %d bytes in small, combine them.\n",
1738 length);
1739 /*
1740 * Data is less than small buffer size so it's
1741 * stuffed in a small buffer.
1742 * For this case we append the data
1743 * from the "data" small buffer to the "header" small
1744 * buffer.
1745 */
1746 sbq_desc = ql_get_curr_sbuf(rx_ring);
1747 pci_dma_sync_single_for_cpu(qdev->pdev,
1748 dma_unmap_addr
1749 (sbq_desc, mapaddr),
1750 dma_unmap_len
1751 (sbq_desc, maplen),
1752 PCI_DMA_FROMDEVICE);
1753 memcpy(skb_put(skb, length),
1754 sbq_desc->p.skb->data, length);
1755 pci_dma_sync_single_for_device(qdev->pdev,
1756 dma_unmap_addr
1757 (sbq_desc,
1758 mapaddr),
1759 dma_unmap_len
1760 (sbq_desc,
1761 maplen),
1762 PCI_DMA_FROMDEVICE);
1763 } else {
1764 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1765 "%d bytes in a single small buffer.\n",
1766 length);
1767 sbq_desc = ql_get_curr_sbuf(rx_ring);
1768 skb = sbq_desc->p.skb;
1769 ql_realign_skb(skb, length);
1770 skb_put(skb, length);
1771 pci_unmap_single(qdev->pdev,
1772 dma_unmap_addr(sbq_desc,
1773 mapaddr),
1774 dma_unmap_len(sbq_desc,
1775 maplen),
1776 PCI_DMA_FROMDEVICE);
1777 sbq_desc->p.skb = NULL;
1778 }
1779 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1780 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1781 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1782 "Header in small, %d bytes in large. Chain large to small!\n",
1783 length);
1784 /*
1785 * The data is in a single large buffer. We
1786 * chain it to the header buffer's skb and let
1787 * it rip.
1788 */
1789 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1790 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1791 "Chaining page at offset = %d, for %d bytes to skb.\n",
1792 lbq_desc->p.pg_chunk.offset, length);
1793 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1794 lbq_desc->p.pg_chunk.offset,
1795 length);
1796 skb->len += length;
1797 skb->data_len += length;
1798 skb->truesize += length;
1799 } else {
1800 /*
1801 * The headers and data are in a single large buffer. We
1802 * copy it to a new skb and let it go. This can happen with
1803 * jumbo mtu on a non-TCP/UDP frame.
1804 */
1805 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1806 skb = netdev_alloc_skb(qdev->ndev, length);
1807 if (skb == NULL) {
1808 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1809 "No skb available, drop the packet.\n");
1810 return NULL;
1811 }
1812 pci_unmap_page(qdev->pdev,
1813 dma_unmap_addr(lbq_desc,
1814 mapaddr),
1815 dma_unmap_len(lbq_desc, maplen),
1816 PCI_DMA_FROMDEVICE);
1817 skb_reserve(skb, NET_IP_ALIGN);
1818 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1819 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1820 length);
1821 skb_fill_page_desc(skb, 0,
1822 lbq_desc->p.pg_chunk.page,
1823 lbq_desc->p.pg_chunk.offset,
1824 length);
1825 skb->len += length;
1826 skb->data_len += length;
1827 skb->truesize += length;
1828 length -= length;
1829 __pskb_pull_tail(skb,
1830 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1831 VLAN_ETH_HLEN : ETH_HLEN);
1832 }
1833 } else {
1834 /*
1835 * The data is in a chain of large buffers
1836 * pointed to by a small buffer. We loop
1837 * thru and chain them to the our small header
1838 * buffer's skb.
1839 * frags: There are 18 max frags and our small
1840 * buffer will hold 32 of them. The thing is,
1841 * we'll use 3 max for our 9000 byte jumbo
1842 * frames. If the MTU goes up we could
1843 * eventually be in trouble.
1844 */
1845 int size, i = 0;
1846 sbq_desc = ql_get_curr_sbuf(rx_ring);
1847 pci_unmap_single(qdev->pdev,
1848 dma_unmap_addr(sbq_desc, mapaddr),
1849 dma_unmap_len(sbq_desc, maplen),
1850 PCI_DMA_FROMDEVICE);
1851 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1852 /*
1853 * This is an non TCP/UDP IP frame, so
1854 * the headers aren't split into a small
1855 * buffer. We have to use the small buffer
1856 * that contains our sg list as our skb to
1857 * send upstairs. Copy the sg list here to
1858 * a local buffer and use it to find the
1859 * pages to chain.
1860 */
1861 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1862 "%d bytes of headers & data in chain of large.\n",
1863 length);
1864 skb = sbq_desc->p.skb;
1865 sbq_desc->p.skb = NULL;
1866 skb_reserve(skb, NET_IP_ALIGN);
1867 }
1868 while (length > 0) {
1869 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1870 size = (length < rx_ring->lbq_buf_size) ? length :
1871 rx_ring->lbq_buf_size;
1872
1873 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1874 "Adding page %d to skb for %d bytes.\n",
1875 i, size);
1876 skb_fill_page_desc(skb, i,
1877 lbq_desc->p.pg_chunk.page,
1878 lbq_desc->p.pg_chunk.offset,
1879 size);
1880 skb->len += size;
1881 skb->data_len += size;
1882 skb->truesize += size;
1883 length -= size;
1884 i++;
1885 }
1886 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1887 VLAN_ETH_HLEN : ETH_HLEN);
1888 }
1889 return skb;
1890 }
1891
1892 /* Process an inbound completion from an rx ring. */
ql_process_mac_split_rx_intr(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp,u16 vlan_id)1893 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1894 struct rx_ring *rx_ring,
1895 struct ib_mac_iocb_rsp *ib_mac_rsp,
1896 u16 vlan_id)
1897 {
1898 struct net_device *ndev = qdev->ndev;
1899 struct sk_buff *skb = NULL;
1900
1901 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1902
1903 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1904 if (unlikely(!skb)) {
1905 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1906 "No skb available, drop packet.\n");
1907 rx_ring->rx_dropped++;
1908 return;
1909 }
1910
1911 /* Frame error, so drop the packet. */
1912 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1913 netif_info(qdev, drv, qdev->ndev,
1914 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1915 dev_kfree_skb_any(skb);
1916 rx_ring->rx_errors++;
1917 return;
1918 }
1919
1920 /* The max framesize filter on this chip is set higher than
1921 * MTU since FCoE uses 2k frames.
1922 */
1923 if (skb->len > ndev->mtu + ETH_HLEN) {
1924 dev_kfree_skb_any(skb);
1925 rx_ring->rx_dropped++;
1926 return;
1927 }
1928
1929 /* loopback self test for ethtool */
1930 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1931 ql_check_lb_frame(qdev, skb);
1932 dev_kfree_skb_any(skb);
1933 return;
1934 }
1935
1936 prefetch(skb->data);
1937 skb->dev = ndev;
1938 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1939 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1940 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1941 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1942 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1943 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1944 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1945 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1946 rx_ring->rx_multicast++;
1947 }
1948 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1949 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1950 "Promiscuous Packet.\n");
1951 }
1952
1953 skb->protocol = eth_type_trans(skb, ndev);
1954 skb_checksum_none_assert(skb);
1955
1956 /* If rx checksum is on, and there are no
1957 * csum or frame errors.
1958 */
1959 if ((ndev->features & NETIF_F_RXCSUM) &&
1960 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1961 /* TCP frame. */
1962 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1963 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1964 "TCP checksum done!\n");
1965 skb->ip_summed = CHECKSUM_UNNECESSARY;
1966 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1967 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1968 /* Unfragmented ipv4 UDP frame. */
1969 struct iphdr *iph = (struct iphdr *) skb->data;
1970 if (!(iph->frag_off &
1971 ntohs(IP_MF|IP_OFFSET))) {
1972 skb->ip_summed = CHECKSUM_UNNECESSARY;
1973 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1974 "TCP checksum done!\n");
1975 }
1976 }
1977 }
1978
1979 rx_ring->rx_packets++;
1980 rx_ring->rx_bytes += skb->len;
1981 skb_record_rx_queue(skb, rx_ring->cq_id);
1982 if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
1983 __vlan_hwaccel_put_tag(skb, vlan_id);
1984 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1985 napi_gro_receive(&rx_ring->napi, skb);
1986 else
1987 netif_receive_skb(skb);
1988 }
1989
1990 /* Process an inbound completion from an rx ring. */
ql_process_mac_rx_intr(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp)1991 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
1992 struct rx_ring *rx_ring,
1993 struct ib_mac_iocb_rsp *ib_mac_rsp)
1994 {
1995 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1996 u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1997 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
1998 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
1999
2000 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2001
2002 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2003 /* The data and headers are split into
2004 * separate buffers.
2005 */
2006 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2007 vlan_id);
2008 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2009 /* The data fit in a single small buffer.
2010 * Allocate a new skb, copy the data and
2011 * return the buffer to the free pool.
2012 */
2013 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2014 length, vlan_id);
2015 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2016 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2017 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2018 /* TCP packet in a page chunk that's been checksummed.
2019 * Tack it on to our GRO skb and let it go.
2020 */
2021 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2022 length, vlan_id);
2023 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2024 /* Non-TCP packet in a page chunk. Allocate an
2025 * skb, tack it on frags, and send it up.
2026 */
2027 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2028 length, vlan_id);
2029 } else {
2030 /* Non-TCP/UDP large frames that span multiple buffers
2031 * can be processed corrrectly by the split frame logic.
2032 */
2033 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2034 vlan_id);
2035 }
2036
2037 return (unsigned long)length;
2038 }
2039
2040 /* Process an outbound completion from an rx ring. */
ql_process_mac_tx_intr(struct ql_adapter * qdev,struct ob_mac_iocb_rsp * mac_rsp)2041 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2042 struct ob_mac_iocb_rsp *mac_rsp)
2043 {
2044 struct tx_ring *tx_ring;
2045 struct tx_ring_desc *tx_ring_desc;
2046
2047 QL_DUMP_OB_MAC_RSP(mac_rsp);
2048 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2049 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2050 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2051 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2052 tx_ring->tx_packets++;
2053 dev_kfree_skb(tx_ring_desc->skb);
2054 tx_ring_desc->skb = NULL;
2055
2056 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2057 OB_MAC_IOCB_RSP_S |
2058 OB_MAC_IOCB_RSP_L |
2059 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2060 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2061 netif_warn(qdev, tx_done, qdev->ndev,
2062 "Total descriptor length did not match transfer length.\n");
2063 }
2064 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2065 netif_warn(qdev, tx_done, qdev->ndev,
2066 "Frame too short to be valid, not sent.\n");
2067 }
2068 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2069 netif_warn(qdev, tx_done, qdev->ndev,
2070 "Frame too long, but sent anyway.\n");
2071 }
2072 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2073 netif_warn(qdev, tx_done, qdev->ndev,
2074 "PCI backplane error. Frame not sent.\n");
2075 }
2076 }
2077 atomic_inc(&tx_ring->tx_count);
2078 }
2079
2080 /* Fire up a handler to reset the MPI processor. */
ql_queue_fw_error(struct ql_adapter * qdev)2081 void ql_queue_fw_error(struct ql_adapter *qdev)
2082 {
2083 ql_link_off(qdev);
2084 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2085 }
2086
ql_queue_asic_error(struct ql_adapter * qdev)2087 void ql_queue_asic_error(struct ql_adapter *qdev)
2088 {
2089 ql_link_off(qdev);
2090 ql_disable_interrupts(qdev);
2091 /* Clear adapter up bit to signal the recovery
2092 * process that it shouldn't kill the reset worker
2093 * thread
2094 */
2095 clear_bit(QL_ADAPTER_UP, &qdev->flags);
2096 /* Set asic recovery bit to indicate reset process that we are
2097 * in fatal error recovery process rather than normal close
2098 */
2099 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2100 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2101 }
2102
ql_process_chip_ae_intr(struct ql_adapter * qdev,struct ib_ae_iocb_rsp * ib_ae_rsp)2103 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2104 struct ib_ae_iocb_rsp *ib_ae_rsp)
2105 {
2106 switch (ib_ae_rsp->event) {
2107 case MGMT_ERR_EVENT:
2108 netif_err(qdev, rx_err, qdev->ndev,
2109 "Management Processor Fatal Error.\n");
2110 ql_queue_fw_error(qdev);
2111 return;
2112
2113 case CAM_LOOKUP_ERR_EVENT:
2114 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2115 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2116 ql_queue_asic_error(qdev);
2117 return;
2118
2119 case SOFT_ECC_ERROR_EVENT:
2120 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2121 ql_queue_asic_error(qdev);
2122 break;
2123
2124 case PCI_ERR_ANON_BUF_RD:
2125 netdev_err(qdev->ndev, "PCI error occurred when reading "
2126 "anonymous buffers from rx_ring %d.\n",
2127 ib_ae_rsp->q_id);
2128 ql_queue_asic_error(qdev);
2129 break;
2130
2131 default:
2132 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2133 ib_ae_rsp->event);
2134 ql_queue_asic_error(qdev);
2135 break;
2136 }
2137 }
2138
ql_clean_outbound_rx_ring(struct rx_ring * rx_ring)2139 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2140 {
2141 struct ql_adapter *qdev = rx_ring->qdev;
2142 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2143 struct ob_mac_iocb_rsp *net_rsp = NULL;
2144 int count = 0;
2145
2146 struct tx_ring *tx_ring;
2147 /* While there are entries in the completion queue. */
2148 while (prod != rx_ring->cnsmr_idx) {
2149
2150 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2151 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2152 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2153
2154 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2155 rmb();
2156 switch (net_rsp->opcode) {
2157
2158 case OPCODE_OB_MAC_TSO_IOCB:
2159 case OPCODE_OB_MAC_IOCB:
2160 ql_process_mac_tx_intr(qdev, net_rsp);
2161 break;
2162 default:
2163 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2164 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2165 net_rsp->opcode);
2166 }
2167 count++;
2168 ql_update_cq(rx_ring);
2169 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2170 }
2171 if (!net_rsp)
2172 return 0;
2173 ql_write_cq_idx(rx_ring);
2174 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2175 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2176 if (atomic_read(&tx_ring->queue_stopped) &&
2177 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2178 /*
2179 * The queue got stopped because the tx_ring was full.
2180 * Wake it up, because it's now at least 25% empty.
2181 */
2182 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2183 }
2184
2185 return count;
2186 }
2187
ql_clean_inbound_rx_ring(struct rx_ring * rx_ring,int budget)2188 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2189 {
2190 struct ql_adapter *qdev = rx_ring->qdev;
2191 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2192 struct ql_net_rsp_iocb *net_rsp;
2193 int count = 0;
2194
2195 /* While there are entries in the completion queue. */
2196 while (prod != rx_ring->cnsmr_idx) {
2197
2198 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2199 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2200 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2201
2202 net_rsp = rx_ring->curr_entry;
2203 rmb();
2204 switch (net_rsp->opcode) {
2205 case OPCODE_IB_MAC_IOCB:
2206 ql_process_mac_rx_intr(qdev, rx_ring,
2207 (struct ib_mac_iocb_rsp *)
2208 net_rsp);
2209 break;
2210
2211 case OPCODE_IB_AE_IOCB:
2212 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2213 net_rsp);
2214 break;
2215 default:
2216 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2217 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2218 net_rsp->opcode);
2219 break;
2220 }
2221 count++;
2222 ql_update_cq(rx_ring);
2223 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2224 if (count == budget)
2225 break;
2226 }
2227 ql_update_buffer_queues(qdev, rx_ring);
2228 ql_write_cq_idx(rx_ring);
2229 return count;
2230 }
2231
ql_napi_poll_msix(struct napi_struct * napi,int budget)2232 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2233 {
2234 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2235 struct ql_adapter *qdev = rx_ring->qdev;
2236 struct rx_ring *trx_ring;
2237 int i, work_done = 0;
2238 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2239
2240 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2241 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2242
2243 /* Service the TX rings first. They start
2244 * right after the RSS rings. */
2245 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2246 trx_ring = &qdev->rx_ring[i];
2247 /* If this TX completion ring belongs to this vector and
2248 * it's not empty then service it.
2249 */
2250 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2251 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2252 trx_ring->cnsmr_idx)) {
2253 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2254 "%s: Servicing TX completion ring %d.\n",
2255 __func__, trx_ring->cq_id);
2256 ql_clean_outbound_rx_ring(trx_ring);
2257 }
2258 }
2259
2260 /*
2261 * Now service the RSS ring if it's active.
2262 */
2263 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2264 rx_ring->cnsmr_idx) {
2265 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2266 "%s: Servicing RX completion ring %d.\n",
2267 __func__, rx_ring->cq_id);
2268 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2269 }
2270
2271 if (work_done < budget) {
2272 napi_complete(napi);
2273 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2274 }
2275 return work_done;
2276 }
2277
qlge_vlan_mode(struct net_device * ndev,netdev_features_t features)2278 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2279 {
2280 struct ql_adapter *qdev = netdev_priv(ndev);
2281
2282 if (features & NETIF_F_HW_VLAN_RX) {
2283 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2284 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2285 } else {
2286 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2287 }
2288 }
2289
qlge_fix_features(struct net_device * ndev,netdev_features_t features)2290 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2291 netdev_features_t features)
2292 {
2293 /*
2294 * Since there is no support for separate rx/tx vlan accel
2295 * enable/disable make sure tx flag is always in same state as rx.
2296 */
2297 if (features & NETIF_F_HW_VLAN_RX)
2298 features |= NETIF_F_HW_VLAN_TX;
2299 else
2300 features &= ~NETIF_F_HW_VLAN_TX;
2301
2302 return features;
2303 }
2304
qlge_set_features(struct net_device * ndev,netdev_features_t features)2305 static int qlge_set_features(struct net_device *ndev,
2306 netdev_features_t features)
2307 {
2308 netdev_features_t changed = ndev->features ^ features;
2309
2310 if (changed & NETIF_F_HW_VLAN_RX)
2311 qlge_vlan_mode(ndev, features);
2312
2313 return 0;
2314 }
2315
__qlge_vlan_rx_add_vid(struct ql_adapter * qdev,u16 vid)2316 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2317 {
2318 u32 enable_bit = MAC_ADDR_E;
2319 int err;
2320
2321 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2322 MAC_ADDR_TYPE_VLAN, vid);
2323 if (err)
2324 netif_err(qdev, ifup, qdev->ndev,
2325 "Failed to init vlan address.\n");
2326 return err;
2327 }
2328
qlge_vlan_rx_add_vid(struct net_device * ndev,u16 vid)2329 static int qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
2330 {
2331 struct ql_adapter *qdev = netdev_priv(ndev);
2332 int status;
2333 int err;
2334
2335 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2336 if (status)
2337 return status;
2338
2339 err = __qlge_vlan_rx_add_vid(qdev, vid);
2340 set_bit(vid, qdev->active_vlans);
2341
2342 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2343
2344 return err;
2345 }
2346
__qlge_vlan_rx_kill_vid(struct ql_adapter * qdev,u16 vid)2347 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2348 {
2349 u32 enable_bit = 0;
2350 int err;
2351
2352 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2353 MAC_ADDR_TYPE_VLAN, vid);
2354 if (err)
2355 netif_err(qdev, ifup, qdev->ndev,
2356 "Failed to clear vlan address.\n");
2357 return err;
2358 }
2359
qlge_vlan_rx_kill_vid(struct net_device * ndev,u16 vid)2360 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
2361 {
2362 struct ql_adapter *qdev = netdev_priv(ndev);
2363 int status;
2364 int err;
2365
2366 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2367 if (status)
2368 return status;
2369
2370 err = __qlge_vlan_rx_kill_vid(qdev, vid);
2371 clear_bit(vid, qdev->active_vlans);
2372
2373 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2374
2375 return err;
2376 }
2377
qlge_restore_vlan(struct ql_adapter * qdev)2378 static void qlge_restore_vlan(struct ql_adapter *qdev)
2379 {
2380 int status;
2381 u16 vid;
2382
2383 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2384 if (status)
2385 return;
2386
2387 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2388 __qlge_vlan_rx_add_vid(qdev, vid);
2389
2390 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2391 }
2392
2393 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
qlge_msix_rx_isr(int irq,void * dev_id)2394 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2395 {
2396 struct rx_ring *rx_ring = dev_id;
2397 napi_schedule(&rx_ring->napi);
2398 return IRQ_HANDLED;
2399 }
2400
2401 /* This handles a fatal error, MPI activity, and the default
2402 * rx_ring in an MSI-X multiple vector environment.
2403 * In MSI/Legacy environment it also process the rest of
2404 * the rx_rings.
2405 */
qlge_isr(int irq,void * dev_id)2406 static irqreturn_t qlge_isr(int irq, void *dev_id)
2407 {
2408 struct rx_ring *rx_ring = dev_id;
2409 struct ql_adapter *qdev = rx_ring->qdev;
2410 struct intr_context *intr_context = &qdev->intr_context[0];
2411 u32 var;
2412 int work_done = 0;
2413
2414 spin_lock(&qdev->hw_lock);
2415 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2416 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2417 "Shared Interrupt, Not ours!\n");
2418 spin_unlock(&qdev->hw_lock);
2419 return IRQ_NONE;
2420 }
2421 spin_unlock(&qdev->hw_lock);
2422
2423 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2424
2425 /*
2426 * Check for fatal error.
2427 */
2428 if (var & STS_FE) {
2429 ql_queue_asic_error(qdev);
2430 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2431 var = ql_read32(qdev, ERR_STS);
2432 netdev_err(qdev->ndev, "Resetting chip. "
2433 "Error Status Register = 0x%x\n", var);
2434 return IRQ_HANDLED;
2435 }
2436
2437 /*
2438 * Check MPI processor activity.
2439 */
2440 if ((var & STS_PI) &&
2441 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2442 /*
2443 * We've got an async event or mailbox completion.
2444 * Handle it and clear the source of the interrupt.
2445 */
2446 netif_err(qdev, intr, qdev->ndev,
2447 "Got MPI processor interrupt.\n");
2448 ql_disable_completion_interrupt(qdev, intr_context->intr);
2449 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2450 queue_delayed_work_on(smp_processor_id(),
2451 qdev->workqueue, &qdev->mpi_work, 0);
2452 work_done++;
2453 }
2454
2455 /*
2456 * Get the bit-mask that shows the active queues for this
2457 * pass. Compare it to the queues that this irq services
2458 * and call napi if there's a match.
2459 */
2460 var = ql_read32(qdev, ISR1);
2461 if (var & intr_context->irq_mask) {
2462 netif_info(qdev, intr, qdev->ndev,
2463 "Waking handler for rx_ring[0].\n");
2464 ql_disable_completion_interrupt(qdev, intr_context->intr);
2465 napi_schedule(&rx_ring->napi);
2466 work_done++;
2467 }
2468 ql_enable_completion_interrupt(qdev, intr_context->intr);
2469 return work_done ? IRQ_HANDLED : IRQ_NONE;
2470 }
2471
ql_tso(struct sk_buff * skb,struct ob_mac_tso_iocb_req * mac_iocb_ptr)2472 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2473 {
2474
2475 if (skb_is_gso(skb)) {
2476 int err;
2477 if (skb_header_cloned(skb)) {
2478 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479 if (err)
2480 return err;
2481 }
2482
2483 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2484 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2485 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2486 mac_iocb_ptr->total_hdrs_len =
2487 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2488 mac_iocb_ptr->net_trans_offset =
2489 cpu_to_le16(skb_network_offset(skb) |
2490 skb_transport_offset(skb)
2491 << OB_MAC_TRANSPORT_HDR_SHIFT);
2492 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2493 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2494 if (likely(skb->protocol == htons(ETH_P_IP))) {
2495 struct iphdr *iph = ip_hdr(skb);
2496 iph->check = 0;
2497 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2498 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2499 iph->daddr, 0,
2500 IPPROTO_TCP,
2501 0);
2502 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2503 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2504 tcp_hdr(skb)->check =
2505 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2506 &ipv6_hdr(skb)->daddr,
2507 0, IPPROTO_TCP, 0);
2508 }
2509 return 1;
2510 }
2511 return 0;
2512 }
2513
ql_hw_csum_setup(struct sk_buff * skb,struct ob_mac_tso_iocb_req * mac_iocb_ptr)2514 static void ql_hw_csum_setup(struct sk_buff *skb,
2515 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2516 {
2517 int len;
2518 struct iphdr *iph = ip_hdr(skb);
2519 __sum16 *check;
2520 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2521 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2522 mac_iocb_ptr->net_trans_offset =
2523 cpu_to_le16(skb_network_offset(skb) |
2524 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2525
2526 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2527 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2528 if (likely(iph->protocol == IPPROTO_TCP)) {
2529 check = &(tcp_hdr(skb)->check);
2530 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2531 mac_iocb_ptr->total_hdrs_len =
2532 cpu_to_le16(skb_transport_offset(skb) +
2533 (tcp_hdr(skb)->doff << 2));
2534 } else {
2535 check = &(udp_hdr(skb)->check);
2536 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2537 mac_iocb_ptr->total_hdrs_len =
2538 cpu_to_le16(skb_transport_offset(skb) +
2539 sizeof(struct udphdr));
2540 }
2541 *check = ~csum_tcpudp_magic(iph->saddr,
2542 iph->daddr, len, iph->protocol, 0);
2543 }
2544
qlge_send(struct sk_buff * skb,struct net_device * ndev)2545 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2546 {
2547 struct tx_ring_desc *tx_ring_desc;
2548 struct ob_mac_iocb_req *mac_iocb_ptr;
2549 struct ql_adapter *qdev = netdev_priv(ndev);
2550 int tso;
2551 struct tx_ring *tx_ring;
2552 u32 tx_ring_idx = (u32) skb->queue_mapping;
2553
2554 tx_ring = &qdev->tx_ring[tx_ring_idx];
2555
2556 if (skb_padto(skb, ETH_ZLEN))
2557 return NETDEV_TX_OK;
2558
2559 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2560 netif_info(qdev, tx_queued, qdev->ndev,
2561 "%s: shutting down tx queue %d du to lack of resources.\n",
2562 __func__, tx_ring_idx);
2563 netif_stop_subqueue(ndev, tx_ring->wq_id);
2564 atomic_inc(&tx_ring->queue_stopped);
2565 tx_ring->tx_errors++;
2566 return NETDEV_TX_BUSY;
2567 }
2568 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2569 mac_iocb_ptr = tx_ring_desc->queue_entry;
2570 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2571
2572 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2573 mac_iocb_ptr->tid = tx_ring_desc->index;
2574 /* We use the upper 32-bits to store the tx queue for this IO.
2575 * When we get the completion we can use it to establish the context.
2576 */
2577 mac_iocb_ptr->txq_idx = tx_ring_idx;
2578 tx_ring_desc->skb = skb;
2579
2580 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2581
2582 if (vlan_tx_tag_present(skb)) {
2583 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2584 "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2585 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2586 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2587 }
2588 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2589 if (tso < 0) {
2590 dev_kfree_skb_any(skb);
2591 return NETDEV_TX_OK;
2592 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2593 ql_hw_csum_setup(skb,
2594 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2595 }
2596 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2597 NETDEV_TX_OK) {
2598 netif_err(qdev, tx_queued, qdev->ndev,
2599 "Could not map the segments.\n");
2600 tx_ring->tx_errors++;
2601 return NETDEV_TX_BUSY;
2602 }
2603 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2604 tx_ring->prod_idx++;
2605 if (tx_ring->prod_idx == tx_ring->wq_len)
2606 tx_ring->prod_idx = 0;
2607 wmb();
2608
2609 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2610 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2611 "tx queued, slot %d, len %d\n",
2612 tx_ring->prod_idx, skb->len);
2613
2614 atomic_dec(&tx_ring->tx_count);
2615 return NETDEV_TX_OK;
2616 }
2617
2618
ql_free_shadow_space(struct ql_adapter * qdev)2619 static void ql_free_shadow_space(struct ql_adapter *qdev)
2620 {
2621 if (qdev->rx_ring_shadow_reg_area) {
2622 pci_free_consistent(qdev->pdev,
2623 PAGE_SIZE,
2624 qdev->rx_ring_shadow_reg_area,
2625 qdev->rx_ring_shadow_reg_dma);
2626 qdev->rx_ring_shadow_reg_area = NULL;
2627 }
2628 if (qdev->tx_ring_shadow_reg_area) {
2629 pci_free_consistent(qdev->pdev,
2630 PAGE_SIZE,
2631 qdev->tx_ring_shadow_reg_area,
2632 qdev->tx_ring_shadow_reg_dma);
2633 qdev->tx_ring_shadow_reg_area = NULL;
2634 }
2635 }
2636
ql_alloc_shadow_space(struct ql_adapter * qdev)2637 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2638 {
2639 qdev->rx_ring_shadow_reg_area =
2640 pci_alloc_consistent(qdev->pdev,
2641 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2642 if (qdev->rx_ring_shadow_reg_area == NULL) {
2643 netif_err(qdev, ifup, qdev->ndev,
2644 "Allocation of RX shadow space failed.\n");
2645 return -ENOMEM;
2646 }
2647 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2648 qdev->tx_ring_shadow_reg_area =
2649 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2650 &qdev->tx_ring_shadow_reg_dma);
2651 if (qdev->tx_ring_shadow_reg_area == NULL) {
2652 netif_err(qdev, ifup, qdev->ndev,
2653 "Allocation of TX shadow space failed.\n");
2654 goto err_wqp_sh_area;
2655 }
2656 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2657 return 0;
2658
2659 err_wqp_sh_area:
2660 pci_free_consistent(qdev->pdev,
2661 PAGE_SIZE,
2662 qdev->rx_ring_shadow_reg_area,
2663 qdev->rx_ring_shadow_reg_dma);
2664 return -ENOMEM;
2665 }
2666
ql_init_tx_ring(struct ql_adapter * qdev,struct tx_ring * tx_ring)2667 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2668 {
2669 struct tx_ring_desc *tx_ring_desc;
2670 int i;
2671 struct ob_mac_iocb_req *mac_iocb_ptr;
2672
2673 mac_iocb_ptr = tx_ring->wq_base;
2674 tx_ring_desc = tx_ring->q;
2675 for (i = 0; i < tx_ring->wq_len; i++) {
2676 tx_ring_desc->index = i;
2677 tx_ring_desc->skb = NULL;
2678 tx_ring_desc->queue_entry = mac_iocb_ptr;
2679 mac_iocb_ptr++;
2680 tx_ring_desc++;
2681 }
2682 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2683 atomic_set(&tx_ring->queue_stopped, 0);
2684 }
2685
ql_free_tx_resources(struct ql_adapter * qdev,struct tx_ring * tx_ring)2686 static void ql_free_tx_resources(struct ql_adapter *qdev,
2687 struct tx_ring *tx_ring)
2688 {
2689 if (tx_ring->wq_base) {
2690 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2691 tx_ring->wq_base, tx_ring->wq_base_dma);
2692 tx_ring->wq_base = NULL;
2693 }
2694 kfree(tx_ring->q);
2695 tx_ring->q = NULL;
2696 }
2697
ql_alloc_tx_resources(struct ql_adapter * qdev,struct tx_ring * tx_ring)2698 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2699 struct tx_ring *tx_ring)
2700 {
2701 tx_ring->wq_base =
2702 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2703 &tx_ring->wq_base_dma);
2704
2705 if ((tx_ring->wq_base == NULL) ||
2706 tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
2707 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2708 return -ENOMEM;
2709 }
2710 tx_ring->q =
2711 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2712 if (tx_ring->q == NULL)
2713 goto err;
2714
2715 return 0;
2716 err:
2717 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2718 tx_ring->wq_base, tx_ring->wq_base_dma);
2719 return -ENOMEM;
2720 }
2721
ql_free_lbq_buffers(struct ql_adapter * qdev,struct rx_ring * rx_ring)2722 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2723 {
2724 struct bq_desc *lbq_desc;
2725
2726 uint32_t curr_idx, clean_idx;
2727
2728 curr_idx = rx_ring->lbq_curr_idx;
2729 clean_idx = rx_ring->lbq_clean_idx;
2730 while (curr_idx != clean_idx) {
2731 lbq_desc = &rx_ring->lbq[curr_idx];
2732
2733 if (lbq_desc->p.pg_chunk.last_flag) {
2734 pci_unmap_page(qdev->pdev,
2735 lbq_desc->p.pg_chunk.map,
2736 ql_lbq_block_size(qdev),
2737 PCI_DMA_FROMDEVICE);
2738 lbq_desc->p.pg_chunk.last_flag = 0;
2739 }
2740
2741 put_page(lbq_desc->p.pg_chunk.page);
2742 lbq_desc->p.pg_chunk.page = NULL;
2743
2744 if (++curr_idx == rx_ring->lbq_len)
2745 curr_idx = 0;
2746
2747 }
2748 }
2749
ql_free_sbq_buffers(struct ql_adapter * qdev,struct rx_ring * rx_ring)2750 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2751 {
2752 int i;
2753 struct bq_desc *sbq_desc;
2754
2755 for (i = 0; i < rx_ring->sbq_len; i++) {
2756 sbq_desc = &rx_ring->sbq[i];
2757 if (sbq_desc == NULL) {
2758 netif_err(qdev, ifup, qdev->ndev,
2759 "sbq_desc %d is NULL.\n", i);
2760 return;
2761 }
2762 if (sbq_desc->p.skb) {
2763 pci_unmap_single(qdev->pdev,
2764 dma_unmap_addr(sbq_desc, mapaddr),
2765 dma_unmap_len(sbq_desc, maplen),
2766 PCI_DMA_FROMDEVICE);
2767 dev_kfree_skb(sbq_desc->p.skb);
2768 sbq_desc->p.skb = NULL;
2769 }
2770 }
2771 }
2772
2773 /* Free all large and small rx buffers associated
2774 * with the completion queues for this device.
2775 */
ql_free_rx_buffers(struct ql_adapter * qdev)2776 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2777 {
2778 int i;
2779 struct rx_ring *rx_ring;
2780
2781 for (i = 0; i < qdev->rx_ring_count; i++) {
2782 rx_ring = &qdev->rx_ring[i];
2783 if (rx_ring->lbq)
2784 ql_free_lbq_buffers(qdev, rx_ring);
2785 if (rx_ring->sbq)
2786 ql_free_sbq_buffers(qdev, rx_ring);
2787 }
2788 }
2789
ql_alloc_rx_buffers(struct ql_adapter * qdev)2790 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2791 {
2792 struct rx_ring *rx_ring;
2793 int i;
2794
2795 for (i = 0; i < qdev->rx_ring_count; i++) {
2796 rx_ring = &qdev->rx_ring[i];
2797 if (rx_ring->type != TX_Q)
2798 ql_update_buffer_queues(qdev, rx_ring);
2799 }
2800 }
2801
ql_init_lbq_ring(struct ql_adapter * qdev,struct rx_ring * rx_ring)2802 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2803 struct rx_ring *rx_ring)
2804 {
2805 int i;
2806 struct bq_desc *lbq_desc;
2807 __le64 *bq = rx_ring->lbq_base;
2808
2809 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2810 for (i = 0; i < rx_ring->lbq_len; i++) {
2811 lbq_desc = &rx_ring->lbq[i];
2812 memset(lbq_desc, 0, sizeof(*lbq_desc));
2813 lbq_desc->index = i;
2814 lbq_desc->addr = bq;
2815 bq++;
2816 }
2817 }
2818
ql_init_sbq_ring(struct ql_adapter * qdev,struct rx_ring * rx_ring)2819 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2820 struct rx_ring *rx_ring)
2821 {
2822 int i;
2823 struct bq_desc *sbq_desc;
2824 __le64 *bq = rx_ring->sbq_base;
2825
2826 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2827 for (i = 0; i < rx_ring->sbq_len; i++) {
2828 sbq_desc = &rx_ring->sbq[i];
2829 memset(sbq_desc, 0, sizeof(*sbq_desc));
2830 sbq_desc->index = i;
2831 sbq_desc->addr = bq;
2832 bq++;
2833 }
2834 }
2835
ql_free_rx_resources(struct ql_adapter * qdev,struct rx_ring * rx_ring)2836 static void ql_free_rx_resources(struct ql_adapter *qdev,
2837 struct rx_ring *rx_ring)
2838 {
2839 /* Free the small buffer queue. */
2840 if (rx_ring->sbq_base) {
2841 pci_free_consistent(qdev->pdev,
2842 rx_ring->sbq_size,
2843 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2844 rx_ring->sbq_base = NULL;
2845 }
2846
2847 /* Free the small buffer queue control blocks. */
2848 kfree(rx_ring->sbq);
2849 rx_ring->sbq = NULL;
2850
2851 /* Free the large buffer queue. */
2852 if (rx_ring->lbq_base) {
2853 pci_free_consistent(qdev->pdev,
2854 rx_ring->lbq_size,
2855 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2856 rx_ring->lbq_base = NULL;
2857 }
2858
2859 /* Free the large buffer queue control blocks. */
2860 kfree(rx_ring->lbq);
2861 rx_ring->lbq = NULL;
2862
2863 /* Free the rx queue. */
2864 if (rx_ring->cq_base) {
2865 pci_free_consistent(qdev->pdev,
2866 rx_ring->cq_size,
2867 rx_ring->cq_base, rx_ring->cq_base_dma);
2868 rx_ring->cq_base = NULL;
2869 }
2870 }
2871
2872 /* Allocate queues and buffers for this completions queue based
2873 * on the values in the parameter structure. */
ql_alloc_rx_resources(struct ql_adapter * qdev,struct rx_ring * rx_ring)2874 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2875 struct rx_ring *rx_ring)
2876 {
2877
2878 /*
2879 * Allocate the completion queue for this rx_ring.
2880 */
2881 rx_ring->cq_base =
2882 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2883 &rx_ring->cq_base_dma);
2884
2885 if (rx_ring->cq_base == NULL) {
2886 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2887 return -ENOMEM;
2888 }
2889
2890 if (rx_ring->sbq_len) {
2891 /*
2892 * Allocate small buffer queue.
2893 */
2894 rx_ring->sbq_base =
2895 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2896 &rx_ring->sbq_base_dma);
2897
2898 if (rx_ring->sbq_base == NULL) {
2899 netif_err(qdev, ifup, qdev->ndev,
2900 "Small buffer queue allocation failed.\n");
2901 goto err_mem;
2902 }
2903
2904 /*
2905 * Allocate small buffer queue control blocks.
2906 */
2907 rx_ring->sbq =
2908 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2909 GFP_KERNEL);
2910 if (rx_ring->sbq == NULL) {
2911 netif_err(qdev, ifup, qdev->ndev,
2912 "Small buffer queue control block allocation failed.\n");
2913 goto err_mem;
2914 }
2915
2916 ql_init_sbq_ring(qdev, rx_ring);
2917 }
2918
2919 if (rx_ring->lbq_len) {
2920 /*
2921 * Allocate large buffer queue.
2922 */
2923 rx_ring->lbq_base =
2924 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2925 &rx_ring->lbq_base_dma);
2926
2927 if (rx_ring->lbq_base == NULL) {
2928 netif_err(qdev, ifup, qdev->ndev,
2929 "Large buffer queue allocation failed.\n");
2930 goto err_mem;
2931 }
2932 /*
2933 * Allocate large buffer queue control blocks.
2934 */
2935 rx_ring->lbq =
2936 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2937 GFP_KERNEL);
2938 if (rx_ring->lbq == NULL) {
2939 netif_err(qdev, ifup, qdev->ndev,
2940 "Large buffer queue control block allocation failed.\n");
2941 goto err_mem;
2942 }
2943
2944 ql_init_lbq_ring(qdev, rx_ring);
2945 }
2946
2947 return 0;
2948
2949 err_mem:
2950 ql_free_rx_resources(qdev, rx_ring);
2951 return -ENOMEM;
2952 }
2953
ql_tx_ring_clean(struct ql_adapter * qdev)2954 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2955 {
2956 struct tx_ring *tx_ring;
2957 struct tx_ring_desc *tx_ring_desc;
2958 int i, j;
2959
2960 /*
2961 * Loop through all queues and free
2962 * any resources.
2963 */
2964 for (j = 0; j < qdev->tx_ring_count; j++) {
2965 tx_ring = &qdev->tx_ring[j];
2966 for (i = 0; i < tx_ring->wq_len; i++) {
2967 tx_ring_desc = &tx_ring->q[i];
2968 if (tx_ring_desc && tx_ring_desc->skb) {
2969 netif_err(qdev, ifdown, qdev->ndev,
2970 "Freeing lost SKB %p, from queue %d, index %d.\n",
2971 tx_ring_desc->skb, j,
2972 tx_ring_desc->index);
2973 ql_unmap_send(qdev, tx_ring_desc,
2974 tx_ring_desc->map_cnt);
2975 dev_kfree_skb(tx_ring_desc->skb);
2976 tx_ring_desc->skb = NULL;
2977 }
2978 }
2979 }
2980 }
2981
ql_free_mem_resources(struct ql_adapter * qdev)2982 static void ql_free_mem_resources(struct ql_adapter *qdev)
2983 {
2984 int i;
2985
2986 for (i = 0; i < qdev->tx_ring_count; i++)
2987 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2988 for (i = 0; i < qdev->rx_ring_count; i++)
2989 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2990 ql_free_shadow_space(qdev);
2991 }
2992
ql_alloc_mem_resources(struct ql_adapter * qdev)2993 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2994 {
2995 int i;
2996
2997 /* Allocate space for our shadow registers and such. */
2998 if (ql_alloc_shadow_space(qdev))
2999 return -ENOMEM;
3000
3001 for (i = 0; i < qdev->rx_ring_count; i++) {
3002 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3003 netif_err(qdev, ifup, qdev->ndev,
3004 "RX resource allocation failed.\n");
3005 goto err_mem;
3006 }
3007 }
3008 /* Allocate tx queue resources */
3009 for (i = 0; i < qdev->tx_ring_count; i++) {
3010 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3011 netif_err(qdev, ifup, qdev->ndev,
3012 "TX resource allocation failed.\n");
3013 goto err_mem;
3014 }
3015 }
3016 return 0;
3017
3018 err_mem:
3019 ql_free_mem_resources(qdev);
3020 return -ENOMEM;
3021 }
3022
3023 /* Set up the rx ring control block and pass it to the chip.
3024 * The control block is defined as
3025 * "Completion Queue Initialization Control Block", or cqicb.
3026 */
ql_start_rx_ring(struct ql_adapter * qdev,struct rx_ring * rx_ring)3027 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3028 {
3029 struct cqicb *cqicb = &rx_ring->cqicb;
3030 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3031 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3032 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3033 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3034 void __iomem *doorbell_area =
3035 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3036 int err = 0;
3037 u16 bq_len;
3038 u64 tmp;
3039 __le64 *base_indirect_ptr;
3040 int page_entries;
3041
3042 /* Set up the shadow registers for this ring. */
3043 rx_ring->prod_idx_sh_reg = shadow_reg;
3044 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3045 *rx_ring->prod_idx_sh_reg = 0;
3046 shadow_reg += sizeof(u64);
3047 shadow_reg_dma += sizeof(u64);
3048 rx_ring->lbq_base_indirect = shadow_reg;
3049 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3050 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3051 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3052 rx_ring->sbq_base_indirect = shadow_reg;
3053 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3054
3055 /* PCI doorbell mem area + 0x00 for consumer index register */
3056 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3057 rx_ring->cnsmr_idx = 0;
3058 rx_ring->curr_entry = rx_ring->cq_base;
3059
3060 /* PCI doorbell mem area + 0x04 for valid register */
3061 rx_ring->valid_db_reg = doorbell_area + 0x04;
3062
3063 /* PCI doorbell mem area + 0x18 for large buffer consumer */
3064 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3065
3066 /* PCI doorbell mem area + 0x1c */
3067 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3068
3069 memset((void *)cqicb, 0, sizeof(struct cqicb));
3070 cqicb->msix_vect = rx_ring->irq;
3071
3072 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3073 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3074
3075 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3076
3077 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3078
3079 /*
3080 * Set up the control block load flags.
3081 */
3082 cqicb->flags = FLAGS_LC | /* Load queue base address */
3083 FLAGS_LV | /* Load MSI-X vector */
3084 FLAGS_LI; /* Load irq delay values */
3085 if (rx_ring->lbq_len) {
3086 cqicb->flags |= FLAGS_LL; /* Load lbq values */
3087 tmp = (u64)rx_ring->lbq_base_dma;
3088 base_indirect_ptr = rx_ring->lbq_base_indirect;
3089 page_entries = 0;
3090 do {
3091 *base_indirect_ptr = cpu_to_le64(tmp);
3092 tmp += DB_PAGE_SIZE;
3093 base_indirect_ptr++;
3094 page_entries++;
3095 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3096 cqicb->lbq_addr =
3097 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3098 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3099 (u16) rx_ring->lbq_buf_size;
3100 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3101 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3102 (u16) rx_ring->lbq_len;
3103 cqicb->lbq_len = cpu_to_le16(bq_len);
3104 rx_ring->lbq_prod_idx = 0;
3105 rx_ring->lbq_curr_idx = 0;
3106 rx_ring->lbq_clean_idx = 0;
3107 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3108 }
3109 if (rx_ring->sbq_len) {
3110 cqicb->flags |= FLAGS_LS; /* Load sbq values */
3111 tmp = (u64)rx_ring->sbq_base_dma;
3112 base_indirect_ptr = rx_ring->sbq_base_indirect;
3113 page_entries = 0;
3114 do {
3115 *base_indirect_ptr = cpu_to_le64(tmp);
3116 tmp += DB_PAGE_SIZE;
3117 base_indirect_ptr++;
3118 page_entries++;
3119 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3120 cqicb->sbq_addr =
3121 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3122 cqicb->sbq_buf_size =
3123 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3124 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3125 (u16) rx_ring->sbq_len;
3126 cqicb->sbq_len = cpu_to_le16(bq_len);
3127 rx_ring->sbq_prod_idx = 0;
3128 rx_ring->sbq_curr_idx = 0;
3129 rx_ring->sbq_clean_idx = 0;
3130 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3131 }
3132 switch (rx_ring->type) {
3133 case TX_Q:
3134 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3135 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3136 break;
3137 case RX_Q:
3138 /* Inbound completion handling rx_rings run in
3139 * separate NAPI contexts.
3140 */
3141 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3142 64);
3143 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3144 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3145 break;
3146 default:
3147 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3148 "Invalid rx_ring->type = %d.\n", rx_ring->type);
3149 }
3150 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3151 CFG_LCQ, rx_ring->cq_id);
3152 if (err) {
3153 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3154 return err;
3155 }
3156 return err;
3157 }
3158
ql_start_tx_ring(struct ql_adapter * qdev,struct tx_ring * tx_ring)3159 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3160 {
3161 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3162 void __iomem *doorbell_area =
3163 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3164 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3165 (tx_ring->wq_id * sizeof(u64));
3166 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3167 (tx_ring->wq_id * sizeof(u64));
3168 int err = 0;
3169
3170 /*
3171 * Assign doorbell registers for this tx_ring.
3172 */
3173 /* TX PCI doorbell mem area for tx producer index */
3174 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3175 tx_ring->prod_idx = 0;
3176 /* TX PCI doorbell mem area + 0x04 */
3177 tx_ring->valid_db_reg = doorbell_area + 0x04;
3178
3179 /*
3180 * Assign shadow registers for this tx_ring.
3181 */
3182 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3183 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3184
3185 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3186 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3187 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3188 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3189 wqicb->rid = 0;
3190 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3191
3192 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3193
3194 ql_init_tx_ring(qdev, tx_ring);
3195
3196 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3197 (u16) tx_ring->wq_id);
3198 if (err) {
3199 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3200 return err;
3201 }
3202 return err;
3203 }
3204
ql_disable_msix(struct ql_adapter * qdev)3205 static void ql_disable_msix(struct ql_adapter *qdev)
3206 {
3207 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3208 pci_disable_msix(qdev->pdev);
3209 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3210 kfree(qdev->msi_x_entry);
3211 qdev->msi_x_entry = NULL;
3212 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3213 pci_disable_msi(qdev->pdev);
3214 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3215 }
3216 }
3217
3218 /* We start by trying to get the number of vectors
3219 * stored in qdev->intr_count. If we don't get that
3220 * many then we reduce the count and try again.
3221 */
ql_enable_msix(struct ql_adapter * qdev)3222 static void ql_enable_msix(struct ql_adapter *qdev)
3223 {
3224 int i, err;
3225
3226 /* Get the MSIX vectors. */
3227 if (qlge_irq_type == MSIX_IRQ) {
3228 /* Try to alloc space for the msix struct,
3229 * if it fails then go to MSI/legacy.
3230 */
3231 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3232 sizeof(struct msix_entry),
3233 GFP_KERNEL);
3234 if (!qdev->msi_x_entry) {
3235 qlge_irq_type = MSI_IRQ;
3236 goto msi;
3237 }
3238
3239 for (i = 0; i < qdev->intr_count; i++)
3240 qdev->msi_x_entry[i].entry = i;
3241
3242 /* Loop to get our vectors. We start with
3243 * what we want and settle for what we get.
3244 */
3245 do {
3246 err = pci_enable_msix(qdev->pdev,
3247 qdev->msi_x_entry, qdev->intr_count);
3248 if (err > 0)
3249 qdev->intr_count = err;
3250 } while (err > 0);
3251
3252 if (err < 0) {
3253 kfree(qdev->msi_x_entry);
3254 qdev->msi_x_entry = NULL;
3255 netif_warn(qdev, ifup, qdev->ndev,
3256 "MSI-X Enable failed, trying MSI.\n");
3257 qdev->intr_count = 1;
3258 qlge_irq_type = MSI_IRQ;
3259 } else if (err == 0) {
3260 set_bit(QL_MSIX_ENABLED, &qdev->flags);
3261 netif_info(qdev, ifup, qdev->ndev,
3262 "MSI-X Enabled, got %d vectors.\n",
3263 qdev->intr_count);
3264 return;
3265 }
3266 }
3267 msi:
3268 qdev->intr_count = 1;
3269 if (qlge_irq_type == MSI_IRQ) {
3270 if (!pci_enable_msi(qdev->pdev)) {
3271 set_bit(QL_MSI_ENABLED, &qdev->flags);
3272 netif_info(qdev, ifup, qdev->ndev,
3273 "Running with MSI interrupts.\n");
3274 return;
3275 }
3276 }
3277 qlge_irq_type = LEG_IRQ;
3278 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3279 "Running with legacy interrupts.\n");
3280 }
3281
3282 /* Each vector services 1 RSS ring and and 1 or more
3283 * TX completion rings. This function loops through
3284 * the TX completion rings and assigns the vector that
3285 * will service it. An example would be if there are
3286 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3287 * This would mean that vector 0 would service RSS ring 0
3288 * and TX completion rings 0,1,2 and 3. Vector 1 would
3289 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3290 */
ql_set_tx_vect(struct ql_adapter * qdev)3291 static void ql_set_tx_vect(struct ql_adapter *qdev)
3292 {
3293 int i, j, vect;
3294 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3295
3296 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3297 /* Assign irq vectors to TX rx_rings.*/
3298 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3299 i < qdev->rx_ring_count; i++) {
3300 if (j == tx_rings_per_vector) {
3301 vect++;
3302 j = 0;
3303 }
3304 qdev->rx_ring[i].irq = vect;
3305 j++;
3306 }
3307 } else {
3308 /* For single vector all rings have an irq
3309 * of zero.
3310 */
3311 for (i = 0; i < qdev->rx_ring_count; i++)
3312 qdev->rx_ring[i].irq = 0;
3313 }
3314 }
3315
3316 /* Set the interrupt mask for this vector. Each vector
3317 * will service 1 RSS ring and 1 or more TX completion
3318 * rings. This function sets up a bit mask per vector
3319 * that indicates which rings it services.
3320 */
ql_set_irq_mask(struct ql_adapter * qdev,struct intr_context * ctx)3321 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3322 {
3323 int j, vect = ctx->intr;
3324 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3325
3326 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3327 /* Add the RSS ring serviced by this vector
3328 * to the mask.
3329 */
3330 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3331 /* Add the TX ring(s) serviced by this vector
3332 * to the mask. */
3333 for (j = 0; j < tx_rings_per_vector; j++) {
3334 ctx->irq_mask |=
3335 (1 << qdev->rx_ring[qdev->rss_ring_count +
3336 (vect * tx_rings_per_vector) + j].cq_id);
3337 }
3338 } else {
3339 /* For single vector we just shift each queue's
3340 * ID into the mask.
3341 */
3342 for (j = 0; j < qdev->rx_ring_count; j++)
3343 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3344 }
3345 }
3346
3347 /*
3348 * Here we build the intr_context structures based on
3349 * our rx_ring count and intr vector count.
3350 * The intr_context structure is used to hook each vector
3351 * to possibly different handlers.
3352 */
ql_resolve_queues_to_irqs(struct ql_adapter * qdev)3353 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3354 {
3355 int i = 0;
3356 struct intr_context *intr_context = &qdev->intr_context[0];
3357
3358 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3359 /* Each rx_ring has it's
3360 * own intr_context since we have separate
3361 * vectors for each queue.
3362 */
3363 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3364 qdev->rx_ring[i].irq = i;
3365 intr_context->intr = i;
3366 intr_context->qdev = qdev;
3367 /* Set up this vector's bit-mask that indicates
3368 * which queues it services.
3369 */
3370 ql_set_irq_mask(qdev, intr_context);
3371 /*
3372 * We set up each vectors enable/disable/read bits so
3373 * there's no bit/mask calculations in the critical path.
3374 */
3375 intr_context->intr_en_mask =
3376 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3377 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3378 | i;
3379 intr_context->intr_dis_mask =
3380 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3381 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3382 INTR_EN_IHD | i;
3383 intr_context->intr_read_mask =
3384 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3385 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3386 i;
3387 if (i == 0) {
3388 /* The first vector/queue handles
3389 * broadcast/multicast, fatal errors,
3390 * and firmware events. This in addition
3391 * to normal inbound NAPI processing.
3392 */
3393 intr_context->handler = qlge_isr;
3394 sprintf(intr_context->name, "%s-rx-%d",
3395 qdev->ndev->name, i);
3396 } else {
3397 /*
3398 * Inbound queues handle unicast frames only.
3399 */
3400 intr_context->handler = qlge_msix_rx_isr;
3401 sprintf(intr_context->name, "%s-rx-%d",
3402 qdev->ndev->name, i);
3403 }
3404 }
3405 } else {
3406 /*
3407 * All rx_rings use the same intr_context since
3408 * there is only one vector.
3409 */
3410 intr_context->intr = 0;
3411 intr_context->qdev = qdev;
3412 /*
3413 * We set up each vectors enable/disable/read bits so
3414 * there's no bit/mask calculations in the critical path.
3415 */
3416 intr_context->intr_en_mask =
3417 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3418 intr_context->intr_dis_mask =
3419 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3420 INTR_EN_TYPE_DISABLE;
3421 intr_context->intr_read_mask =
3422 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3423 /*
3424 * Single interrupt means one handler for all rings.
3425 */
3426 intr_context->handler = qlge_isr;
3427 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3428 /* Set up this vector's bit-mask that indicates
3429 * which queues it services. In this case there is
3430 * a single vector so it will service all RSS and
3431 * TX completion rings.
3432 */
3433 ql_set_irq_mask(qdev, intr_context);
3434 }
3435 /* Tell the TX completion rings which MSIx vector
3436 * they will be using.
3437 */
3438 ql_set_tx_vect(qdev);
3439 }
3440
ql_free_irq(struct ql_adapter * qdev)3441 static void ql_free_irq(struct ql_adapter *qdev)
3442 {
3443 int i;
3444 struct intr_context *intr_context = &qdev->intr_context[0];
3445
3446 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3447 if (intr_context->hooked) {
3448 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3449 free_irq(qdev->msi_x_entry[i].vector,
3450 &qdev->rx_ring[i]);
3451 } else {
3452 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3453 }
3454 }
3455 }
3456 ql_disable_msix(qdev);
3457 }
3458
ql_request_irq(struct ql_adapter * qdev)3459 static int ql_request_irq(struct ql_adapter *qdev)
3460 {
3461 int i;
3462 int status = 0;
3463 struct pci_dev *pdev = qdev->pdev;
3464 struct intr_context *intr_context = &qdev->intr_context[0];
3465
3466 ql_resolve_queues_to_irqs(qdev);
3467
3468 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3469 atomic_set(&intr_context->irq_cnt, 0);
3470 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3471 status = request_irq(qdev->msi_x_entry[i].vector,
3472 intr_context->handler,
3473 0,
3474 intr_context->name,
3475 &qdev->rx_ring[i]);
3476 if (status) {
3477 netif_err(qdev, ifup, qdev->ndev,
3478 "Failed request for MSIX interrupt %d.\n",
3479 i);
3480 goto err_irq;
3481 }
3482 } else {
3483 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3484 "trying msi or legacy interrupts.\n");
3485 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3486 "%s: irq = %d.\n", __func__, pdev->irq);
3487 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3488 "%s: context->name = %s.\n", __func__,
3489 intr_context->name);
3490 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3491 "%s: dev_id = 0x%p.\n", __func__,
3492 &qdev->rx_ring[0]);
3493 status =
3494 request_irq(pdev->irq, qlge_isr,
3495 test_bit(QL_MSI_ENABLED,
3496 &qdev->
3497 flags) ? 0 : IRQF_SHARED,
3498 intr_context->name, &qdev->rx_ring[0]);
3499 if (status)
3500 goto err_irq;
3501
3502 netif_err(qdev, ifup, qdev->ndev,
3503 "Hooked intr %d, queue type %s, with name %s.\n",
3504 i,
3505 qdev->rx_ring[0].type == DEFAULT_Q ?
3506 "DEFAULT_Q" :
3507 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3508 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3509 intr_context->name);
3510 }
3511 intr_context->hooked = 1;
3512 }
3513 return status;
3514 err_irq:
3515 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
3516 ql_free_irq(qdev);
3517 return status;
3518 }
3519
ql_start_rss(struct ql_adapter * qdev)3520 static int ql_start_rss(struct ql_adapter *qdev)
3521 {
3522 static const u8 init_hash_seed[] = {
3523 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3524 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3525 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3526 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3527 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3528 };
3529 struct ricb *ricb = &qdev->ricb;
3530 int status = 0;
3531 int i;
3532 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3533
3534 memset((void *)ricb, 0, sizeof(*ricb));
3535
3536 ricb->base_cq = RSS_L4K;
3537 ricb->flags =
3538 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3539 ricb->mask = cpu_to_le16((u16)(0x3ff));
3540
3541 /*
3542 * Fill out the Indirection Table.
3543 */
3544 for (i = 0; i < 1024; i++)
3545 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3546
3547 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3548 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3549
3550 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3551 if (status) {
3552 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3553 return status;
3554 }
3555 return status;
3556 }
3557
ql_clear_routing_entries(struct ql_adapter * qdev)3558 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3559 {
3560 int i, status = 0;
3561
3562 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3563 if (status)
3564 return status;
3565 /* Clear all the entries in the routing table. */
3566 for (i = 0; i < 16; i++) {
3567 status = ql_set_routing_reg(qdev, i, 0, 0);
3568 if (status) {
3569 netif_err(qdev, ifup, qdev->ndev,
3570 "Failed to init routing register for CAM packets.\n");
3571 break;
3572 }
3573 }
3574 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3575 return status;
3576 }
3577
3578 /* Initialize the frame-to-queue routing. */
ql_route_initialize(struct ql_adapter * qdev)3579 static int ql_route_initialize(struct ql_adapter *qdev)
3580 {
3581 int status = 0;
3582
3583 /* Clear all the entries in the routing table. */
3584 status = ql_clear_routing_entries(qdev);
3585 if (status)
3586 return status;
3587
3588 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3589 if (status)
3590 return status;
3591
3592 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3593 RT_IDX_IP_CSUM_ERR, 1);
3594 if (status) {
3595 netif_err(qdev, ifup, qdev->ndev,
3596 "Failed to init routing register "
3597 "for IP CSUM error packets.\n");
3598 goto exit;
3599 }
3600 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3601 RT_IDX_TU_CSUM_ERR, 1);
3602 if (status) {
3603 netif_err(qdev, ifup, qdev->ndev,
3604 "Failed to init routing register "
3605 "for TCP/UDP CSUM error packets.\n");
3606 goto exit;
3607 }
3608 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3609 if (status) {
3610 netif_err(qdev, ifup, qdev->ndev,
3611 "Failed to init routing register for broadcast packets.\n");
3612 goto exit;
3613 }
3614 /* If we have more than one inbound queue, then turn on RSS in the
3615 * routing block.
3616 */
3617 if (qdev->rss_ring_count > 1) {
3618 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3619 RT_IDX_RSS_MATCH, 1);
3620 if (status) {
3621 netif_err(qdev, ifup, qdev->ndev,
3622 "Failed to init routing register for MATCH RSS packets.\n");
3623 goto exit;
3624 }
3625 }
3626
3627 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3628 RT_IDX_CAM_HIT, 1);
3629 if (status)
3630 netif_err(qdev, ifup, qdev->ndev,
3631 "Failed to init routing register for CAM packets.\n");
3632 exit:
3633 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3634 return status;
3635 }
3636
ql_cam_route_initialize(struct ql_adapter * qdev)3637 int ql_cam_route_initialize(struct ql_adapter *qdev)
3638 {
3639 int status, set;
3640
3641 /* If check if the link is up and use to
3642 * determine if we are setting or clearing
3643 * the MAC address in the CAM.
3644 */
3645 set = ql_read32(qdev, STS);
3646 set &= qdev->port_link_up;
3647 status = ql_set_mac_addr(qdev, set);
3648 if (status) {
3649 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3650 return status;
3651 }
3652
3653 status = ql_route_initialize(qdev);
3654 if (status)
3655 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3656
3657 return status;
3658 }
3659
ql_adapter_initialize(struct ql_adapter * qdev)3660 static int ql_adapter_initialize(struct ql_adapter *qdev)
3661 {
3662 u32 value, mask;
3663 int i;
3664 int status = 0;
3665
3666 /*
3667 * Set up the System register to halt on errors.
3668 */
3669 value = SYS_EFE | SYS_FAE;
3670 mask = value << 16;
3671 ql_write32(qdev, SYS, mask | value);
3672
3673 /* Set the default queue, and VLAN behavior. */
3674 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3675 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3676 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3677
3678 /* Set the MPI interrupt to enabled. */
3679 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3680
3681 /* Enable the function, set pagesize, enable error checking. */
3682 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3683 FSC_EC | FSC_VM_PAGE_4K;
3684 value |= SPLT_SETTING;
3685
3686 /* Set/clear header splitting. */
3687 mask = FSC_VM_PAGESIZE_MASK |
3688 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3689 ql_write32(qdev, FSC, mask | value);
3690
3691 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3692
3693 /* Set RX packet routing to use port/pci function on which the
3694 * packet arrived on in addition to usual frame routing.
3695 * This is helpful on bonding where both interfaces can have
3696 * the same MAC address.
3697 */
3698 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3699 /* Reroute all packets to our Interface.
3700 * They may have been routed to MPI firmware
3701 * due to WOL.
3702 */
3703 value = ql_read32(qdev, MGMT_RCV_CFG);
3704 value &= ~MGMT_RCV_CFG_RM;
3705 mask = 0xffff0000;
3706
3707 /* Sticky reg needs clearing due to WOL. */
3708 ql_write32(qdev, MGMT_RCV_CFG, mask);
3709 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3710
3711 /* Default WOL is enable on Mezz cards */
3712 if (qdev->pdev->subsystem_device == 0x0068 ||
3713 qdev->pdev->subsystem_device == 0x0180)
3714 qdev->wol = WAKE_MAGIC;
3715
3716 /* Start up the rx queues. */
3717 for (i = 0; i < qdev->rx_ring_count; i++) {
3718 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3719 if (status) {
3720 netif_err(qdev, ifup, qdev->ndev,
3721 "Failed to start rx ring[%d].\n", i);
3722 return status;
3723 }
3724 }
3725
3726 /* If there is more than one inbound completion queue
3727 * then download a RICB to configure RSS.
3728 */
3729 if (qdev->rss_ring_count > 1) {
3730 status = ql_start_rss(qdev);
3731 if (status) {
3732 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3733 return status;
3734 }
3735 }
3736
3737 /* Start up the tx queues. */
3738 for (i = 0; i < qdev->tx_ring_count; i++) {
3739 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3740 if (status) {
3741 netif_err(qdev, ifup, qdev->ndev,
3742 "Failed to start tx ring[%d].\n", i);
3743 return status;
3744 }
3745 }
3746
3747 /* Initialize the port and set the max framesize. */
3748 status = qdev->nic_ops->port_initialize(qdev);
3749 if (status)
3750 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3751
3752 /* Set up the MAC address and frame routing filter. */
3753 status = ql_cam_route_initialize(qdev);
3754 if (status) {
3755 netif_err(qdev, ifup, qdev->ndev,
3756 "Failed to init CAM/Routing tables.\n");
3757 return status;
3758 }
3759
3760 /* Start NAPI for the RSS queues. */
3761 for (i = 0; i < qdev->rss_ring_count; i++)
3762 napi_enable(&qdev->rx_ring[i].napi);
3763
3764 return status;
3765 }
3766
3767 /* Issue soft reset to chip. */
ql_adapter_reset(struct ql_adapter * qdev)3768 static int ql_adapter_reset(struct ql_adapter *qdev)
3769 {
3770 u32 value;
3771 int status = 0;
3772 unsigned long end_jiffies;
3773
3774 /* Clear all the entries in the routing table. */
3775 status = ql_clear_routing_entries(qdev);
3776 if (status) {
3777 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3778 return status;
3779 }
3780
3781 end_jiffies = jiffies +
3782 max((unsigned long)1, usecs_to_jiffies(30));
3783
3784 /* Check if bit is set then skip the mailbox command and
3785 * clear the bit, else we are in normal reset process.
3786 */
3787 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3788 /* Stop management traffic. */
3789 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3790
3791 /* Wait for the NIC and MGMNT FIFOs to empty. */
3792 ql_wait_fifo_empty(qdev);
3793 } else
3794 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3795
3796 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3797
3798 do {
3799 value = ql_read32(qdev, RST_FO);
3800 if ((value & RST_FO_FR) == 0)
3801 break;
3802 cpu_relax();
3803 } while (time_before(jiffies, end_jiffies));
3804
3805 if (value & RST_FO_FR) {
3806 netif_err(qdev, ifdown, qdev->ndev,
3807 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3808 status = -ETIMEDOUT;
3809 }
3810
3811 /* Resume management traffic. */
3812 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3813 return status;
3814 }
3815
ql_display_dev_info(struct net_device * ndev)3816 static void ql_display_dev_info(struct net_device *ndev)
3817 {
3818 struct ql_adapter *qdev = netdev_priv(ndev);
3819
3820 netif_info(qdev, probe, qdev->ndev,
3821 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3822 "XG Roll = %d, XG Rev = %d.\n",
3823 qdev->func,
3824 qdev->port,
3825 qdev->chip_rev_id & 0x0000000f,
3826 qdev->chip_rev_id >> 4 & 0x0000000f,
3827 qdev->chip_rev_id >> 8 & 0x0000000f,
3828 qdev->chip_rev_id >> 12 & 0x0000000f);
3829 netif_info(qdev, probe, qdev->ndev,
3830 "MAC address %pM\n", ndev->dev_addr);
3831 }
3832
ql_wol(struct ql_adapter * qdev)3833 static int ql_wol(struct ql_adapter *qdev)
3834 {
3835 int status = 0;
3836 u32 wol = MB_WOL_DISABLE;
3837
3838 /* The CAM is still intact after a reset, but if we
3839 * are doing WOL, then we may need to program the
3840 * routing regs. We would also need to issue the mailbox
3841 * commands to instruct the MPI what to do per the ethtool
3842 * settings.
3843 */
3844
3845 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3846 WAKE_MCAST | WAKE_BCAST)) {
3847 netif_err(qdev, ifdown, qdev->ndev,
3848 "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
3849 qdev->wol);
3850 return -EINVAL;
3851 }
3852
3853 if (qdev->wol & WAKE_MAGIC) {
3854 status = ql_mb_wol_set_magic(qdev, 1);
3855 if (status) {
3856 netif_err(qdev, ifdown, qdev->ndev,
3857 "Failed to set magic packet on %s.\n",
3858 qdev->ndev->name);
3859 return status;
3860 } else
3861 netif_info(qdev, drv, qdev->ndev,
3862 "Enabled magic packet successfully on %s.\n",
3863 qdev->ndev->name);
3864
3865 wol |= MB_WOL_MAGIC_PKT;
3866 }
3867
3868 if (qdev->wol) {
3869 wol |= MB_WOL_MODE_ON;
3870 status = ql_mb_wol_mode(qdev, wol);
3871 netif_err(qdev, drv, qdev->ndev,
3872 "WOL %s (wol code 0x%x) on %s\n",
3873 (status == 0) ? "Successfully set" : "Failed",
3874 wol, qdev->ndev->name);
3875 }
3876
3877 return status;
3878 }
3879
ql_cancel_all_work_sync(struct ql_adapter * qdev)3880 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3881 {
3882
3883 /* Don't kill the reset worker thread if we
3884 * are in the process of recovery.
3885 */
3886 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3887 cancel_delayed_work_sync(&qdev->asic_reset_work);
3888 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3889 cancel_delayed_work_sync(&qdev->mpi_work);
3890 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3891 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3892 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3893 }
3894
ql_adapter_down(struct ql_adapter * qdev)3895 static int ql_adapter_down(struct ql_adapter *qdev)
3896 {
3897 int i, status = 0;
3898
3899 ql_link_off(qdev);
3900
3901 ql_cancel_all_work_sync(qdev);
3902
3903 for (i = 0; i < qdev->rss_ring_count; i++)
3904 napi_disable(&qdev->rx_ring[i].napi);
3905
3906 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3907
3908 ql_disable_interrupts(qdev);
3909
3910 ql_tx_ring_clean(qdev);
3911
3912 /* Call netif_napi_del() from common point.
3913 */
3914 for (i = 0; i < qdev->rss_ring_count; i++)
3915 netif_napi_del(&qdev->rx_ring[i].napi);
3916
3917 status = ql_adapter_reset(qdev);
3918 if (status)
3919 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
3920 qdev->func);
3921 ql_free_rx_buffers(qdev);
3922
3923 return status;
3924 }
3925
ql_adapter_up(struct ql_adapter * qdev)3926 static int ql_adapter_up(struct ql_adapter *qdev)
3927 {
3928 int err = 0;
3929
3930 err = ql_adapter_initialize(qdev);
3931 if (err) {
3932 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
3933 goto err_init;
3934 }
3935 set_bit(QL_ADAPTER_UP, &qdev->flags);
3936 ql_alloc_rx_buffers(qdev);
3937 /* If the port is initialized and the
3938 * link is up the turn on the carrier.
3939 */
3940 if ((ql_read32(qdev, STS) & qdev->port_init) &&
3941 (ql_read32(qdev, STS) & qdev->port_link_up))
3942 ql_link_on(qdev);
3943 /* Restore rx mode. */
3944 clear_bit(QL_ALLMULTI, &qdev->flags);
3945 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3946 qlge_set_multicast_list(qdev->ndev);
3947
3948 /* Restore vlan setting. */
3949 qlge_restore_vlan(qdev);
3950
3951 ql_enable_interrupts(qdev);
3952 ql_enable_all_completion_interrupts(qdev);
3953 netif_tx_start_all_queues(qdev->ndev);
3954
3955 return 0;
3956 err_init:
3957 ql_adapter_reset(qdev);
3958 return err;
3959 }
3960
ql_release_adapter_resources(struct ql_adapter * qdev)3961 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3962 {
3963 ql_free_mem_resources(qdev);
3964 ql_free_irq(qdev);
3965 }
3966
ql_get_adapter_resources(struct ql_adapter * qdev)3967 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3968 {
3969 int status = 0;
3970
3971 if (ql_alloc_mem_resources(qdev)) {
3972 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
3973 return -ENOMEM;
3974 }
3975 status = ql_request_irq(qdev);
3976 return status;
3977 }
3978
qlge_close(struct net_device * ndev)3979 static int qlge_close(struct net_device *ndev)
3980 {
3981 struct ql_adapter *qdev = netdev_priv(ndev);
3982
3983 /* If we hit pci_channel_io_perm_failure
3984 * failure condition, then we already
3985 * brought the adapter down.
3986 */
3987 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
3988 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
3989 clear_bit(QL_EEH_FATAL, &qdev->flags);
3990 return 0;
3991 }
3992
3993 /*
3994 * Wait for device to recover from a reset.
3995 * (Rarely happens, but possible.)
3996 */
3997 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3998 msleep(1);
3999 ql_adapter_down(qdev);
4000 ql_release_adapter_resources(qdev);
4001 return 0;
4002 }
4003
ql_configure_rings(struct ql_adapter * qdev)4004 static int ql_configure_rings(struct ql_adapter *qdev)
4005 {
4006 int i;
4007 struct rx_ring *rx_ring;
4008 struct tx_ring *tx_ring;
4009 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4010 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4011 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4012
4013 qdev->lbq_buf_order = get_order(lbq_buf_len);
4014
4015 /* In a perfect world we have one RSS ring for each CPU
4016 * and each has it's own vector. To do that we ask for
4017 * cpu_cnt vectors. ql_enable_msix() will adjust the
4018 * vector count to what we actually get. We then
4019 * allocate an RSS ring for each.
4020 * Essentially, we are doing min(cpu_count, msix_vector_count).
4021 */
4022 qdev->intr_count = cpu_cnt;
4023 ql_enable_msix(qdev);
4024 /* Adjust the RSS ring count to the actual vector count. */
4025 qdev->rss_ring_count = qdev->intr_count;
4026 qdev->tx_ring_count = cpu_cnt;
4027 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4028
4029 for (i = 0; i < qdev->tx_ring_count; i++) {
4030 tx_ring = &qdev->tx_ring[i];
4031 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4032 tx_ring->qdev = qdev;
4033 tx_ring->wq_id = i;
4034 tx_ring->wq_len = qdev->tx_ring_size;
4035 tx_ring->wq_size =
4036 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4037
4038 /*
4039 * The completion queue ID for the tx rings start
4040 * immediately after the rss rings.
4041 */
4042 tx_ring->cq_id = qdev->rss_ring_count + i;
4043 }
4044
4045 for (i = 0; i < qdev->rx_ring_count; i++) {
4046 rx_ring = &qdev->rx_ring[i];
4047 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4048 rx_ring->qdev = qdev;
4049 rx_ring->cq_id = i;
4050 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
4051 if (i < qdev->rss_ring_count) {
4052 /*
4053 * Inbound (RSS) queues.
4054 */
4055 rx_ring->cq_len = qdev->rx_ring_size;
4056 rx_ring->cq_size =
4057 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4058 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4059 rx_ring->lbq_size =
4060 rx_ring->lbq_len * sizeof(__le64);
4061 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4062 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4063 rx_ring->sbq_size =
4064 rx_ring->sbq_len * sizeof(__le64);
4065 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4066 rx_ring->type = RX_Q;
4067 } else {
4068 /*
4069 * Outbound queue handles outbound completions only.
4070 */
4071 /* outbound cq is same size as tx_ring it services. */
4072 rx_ring->cq_len = qdev->tx_ring_size;
4073 rx_ring->cq_size =
4074 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4075 rx_ring->lbq_len = 0;
4076 rx_ring->lbq_size = 0;
4077 rx_ring->lbq_buf_size = 0;
4078 rx_ring->sbq_len = 0;
4079 rx_ring->sbq_size = 0;
4080 rx_ring->sbq_buf_size = 0;
4081 rx_ring->type = TX_Q;
4082 }
4083 }
4084 return 0;
4085 }
4086
qlge_open(struct net_device * ndev)4087 static int qlge_open(struct net_device *ndev)
4088 {
4089 int err = 0;
4090 struct ql_adapter *qdev = netdev_priv(ndev);
4091
4092 err = ql_adapter_reset(qdev);
4093 if (err)
4094 return err;
4095
4096 err = ql_configure_rings(qdev);
4097 if (err)
4098 return err;
4099
4100 err = ql_get_adapter_resources(qdev);
4101 if (err)
4102 goto error_up;
4103
4104 err = ql_adapter_up(qdev);
4105 if (err)
4106 goto error_up;
4107
4108 return err;
4109
4110 error_up:
4111 ql_release_adapter_resources(qdev);
4112 return err;
4113 }
4114
ql_change_rx_buffers(struct ql_adapter * qdev)4115 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4116 {
4117 struct rx_ring *rx_ring;
4118 int i, status;
4119 u32 lbq_buf_len;
4120
4121 /* Wait for an outstanding reset to complete. */
4122 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4123 int i = 3;
4124 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4125 netif_err(qdev, ifup, qdev->ndev,
4126 "Waiting for adapter UP...\n");
4127 ssleep(1);
4128 }
4129
4130 if (!i) {
4131 netif_err(qdev, ifup, qdev->ndev,
4132 "Timed out waiting for adapter UP\n");
4133 return -ETIMEDOUT;
4134 }
4135 }
4136
4137 status = ql_adapter_down(qdev);
4138 if (status)
4139 goto error;
4140
4141 /* Get the new rx buffer size. */
4142 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4143 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4144 qdev->lbq_buf_order = get_order(lbq_buf_len);
4145
4146 for (i = 0; i < qdev->rss_ring_count; i++) {
4147 rx_ring = &qdev->rx_ring[i];
4148 /* Set the new size. */
4149 rx_ring->lbq_buf_size = lbq_buf_len;
4150 }
4151
4152 status = ql_adapter_up(qdev);
4153 if (status)
4154 goto error;
4155
4156 return status;
4157 error:
4158 netif_alert(qdev, ifup, qdev->ndev,
4159 "Driver up/down cycle failed, closing device.\n");
4160 set_bit(QL_ADAPTER_UP, &qdev->flags);
4161 dev_close(qdev->ndev);
4162 return status;
4163 }
4164
qlge_change_mtu(struct net_device * ndev,int new_mtu)4165 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4166 {
4167 struct ql_adapter *qdev = netdev_priv(ndev);
4168 int status;
4169
4170 if (ndev->mtu == 1500 && new_mtu == 9000) {
4171 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4172 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4173 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4174 } else
4175 return -EINVAL;
4176
4177 queue_delayed_work(qdev->workqueue,
4178 &qdev->mpi_port_cfg_work, 3*HZ);
4179
4180 ndev->mtu = new_mtu;
4181
4182 if (!netif_running(qdev->ndev)) {
4183 return 0;
4184 }
4185
4186 status = ql_change_rx_buffers(qdev);
4187 if (status) {
4188 netif_err(qdev, ifup, qdev->ndev,
4189 "Changing MTU failed.\n");
4190 }
4191
4192 return status;
4193 }
4194
qlge_get_stats(struct net_device * ndev)4195 static struct net_device_stats *qlge_get_stats(struct net_device
4196 *ndev)
4197 {
4198 struct ql_adapter *qdev = netdev_priv(ndev);
4199 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4200 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4201 unsigned long pkts, mcast, dropped, errors, bytes;
4202 int i;
4203
4204 /* Get RX stats. */
4205 pkts = mcast = dropped = errors = bytes = 0;
4206 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4207 pkts += rx_ring->rx_packets;
4208 bytes += rx_ring->rx_bytes;
4209 dropped += rx_ring->rx_dropped;
4210 errors += rx_ring->rx_errors;
4211 mcast += rx_ring->rx_multicast;
4212 }
4213 ndev->stats.rx_packets = pkts;
4214 ndev->stats.rx_bytes = bytes;
4215 ndev->stats.rx_dropped = dropped;
4216 ndev->stats.rx_errors = errors;
4217 ndev->stats.multicast = mcast;
4218
4219 /* Get TX stats. */
4220 pkts = errors = bytes = 0;
4221 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4222 pkts += tx_ring->tx_packets;
4223 bytes += tx_ring->tx_bytes;
4224 errors += tx_ring->tx_errors;
4225 }
4226 ndev->stats.tx_packets = pkts;
4227 ndev->stats.tx_bytes = bytes;
4228 ndev->stats.tx_errors = errors;
4229 return &ndev->stats;
4230 }
4231
qlge_set_multicast_list(struct net_device * ndev)4232 static void qlge_set_multicast_list(struct net_device *ndev)
4233 {
4234 struct ql_adapter *qdev = netdev_priv(ndev);
4235 struct netdev_hw_addr *ha;
4236 int i, status;
4237
4238 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4239 if (status)
4240 return;
4241 /*
4242 * Set or clear promiscuous mode if a
4243 * transition is taking place.
4244 */
4245 if (ndev->flags & IFF_PROMISC) {
4246 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4247 if (ql_set_routing_reg
4248 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4249 netif_err(qdev, hw, qdev->ndev,
4250 "Failed to set promiscuous mode.\n");
4251 } else {
4252 set_bit(QL_PROMISCUOUS, &qdev->flags);
4253 }
4254 }
4255 } else {
4256 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4257 if (ql_set_routing_reg
4258 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4259 netif_err(qdev, hw, qdev->ndev,
4260 "Failed to clear promiscuous mode.\n");
4261 } else {
4262 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4263 }
4264 }
4265 }
4266
4267 /*
4268 * Set or clear all multicast mode if a
4269 * transition is taking place.
4270 */
4271 if ((ndev->flags & IFF_ALLMULTI) ||
4272 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4273 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4274 if (ql_set_routing_reg
4275 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4276 netif_err(qdev, hw, qdev->ndev,
4277 "Failed to set all-multi mode.\n");
4278 } else {
4279 set_bit(QL_ALLMULTI, &qdev->flags);
4280 }
4281 }
4282 } else {
4283 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4284 if (ql_set_routing_reg
4285 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4286 netif_err(qdev, hw, qdev->ndev,
4287 "Failed to clear all-multi mode.\n");
4288 } else {
4289 clear_bit(QL_ALLMULTI, &qdev->flags);
4290 }
4291 }
4292 }
4293
4294 if (!netdev_mc_empty(ndev)) {
4295 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4296 if (status)
4297 goto exit;
4298 i = 0;
4299 netdev_for_each_mc_addr(ha, ndev) {
4300 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4301 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4302 netif_err(qdev, hw, qdev->ndev,
4303 "Failed to loadmulticast address.\n");
4304 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4305 goto exit;
4306 }
4307 i++;
4308 }
4309 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4310 if (ql_set_routing_reg
4311 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4312 netif_err(qdev, hw, qdev->ndev,
4313 "Failed to set multicast match mode.\n");
4314 } else {
4315 set_bit(QL_ALLMULTI, &qdev->flags);
4316 }
4317 }
4318 exit:
4319 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4320 }
4321
qlge_set_mac_address(struct net_device * ndev,void * p)4322 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4323 {
4324 struct ql_adapter *qdev = netdev_priv(ndev);
4325 struct sockaddr *addr = p;
4326 int status;
4327
4328 if (!is_valid_ether_addr(addr->sa_data))
4329 return -EADDRNOTAVAIL;
4330 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4331 /* Update local copy of current mac address. */
4332 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4333
4334 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4335 if (status)
4336 return status;
4337 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4338 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4339 if (status)
4340 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4341 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4342 return status;
4343 }
4344
qlge_tx_timeout(struct net_device * ndev)4345 static void qlge_tx_timeout(struct net_device *ndev)
4346 {
4347 struct ql_adapter *qdev = netdev_priv(ndev);
4348 ql_queue_asic_error(qdev);
4349 }
4350
ql_asic_reset_work(struct work_struct * work)4351 static void ql_asic_reset_work(struct work_struct *work)
4352 {
4353 struct ql_adapter *qdev =
4354 container_of(work, struct ql_adapter, asic_reset_work.work);
4355 int status;
4356 rtnl_lock();
4357 status = ql_adapter_down(qdev);
4358 if (status)
4359 goto error;
4360
4361 status = ql_adapter_up(qdev);
4362 if (status)
4363 goto error;
4364
4365 /* Restore rx mode. */
4366 clear_bit(QL_ALLMULTI, &qdev->flags);
4367 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4368 qlge_set_multicast_list(qdev->ndev);
4369
4370 rtnl_unlock();
4371 return;
4372 error:
4373 netif_alert(qdev, ifup, qdev->ndev,
4374 "Driver up/down cycle failed, closing device\n");
4375
4376 set_bit(QL_ADAPTER_UP, &qdev->flags);
4377 dev_close(qdev->ndev);
4378 rtnl_unlock();
4379 }
4380
4381 static const struct nic_operations qla8012_nic_ops = {
4382 .get_flash = ql_get_8012_flash_params,
4383 .port_initialize = ql_8012_port_initialize,
4384 };
4385
4386 static const struct nic_operations qla8000_nic_ops = {
4387 .get_flash = ql_get_8000_flash_params,
4388 .port_initialize = ql_8000_port_initialize,
4389 };
4390
4391 /* Find the pcie function number for the other NIC
4392 * on this chip. Since both NIC functions share a
4393 * common firmware we have the lowest enabled function
4394 * do any common work. Examples would be resetting
4395 * after a fatal firmware error, or doing a firmware
4396 * coredump.
4397 */
ql_get_alt_pcie_func(struct ql_adapter * qdev)4398 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4399 {
4400 int status = 0;
4401 u32 temp;
4402 u32 nic_func1, nic_func2;
4403
4404 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4405 &temp);
4406 if (status)
4407 return status;
4408
4409 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4410 MPI_TEST_NIC_FUNC_MASK);
4411 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4412 MPI_TEST_NIC_FUNC_MASK);
4413
4414 if (qdev->func == nic_func1)
4415 qdev->alt_func = nic_func2;
4416 else if (qdev->func == nic_func2)
4417 qdev->alt_func = nic_func1;
4418 else
4419 status = -EIO;
4420
4421 return status;
4422 }
4423
ql_get_board_info(struct ql_adapter * qdev)4424 static int ql_get_board_info(struct ql_adapter *qdev)
4425 {
4426 int status;
4427 qdev->func =
4428 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4429 if (qdev->func > 3)
4430 return -EIO;
4431
4432 status = ql_get_alt_pcie_func(qdev);
4433 if (status)
4434 return status;
4435
4436 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4437 if (qdev->port) {
4438 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4439 qdev->port_link_up = STS_PL1;
4440 qdev->port_init = STS_PI1;
4441 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4442 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4443 } else {
4444 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4445 qdev->port_link_up = STS_PL0;
4446 qdev->port_init = STS_PI0;
4447 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4448 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4449 }
4450 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4451 qdev->device_id = qdev->pdev->device;
4452 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4453 qdev->nic_ops = &qla8012_nic_ops;
4454 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4455 qdev->nic_ops = &qla8000_nic_ops;
4456 return status;
4457 }
4458
ql_release_all(struct pci_dev * pdev)4459 static void ql_release_all(struct pci_dev *pdev)
4460 {
4461 struct net_device *ndev = pci_get_drvdata(pdev);
4462 struct ql_adapter *qdev = netdev_priv(ndev);
4463
4464 if (qdev->workqueue) {
4465 destroy_workqueue(qdev->workqueue);
4466 qdev->workqueue = NULL;
4467 }
4468
4469 if (qdev->reg_base)
4470 iounmap(qdev->reg_base);
4471 if (qdev->doorbell_area)
4472 iounmap(qdev->doorbell_area);
4473 vfree(qdev->mpi_coredump);
4474 pci_release_regions(pdev);
4475 pci_set_drvdata(pdev, NULL);
4476 }
4477
ql_init_device(struct pci_dev * pdev,struct net_device * ndev,int cards_found)4478 static int __devinit ql_init_device(struct pci_dev *pdev,
4479 struct net_device *ndev, int cards_found)
4480 {
4481 struct ql_adapter *qdev = netdev_priv(ndev);
4482 int err = 0;
4483
4484 memset((void *)qdev, 0, sizeof(*qdev));
4485 err = pci_enable_device(pdev);
4486 if (err) {
4487 dev_err(&pdev->dev, "PCI device enable failed.\n");
4488 return err;
4489 }
4490
4491 qdev->ndev = ndev;
4492 qdev->pdev = pdev;
4493 pci_set_drvdata(pdev, ndev);
4494
4495 /* Set PCIe read request size */
4496 err = pcie_set_readrq(pdev, 4096);
4497 if (err) {
4498 dev_err(&pdev->dev, "Set readrq failed.\n");
4499 goto err_out1;
4500 }
4501
4502 err = pci_request_regions(pdev, DRV_NAME);
4503 if (err) {
4504 dev_err(&pdev->dev, "PCI region request failed.\n");
4505 return err;
4506 }
4507
4508 pci_set_master(pdev);
4509 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4510 set_bit(QL_DMA64, &qdev->flags);
4511 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4512 } else {
4513 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4514 if (!err)
4515 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4516 }
4517
4518 if (err) {
4519 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4520 goto err_out2;
4521 }
4522
4523 /* Set PCIe reset type for EEH to fundamental. */
4524 pdev->needs_freset = 1;
4525 pci_save_state(pdev);
4526 qdev->reg_base =
4527 ioremap_nocache(pci_resource_start(pdev, 1),
4528 pci_resource_len(pdev, 1));
4529 if (!qdev->reg_base) {
4530 dev_err(&pdev->dev, "Register mapping failed.\n");
4531 err = -ENOMEM;
4532 goto err_out2;
4533 }
4534
4535 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4536 qdev->doorbell_area =
4537 ioremap_nocache(pci_resource_start(pdev, 3),
4538 pci_resource_len(pdev, 3));
4539 if (!qdev->doorbell_area) {
4540 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4541 err = -ENOMEM;
4542 goto err_out2;
4543 }
4544
4545 err = ql_get_board_info(qdev);
4546 if (err) {
4547 dev_err(&pdev->dev, "Register access failed.\n");
4548 err = -EIO;
4549 goto err_out2;
4550 }
4551 qdev->msg_enable = netif_msg_init(debug, default_msg);
4552 spin_lock_init(&qdev->hw_lock);
4553 spin_lock_init(&qdev->stats_lock);
4554
4555 if (qlge_mpi_coredump) {
4556 qdev->mpi_coredump =
4557 vmalloc(sizeof(struct ql_mpi_coredump));
4558 if (qdev->mpi_coredump == NULL) {
4559 dev_err(&pdev->dev, "Coredump alloc failed.\n");
4560 err = -ENOMEM;
4561 goto err_out2;
4562 }
4563 if (qlge_force_coredump)
4564 set_bit(QL_FRC_COREDUMP, &qdev->flags);
4565 }
4566 /* make sure the EEPROM is good */
4567 err = qdev->nic_ops->get_flash(qdev);
4568 if (err) {
4569 dev_err(&pdev->dev, "Invalid FLASH.\n");
4570 goto err_out2;
4571 }
4572
4573 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4574 /* Keep local copy of current mac address. */
4575 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4576
4577 /* Set up the default ring sizes. */
4578 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4579 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4580
4581 /* Set up the coalescing parameters. */
4582 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4583 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4584 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4585 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4586
4587 /*
4588 * Set up the operating parameters.
4589 */
4590 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4591 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4592 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4593 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4594 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4595 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4596 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4597 init_completion(&qdev->ide_completion);
4598 mutex_init(&qdev->mpi_mutex);
4599
4600 if (!cards_found) {
4601 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4602 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4603 DRV_NAME, DRV_VERSION);
4604 }
4605 return 0;
4606 err_out2:
4607 ql_release_all(pdev);
4608 err_out1:
4609 pci_disable_device(pdev);
4610 return err;
4611 }
4612
4613 static const struct net_device_ops qlge_netdev_ops = {
4614 .ndo_open = qlge_open,
4615 .ndo_stop = qlge_close,
4616 .ndo_start_xmit = qlge_send,
4617 .ndo_change_mtu = qlge_change_mtu,
4618 .ndo_get_stats = qlge_get_stats,
4619 .ndo_set_rx_mode = qlge_set_multicast_list,
4620 .ndo_set_mac_address = qlge_set_mac_address,
4621 .ndo_validate_addr = eth_validate_addr,
4622 .ndo_tx_timeout = qlge_tx_timeout,
4623 .ndo_fix_features = qlge_fix_features,
4624 .ndo_set_features = qlge_set_features,
4625 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4626 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
4627 };
4628
ql_timer(unsigned long data)4629 static void ql_timer(unsigned long data)
4630 {
4631 struct ql_adapter *qdev = (struct ql_adapter *)data;
4632 u32 var = 0;
4633
4634 var = ql_read32(qdev, STS);
4635 if (pci_channel_offline(qdev->pdev)) {
4636 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4637 return;
4638 }
4639
4640 mod_timer(&qdev->timer, jiffies + (5*HZ));
4641 }
4642
qlge_probe(struct pci_dev * pdev,const struct pci_device_id * pci_entry)4643 static int __devinit qlge_probe(struct pci_dev *pdev,
4644 const struct pci_device_id *pci_entry)
4645 {
4646 struct net_device *ndev = NULL;
4647 struct ql_adapter *qdev = NULL;
4648 static int cards_found = 0;
4649 int err = 0;
4650
4651 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4652 min(MAX_CPUS, (int)num_online_cpus()));
4653 if (!ndev)
4654 return -ENOMEM;
4655
4656 err = ql_init_device(pdev, ndev, cards_found);
4657 if (err < 0) {
4658 free_netdev(ndev);
4659 return err;
4660 }
4661
4662 qdev = netdev_priv(ndev);
4663 SET_NETDEV_DEV(ndev, &pdev->dev);
4664 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
4665 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN |
4666 NETIF_F_HW_VLAN_TX | NETIF_F_RXCSUM;
4667 ndev->features = ndev->hw_features |
4668 NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
4669
4670 if (test_bit(QL_DMA64, &qdev->flags))
4671 ndev->features |= NETIF_F_HIGHDMA;
4672
4673 /*
4674 * Set up net_device structure.
4675 */
4676 ndev->tx_queue_len = qdev->tx_ring_size;
4677 ndev->irq = pdev->irq;
4678
4679 ndev->netdev_ops = &qlge_netdev_ops;
4680 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4681 ndev->watchdog_timeo = 10 * HZ;
4682
4683 err = register_netdev(ndev);
4684 if (err) {
4685 dev_err(&pdev->dev, "net device registration failed.\n");
4686 ql_release_all(pdev);
4687 pci_disable_device(pdev);
4688 return err;
4689 }
4690 /* Start up the timer to trigger EEH if
4691 * the bus goes dead
4692 */
4693 init_timer_deferrable(&qdev->timer);
4694 qdev->timer.data = (unsigned long)qdev;
4695 qdev->timer.function = ql_timer;
4696 qdev->timer.expires = jiffies + (5*HZ);
4697 add_timer(&qdev->timer);
4698 ql_link_off(qdev);
4699 ql_display_dev_info(ndev);
4700 atomic_set(&qdev->lb_count, 0);
4701 cards_found++;
4702 return 0;
4703 }
4704
ql_lb_send(struct sk_buff * skb,struct net_device * ndev)4705 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4706 {
4707 return qlge_send(skb, ndev);
4708 }
4709
ql_clean_lb_rx_ring(struct rx_ring * rx_ring,int budget)4710 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4711 {
4712 return ql_clean_inbound_rx_ring(rx_ring, budget);
4713 }
4714
qlge_remove(struct pci_dev * pdev)4715 static void __devexit qlge_remove(struct pci_dev *pdev)
4716 {
4717 struct net_device *ndev = pci_get_drvdata(pdev);
4718 struct ql_adapter *qdev = netdev_priv(ndev);
4719 del_timer_sync(&qdev->timer);
4720 ql_cancel_all_work_sync(qdev);
4721 unregister_netdev(ndev);
4722 ql_release_all(pdev);
4723 pci_disable_device(pdev);
4724 free_netdev(ndev);
4725 }
4726
4727 /* Clean up resources without touching hardware. */
ql_eeh_close(struct net_device * ndev)4728 static void ql_eeh_close(struct net_device *ndev)
4729 {
4730 int i;
4731 struct ql_adapter *qdev = netdev_priv(ndev);
4732
4733 if (netif_carrier_ok(ndev)) {
4734 netif_carrier_off(ndev);
4735 netif_stop_queue(ndev);
4736 }
4737
4738 /* Disabling the timer */
4739 del_timer_sync(&qdev->timer);
4740 ql_cancel_all_work_sync(qdev);
4741
4742 for (i = 0; i < qdev->rss_ring_count; i++)
4743 netif_napi_del(&qdev->rx_ring[i].napi);
4744
4745 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4746 ql_tx_ring_clean(qdev);
4747 ql_free_rx_buffers(qdev);
4748 ql_release_adapter_resources(qdev);
4749 }
4750
4751 /*
4752 * This callback is called by the PCI subsystem whenever
4753 * a PCI bus error is detected.
4754 */
qlge_io_error_detected(struct pci_dev * pdev,enum pci_channel_state state)4755 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4756 enum pci_channel_state state)
4757 {
4758 struct net_device *ndev = pci_get_drvdata(pdev);
4759 struct ql_adapter *qdev = netdev_priv(ndev);
4760
4761 switch (state) {
4762 case pci_channel_io_normal:
4763 return PCI_ERS_RESULT_CAN_RECOVER;
4764 case pci_channel_io_frozen:
4765 netif_device_detach(ndev);
4766 if (netif_running(ndev))
4767 ql_eeh_close(ndev);
4768 pci_disable_device(pdev);
4769 return PCI_ERS_RESULT_NEED_RESET;
4770 case pci_channel_io_perm_failure:
4771 dev_err(&pdev->dev,
4772 "%s: pci_channel_io_perm_failure.\n", __func__);
4773 ql_eeh_close(ndev);
4774 set_bit(QL_EEH_FATAL, &qdev->flags);
4775 return PCI_ERS_RESULT_DISCONNECT;
4776 }
4777
4778 /* Request a slot reset. */
4779 return PCI_ERS_RESULT_NEED_RESET;
4780 }
4781
4782 /*
4783 * This callback is called after the PCI buss has been reset.
4784 * Basically, this tries to restart the card from scratch.
4785 * This is a shortened version of the device probe/discovery code,
4786 * it resembles the first-half of the () routine.
4787 */
qlge_io_slot_reset(struct pci_dev * pdev)4788 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4789 {
4790 struct net_device *ndev = pci_get_drvdata(pdev);
4791 struct ql_adapter *qdev = netdev_priv(ndev);
4792
4793 pdev->error_state = pci_channel_io_normal;
4794
4795 pci_restore_state(pdev);
4796 if (pci_enable_device(pdev)) {
4797 netif_err(qdev, ifup, qdev->ndev,
4798 "Cannot re-enable PCI device after reset.\n");
4799 return PCI_ERS_RESULT_DISCONNECT;
4800 }
4801 pci_set_master(pdev);
4802
4803 if (ql_adapter_reset(qdev)) {
4804 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4805 set_bit(QL_EEH_FATAL, &qdev->flags);
4806 return PCI_ERS_RESULT_DISCONNECT;
4807 }
4808
4809 return PCI_ERS_RESULT_RECOVERED;
4810 }
4811
qlge_io_resume(struct pci_dev * pdev)4812 static void qlge_io_resume(struct pci_dev *pdev)
4813 {
4814 struct net_device *ndev = pci_get_drvdata(pdev);
4815 struct ql_adapter *qdev = netdev_priv(ndev);
4816 int err = 0;
4817
4818 if (netif_running(ndev)) {
4819 err = qlge_open(ndev);
4820 if (err) {
4821 netif_err(qdev, ifup, qdev->ndev,
4822 "Device initialization failed after reset.\n");
4823 return;
4824 }
4825 } else {
4826 netif_err(qdev, ifup, qdev->ndev,
4827 "Device was not running prior to EEH.\n");
4828 }
4829 mod_timer(&qdev->timer, jiffies + (5*HZ));
4830 netif_device_attach(ndev);
4831 }
4832
4833 static struct pci_error_handlers qlge_err_handler = {
4834 .error_detected = qlge_io_error_detected,
4835 .slot_reset = qlge_io_slot_reset,
4836 .resume = qlge_io_resume,
4837 };
4838
qlge_suspend(struct pci_dev * pdev,pm_message_t state)4839 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4840 {
4841 struct net_device *ndev = pci_get_drvdata(pdev);
4842 struct ql_adapter *qdev = netdev_priv(ndev);
4843 int err;
4844
4845 netif_device_detach(ndev);
4846 del_timer_sync(&qdev->timer);
4847
4848 if (netif_running(ndev)) {
4849 err = ql_adapter_down(qdev);
4850 if (!err)
4851 return err;
4852 }
4853
4854 ql_wol(qdev);
4855 err = pci_save_state(pdev);
4856 if (err)
4857 return err;
4858
4859 pci_disable_device(pdev);
4860
4861 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4862
4863 return 0;
4864 }
4865
4866 #ifdef CONFIG_PM
qlge_resume(struct pci_dev * pdev)4867 static int qlge_resume(struct pci_dev *pdev)
4868 {
4869 struct net_device *ndev = pci_get_drvdata(pdev);
4870 struct ql_adapter *qdev = netdev_priv(ndev);
4871 int err;
4872
4873 pci_set_power_state(pdev, PCI_D0);
4874 pci_restore_state(pdev);
4875 err = pci_enable_device(pdev);
4876 if (err) {
4877 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4878 return err;
4879 }
4880 pci_set_master(pdev);
4881
4882 pci_enable_wake(pdev, PCI_D3hot, 0);
4883 pci_enable_wake(pdev, PCI_D3cold, 0);
4884
4885 if (netif_running(ndev)) {
4886 err = ql_adapter_up(qdev);
4887 if (err)
4888 return err;
4889 }
4890
4891 mod_timer(&qdev->timer, jiffies + (5*HZ));
4892 netif_device_attach(ndev);
4893
4894 return 0;
4895 }
4896 #endif /* CONFIG_PM */
4897
qlge_shutdown(struct pci_dev * pdev)4898 static void qlge_shutdown(struct pci_dev *pdev)
4899 {
4900 qlge_suspend(pdev, PMSG_SUSPEND);
4901 }
4902
4903 static struct pci_driver qlge_driver = {
4904 .name = DRV_NAME,
4905 .id_table = qlge_pci_tbl,
4906 .probe = qlge_probe,
4907 .remove = __devexit_p(qlge_remove),
4908 #ifdef CONFIG_PM
4909 .suspend = qlge_suspend,
4910 .resume = qlge_resume,
4911 #endif
4912 .shutdown = qlge_shutdown,
4913 .err_handler = &qlge_err_handler
4914 };
4915
qlge_init_module(void)4916 static int __init qlge_init_module(void)
4917 {
4918 return pci_register_driver(&qlge_driver);
4919 }
4920
qlge_exit(void)4921 static void __exit qlge_exit(void)
4922 {
4923 pci_unregister_driver(&qlge_driver);
4924 }
4925
4926 module_init(qlge_init_module);
4927 module_exit(qlge_exit);
4928