1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include "extent-io-tree.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "async-thread.h"
35 #include "block-rsv.h"
36 #include "locking.h"
37
38 struct btrfs_trans_handle;
39 struct btrfs_transaction;
40 struct btrfs_pending_snapshot;
41 struct btrfs_delayed_ref_root;
42 struct btrfs_space_info;
43 struct btrfs_block_group;
44 extern struct kmem_cache *btrfs_trans_handle_cachep;
45 extern struct kmem_cache *btrfs_bit_radix_cachep;
46 extern struct kmem_cache *btrfs_path_cachep;
47 extern struct kmem_cache *btrfs_free_space_cachep;
48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49 struct btrfs_ordered_sum;
50 struct btrfs_ref;
51 struct btrfs_bio;
52 struct btrfs_ioctl_encoded_io_args;
53
54 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
55
56 /*
57 * Maximum number of mirrors that can be available for all profiles counting
58 * the target device of dev-replace as one. During an active device replace
59 * procedure, the target device of the copy operation is a mirror for the
60 * filesystem data as well that can be used to read data in order to repair
61 * read errors on other disks.
62 *
63 * Current value is derived from RAID1C4 with 4 copies.
64 */
65 #define BTRFS_MAX_MIRRORS (4 + 1)
66
67 #define BTRFS_MAX_LEVEL 8
68
69 #define BTRFS_OLDEST_GENERATION 0ULL
70
71 /*
72 * we can actually store much bigger names, but lets not confuse the rest
73 * of linux
74 */
75 #define BTRFS_NAME_LEN 255
76
77 /*
78 * Theoretical limit is larger, but we keep this down to a sane
79 * value. That should limit greatly the possibility of collisions on
80 * inode ref items.
81 */
82 #define BTRFS_LINK_MAX 65535U
83
84 #define BTRFS_EMPTY_DIR_SIZE 0
85
86 /* ioprio of readahead is set to idle */
87 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
88
89 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M
90
91 /*
92 * Use large batch size to reduce overhead of metadata updates. On the reader
93 * side, we only read it when we are close to ENOSPC and the read overhead is
94 * mostly related to the number of CPUs, so it is OK to use arbitrary large
95 * value here.
96 */
97 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M
98
99 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
100
101 /*
102 * Deltas are an effective way to populate global statistics. Give macro names
103 * to make it clear what we're doing. An example is discard_extents in
104 * btrfs_free_space_ctl.
105 */
106 #define BTRFS_STAT_NR_ENTRIES 2
107 #define BTRFS_STAT_CURR 0
108 #define BTRFS_STAT_PREV 1
109
btrfs_chunk_item_size(int num_stripes)110 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
111 {
112 BUG_ON(num_stripes == 0);
113 return sizeof(struct btrfs_chunk) +
114 sizeof(struct btrfs_stripe) * (num_stripes - 1);
115 }
116
117 /*
118 * Runtime (in-memory) states of filesystem
119 */
120 enum {
121 /* Global indicator of serious filesystem errors */
122 BTRFS_FS_STATE_ERROR,
123 /*
124 * Filesystem is being remounted, allow to skip some operations, like
125 * defrag
126 */
127 BTRFS_FS_STATE_REMOUNTING,
128 /* Filesystem in RO mode */
129 BTRFS_FS_STATE_RO,
130 /* Track if a transaction abort has been reported on this filesystem */
131 BTRFS_FS_STATE_TRANS_ABORTED,
132 /*
133 * Bio operations should be blocked on this filesystem because a source
134 * or target device is being destroyed as part of a device replace
135 */
136 BTRFS_FS_STATE_DEV_REPLACING,
137 /* The btrfs_fs_info created for self-tests */
138 BTRFS_FS_STATE_DUMMY_FS_INFO,
139
140 BTRFS_FS_STATE_NO_CSUMS,
141
142 /* Indicates there was an error cleaning up a log tree. */
143 BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
144
145 BTRFS_FS_STATE_COUNT
146 };
147
148 #define BTRFS_BACKREF_REV_MAX 256
149 #define BTRFS_BACKREF_REV_SHIFT 56
150 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
151 BTRFS_BACKREF_REV_SHIFT)
152
153 #define BTRFS_OLD_BACKREF_REV 0
154 #define BTRFS_MIXED_BACKREF_REV 1
155
156 /*
157 * every tree block (leaf or node) starts with this header.
158 */
159 struct btrfs_header {
160 /* these first four must match the super block */
161 u8 csum[BTRFS_CSUM_SIZE];
162 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
163 __le64 bytenr; /* which block this node is supposed to live in */
164 __le64 flags;
165
166 /* allowed to be different from the super from here on down */
167 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
168 __le64 generation;
169 __le64 owner;
170 __le32 nritems;
171 u8 level;
172 } __attribute__ ((__packed__));
173
174 /*
175 * this is a very generous portion of the super block, giving us
176 * room to translate 14 chunks with 3 stripes each.
177 */
178 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
179
180 /*
181 * just in case we somehow lose the roots and are not able to mount,
182 * we store an array of the roots from previous transactions
183 * in the super.
184 */
185 #define BTRFS_NUM_BACKUP_ROOTS 4
186 struct btrfs_root_backup {
187 __le64 tree_root;
188 __le64 tree_root_gen;
189
190 __le64 chunk_root;
191 __le64 chunk_root_gen;
192
193 __le64 extent_root;
194 __le64 extent_root_gen;
195
196 __le64 fs_root;
197 __le64 fs_root_gen;
198
199 __le64 dev_root;
200 __le64 dev_root_gen;
201
202 __le64 csum_root;
203 __le64 csum_root_gen;
204
205 __le64 total_bytes;
206 __le64 bytes_used;
207 __le64 num_devices;
208 /* future */
209 __le64 unused_64[4];
210
211 u8 tree_root_level;
212 u8 chunk_root_level;
213 u8 extent_root_level;
214 u8 fs_root_level;
215 u8 dev_root_level;
216 u8 csum_root_level;
217 /* future and to align */
218 u8 unused_8[10];
219 } __attribute__ ((__packed__));
220
221 #define BTRFS_SUPER_INFO_OFFSET SZ_64K
222 #define BTRFS_SUPER_INFO_SIZE 4096
223
224 /*
225 * the super block basically lists the main trees of the FS
226 * it currently lacks any block count etc etc
227 */
228 struct btrfs_super_block {
229 /* the first 4 fields must match struct btrfs_header */
230 u8 csum[BTRFS_CSUM_SIZE];
231 /* FS specific UUID, visible to user */
232 u8 fsid[BTRFS_FSID_SIZE];
233 __le64 bytenr; /* this block number */
234 __le64 flags;
235
236 /* allowed to be different from the btrfs_header from here own down */
237 __le64 magic;
238 __le64 generation;
239 __le64 root;
240 __le64 chunk_root;
241 __le64 log_root;
242
243 /* this will help find the new super based on the log root */
244 __le64 log_root_transid;
245 __le64 total_bytes;
246 __le64 bytes_used;
247 __le64 root_dir_objectid;
248 __le64 num_devices;
249 __le32 sectorsize;
250 __le32 nodesize;
251 __le32 __unused_leafsize;
252 __le32 stripesize;
253 __le32 sys_chunk_array_size;
254 __le64 chunk_root_generation;
255 __le64 compat_flags;
256 __le64 compat_ro_flags;
257 __le64 incompat_flags;
258 __le16 csum_type;
259 u8 root_level;
260 u8 chunk_root_level;
261 u8 log_root_level;
262 struct btrfs_dev_item dev_item;
263
264 char label[BTRFS_LABEL_SIZE];
265
266 __le64 cache_generation;
267 __le64 uuid_tree_generation;
268
269 /* the UUID written into btree blocks */
270 u8 metadata_uuid[BTRFS_FSID_SIZE];
271
272 /* Extent tree v2 */
273 __le64 block_group_root;
274 __le64 block_group_root_generation;
275 u8 block_group_root_level;
276
277 /* future expansion */
278 u8 reserved8[7];
279 __le64 reserved[25];
280 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
281 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
282
283 /* Padded to 4096 bytes */
284 u8 padding[565];
285 } __attribute__ ((__packed__));
286 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
287
288 /*
289 * Compat flags that we support. If any incompat flags are set other than the
290 * ones specified below then we will fail to mount
291 */
292 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL
293 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
294 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
295
296 #define BTRFS_FEATURE_COMPAT_RO_SUPP \
297 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \
298 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
299 BTRFS_FEATURE_COMPAT_RO_VERITY)
300
301 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
302 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
303
304 #ifdef CONFIG_BTRFS_DEBUG
305 /*
306 * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG
307 */
308 #define BTRFS_FEATURE_INCOMPAT_SUPP \
309 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
310 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
311 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
312 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
313 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
314 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \
315 BTRFS_FEATURE_INCOMPAT_RAID56 | \
316 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
317 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
318 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \
319 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \
320 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \
321 BTRFS_FEATURE_INCOMPAT_ZONED | \
322 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2)
323 #else
324 #define BTRFS_FEATURE_INCOMPAT_SUPP \
325 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
326 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
327 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
328 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
329 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
330 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \
331 BTRFS_FEATURE_INCOMPAT_RAID56 | \
332 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
333 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
334 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \
335 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \
336 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \
337 BTRFS_FEATURE_INCOMPAT_ZONED)
338 #endif
339
340 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
341 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
342 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
343
344 /*
345 * A leaf is full of items. offset and size tell us where to find
346 * the item in the leaf (relative to the start of the data area)
347 */
348 struct btrfs_item {
349 struct btrfs_disk_key key;
350 __le32 offset;
351 __le32 size;
352 } __attribute__ ((__packed__));
353
354 /*
355 * leaves have an item area and a data area:
356 * [item0, item1....itemN] [free space] [dataN...data1, data0]
357 *
358 * The data is separate from the items to get the keys closer together
359 * during searches.
360 */
361 struct btrfs_leaf {
362 struct btrfs_header header;
363 struct btrfs_item items[];
364 } __attribute__ ((__packed__));
365
366 /*
367 * all non-leaf blocks are nodes, they hold only keys and pointers to
368 * other blocks
369 */
370 struct btrfs_key_ptr {
371 struct btrfs_disk_key key;
372 __le64 blockptr;
373 __le64 generation;
374 } __attribute__ ((__packed__));
375
376 struct btrfs_node {
377 struct btrfs_header header;
378 struct btrfs_key_ptr ptrs[];
379 } __attribute__ ((__packed__));
380
381 /* Read ahead values for struct btrfs_path.reada */
382 enum {
383 READA_NONE,
384 READA_BACK,
385 READA_FORWARD,
386 /*
387 * Similar to READA_FORWARD but unlike it:
388 *
389 * 1) It will trigger readahead even for leaves that are not close to
390 * each other on disk;
391 * 2) It also triggers readahead for nodes;
392 * 3) During a search, even when a node or leaf is already in memory, it
393 * will still trigger readahead for other nodes and leaves that follow
394 * it.
395 *
396 * This is meant to be used only when we know we are iterating over the
397 * entire tree or a very large part of it.
398 */
399 READA_FORWARD_ALWAYS,
400 };
401
402 /*
403 * btrfs_paths remember the path taken from the root down to the leaf.
404 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
405 * to any other levels that are present.
406 *
407 * The slots array records the index of the item or block pointer
408 * used while walking the tree.
409 */
410 struct btrfs_path {
411 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
412 int slots[BTRFS_MAX_LEVEL];
413 /* if there is real range locking, this locks field will change */
414 u8 locks[BTRFS_MAX_LEVEL];
415 u8 reada;
416 /* keep some upper locks as we walk down */
417 u8 lowest_level;
418
419 /*
420 * set by btrfs_split_item, tells search_slot to keep all locks
421 * and to force calls to keep space in the nodes
422 */
423 unsigned int search_for_split:1;
424 unsigned int keep_locks:1;
425 unsigned int skip_locking:1;
426 unsigned int search_commit_root:1;
427 unsigned int need_commit_sem:1;
428 unsigned int skip_release_on_error:1;
429 /*
430 * Indicate that new item (btrfs_search_slot) is extending already
431 * existing item and ins_len contains only the data size and not item
432 * header (ie. sizeof(struct btrfs_item) is not included).
433 */
434 unsigned int search_for_extension:1;
435 };
436 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
437 sizeof(struct btrfs_item))
438 struct btrfs_dev_replace {
439 u64 replace_state; /* see #define above */
440 time64_t time_started; /* seconds since 1-Jan-1970 */
441 time64_t time_stopped; /* seconds since 1-Jan-1970 */
442 atomic64_t num_write_errors;
443 atomic64_t num_uncorrectable_read_errors;
444
445 u64 cursor_left;
446 u64 committed_cursor_left;
447 u64 cursor_left_last_write_of_item;
448 u64 cursor_right;
449
450 u64 cont_reading_from_srcdev_mode; /* see #define above */
451
452 int is_valid;
453 int item_needs_writeback;
454 struct btrfs_device *srcdev;
455 struct btrfs_device *tgtdev;
456
457 struct mutex lock_finishing_cancel_unmount;
458 struct rw_semaphore rwsem;
459
460 struct btrfs_scrub_progress scrub_progress;
461
462 struct percpu_counter bio_counter;
463 wait_queue_head_t replace_wait;
464 };
465
466 /*
467 * free clusters are used to claim free space in relatively large chunks,
468 * allowing us to do less seeky writes. They are used for all metadata
469 * allocations. In ssd_spread mode they are also used for data allocations.
470 */
471 struct btrfs_free_cluster {
472 spinlock_t lock;
473 spinlock_t refill_lock;
474 struct rb_root root;
475
476 /* largest extent in this cluster */
477 u64 max_size;
478
479 /* first extent starting offset */
480 u64 window_start;
481
482 /* We did a full search and couldn't create a cluster */
483 bool fragmented;
484
485 struct btrfs_block_group *block_group;
486 /*
487 * when a cluster is allocated from a block group, we put the
488 * cluster onto a list in the block group so that it can
489 * be freed before the block group is freed.
490 */
491 struct list_head block_group_list;
492 };
493
494 enum btrfs_caching_type {
495 BTRFS_CACHE_NO,
496 BTRFS_CACHE_STARTED,
497 BTRFS_CACHE_FINISHED,
498 BTRFS_CACHE_ERROR,
499 };
500
501 /*
502 * Tree to record all locked full stripes of a RAID5/6 block group
503 */
504 struct btrfs_full_stripe_locks_tree {
505 struct rb_root root;
506 struct mutex lock;
507 };
508
509 /* Discard control. */
510 /*
511 * Async discard uses multiple lists to differentiate the discard filter
512 * parameters. Index 0 is for completely free block groups where we need to
513 * ensure the entire block group is trimmed without being lossy. Indices
514 * afterwards represent monotonically decreasing discard filter sizes to
515 * prioritize what should be discarded next.
516 */
517 #define BTRFS_NR_DISCARD_LISTS 3
518 #define BTRFS_DISCARD_INDEX_UNUSED 0
519 #define BTRFS_DISCARD_INDEX_START 1
520
521 struct btrfs_discard_ctl {
522 struct workqueue_struct *discard_workers;
523 struct delayed_work work;
524 spinlock_t lock;
525 struct btrfs_block_group *block_group;
526 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
527 u64 prev_discard;
528 u64 prev_discard_time;
529 atomic_t discardable_extents;
530 atomic64_t discardable_bytes;
531 u64 max_discard_size;
532 u64 delay_ms;
533 u32 iops_limit;
534 u32 kbps_limit;
535 u64 discard_extent_bytes;
536 u64 discard_bitmap_bytes;
537 atomic64_t discard_bytes_saved;
538 };
539
540 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info);
541
542 /* fs_info */
543 struct reloc_control;
544 struct btrfs_device;
545 struct btrfs_fs_devices;
546 struct btrfs_balance_control;
547 struct btrfs_delayed_root;
548
549 /*
550 * Block group or device which contains an active swapfile. Used for preventing
551 * unsafe operations while a swapfile is active.
552 *
553 * These are sorted on (ptr, inode) (note that a block group or device can
554 * contain more than one swapfile). We compare the pointer values because we
555 * don't actually care what the object is, we just need a quick check whether
556 * the object exists in the rbtree.
557 */
558 struct btrfs_swapfile_pin {
559 struct rb_node node;
560 void *ptr;
561 struct inode *inode;
562 /*
563 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
564 * points to a struct btrfs_device.
565 */
566 bool is_block_group;
567 /*
568 * Only used when 'is_block_group' is true and it is the number of
569 * extents used by a swapfile for this block group ('ptr' field).
570 */
571 int bg_extent_count;
572 };
573
574 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
575
576 enum {
577 BTRFS_FS_CLOSING_START,
578 BTRFS_FS_CLOSING_DONE,
579 BTRFS_FS_LOG_RECOVERING,
580 BTRFS_FS_OPEN,
581 BTRFS_FS_QUOTA_ENABLED,
582 BTRFS_FS_UPDATE_UUID_TREE_GEN,
583 BTRFS_FS_CREATING_FREE_SPACE_TREE,
584 BTRFS_FS_BTREE_ERR,
585 BTRFS_FS_LOG1_ERR,
586 BTRFS_FS_LOG2_ERR,
587 BTRFS_FS_QUOTA_OVERRIDE,
588 /* Used to record internally whether fs has been frozen */
589 BTRFS_FS_FROZEN,
590 /*
591 * Indicate that balance has been set up from the ioctl and is in the
592 * main phase. The fs_info::balance_ctl is initialized.
593 */
594 BTRFS_FS_BALANCE_RUNNING,
595
596 /*
597 * Indicate that relocation of a chunk has started, it's set per chunk
598 * and is toggled between chunks.
599 */
600 BTRFS_FS_RELOC_RUNNING,
601
602 /* Indicate that the cleaner thread is awake and doing something. */
603 BTRFS_FS_CLEANER_RUNNING,
604
605 /*
606 * The checksumming has an optimized version and is considered fast,
607 * so we don't need to offload checksums to workqueues.
608 */
609 BTRFS_FS_CSUM_IMPL_FAST,
610
611 /* Indicate that the discard workqueue can service discards. */
612 BTRFS_FS_DISCARD_RUNNING,
613
614 /* Indicate that we need to cleanup space cache v1 */
615 BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
616
617 /* Indicate that we can't trust the free space tree for caching yet */
618 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
619
620 /* Indicate whether there are any tree modification log users */
621 BTRFS_FS_TREE_MOD_LOG_USERS,
622
623 /* Indicate that we want the transaction kthread to commit right now. */
624 BTRFS_FS_COMMIT_TRANS,
625
626 /* Indicate we have half completed snapshot deletions pending. */
627 BTRFS_FS_UNFINISHED_DROPS,
628
629 /* Indicate we have to finish a zone to do next allocation. */
630 BTRFS_FS_NEED_ZONE_FINISH,
631
632 #if BITS_PER_LONG == 32
633 /* Indicate if we have error/warn message printed on 32bit systems */
634 BTRFS_FS_32BIT_ERROR,
635 BTRFS_FS_32BIT_WARN,
636 #endif
637 };
638
639 /*
640 * Exclusive operations (device replace, resize, device add/remove, balance)
641 */
642 enum btrfs_exclusive_operation {
643 BTRFS_EXCLOP_NONE,
644 BTRFS_EXCLOP_BALANCE_PAUSED,
645 BTRFS_EXCLOP_BALANCE,
646 BTRFS_EXCLOP_DEV_ADD,
647 BTRFS_EXCLOP_DEV_REMOVE,
648 BTRFS_EXCLOP_DEV_REPLACE,
649 BTRFS_EXCLOP_RESIZE,
650 BTRFS_EXCLOP_SWAP_ACTIVATE,
651 };
652
653 struct btrfs_fs_info {
654 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
655 unsigned long flags;
656 struct btrfs_root *tree_root;
657 struct btrfs_root *chunk_root;
658 struct btrfs_root *dev_root;
659 struct btrfs_root *fs_root;
660 struct btrfs_root *quota_root;
661 struct btrfs_root *uuid_root;
662 struct btrfs_root *data_reloc_root;
663 struct btrfs_root *block_group_root;
664
665 /* the log root tree is a directory of all the other log roots */
666 struct btrfs_root *log_root_tree;
667
668 /* The tree that holds the global roots (csum, extent, etc) */
669 rwlock_t global_root_lock;
670 struct rb_root global_root_tree;
671
672 spinlock_t fs_roots_radix_lock;
673 struct radix_tree_root fs_roots_radix;
674
675 /* block group cache stuff */
676 rwlock_t block_group_cache_lock;
677 struct rb_root_cached block_group_cache_tree;
678
679 /* keep track of unallocated space */
680 atomic64_t free_chunk_space;
681
682 /* Track ranges which are used by log trees blocks/logged data extents */
683 struct extent_io_tree excluded_extents;
684
685 /* logical->physical extent mapping */
686 struct extent_map_tree mapping_tree;
687
688 /*
689 * block reservation for extent, checksum, root tree and
690 * delayed dir index item
691 */
692 struct btrfs_block_rsv global_block_rsv;
693 /* block reservation for metadata operations */
694 struct btrfs_block_rsv trans_block_rsv;
695 /* block reservation for chunk tree */
696 struct btrfs_block_rsv chunk_block_rsv;
697 /* block reservation for delayed operations */
698 struct btrfs_block_rsv delayed_block_rsv;
699 /* block reservation for delayed refs */
700 struct btrfs_block_rsv delayed_refs_rsv;
701
702 struct btrfs_block_rsv empty_block_rsv;
703
704 u64 generation;
705 u64 last_trans_committed;
706 /*
707 * Generation of the last transaction used for block group relocation
708 * since the filesystem was last mounted (or 0 if none happened yet).
709 * Must be written and read while holding btrfs_fs_info::commit_root_sem.
710 */
711 u64 last_reloc_trans;
712 u64 avg_delayed_ref_runtime;
713
714 /*
715 * this is updated to the current trans every time a full commit
716 * is required instead of the faster short fsync log commits
717 */
718 u64 last_trans_log_full_commit;
719 unsigned long mount_opt;
720 /*
721 * Track requests for actions that need to be done during transaction
722 * commit (like for some mount options).
723 */
724 unsigned long pending_changes;
725 unsigned long compress_type:4;
726 unsigned int compress_level;
727 u32 commit_interval;
728 /*
729 * It is a suggestive number, the read side is safe even it gets a
730 * wrong number because we will write out the data into a regular
731 * extent. The write side(mount/remount) is under ->s_umount lock,
732 * so it is also safe.
733 */
734 u64 max_inline;
735
736 struct btrfs_transaction *running_transaction;
737 wait_queue_head_t transaction_throttle;
738 wait_queue_head_t transaction_wait;
739 wait_queue_head_t transaction_blocked_wait;
740 wait_queue_head_t async_submit_wait;
741
742 /*
743 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
744 * when they are updated.
745 *
746 * Because we do not clear the flags for ever, so we needn't use
747 * the lock on the read side.
748 *
749 * We also needn't use the lock when we mount the fs, because
750 * there is no other task which will update the flag.
751 */
752 spinlock_t super_lock;
753 struct btrfs_super_block *super_copy;
754 struct btrfs_super_block *super_for_commit;
755 struct super_block *sb;
756 struct inode *btree_inode;
757 struct mutex tree_log_mutex;
758 struct mutex transaction_kthread_mutex;
759 struct mutex cleaner_mutex;
760 struct mutex chunk_mutex;
761
762 /*
763 * this is taken to make sure we don't set block groups ro after
764 * the free space cache has been allocated on them
765 */
766 struct mutex ro_block_group_mutex;
767
768 /* this is used during read/modify/write to make sure
769 * no two ios are trying to mod the same stripe at the same
770 * time
771 */
772 struct btrfs_stripe_hash_table *stripe_hash_table;
773
774 /*
775 * this protects the ordered operations list only while we are
776 * processing all of the entries on it. This way we make
777 * sure the commit code doesn't find the list temporarily empty
778 * because another function happens to be doing non-waiting preflush
779 * before jumping into the main commit.
780 */
781 struct mutex ordered_operations_mutex;
782
783 struct rw_semaphore commit_root_sem;
784
785 struct rw_semaphore cleanup_work_sem;
786
787 struct rw_semaphore subvol_sem;
788
789 spinlock_t trans_lock;
790 /*
791 * the reloc mutex goes with the trans lock, it is taken
792 * during commit to protect us from the relocation code
793 */
794 struct mutex reloc_mutex;
795
796 struct list_head trans_list;
797 struct list_head dead_roots;
798 struct list_head caching_block_groups;
799
800 spinlock_t delayed_iput_lock;
801 struct list_head delayed_iputs;
802 atomic_t nr_delayed_iputs;
803 wait_queue_head_t delayed_iputs_wait;
804
805 atomic64_t tree_mod_seq;
806
807 /* this protects tree_mod_log and tree_mod_seq_list */
808 rwlock_t tree_mod_log_lock;
809 struct rb_root tree_mod_log;
810 struct list_head tree_mod_seq_list;
811
812 atomic_t async_delalloc_pages;
813
814 /*
815 * this is used to protect the following list -- ordered_roots.
816 */
817 spinlock_t ordered_root_lock;
818
819 /*
820 * all fs/file tree roots in which there are data=ordered extents
821 * pending writeback are added into this list.
822 *
823 * these can span multiple transactions and basically include
824 * every dirty data page that isn't from nodatacow
825 */
826 struct list_head ordered_roots;
827
828 struct mutex delalloc_root_mutex;
829 spinlock_t delalloc_root_lock;
830 /* all fs/file tree roots that have delalloc inodes. */
831 struct list_head delalloc_roots;
832
833 /*
834 * there is a pool of worker threads for checksumming during writes
835 * and a pool for checksumming after reads. This is because readers
836 * can run with FS locks held, and the writers may be waiting for
837 * those locks. We don't want ordering in the pending list to cause
838 * deadlocks, and so the two are serviced separately.
839 *
840 * A third pool does submit_bio to avoid deadlocking with the other
841 * two
842 */
843 struct btrfs_workqueue *workers;
844 struct btrfs_workqueue *hipri_workers;
845 struct btrfs_workqueue *delalloc_workers;
846 struct btrfs_workqueue *flush_workers;
847 struct btrfs_workqueue *endio_workers;
848 struct btrfs_workqueue *endio_meta_workers;
849 struct btrfs_workqueue *endio_raid56_workers;
850 struct workqueue_struct *rmw_workers;
851 struct btrfs_workqueue *endio_meta_write_workers;
852 struct btrfs_workqueue *endio_write_workers;
853 struct btrfs_workqueue *endio_freespace_worker;
854 struct btrfs_workqueue *caching_workers;
855
856 /*
857 * fixup workers take dirty pages that didn't properly go through
858 * the cow mechanism and make them safe to write. It happens
859 * for the sys_munmap function call path
860 */
861 struct btrfs_workqueue *fixup_workers;
862 struct btrfs_workqueue *delayed_workers;
863
864 struct task_struct *transaction_kthread;
865 struct task_struct *cleaner_kthread;
866 u32 thread_pool_size;
867
868 struct kobject *space_info_kobj;
869 struct kobject *qgroups_kobj;
870
871 /* used to keep from writing metadata until there is a nice batch */
872 struct percpu_counter dirty_metadata_bytes;
873 struct percpu_counter delalloc_bytes;
874 struct percpu_counter ordered_bytes;
875 s32 dirty_metadata_batch;
876 s32 delalloc_batch;
877
878 struct list_head dirty_cowonly_roots;
879
880 struct btrfs_fs_devices *fs_devices;
881
882 /*
883 * The space_info list is effectively read only after initial
884 * setup. It is populated at mount time and cleaned up after
885 * all block groups are removed. RCU is used to protect it.
886 */
887 struct list_head space_info;
888
889 struct btrfs_space_info *data_sinfo;
890
891 struct reloc_control *reloc_ctl;
892
893 /* data_alloc_cluster is only used in ssd_spread mode */
894 struct btrfs_free_cluster data_alloc_cluster;
895
896 /* all metadata allocations go through this cluster */
897 struct btrfs_free_cluster meta_alloc_cluster;
898
899 /* auto defrag inodes go here */
900 spinlock_t defrag_inodes_lock;
901 struct rb_root defrag_inodes;
902 atomic_t defrag_running;
903
904 /* Used to protect avail_{data, metadata, system}_alloc_bits */
905 seqlock_t profiles_lock;
906 /*
907 * these three are in extended format (availability of single
908 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
909 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
910 */
911 u64 avail_data_alloc_bits;
912 u64 avail_metadata_alloc_bits;
913 u64 avail_system_alloc_bits;
914
915 /* restriper state */
916 spinlock_t balance_lock;
917 struct mutex balance_mutex;
918 atomic_t balance_pause_req;
919 atomic_t balance_cancel_req;
920 struct btrfs_balance_control *balance_ctl;
921 wait_queue_head_t balance_wait_q;
922
923 /* Cancellation requests for chunk relocation */
924 atomic_t reloc_cancel_req;
925
926 u32 data_chunk_allocations;
927 u32 metadata_ratio;
928
929 void *bdev_holder;
930
931 /* private scrub information */
932 struct mutex scrub_lock;
933 atomic_t scrubs_running;
934 atomic_t scrub_pause_req;
935 atomic_t scrubs_paused;
936 atomic_t scrub_cancel_req;
937 wait_queue_head_t scrub_pause_wait;
938 /*
939 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
940 * running.
941 */
942 refcount_t scrub_workers_refcnt;
943 struct workqueue_struct *scrub_workers;
944 struct workqueue_struct *scrub_wr_completion_workers;
945 struct workqueue_struct *scrub_parity_workers;
946 struct btrfs_subpage_info *subpage_info;
947
948 struct btrfs_discard_ctl discard_ctl;
949
950 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
951 u32 check_integrity_print_mask;
952 #endif
953 /* is qgroup tracking in a consistent state? */
954 u64 qgroup_flags;
955
956 /* holds configuration and tracking. Protected by qgroup_lock */
957 struct rb_root qgroup_tree;
958 spinlock_t qgroup_lock;
959
960 /*
961 * used to avoid frequently calling ulist_alloc()/ulist_free()
962 * when doing qgroup accounting, it must be protected by qgroup_lock.
963 */
964 struct ulist *qgroup_ulist;
965
966 /*
967 * Protect user change for quota operations. If a transaction is needed,
968 * it must be started before locking this lock.
969 */
970 struct mutex qgroup_ioctl_lock;
971
972 /* list of dirty qgroups to be written at next commit */
973 struct list_head dirty_qgroups;
974
975 /* used by qgroup for an efficient tree traversal */
976 u64 qgroup_seq;
977
978 /* qgroup rescan items */
979 struct mutex qgroup_rescan_lock; /* protects the progress item */
980 struct btrfs_key qgroup_rescan_progress;
981 struct btrfs_workqueue *qgroup_rescan_workers;
982 struct completion qgroup_rescan_completion;
983 struct btrfs_work qgroup_rescan_work;
984 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */
985
986 /* filesystem state */
987 unsigned long fs_state;
988
989 struct btrfs_delayed_root *delayed_root;
990
991 /* Extent buffer radix tree */
992 spinlock_t buffer_lock;
993 /* Entries are eb->start / sectorsize */
994 struct radix_tree_root buffer_radix;
995
996 /* next backup root to be overwritten */
997 int backup_root_index;
998
999 /* device replace state */
1000 struct btrfs_dev_replace dev_replace;
1001
1002 struct semaphore uuid_tree_rescan_sem;
1003
1004 /* Used to reclaim the metadata space in the background. */
1005 struct work_struct async_reclaim_work;
1006 struct work_struct async_data_reclaim_work;
1007 struct work_struct preempt_reclaim_work;
1008
1009 /* Reclaim partially filled block groups in the background */
1010 struct work_struct reclaim_bgs_work;
1011 struct list_head reclaim_bgs;
1012 int bg_reclaim_threshold;
1013
1014 spinlock_t unused_bgs_lock;
1015 struct list_head unused_bgs;
1016 struct mutex unused_bg_unpin_mutex;
1017 /* Protect block groups that are going to be deleted */
1018 struct mutex reclaim_bgs_lock;
1019
1020 /* Cached block sizes */
1021 u32 nodesize;
1022 u32 sectorsize;
1023 /* ilog2 of sectorsize, use to avoid 64bit division */
1024 u32 sectorsize_bits;
1025 u32 csum_size;
1026 u32 csums_per_leaf;
1027 u32 stripesize;
1028
1029 /*
1030 * Maximum size of an extent. BTRFS_MAX_EXTENT_SIZE on regular
1031 * filesystem, on zoned it depends on the device constraints.
1032 */
1033 u64 max_extent_size;
1034
1035 /* Block groups and devices containing active swapfiles. */
1036 spinlock_t swapfile_pins_lock;
1037 struct rb_root swapfile_pins;
1038
1039 struct crypto_shash *csum_shash;
1040
1041 /* Type of exclusive operation running, protected by super_lock */
1042 enum btrfs_exclusive_operation exclusive_operation;
1043
1044 /*
1045 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1046 * if the mode is enabled
1047 */
1048 u64 zone_size;
1049
1050 /* Max size to emit ZONE_APPEND write command */
1051 u64 max_zone_append_size;
1052 struct mutex zoned_meta_io_lock;
1053 spinlock_t treelog_bg_lock;
1054 u64 treelog_bg;
1055
1056 /*
1057 * Start of the dedicated data relocation block group, protected by
1058 * relocation_bg_lock.
1059 */
1060 spinlock_t relocation_bg_lock;
1061 u64 data_reloc_bg;
1062 struct mutex zoned_data_reloc_io_lock;
1063
1064 u64 nr_global_roots;
1065
1066 spinlock_t zone_active_bgs_lock;
1067 struct list_head zone_active_bgs;
1068
1069 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1070 spinlock_t ref_verify_lock;
1071 struct rb_root block_tree;
1072 #endif
1073
1074 #ifdef CONFIG_BTRFS_DEBUG
1075 struct kobject *debug_kobj;
1076 struct kobject *discard_debug_kobj;
1077 struct list_head allocated_roots;
1078
1079 spinlock_t eb_leak_lock;
1080 struct list_head allocated_ebs;
1081 #endif
1082 };
1083
btrfs_sb(struct super_block * sb)1084 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1085 {
1086 return sb->s_fs_info;
1087 }
1088
1089 /*
1090 * The state of btrfs root
1091 */
1092 enum {
1093 /*
1094 * btrfs_record_root_in_trans is a multi-step process, and it can race
1095 * with the balancing code. But the race is very small, and only the
1096 * first time the root is added to each transaction. So IN_TRANS_SETUP
1097 * is used to tell us when more checks are required
1098 */
1099 BTRFS_ROOT_IN_TRANS_SETUP,
1100
1101 /*
1102 * Set if tree blocks of this root can be shared by other roots.
1103 * Only subvolume trees and their reloc trees have this bit set.
1104 * Conflicts with TRACK_DIRTY bit.
1105 *
1106 * This affects two things:
1107 *
1108 * - How balance works
1109 * For shareable roots, we need to use reloc tree and do path
1110 * replacement for balance, and need various pre/post hooks for
1111 * snapshot creation to handle them.
1112 *
1113 * While for non-shareable trees, we just simply do a tree search
1114 * with COW.
1115 *
1116 * - How dirty roots are tracked
1117 * For shareable roots, btrfs_record_root_in_trans() is needed to
1118 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
1119 * don't need to set this manually.
1120 */
1121 BTRFS_ROOT_SHAREABLE,
1122 BTRFS_ROOT_TRACK_DIRTY,
1123 BTRFS_ROOT_IN_RADIX,
1124 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1125 BTRFS_ROOT_DEFRAG_RUNNING,
1126 BTRFS_ROOT_FORCE_COW,
1127 BTRFS_ROOT_MULTI_LOG_TASKS,
1128 BTRFS_ROOT_DIRTY,
1129 BTRFS_ROOT_DELETING,
1130
1131 /*
1132 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1133 *
1134 * Set for the subvolume tree owning the reloc tree.
1135 */
1136 BTRFS_ROOT_DEAD_RELOC_TREE,
1137 /* Mark dead root stored on device whose cleanup needs to be resumed */
1138 BTRFS_ROOT_DEAD_TREE,
1139 /* The root has a log tree. Used for subvolume roots and the tree root. */
1140 BTRFS_ROOT_HAS_LOG_TREE,
1141 /* Qgroup flushing is in progress */
1142 BTRFS_ROOT_QGROUP_FLUSHING,
1143 /* We started the orphan cleanup for this root. */
1144 BTRFS_ROOT_ORPHAN_CLEANUP,
1145 /* This root has a drop operation that was started previously. */
1146 BTRFS_ROOT_UNFINISHED_DROP,
1147 /* This reloc root needs to have its buffers lockdep class reset. */
1148 BTRFS_ROOT_RESET_LOCKDEP_CLASS,
1149 };
1150
btrfs_wake_unfinished_drop(struct btrfs_fs_info * fs_info)1151 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1152 {
1153 clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
1154 }
1155
1156 /*
1157 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1158 * code. For detail check comment in fs/btrfs/qgroup.c.
1159 */
1160 struct btrfs_qgroup_swapped_blocks {
1161 spinlock_t lock;
1162 /* RM_EMPTY_ROOT() of above blocks[] */
1163 bool swapped;
1164 struct rb_root blocks[BTRFS_MAX_LEVEL];
1165 };
1166
1167 /*
1168 * in ram representation of the tree. extent_root is used for all allocations
1169 * and for the extent tree extent_root root.
1170 */
1171 struct btrfs_root {
1172 struct rb_node rb_node;
1173
1174 struct extent_buffer *node;
1175
1176 struct extent_buffer *commit_root;
1177 struct btrfs_root *log_root;
1178 struct btrfs_root *reloc_root;
1179
1180 unsigned long state;
1181 struct btrfs_root_item root_item;
1182 struct btrfs_key root_key;
1183 struct btrfs_fs_info *fs_info;
1184 struct extent_io_tree dirty_log_pages;
1185
1186 struct mutex objectid_mutex;
1187
1188 spinlock_t accounting_lock;
1189 struct btrfs_block_rsv *block_rsv;
1190
1191 struct mutex log_mutex;
1192 wait_queue_head_t log_writer_wait;
1193 wait_queue_head_t log_commit_wait[2];
1194 struct list_head log_ctxs[2];
1195 /* Used only for log trees of subvolumes, not for the log root tree */
1196 atomic_t log_writers;
1197 atomic_t log_commit[2];
1198 /* Used only for log trees of subvolumes, not for the log root tree */
1199 atomic_t log_batch;
1200 int log_transid;
1201 /* No matter the commit succeeds or not*/
1202 int log_transid_committed;
1203 /* Just be updated when the commit succeeds. */
1204 int last_log_commit;
1205 pid_t log_start_pid;
1206
1207 u64 last_trans;
1208
1209 u32 type;
1210
1211 u64 free_objectid;
1212
1213 struct btrfs_key defrag_progress;
1214 struct btrfs_key defrag_max;
1215
1216 /* The dirty list is only used by non-shareable roots */
1217 struct list_head dirty_list;
1218
1219 struct list_head root_list;
1220
1221 spinlock_t log_extents_lock[2];
1222 struct list_head logged_list[2];
1223
1224 spinlock_t inode_lock;
1225 /* red-black tree that keeps track of in-memory inodes */
1226 struct rb_root inode_tree;
1227
1228 /*
1229 * radix tree that keeps track of delayed nodes of every inode,
1230 * protected by inode_lock
1231 */
1232 struct radix_tree_root delayed_nodes_tree;
1233 /*
1234 * right now this just gets used so that a root has its own devid
1235 * for stat. It may be used for more later
1236 */
1237 dev_t anon_dev;
1238
1239 spinlock_t root_item_lock;
1240 refcount_t refs;
1241
1242 struct mutex delalloc_mutex;
1243 spinlock_t delalloc_lock;
1244 /*
1245 * all of the inodes that have delalloc bytes. It is possible for
1246 * this list to be empty even when there is still dirty data=ordered
1247 * extents waiting to finish IO.
1248 */
1249 struct list_head delalloc_inodes;
1250 struct list_head delalloc_root;
1251 u64 nr_delalloc_inodes;
1252
1253 struct mutex ordered_extent_mutex;
1254 /*
1255 * this is used by the balancing code to wait for all the pending
1256 * ordered extents
1257 */
1258 spinlock_t ordered_extent_lock;
1259
1260 /*
1261 * all of the data=ordered extents pending writeback
1262 * these can span multiple transactions and basically include
1263 * every dirty data page that isn't from nodatacow
1264 */
1265 struct list_head ordered_extents;
1266 struct list_head ordered_root;
1267 u64 nr_ordered_extents;
1268
1269 /*
1270 * Not empty if this subvolume root has gone through tree block swap
1271 * (relocation)
1272 *
1273 * Will be used by reloc_control::dirty_subvol_roots.
1274 */
1275 struct list_head reloc_dirty_list;
1276
1277 /*
1278 * Number of currently running SEND ioctls to prevent
1279 * manipulation with the read-only status via SUBVOL_SETFLAGS
1280 */
1281 int send_in_progress;
1282 /*
1283 * Number of currently running deduplication operations that have a
1284 * destination inode belonging to this root. Protected by the lock
1285 * root_item_lock.
1286 */
1287 int dedupe_in_progress;
1288 /* For exclusion of snapshot creation and nocow writes */
1289 struct btrfs_drew_lock snapshot_lock;
1290
1291 atomic_t snapshot_force_cow;
1292
1293 /* For qgroup metadata reserved space */
1294 spinlock_t qgroup_meta_rsv_lock;
1295 u64 qgroup_meta_rsv_pertrans;
1296 u64 qgroup_meta_rsv_prealloc;
1297 wait_queue_head_t qgroup_flush_wait;
1298
1299 /* Number of active swapfiles */
1300 atomic_t nr_swapfiles;
1301
1302 /* Record pairs of swapped blocks for qgroup */
1303 struct btrfs_qgroup_swapped_blocks swapped_blocks;
1304
1305 /* Used only by log trees, when logging csum items */
1306 struct extent_io_tree log_csum_range;
1307
1308 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1309 u64 alloc_bytenr;
1310 #endif
1311
1312 #ifdef CONFIG_BTRFS_DEBUG
1313 struct list_head leak_list;
1314 #endif
1315 };
1316
1317 /*
1318 * Structure that conveys information about an extent that is going to replace
1319 * all the extents in a file range.
1320 */
1321 struct btrfs_replace_extent_info {
1322 u64 disk_offset;
1323 u64 disk_len;
1324 u64 data_offset;
1325 u64 data_len;
1326 u64 file_offset;
1327 /* Pointer to a file extent item of type regular or prealloc. */
1328 char *extent_buf;
1329 /*
1330 * Set to true when attempting to replace a file range with a new extent
1331 * described by this structure, set to false when attempting to clone an
1332 * existing extent into a file range.
1333 */
1334 bool is_new_extent;
1335 /* Indicate if we should update the inode's mtime and ctime. */
1336 bool update_times;
1337 /* Meaningful only if is_new_extent is true. */
1338 int qgroup_reserved;
1339 /*
1340 * Meaningful only if is_new_extent is true.
1341 * Used to track how many extent items we have already inserted in a
1342 * subvolume tree that refer to the extent described by this structure,
1343 * so that we know when to create a new delayed ref or update an existing
1344 * one.
1345 */
1346 int insertions;
1347 };
1348
1349 /* Arguments for btrfs_drop_extents() */
1350 struct btrfs_drop_extents_args {
1351 /* Input parameters */
1352
1353 /*
1354 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1355 * If 'replace_extent' is true, this must not be NULL. Also the path
1356 * is always released except if 'replace_extent' is true and
1357 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1358 * the path is kept locked.
1359 */
1360 struct btrfs_path *path;
1361 /* Start offset of the range to drop extents from */
1362 u64 start;
1363 /* End (exclusive, last byte + 1) of the range to drop extents from */
1364 u64 end;
1365 /* If true drop all the extent maps in the range */
1366 bool drop_cache;
1367 /*
1368 * If true it means we want to insert a new extent after dropping all
1369 * the extents in the range. If this is true, the 'extent_item_size'
1370 * parameter must be set as well and the 'extent_inserted' field will
1371 * be set to true by btrfs_drop_extents() if it could insert the new
1372 * extent.
1373 * Note: when this is set to true the path must not be NULL.
1374 */
1375 bool replace_extent;
1376 /*
1377 * Used if 'replace_extent' is true. Size of the file extent item to
1378 * insert after dropping all existing extents in the range
1379 */
1380 u32 extent_item_size;
1381
1382 /* Output parameters */
1383
1384 /*
1385 * Set to the minimum between the input parameter 'end' and the end
1386 * (exclusive, last byte + 1) of the last dropped extent. This is always
1387 * set even if btrfs_drop_extents() returns an error.
1388 */
1389 u64 drop_end;
1390 /*
1391 * The number of allocated bytes found in the range. This can be smaller
1392 * than the range's length when there are holes in the range.
1393 */
1394 u64 bytes_found;
1395 /*
1396 * Only set if 'replace_extent' is true. Set to true if we were able
1397 * to insert a replacement extent after dropping all extents in the
1398 * range, otherwise set to false by btrfs_drop_extents().
1399 * Also, if btrfs_drop_extents() has set this to true it means it
1400 * returned with the path locked, otherwise if it has set this to
1401 * false it has returned with the path released.
1402 */
1403 bool extent_inserted;
1404 };
1405
1406 struct btrfs_file_private {
1407 void *filldir_buf;
1408 };
1409
1410
BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info * info)1411 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1412 {
1413
1414 return info->nodesize - sizeof(struct btrfs_header);
1415 }
1416
1417 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items)
1418
BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info * info)1419 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1420 {
1421 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1422 }
1423
BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info * info)1424 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1425 {
1426 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1427 }
1428
1429 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \
1430 (offsetof(struct btrfs_file_extent_item, disk_bytenr))
BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info * info)1431 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1432 {
1433 return BTRFS_MAX_ITEM_SIZE(info) -
1434 BTRFS_FILE_EXTENT_INLINE_DATA_START;
1435 }
1436
BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info * info)1437 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1438 {
1439 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1440 }
1441
1442 /*
1443 * Flags for mount options.
1444 *
1445 * Note: don't forget to add new options to btrfs_show_options()
1446 */
1447 enum {
1448 BTRFS_MOUNT_NODATASUM = (1UL << 0),
1449 BTRFS_MOUNT_NODATACOW = (1UL << 1),
1450 BTRFS_MOUNT_NOBARRIER = (1UL << 2),
1451 BTRFS_MOUNT_SSD = (1UL << 3),
1452 BTRFS_MOUNT_DEGRADED = (1UL << 4),
1453 BTRFS_MOUNT_COMPRESS = (1UL << 5),
1454 BTRFS_MOUNT_NOTREELOG = (1UL << 6),
1455 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7),
1456 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8),
1457 BTRFS_MOUNT_NOSSD = (1UL << 9),
1458 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10),
1459 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11),
1460 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12),
1461 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13),
1462 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14),
1463 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15),
1464 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16),
1465 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17),
1466 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18),
1467 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19),
1468 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20),
1469 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21),
1470 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22),
1471 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23),
1472 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24),
1473 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25),
1474 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26),
1475 BTRFS_MOUNT_REF_VERIFY = (1UL << 27),
1476 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28),
1477 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29),
1478 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30),
1479 };
1480
1481 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
1482 #define BTRFS_DEFAULT_MAX_INLINE (2048)
1483
1484 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
1485 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
1486 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
1487 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \
1488 BTRFS_MOUNT_##opt)
1489
1490 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \
1491 do { \
1492 if (!btrfs_test_opt(fs_info, opt)) \
1493 btrfs_info(fs_info, fmt, ##args); \
1494 btrfs_set_opt(fs_info->mount_opt, opt); \
1495 } while (0)
1496
1497 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \
1498 do { \
1499 if (btrfs_test_opt(fs_info, opt)) \
1500 btrfs_info(fs_info, fmt, ##args); \
1501 btrfs_clear_opt(fs_info->mount_opt, opt); \
1502 } while (0)
1503
1504 /*
1505 * Requests for changes that need to be done during transaction commit.
1506 *
1507 * Internal mount options that are used for special handling of the real
1508 * mount options (eg. cannot be set during remount and have to be set during
1509 * transaction commit)
1510 */
1511
1512 #define BTRFS_PENDING_COMMIT (0)
1513
1514 #define btrfs_test_pending(info, opt) \
1515 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1516 #define btrfs_set_pending(info, opt) \
1517 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1518 #define btrfs_clear_pending(info, opt) \
1519 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1520
1521 /*
1522 * Helpers for setting pending mount option changes.
1523 *
1524 * Expects corresponding macros
1525 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1526 */
1527 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \
1528 do { \
1529 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1530 btrfs_info((info), fmt, ##args); \
1531 btrfs_set_pending((info), SET_##opt); \
1532 btrfs_clear_pending((info), CLEAR_##opt); \
1533 } \
1534 } while(0)
1535
1536 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \
1537 do { \
1538 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1539 btrfs_info((info), fmt, ##args); \
1540 btrfs_set_pending((info), CLEAR_##opt); \
1541 btrfs_clear_pending((info), SET_##opt); \
1542 } \
1543 } while(0)
1544
1545 /*
1546 * Inode flags
1547 */
1548 #define BTRFS_INODE_NODATASUM (1U << 0)
1549 #define BTRFS_INODE_NODATACOW (1U << 1)
1550 #define BTRFS_INODE_READONLY (1U << 2)
1551 #define BTRFS_INODE_NOCOMPRESS (1U << 3)
1552 #define BTRFS_INODE_PREALLOC (1U << 4)
1553 #define BTRFS_INODE_SYNC (1U << 5)
1554 #define BTRFS_INODE_IMMUTABLE (1U << 6)
1555 #define BTRFS_INODE_APPEND (1U << 7)
1556 #define BTRFS_INODE_NODUMP (1U << 8)
1557 #define BTRFS_INODE_NOATIME (1U << 9)
1558 #define BTRFS_INODE_DIRSYNC (1U << 10)
1559 #define BTRFS_INODE_COMPRESS (1U << 11)
1560
1561 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31)
1562
1563 #define BTRFS_INODE_FLAG_MASK \
1564 (BTRFS_INODE_NODATASUM | \
1565 BTRFS_INODE_NODATACOW | \
1566 BTRFS_INODE_READONLY | \
1567 BTRFS_INODE_NOCOMPRESS | \
1568 BTRFS_INODE_PREALLOC | \
1569 BTRFS_INODE_SYNC | \
1570 BTRFS_INODE_IMMUTABLE | \
1571 BTRFS_INODE_APPEND | \
1572 BTRFS_INODE_NODUMP | \
1573 BTRFS_INODE_NOATIME | \
1574 BTRFS_INODE_DIRSYNC | \
1575 BTRFS_INODE_COMPRESS | \
1576 BTRFS_INODE_ROOT_ITEM_INIT)
1577
1578 #define BTRFS_INODE_RO_VERITY (1U << 0)
1579
1580 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY)
1581
1582 struct btrfs_map_token {
1583 struct extent_buffer *eb;
1584 char *kaddr;
1585 unsigned long offset;
1586 };
1587
1588 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1589 ((bytes) >> (fs_info)->sectorsize_bits)
1590
btrfs_init_map_token(struct btrfs_map_token * token,struct extent_buffer * eb)1591 static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1592 struct extent_buffer *eb)
1593 {
1594 token->eb = eb;
1595 token->kaddr = page_address(eb->pages[0]);
1596 token->offset = 0;
1597 }
1598
1599 /* some macros to generate set/get functions for the struct fields. This
1600 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1601 * one for u8:
1602 */
1603 #define le8_to_cpu(v) (v)
1604 #define cpu_to_le8(v) (v)
1605 #define __le8 u8
1606
get_unaligned_le8(const void * p)1607 static inline u8 get_unaligned_le8(const void *p)
1608 {
1609 return *(u8 *)p;
1610 }
1611
put_unaligned_le8(u8 val,void * p)1612 static inline void put_unaligned_le8(u8 val, void *p)
1613 {
1614 *(u8 *)p = val;
1615 }
1616
1617 #define read_eb_member(eb, ptr, type, member, result) (\
1618 read_extent_buffer(eb, (char *)(result), \
1619 ((unsigned long)(ptr)) + \
1620 offsetof(type, member), \
1621 sizeof(((type *)0)->member)))
1622
1623 #define write_eb_member(eb, ptr, type, member, result) (\
1624 write_extent_buffer(eb, (char *)(result), \
1625 ((unsigned long)(ptr)) + \
1626 offsetof(type, member), \
1627 sizeof(((type *)0)->member)))
1628
1629 #define DECLARE_BTRFS_SETGET_BITS(bits) \
1630 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \
1631 const void *ptr, unsigned long off); \
1632 void btrfs_set_token_##bits(struct btrfs_map_token *token, \
1633 const void *ptr, unsigned long off, \
1634 u##bits val); \
1635 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \
1636 const void *ptr, unsigned long off); \
1637 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \
1638 unsigned long off, u##bits val);
1639
1640 DECLARE_BTRFS_SETGET_BITS(8)
1641 DECLARE_BTRFS_SETGET_BITS(16)
1642 DECLARE_BTRFS_SETGET_BITS(32)
1643 DECLARE_BTRFS_SETGET_BITS(64)
1644
1645 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \
1646 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \
1647 const type *s) \
1648 { \
1649 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \
1650 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
1651 } \
1652 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1653 u##bits val) \
1654 { \
1655 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \
1656 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
1657 } \
1658 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \
1659 const type *s) \
1660 { \
1661 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \
1662 return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1663 } \
1664 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1665 type *s, u##bits val) \
1666 { \
1667 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \
1668 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \
1669 }
1670
1671 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
1672 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \
1673 { \
1674 const type *p = page_address(eb->pages[0]) + \
1675 offset_in_page(eb->start); \
1676 return get_unaligned_le##bits(&p->member); \
1677 } \
1678 static inline void btrfs_set_##name(const struct extent_buffer *eb, \
1679 u##bits val) \
1680 { \
1681 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1682 put_unaligned_le##bits(val, &p->member); \
1683 }
1684
1685 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
1686 static inline u##bits btrfs_##name(const type *s) \
1687 { \
1688 return get_unaligned_le##bits(&s->member); \
1689 } \
1690 static inline void btrfs_set_##name(type *s, u##bits val) \
1691 { \
1692 put_unaligned_le##bits(val, &s->member); \
1693 }
1694
btrfs_device_total_bytes(const struct extent_buffer * eb,struct btrfs_dev_item * s)1695 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1696 struct btrfs_dev_item *s)
1697 {
1698 static_assert(sizeof(u64) ==
1699 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1700 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1701 total_bytes));
1702 }
btrfs_set_device_total_bytes(const struct extent_buffer * eb,struct btrfs_dev_item * s,u64 val)1703 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1704 struct btrfs_dev_item *s,
1705 u64 val)
1706 {
1707 static_assert(sizeof(u64) ==
1708 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1709 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1710 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1711 }
1712
1713
1714 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1715 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1716 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1717 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1718 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1719 start_offset, 64);
1720 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1721 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1722 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1723 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1724 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1725 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1726
1727 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1728 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1729 total_bytes, 64);
1730 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1731 bytes_used, 64);
1732 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1733 io_align, 32);
1734 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1735 io_width, 32);
1736 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1737 sector_size, 32);
1738 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1739 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1740 dev_group, 32);
1741 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1742 seek_speed, 8);
1743 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1744 bandwidth, 8);
1745 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1746 generation, 64);
1747
btrfs_device_uuid(struct btrfs_dev_item * d)1748 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1749 {
1750 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1751 }
1752
btrfs_device_fsid(struct btrfs_dev_item * d)1753 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1754 {
1755 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1756 }
1757
1758 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1759 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1760 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1761 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1762 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1763 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1764 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1765 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1766 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1767 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1768 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1769
btrfs_stripe_dev_uuid(struct btrfs_stripe * s)1770 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1771 {
1772 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1773 }
1774
1775 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1776 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1777 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1778 stripe_len, 64);
1779 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1780 io_align, 32);
1781 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1782 io_width, 32);
1783 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1784 sector_size, 32);
1785 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1786 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1787 num_stripes, 16);
1788 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1789 sub_stripes, 16);
1790 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1791 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1792
btrfs_stripe_nr(struct btrfs_chunk * c,int nr)1793 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1794 int nr)
1795 {
1796 unsigned long offset = (unsigned long)c;
1797 offset += offsetof(struct btrfs_chunk, stripe);
1798 offset += nr * sizeof(struct btrfs_stripe);
1799 return (struct btrfs_stripe *)offset;
1800 }
1801
btrfs_stripe_dev_uuid_nr(struct btrfs_chunk * c,int nr)1802 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1803 {
1804 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1805 }
1806
btrfs_stripe_offset_nr(const struct extent_buffer * eb,struct btrfs_chunk * c,int nr)1807 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1808 struct btrfs_chunk *c, int nr)
1809 {
1810 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1811 }
1812
btrfs_stripe_devid_nr(const struct extent_buffer * eb,struct btrfs_chunk * c,int nr)1813 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1814 struct btrfs_chunk *c, int nr)
1815 {
1816 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1817 }
1818
1819 /* struct btrfs_block_group_item */
1820 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1821 used, 64);
1822 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1823 used, 64);
1824 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1825 struct btrfs_block_group_item, chunk_objectid, 64);
1826
1827 BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1828 struct btrfs_block_group_item, chunk_objectid, 64);
1829 BTRFS_SETGET_FUNCS(block_group_flags,
1830 struct btrfs_block_group_item, flags, 64);
1831 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1832 struct btrfs_block_group_item, flags, 64);
1833
1834 /* struct btrfs_free_space_info */
1835 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1836 extent_count, 32);
1837 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1838
1839 /* struct btrfs_inode_ref */
1840 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1841 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1842
1843 /* struct btrfs_inode_extref */
1844 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1845 parent_objectid, 64);
1846 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1847 name_len, 16);
1848 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1849
1850 /* struct btrfs_inode_item */
1851 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1852 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1853 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1854 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1855 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1856 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1857 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1858 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1859 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1860 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1861 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1862 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1863 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1864 generation, 64);
1865 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1866 sequence, 64);
1867 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1868 transid, 64);
1869 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1870 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1871 nbytes, 64);
1872 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1873 block_group, 64);
1874 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1875 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1876 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1877 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1878 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1879 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1880 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1881 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1882 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1883 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1884
1885 /* struct btrfs_dev_extent */
1886 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1887 chunk_tree, 64);
1888 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1889 chunk_objectid, 64);
1890 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1891 chunk_offset, 64);
1892 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1893 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1894 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1895 generation, 64);
1896 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1897
1898 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1899
btrfs_tree_block_key(const struct extent_buffer * eb,struct btrfs_tree_block_info * item,struct btrfs_disk_key * key)1900 static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1901 struct btrfs_tree_block_info *item,
1902 struct btrfs_disk_key *key)
1903 {
1904 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1905 }
1906
btrfs_set_tree_block_key(const struct extent_buffer * eb,struct btrfs_tree_block_info * item,struct btrfs_disk_key * key)1907 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1908 struct btrfs_tree_block_info *item,
1909 struct btrfs_disk_key *key)
1910 {
1911 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1912 }
1913
1914 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1915 root, 64);
1916 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1917 objectid, 64);
1918 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1919 offset, 64);
1920 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1921 count, 32);
1922
1923 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1924 count, 32);
1925
1926 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1927 type, 8);
1928 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1929 offset, 64);
1930
btrfs_extent_inline_ref_size(int type)1931 static inline u32 btrfs_extent_inline_ref_size(int type)
1932 {
1933 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1934 type == BTRFS_SHARED_BLOCK_REF_KEY)
1935 return sizeof(struct btrfs_extent_inline_ref);
1936 if (type == BTRFS_SHARED_DATA_REF_KEY)
1937 return sizeof(struct btrfs_shared_data_ref) +
1938 sizeof(struct btrfs_extent_inline_ref);
1939 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1940 return sizeof(struct btrfs_extent_data_ref) +
1941 offsetof(struct btrfs_extent_inline_ref, offset);
1942 return 0;
1943 }
1944
1945 /* struct btrfs_node */
1946 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1947 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1948 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1949 blockptr, 64);
1950 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1951 generation, 64);
1952
btrfs_node_blockptr(const struct extent_buffer * eb,int nr)1953 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1954 {
1955 unsigned long ptr;
1956 ptr = offsetof(struct btrfs_node, ptrs) +
1957 sizeof(struct btrfs_key_ptr) * nr;
1958 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1959 }
1960
btrfs_set_node_blockptr(const struct extent_buffer * eb,int nr,u64 val)1961 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1962 int nr, u64 val)
1963 {
1964 unsigned long ptr;
1965 ptr = offsetof(struct btrfs_node, ptrs) +
1966 sizeof(struct btrfs_key_ptr) * nr;
1967 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1968 }
1969
btrfs_node_ptr_generation(const struct extent_buffer * eb,int nr)1970 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1971 {
1972 unsigned long ptr;
1973 ptr = offsetof(struct btrfs_node, ptrs) +
1974 sizeof(struct btrfs_key_ptr) * nr;
1975 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1976 }
1977
btrfs_set_node_ptr_generation(const struct extent_buffer * eb,int nr,u64 val)1978 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
1979 int nr, u64 val)
1980 {
1981 unsigned long ptr;
1982 ptr = offsetof(struct btrfs_node, ptrs) +
1983 sizeof(struct btrfs_key_ptr) * nr;
1984 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1985 }
1986
btrfs_node_key_ptr_offset(int nr)1987 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1988 {
1989 return offsetof(struct btrfs_node, ptrs) +
1990 sizeof(struct btrfs_key_ptr) * nr;
1991 }
1992
1993 void btrfs_node_key(const struct extent_buffer *eb,
1994 struct btrfs_disk_key *disk_key, int nr);
1995
btrfs_set_node_key(const struct extent_buffer * eb,struct btrfs_disk_key * disk_key,int nr)1996 static inline void btrfs_set_node_key(const struct extent_buffer *eb,
1997 struct btrfs_disk_key *disk_key, int nr)
1998 {
1999 unsigned long ptr;
2000 ptr = btrfs_node_key_ptr_offset(nr);
2001 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2002 struct btrfs_key_ptr, key, disk_key);
2003 }
2004
2005 /* struct btrfs_item */
2006 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32);
2007 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32);
2008 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2009 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2010
btrfs_item_nr_offset(int nr)2011 static inline unsigned long btrfs_item_nr_offset(int nr)
2012 {
2013 return offsetof(struct btrfs_leaf, items) +
2014 sizeof(struct btrfs_item) * nr;
2015 }
2016
btrfs_item_nr(int nr)2017 static inline struct btrfs_item *btrfs_item_nr(int nr)
2018 {
2019 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2020 }
2021
2022 #define BTRFS_ITEM_SETGET_FUNCS(member) \
2023 static inline u32 btrfs_item_##member(const struct extent_buffer *eb, \
2024 int slot) \
2025 { \
2026 return btrfs_raw_item_##member(eb, btrfs_item_nr(slot)); \
2027 } \
2028 static inline void btrfs_set_item_##member(const struct extent_buffer *eb, \
2029 int slot, u32 val) \
2030 { \
2031 btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val); \
2032 } \
2033 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token, \
2034 int slot) \
2035 { \
2036 struct btrfs_item *item = btrfs_item_nr(slot); \
2037 return btrfs_token_raw_item_##member(token, item); \
2038 } \
2039 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token, \
2040 int slot, u32 val) \
2041 { \
2042 struct btrfs_item *item = btrfs_item_nr(slot); \
2043 btrfs_set_token_raw_item_##member(token, item, val); \
2044 }
2045
2046 BTRFS_ITEM_SETGET_FUNCS(offset)
2047 BTRFS_ITEM_SETGET_FUNCS(size);
2048
btrfs_item_data_end(const struct extent_buffer * eb,int nr)2049 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr)
2050 {
2051 return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr);
2052 }
2053
btrfs_item_key(const struct extent_buffer * eb,struct btrfs_disk_key * disk_key,int nr)2054 static inline void btrfs_item_key(const struct extent_buffer *eb,
2055 struct btrfs_disk_key *disk_key, int nr)
2056 {
2057 struct btrfs_item *item = btrfs_item_nr(nr);
2058 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2059 }
2060
btrfs_set_item_key(struct extent_buffer * eb,struct btrfs_disk_key * disk_key,int nr)2061 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2062 struct btrfs_disk_key *disk_key, int nr)
2063 {
2064 struct btrfs_item *item = btrfs_item_nr(nr);
2065 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2066 }
2067
2068 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2069
2070 /*
2071 * struct btrfs_root_ref
2072 */
2073 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2074 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2075 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2076
2077 /* struct btrfs_dir_item */
2078 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2079 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2080 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2081 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2082 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2083 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2084 data_len, 16);
2085 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2086 name_len, 16);
2087 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2088 transid, 64);
2089
btrfs_dir_item_key(const struct extent_buffer * eb,const struct btrfs_dir_item * item,struct btrfs_disk_key * key)2090 static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2091 const struct btrfs_dir_item *item,
2092 struct btrfs_disk_key *key)
2093 {
2094 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2095 }
2096
btrfs_set_dir_item_key(struct extent_buffer * eb,struct btrfs_dir_item * item,const struct btrfs_disk_key * key)2097 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2098 struct btrfs_dir_item *item,
2099 const struct btrfs_disk_key *key)
2100 {
2101 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2102 }
2103
2104 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2105 num_entries, 64);
2106 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2107 num_bitmaps, 64);
2108 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2109 generation, 64);
2110
btrfs_free_space_key(const struct extent_buffer * eb,const struct btrfs_free_space_header * h,struct btrfs_disk_key * key)2111 static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2112 const struct btrfs_free_space_header *h,
2113 struct btrfs_disk_key *key)
2114 {
2115 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2116 }
2117
btrfs_set_free_space_key(struct extent_buffer * eb,struct btrfs_free_space_header * h,const struct btrfs_disk_key * key)2118 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2119 struct btrfs_free_space_header *h,
2120 const struct btrfs_disk_key *key)
2121 {
2122 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2123 }
2124
2125 /* struct btrfs_disk_key */
2126 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2127 objectid, 64);
2128 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2129 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2130
2131 #ifdef __LITTLE_ENDIAN
2132
2133 /*
2134 * Optimized helpers for little-endian architectures where CPU and on-disk
2135 * structures have the same endianness and we can skip conversions.
2136 */
2137
btrfs_disk_key_to_cpu(struct btrfs_key * cpu_key,const struct btrfs_disk_key * disk_key)2138 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2139 const struct btrfs_disk_key *disk_key)
2140 {
2141 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2142 }
2143
btrfs_cpu_key_to_disk(struct btrfs_disk_key * disk_key,const struct btrfs_key * cpu_key)2144 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2145 const struct btrfs_key *cpu_key)
2146 {
2147 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2148 }
2149
btrfs_node_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * cpu_key,int nr)2150 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2151 struct btrfs_key *cpu_key, int nr)
2152 {
2153 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2154
2155 btrfs_node_key(eb, disk_key, nr);
2156 }
2157
btrfs_item_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * cpu_key,int nr)2158 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2159 struct btrfs_key *cpu_key, int nr)
2160 {
2161 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2162
2163 btrfs_item_key(eb, disk_key, nr);
2164 }
2165
btrfs_dir_item_key_to_cpu(const struct extent_buffer * eb,const struct btrfs_dir_item * item,struct btrfs_key * cpu_key)2166 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2167 const struct btrfs_dir_item *item,
2168 struct btrfs_key *cpu_key)
2169 {
2170 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2171
2172 btrfs_dir_item_key(eb, item, disk_key);
2173 }
2174
2175 #else
2176
btrfs_disk_key_to_cpu(struct btrfs_key * cpu,const struct btrfs_disk_key * disk)2177 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2178 const struct btrfs_disk_key *disk)
2179 {
2180 cpu->offset = le64_to_cpu(disk->offset);
2181 cpu->type = disk->type;
2182 cpu->objectid = le64_to_cpu(disk->objectid);
2183 }
2184
btrfs_cpu_key_to_disk(struct btrfs_disk_key * disk,const struct btrfs_key * cpu)2185 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2186 const struct btrfs_key *cpu)
2187 {
2188 disk->offset = cpu_to_le64(cpu->offset);
2189 disk->type = cpu->type;
2190 disk->objectid = cpu_to_le64(cpu->objectid);
2191 }
2192
btrfs_node_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * key,int nr)2193 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2194 struct btrfs_key *key, int nr)
2195 {
2196 struct btrfs_disk_key disk_key;
2197 btrfs_node_key(eb, &disk_key, nr);
2198 btrfs_disk_key_to_cpu(key, &disk_key);
2199 }
2200
btrfs_item_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * key,int nr)2201 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2202 struct btrfs_key *key, int nr)
2203 {
2204 struct btrfs_disk_key disk_key;
2205 btrfs_item_key(eb, &disk_key, nr);
2206 btrfs_disk_key_to_cpu(key, &disk_key);
2207 }
2208
btrfs_dir_item_key_to_cpu(const struct extent_buffer * eb,const struct btrfs_dir_item * item,struct btrfs_key * key)2209 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2210 const struct btrfs_dir_item *item,
2211 struct btrfs_key *key)
2212 {
2213 struct btrfs_disk_key disk_key;
2214 btrfs_dir_item_key(eb, item, &disk_key);
2215 btrfs_disk_key_to_cpu(key, &disk_key);
2216 }
2217
2218 #endif
2219
2220 /* struct btrfs_header */
2221 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2222 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2223 generation, 64);
2224 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2225 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2226 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2227 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2228 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2229 generation, 64);
2230 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2231 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2232 nritems, 32);
2233 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2234
btrfs_header_flag(const struct extent_buffer * eb,u64 flag)2235 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2236 {
2237 return (btrfs_header_flags(eb) & flag) == flag;
2238 }
2239
btrfs_set_header_flag(struct extent_buffer * eb,u64 flag)2240 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2241 {
2242 u64 flags = btrfs_header_flags(eb);
2243 btrfs_set_header_flags(eb, flags | flag);
2244 }
2245
btrfs_clear_header_flag(struct extent_buffer * eb,u64 flag)2246 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2247 {
2248 u64 flags = btrfs_header_flags(eb);
2249 btrfs_set_header_flags(eb, flags & ~flag);
2250 }
2251
btrfs_header_backref_rev(const struct extent_buffer * eb)2252 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2253 {
2254 u64 flags = btrfs_header_flags(eb);
2255 return flags >> BTRFS_BACKREF_REV_SHIFT;
2256 }
2257
btrfs_set_header_backref_rev(struct extent_buffer * eb,int rev)2258 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2259 int rev)
2260 {
2261 u64 flags = btrfs_header_flags(eb);
2262 flags &= ~BTRFS_BACKREF_REV_MASK;
2263 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2264 btrfs_set_header_flags(eb, flags);
2265 }
2266
btrfs_is_leaf(const struct extent_buffer * eb)2267 static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2268 {
2269 return btrfs_header_level(eb) == 0;
2270 }
2271
2272 /* struct btrfs_root_item */
2273 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2274 generation, 64);
2275 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2276 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2277 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2278
2279 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2280 generation, 64);
2281 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2282 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2283 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2284 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2285 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2286 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2287 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2288 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2289 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2290 last_snapshot, 64);
2291 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2292 generation_v2, 64);
2293 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2294 ctransid, 64);
2295 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2296 otransid, 64);
2297 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2298 stransid, 64);
2299 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2300 rtransid, 64);
2301
btrfs_root_readonly(const struct btrfs_root * root)2302 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2303 {
2304 /* Byte-swap the constant at compile time, root_item::flags is LE */
2305 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2306 }
2307
btrfs_root_dead(const struct btrfs_root * root)2308 static inline bool btrfs_root_dead(const struct btrfs_root *root)
2309 {
2310 /* Byte-swap the constant at compile time, root_item::flags is LE */
2311 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2312 }
2313
btrfs_root_id(const struct btrfs_root * root)2314 static inline u64 btrfs_root_id(const struct btrfs_root *root)
2315 {
2316 return root->root_key.objectid;
2317 }
2318
2319 /* struct btrfs_root_backup */
2320 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2321 tree_root, 64);
2322 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2323 tree_root_gen, 64);
2324 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2325 tree_root_level, 8);
2326
2327 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2328 chunk_root, 64);
2329 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2330 chunk_root_gen, 64);
2331 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2332 chunk_root_level, 8);
2333
2334 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2335 extent_root, 64);
2336 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2337 extent_root_gen, 64);
2338 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2339 extent_root_level, 8);
2340
2341 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2342 fs_root, 64);
2343 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2344 fs_root_gen, 64);
2345 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2346 fs_root_level, 8);
2347
2348 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2349 dev_root, 64);
2350 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2351 dev_root_gen, 64);
2352 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2353 dev_root_level, 8);
2354
2355 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2356 csum_root, 64);
2357 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2358 csum_root_gen, 64);
2359 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2360 csum_root_level, 8);
2361 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2362 total_bytes, 64);
2363 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2364 bytes_used, 64);
2365 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2366 num_devices, 64);
2367
2368 /*
2369 * For extent tree v2 we overload the extent root with the block group root, as
2370 * we will have multiple extent roots.
2371 */
2372 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root, struct btrfs_root_backup,
2373 extent_root, 64);
2374 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_gen, struct btrfs_root_backup,
2375 extent_root_gen, 64);
2376 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_level,
2377 struct btrfs_root_backup, extent_root_level, 8);
2378
2379 /* struct btrfs_balance_item */
2380 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2381
btrfs_balance_data(const struct extent_buffer * eb,const struct btrfs_balance_item * bi,struct btrfs_disk_balance_args * ba)2382 static inline void btrfs_balance_data(const struct extent_buffer *eb,
2383 const struct btrfs_balance_item *bi,
2384 struct btrfs_disk_balance_args *ba)
2385 {
2386 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2387 }
2388
btrfs_set_balance_data(struct extent_buffer * eb,struct btrfs_balance_item * bi,const struct btrfs_disk_balance_args * ba)2389 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2390 struct btrfs_balance_item *bi,
2391 const struct btrfs_disk_balance_args *ba)
2392 {
2393 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2394 }
2395
btrfs_balance_meta(const struct extent_buffer * eb,const struct btrfs_balance_item * bi,struct btrfs_disk_balance_args * ba)2396 static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2397 const struct btrfs_balance_item *bi,
2398 struct btrfs_disk_balance_args *ba)
2399 {
2400 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2401 }
2402
btrfs_set_balance_meta(struct extent_buffer * eb,struct btrfs_balance_item * bi,const struct btrfs_disk_balance_args * ba)2403 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2404 struct btrfs_balance_item *bi,
2405 const struct btrfs_disk_balance_args *ba)
2406 {
2407 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2408 }
2409
btrfs_balance_sys(const struct extent_buffer * eb,const struct btrfs_balance_item * bi,struct btrfs_disk_balance_args * ba)2410 static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2411 const struct btrfs_balance_item *bi,
2412 struct btrfs_disk_balance_args *ba)
2413 {
2414 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2415 }
2416
btrfs_set_balance_sys(struct extent_buffer * eb,struct btrfs_balance_item * bi,const struct btrfs_disk_balance_args * ba)2417 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2418 struct btrfs_balance_item *bi,
2419 const struct btrfs_disk_balance_args *ba)
2420 {
2421 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2422 }
2423
2424 static inline void
btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args * cpu,const struct btrfs_disk_balance_args * disk)2425 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2426 const struct btrfs_disk_balance_args *disk)
2427 {
2428 memset(cpu, 0, sizeof(*cpu));
2429
2430 cpu->profiles = le64_to_cpu(disk->profiles);
2431 cpu->usage = le64_to_cpu(disk->usage);
2432 cpu->devid = le64_to_cpu(disk->devid);
2433 cpu->pstart = le64_to_cpu(disk->pstart);
2434 cpu->pend = le64_to_cpu(disk->pend);
2435 cpu->vstart = le64_to_cpu(disk->vstart);
2436 cpu->vend = le64_to_cpu(disk->vend);
2437 cpu->target = le64_to_cpu(disk->target);
2438 cpu->flags = le64_to_cpu(disk->flags);
2439 cpu->limit = le64_to_cpu(disk->limit);
2440 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2441 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2442 }
2443
2444 static inline void
btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args * disk,const struct btrfs_balance_args * cpu)2445 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2446 const struct btrfs_balance_args *cpu)
2447 {
2448 memset(disk, 0, sizeof(*disk));
2449
2450 disk->profiles = cpu_to_le64(cpu->profiles);
2451 disk->usage = cpu_to_le64(cpu->usage);
2452 disk->devid = cpu_to_le64(cpu->devid);
2453 disk->pstart = cpu_to_le64(cpu->pstart);
2454 disk->pend = cpu_to_le64(cpu->pend);
2455 disk->vstart = cpu_to_le64(cpu->vstart);
2456 disk->vend = cpu_to_le64(cpu->vend);
2457 disk->target = cpu_to_le64(cpu->target);
2458 disk->flags = cpu_to_le64(cpu->flags);
2459 disk->limit = cpu_to_le64(cpu->limit);
2460 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2461 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2462 }
2463
2464 /* struct btrfs_super_block */
2465 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2466 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2467 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2468 generation, 64);
2469 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2470 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2471 struct btrfs_super_block, sys_chunk_array_size, 32);
2472 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2473 struct btrfs_super_block, chunk_root_generation, 64);
2474 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2475 root_level, 8);
2476 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2477 chunk_root, 64);
2478 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2479 chunk_root_level, 8);
2480 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2481 log_root, 64);
2482 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2483 log_root_transid, 64);
2484 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2485 log_root_level, 8);
2486 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2487 total_bytes, 64);
2488 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2489 bytes_used, 64);
2490 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2491 sectorsize, 32);
2492 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2493 nodesize, 32);
2494 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2495 stripesize, 32);
2496 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2497 root_dir_objectid, 64);
2498 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2499 num_devices, 64);
2500 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2501 compat_flags, 64);
2502 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2503 compat_ro_flags, 64);
2504 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2505 incompat_flags, 64);
2506 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2507 csum_type, 16);
2508 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2509 cache_generation, 64);
2510 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2511 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2512 uuid_tree_generation, 64);
2513 BTRFS_SETGET_STACK_FUNCS(super_block_group_root, struct btrfs_super_block,
2514 block_group_root, 64);
2515 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_generation,
2516 struct btrfs_super_block,
2517 block_group_root_generation, 64);
2518 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_level, struct btrfs_super_block,
2519 block_group_root_level, 8);
2520
2521 int btrfs_super_csum_size(const struct btrfs_super_block *s);
2522 const char *btrfs_super_csum_name(u16 csum_type);
2523 const char *btrfs_super_csum_driver(u16 csum_type);
2524 size_t __attribute_const__ btrfs_get_num_csums(void);
2525
2526
2527 /*
2528 * The leaf data grows from end-to-front in the node.
2529 * this returns the address of the start of the last item,
2530 * which is the stop of the leaf data stack
2531 */
leaf_data_end(const struct extent_buffer * leaf)2532 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2533 {
2534 u32 nr = btrfs_header_nritems(leaf);
2535
2536 if (nr == 0)
2537 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2538 return btrfs_item_offset(leaf, nr - 1);
2539 }
2540
2541 /* struct btrfs_file_extent_item */
2542 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2543 type, 8);
2544 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2545 struct btrfs_file_extent_item, disk_bytenr, 64);
2546 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2547 struct btrfs_file_extent_item, offset, 64);
2548 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2549 struct btrfs_file_extent_item, generation, 64);
2550 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2551 struct btrfs_file_extent_item, num_bytes, 64);
2552 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2553 struct btrfs_file_extent_item, ram_bytes, 64);
2554 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2555 struct btrfs_file_extent_item, disk_num_bytes, 64);
2556 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2557 struct btrfs_file_extent_item, compression, 8);
2558
2559 static inline unsigned long
btrfs_file_extent_inline_start(const struct btrfs_file_extent_item * e)2560 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2561 {
2562 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2563 }
2564
btrfs_file_extent_calc_inline_size(u32 datasize)2565 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2566 {
2567 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2568 }
2569
2570 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2571 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2572 disk_bytenr, 64);
2573 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2574 generation, 64);
2575 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2576 disk_num_bytes, 64);
2577 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2578 offset, 64);
2579 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2580 num_bytes, 64);
2581 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2582 ram_bytes, 64);
2583 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2584 compression, 8);
2585 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2586 encryption, 8);
2587 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2588 other_encoding, 16);
2589
2590 /*
2591 * this returns the number of bytes used by the item on disk, minus the
2592 * size of any extent headers. If a file is compressed on disk, this is
2593 * the compressed size
2594 */
btrfs_file_extent_inline_item_len(const struct extent_buffer * eb,int nr)2595 static inline u32 btrfs_file_extent_inline_item_len(
2596 const struct extent_buffer *eb,
2597 int nr)
2598 {
2599 return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2600 }
2601
2602 /* btrfs_qgroup_status_item */
2603 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2604 generation, 64);
2605 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2606 version, 64);
2607 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2608 flags, 64);
2609 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2610 rescan, 64);
2611
2612 /* btrfs_qgroup_info_item */
2613 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2614 generation, 64);
2615 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2616 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2617 rfer_cmpr, 64);
2618 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2619 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2620 excl_cmpr, 64);
2621
2622 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2623 struct btrfs_qgroup_info_item, generation, 64);
2624 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2625 rfer, 64);
2626 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2627 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2628 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2629 excl, 64);
2630 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2631 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2632
2633 /* btrfs_qgroup_limit_item */
2634 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2635 flags, 64);
2636 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2637 max_rfer, 64);
2638 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2639 max_excl, 64);
2640 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2641 rsv_rfer, 64);
2642 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2643 rsv_excl, 64);
2644
2645 /* btrfs_dev_replace_item */
2646 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2647 struct btrfs_dev_replace_item, src_devid, 64);
2648 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2649 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2650 64);
2651 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2652 replace_state, 64);
2653 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2654 time_started, 64);
2655 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2656 time_stopped, 64);
2657 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2658 num_write_errors, 64);
2659 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2660 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2661 64);
2662 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2663 cursor_left, 64);
2664 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2665 cursor_right, 64);
2666
2667 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2668 struct btrfs_dev_replace_item, src_devid, 64);
2669 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2670 struct btrfs_dev_replace_item,
2671 cont_reading_from_srcdev_mode, 64);
2672 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2673 struct btrfs_dev_replace_item, replace_state, 64);
2674 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2675 struct btrfs_dev_replace_item, time_started, 64);
2676 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2677 struct btrfs_dev_replace_item, time_stopped, 64);
2678 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2679 struct btrfs_dev_replace_item, num_write_errors, 64);
2680 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2681 struct btrfs_dev_replace_item,
2682 num_uncorrectable_read_errors, 64);
2683 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2684 struct btrfs_dev_replace_item, cursor_left, 64);
2685 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2686 struct btrfs_dev_replace_item, cursor_right, 64);
2687
2688 /* helper function to cast into the data area of the leaf. */
2689 #define btrfs_item_ptr(leaf, slot, type) \
2690 ((type *)(BTRFS_LEAF_DATA_OFFSET + \
2691 btrfs_item_offset(leaf, slot)))
2692
2693 #define btrfs_item_ptr_offset(leaf, slot) \
2694 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2695 btrfs_item_offset(leaf, slot)))
2696
btrfs_crc32c(u32 crc,const void * address,unsigned length)2697 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2698 {
2699 return crc32c(crc, address, length);
2700 }
2701
btrfs_crc32c_final(u32 crc,u8 * result)2702 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2703 {
2704 put_unaligned_le32(~crc, result);
2705 }
2706
btrfs_name_hash(const char * name,int len)2707 static inline u64 btrfs_name_hash(const char *name, int len)
2708 {
2709 return crc32c((u32)~1, name, len);
2710 }
2711
2712 /*
2713 * Figure the key offset of an extended inode ref
2714 */
btrfs_extref_hash(u64 parent_objectid,const char * name,int len)2715 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2716 int len)
2717 {
2718 return (u64) crc32c(parent_objectid, name, len);
2719 }
2720
btrfs_alloc_write_mask(struct address_space * mapping)2721 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2722 {
2723 return mapping_gfp_constraint(mapping, ~__GFP_FS);
2724 }
2725
2726 /* extent-tree.c */
2727
2728 enum btrfs_inline_ref_type {
2729 BTRFS_REF_TYPE_INVALID,
2730 BTRFS_REF_TYPE_BLOCK,
2731 BTRFS_REF_TYPE_DATA,
2732 BTRFS_REF_TYPE_ANY,
2733 };
2734
2735 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2736 struct btrfs_extent_inline_ref *iref,
2737 enum btrfs_inline_ref_type is_data);
2738 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2739
2740 /*
2741 * Take the number of bytes to be checksummmed and figure out how many leaves
2742 * it would require to store the csums for that many bytes.
2743 */
btrfs_csum_bytes_to_leaves(const struct btrfs_fs_info * fs_info,u64 csum_bytes)2744 static inline u64 btrfs_csum_bytes_to_leaves(
2745 const struct btrfs_fs_info *fs_info, u64 csum_bytes)
2746 {
2747 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
2748
2749 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
2750 }
2751
2752 /*
2753 * Use this if we would be adding new items, as we could split nodes as we cow
2754 * down the tree.
2755 */
btrfs_calc_insert_metadata_size(struct btrfs_fs_info * fs_info,unsigned num_items)2756 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2757 unsigned num_items)
2758 {
2759 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2760 }
2761
2762 /*
2763 * Doing a truncate or a modification won't result in new nodes or leaves, just
2764 * what we need for COW.
2765 */
btrfs_calc_metadata_size(struct btrfs_fs_info * fs_info,unsigned num_items)2766 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2767 unsigned num_items)
2768 {
2769 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2770 }
2771
2772 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2773 u64 start, u64 num_bytes);
2774 void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2775 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2776 unsigned long count);
2777 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2778 struct btrfs_delayed_ref_root *delayed_refs,
2779 struct btrfs_delayed_ref_head *head);
2780 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2781 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2782 struct btrfs_fs_info *fs_info, u64 bytenr,
2783 u64 offset, int metadata, u64 *refs, u64 *flags);
2784 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2785 int reserved);
2786 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2787 u64 bytenr, u64 num_bytes);
2788 int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2789 int btrfs_cross_ref_exist(struct btrfs_root *root,
2790 u64 objectid, u64 offset, u64 bytenr, bool strict,
2791 struct btrfs_path *path);
2792 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2793 struct btrfs_root *root,
2794 u64 parent, u64 root_objectid,
2795 const struct btrfs_disk_key *key,
2796 int level, u64 hint,
2797 u64 empty_size,
2798 enum btrfs_lock_nesting nest);
2799 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2800 u64 root_id,
2801 struct extent_buffer *buf,
2802 u64 parent, int last_ref);
2803 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2804 struct btrfs_root *root, u64 owner,
2805 u64 offset, u64 ram_bytes,
2806 struct btrfs_key *ins);
2807 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2808 u64 root_objectid, u64 owner, u64 offset,
2809 struct btrfs_key *ins);
2810 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2811 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2812 struct btrfs_key *ins, int is_data, int delalloc);
2813 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2814 struct extent_buffer *buf, int full_backref);
2815 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2816 struct extent_buffer *buf, int full_backref);
2817 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2818 struct extent_buffer *eb, u64 flags, int level);
2819 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2820
2821 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2822 u64 start, u64 len, int delalloc);
2823 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2824 u64 len);
2825 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2826 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2827 struct btrfs_ref *generic_ref);
2828
2829 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2830
2831 /*
2832 * Different levels for to flush space when doing space reservations.
2833 *
2834 * The higher the level, the more methods we try to reclaim space.
2835 */
2836 enum btrfs_reserve_flush_enum {
2837 /* If we are in the transaction, we can't flush anything.*/
2838 BTRFS_RESERVE_NO_FLUSH,
2839
2840 /*
2841 * Flush space by:
2842 * - Running delayed inode items
2843 * - Allocating a new chunk
2844 */
2845 BTRFS_RESERVE_FLUSH_LIMIT,
2846
2847 /*
2848 * Flush space by:
2849 * - Running delayed inode items
2850 * - Running delayed refs
2851 * - Running delalloc and waiting for ordered extents
2852 * - Allocating a new chunk
2853 */
2854 BTRFS_RESERVE_FLUSH_EVICT,
2855
2856 /*
2857 * Flush space by above mentioned methods and by:
2858 * - Running delayed iputs
2859 * - Committing transaction
2860 *
2861 * Can be interrupted by a fatal signal.
2862 */
2863 BTRFS_RESERVE_FLUSH_DATA,
2864 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2865 BTRFS_RESERVE_FLUSH_ALL,
2866
2867 /*
2868 * Pretty much the same as FLUSH_ALL, but can also steal space from
2869 * global rsv.
2870 *
2871 * Can be interrupted by a fatal signal.
2872 */
2873 BTRFS_RESERVE_FLUSH_ALL_STEAL,
2874 };
2875
2876 enum btrfs_flush_state {
2877 FLUSH_DELAYED_ITEMS_NR = 1,
2878 FLUSH_DELAYED_ITEMS = 2,
2879 FLUSH_DELAYED_REFS_NR = 3,
2880 FLUSH_DELAYED_REFS = 4,
2881 FLUSH_DELALLOC = 5,
2882 FLUSH_DELALLOC_WAIT = 6,
2883 FLUSH_DELALLOC_FULL = 7,
2884 ALLOC_CHUNK = 8,
2885 ALLOC_CHUNK_FORCE = 9,
2886 RUN_DELAYED_IPUTS = 10,
2887 COMMIT_TRANS = 11,
2888 };
2889
2890 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2891 struct btrfs_block_rsv *rsv,
2892 int nitems, bool use_global_rsv);
2893 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2894 struct btrfs_block_rsv *rsv);
2895 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2896
2897 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
2898 u64 disk_num_bytes, bool noflush);
2899 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2900 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2901 u64 start, u64 end);
2902 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2903 u64 num_bytes, u64 *actual_bytes);
2904 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2905
2906 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2907 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2908 struct btrfs_fs_info *fs_info);
2909 int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2910 void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2911 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2912
2913 /* ctree.c */
2914 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2915 int *slot);
2916 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2917 int btrfs_previous_item(struct btrfs_root *root,
2918 struct btrfs_path *path, u64 min_objectid,
2919 int type);
2920 int btrfs_previous_extent_item(struct btrfs_root *root,
2921 struct btrfs_path *path, u64 min_objectid);
2922 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2923 struct btrfs_path *path,
2924 const struct btrfs_key *new_key);
2925 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2926 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2927 struct btrfs_key *key, int lowest_level,
2928 u64 min_trans);
2929 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2930 struct btrfs_path *path,
2931 u64 min_trans);
2932 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2933 int slot);
2934
2935 int btrfs_cow_block(struct btrfs_trans_handle *trans,
2936 struct btrfs_root *root, struct extent_buffer *buf,
2937 struct extent_buffer *parent, int parent_slot,
2938 struct extent_buffer **cow_ret,
2939 enum btrfs_lock_nesting nest);
2940 int btrfs_copy_root(struct btrfs_trans_handle *trans,
2941 struct btrfs_root *root,
2942 struct extent_buffer *buf,
2943 struct extent_buffer **cow_ret, u64 new_root_objectid);
2944 int btrfs_block_can_be_shared(struct btrfs_root *root,
2945 struct extent_buffer *buf);
2946 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2947 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2948 int btrfs_split_item(struct btrfs_trans_handle *trans,
2949 struct btrfs_root *root,
2950 struct btrfs_path *path,
2951 const struct btrfs_key *new_key,
2952 unsigned long split_offset);
2953 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2954 struct btrfs_root *root,
2955 struct btrfs_path *path,
2956 const struct btrfs_key *new_key);
2957 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2958 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2959 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2960 const struct btrfs_key *key, struct btrfs_path *p,
2961 int ins_len, int cow);
2962 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2963 struct btrfs_path *p, u64 time_seq);
2964 int btrfs_search_slot_for_read(struct btrfs_root *root,
2965 const struct btrfs_key *key,
2966 struct btrfs_path *p, int find_higher,
2967 int return_any);
2968 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2969 struct btrfs_root *root, struct extent_buffer *parent,
2970 int start_slot, u64 *last_ret,
2971 struct btrfs_key *progress);
2972 void btrfs_release_path(struct btrfs_path *p);
2973 struct btrfs_path *btrfs_alloc_path(void);
2974 void btrfs_free_path(struct btrfs_path *p);
2975
2976 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2977 struct btrfs_path *path, int slot, int nr);
btrfs_del_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)2978 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2979 struct btrfs_root *root,
2980 struct btrfs_path *path)
2981 {
2982 return btrfs_del_items(trans, root, path, path->slots[0], 1);
2983 }
2984
2985 /*
2986 * Describes a batch of items to insert in a btree. This is used by
2987 * btrfs_insert_empty_items().
2988 */
2989 struct btrfs_item_batch {
2990 /*
2991 * Pointer to an array containing the keys of the items to insert (in
2992 * sorted order).
2993 */
2994 const struct btrfs_key *keys;
2995 /* Pointer to an array containing the data size for each item to insert. */
2996 const u32 *data_sizes;
2997 /*
2998 * The sum of data sizes for all items. The caller can compute this while
2999 * setting up the data_sizes array, so it ends up being more efficient
3000 * than having btrfs_insert_empty_items() or setup_item_for_insert()
3001 * doing it, as it would avoid an extra loop over a potentially large
3002 * array, and in the case of setup_item_for_insert(), we would be doing
3003 * it while holding a write lock on a leaf and often on upper level nodes
3004 * too, unnecessarily increasing the size of a critical section.
3005 */
3006 u32 total_data_size;
3007 /* Size of the keys and data_sizes arrays (number of items in the batch). */
3008 int nr;
3009 };
3010
3011 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3012 struct btrfs_path *path,
3013 const struct btrfs_key *key,
3014 u32 data_size);
3015 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3016 const struct btrfs_key *key, void *data, u32 data_size);
3017 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3018 struct btrfs_root *root,
3019 struct btrfs_path *path,
3020 const struct btrfs_item_batch *batch);
3021
btrfs_insert_empty_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)3022 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3023 struct btrfs_root *root,
3024 struct btrfs_path *path,
3025 const struct btrfs_key *key,
3026 u32 data_size)
3027 {
3028 struct btrfs_item_batch batch;
3029
3030 batch.keys = key;
3031 batch.data_sizes = &data_size;
3032 batch.total_data_size = data_size;
3033 batch.nr = 1;
3034
3035 return btrfs_insert_empty_items(trans, root, path, &batch);
3036 }
3037
3038 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3039 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3040 u64 time_seq);
3041
3042 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
3043 struct btrfs_path *path);
3044
3045 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
3046 struct btrfs_path *path);
3047
3048 /*
3049 * Search in @root for a given @key, and store the slot found in @found_key.
3050 *
3051 * @root: The root node of the tree.
3052 * @key: The key we are looking for.
3053 * @found_key: Will hold the found item.
3054 * @path: Holds the current slot/leaf.
3055 * @iter_ret: Contains the value returned from btrfs_search_slot or
3056 * btrfs_get_next_valid_item, whichever was executed last.
3057 *
3058 * The @iter_ret is an output variable that will contain the return value of
3059 * btrfs_search_slot, if it encountered an error, or the value returned from
3060 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
3061 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
3062 *
3063 * It's recommended to use a separate variable for iter_ret and then use it to
3064 * set the function return value so there's no confusion of the 0/1/errno
3065 * values stemming from btrfs_search_slot.
3066 */
3067 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \
3068 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \
3069 (iter_ret) >= 0 && \
3070 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
3071 (path)->slots[0]++ \
3072 )
3073
btrfs_next_old_item(struct btrfs_root * root,struct btrfs_path * p,u64 time_seq)3074 static inline int btrfs_next_old_item(struct btrfs_root *root,
3075 struct btrfs_path *p, u64 time_seq)
3076 {
3077 ++p->slots[0];
3078 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3079 return btrfs_next_old_leaf(root, p, time_seq);
3080 return 0;
3081 }
3082
3083 /*
3084 * Search the tree again to find a leaf with greater keys.
3085 *
3086 * Returns 0 if it found something or 1 if there are no greater leaves.
3087 * Returns < 0 on error.
3088 */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)3089 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3090 {
3091 return btrfs_next_old_leaf(root, path, 0);
3092 }
3093
btrfs_next_item(struct btrfs_root * root,struct btrfs_path * p)3094 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3095 {
3096 return btrfs_next_old_item(root, p, 0);
3097 }
3098 int btrfs_leaf_free_space(struct extent_buffer *leaf);
3099 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
3100 int for_reloc);
3101 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3102 struct btrfs_root *root,
3103 struct extent_buffer *node,
3104 struct extent_buffer *parent);
btrfs_fs_closing(struct btrfs_fs_info * fs_info)3105 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3106 {
3107 /*
3108 * Do it this way so we only ever do one test_bit in the normal case.
3109 */
3110 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
3111 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
3112 return 2;
3113 return 1;
3114 }
3115 return 0;
3116 }
3117
3118 /*
3119 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3120 * anything except sleeping. This function is used to check the status of
3121 * the fs.
3122 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
3123 * since setting and checking for SB_RDONLY in the superblock's flags is not
3124 * atomic.
3125 */
btrfs_need_cleaner_sleep(struct btrfs_fs_info * fs_info)3126 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
3127 {
3128 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
3129 btrfs_fs_closing(fs_info);
3130 }
3131
btrfs_set_sb_rdonly(struct super_block * sb)3132 static inline void btrfs_set_sb_rdonly(struct super_block *sb)
3133 {
3134 sb->s_flags |= SB_RDONLY;
3135 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3136 }
3137
btrfs_clear_sb_rdonly(struct super_block * sb)3138 static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
3139 {
3140 sb->s_flags &= ~SB_RDONLY;
3141 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3142 }
3143
3144 /* root-item.c */
3145 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3146 u64 ref_id, u64 dirid, u64 sequence, const char *name,
3147 int name_len);
3148 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3149 u64 ref_id, u64 dirid, u64 *sequence, const char *name,
3150 int name_len);
3151 int btrfs_del_root(struct btrfs_trans_handle *trans,
3152 const struct btrfs_key *key);
3153 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3154 const struct btrfs_key *key,
3155 struct btrfs_root_item *item);
3156 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3157 struct btrfs_root *root,
3158 struct btrfs_key *key,
3159 struct btrfs_root_item *item);
3160 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3161 struct btrfs_path *path, struct btrfs_root_item *root_item,
3162 struct btrfs_key *root_key);
3163 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3164 void btrfs_set_root_node(struct btrfs_root_item *item,
3165 struct extent_buffer *node);
3166 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3167 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3168 struct btrfs_root *root);
3169
3170 /* uuid-tree.c */
3171 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3172 u64 subid);
3173 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3174 u64 subid);
3175 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3176
3177 /* dir-item.c */
3178 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3179 const char *name, int name_len);
3180 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3181 int name_len, struct btrfs_inode *dir,
3182 struct btrfs_key *location, u8 type, u64 index);
3183 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3184 struct btrfs_root *root,
3185 struct btrfs_path *path, u64 dir,
3186 const char *name, int name_len,
3187 int mod);
3188 struct btrfs_dir_item *
3189 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3190 struct btrfs_root *root,
3191 struct btrfs_path *path, u64 dir,
3192 u64 index, const char *name, int name_len,
3193 int mod);
3194 struct btrfs_dir_item *
3195 btrfs_search_dir_index_item(struct btrfs_root *root,
3196 struct btrfs_path *path, u64 dirid,
3197 const char *name, int name_len);
3198 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3199 struct btrfs_root *root,
3200 struct btrfs_path *path,
3201 struct btrfs_dir_item *di);
3202 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3203 struct btrfs_root *root,
3204 struct btrfs_path *path, u64 objectid,
3205 const char *name, u16 name_len,
3206 const void *data, u16 data_len);
3207 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3208 struct btrfs_root *root,
3209 struct btrfs_path *path, u64 dir,
3210 const char *name, u16 name_len,
3211 int mod);
3212 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3213 struct btrfs_path *path,
3214 const char *name,
3215 int name_len);
3216
3217 /* orphan.c */
3218 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3219 struct btrfs_root *root, u64 offset);
3220 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3221 struct btrfs_root *root, u64 offset);
3222 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3223
3224 /* file-item.c */
3225 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3226 struct btrfs_root *root, u64 bytenr, u64 len);
3227 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3228 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3229 struct btrfs_root *root,
3230 u64 objectid, u64 pos,
3231 u64 disk_offset, u64 disk_num_bytes,
3232 u64 num_bytes, u64 offset, u64 ram_bytes,
3233 u8 compression, u8 encryption, u16 other_encoding);
3234 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3235 struct btrfs_root *root,
3236 struct btrfs_path *path, u64 objectid,
3237 u64 bytenr, int mod);
3238 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3239 struct btrfs_root *root,
3240 struct btrfs_ordered_sum *sums);
3241 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3242 u64 offset, bool one_ordered);
3243 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3244 struct list_head *list, int search_commit);
3245 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3246 const struct btrfs_path *path,
3247 struct btrfs_file_extent_item *fi,
3248 const bool new_inline,
3249 struct extent_map *em);
3250 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3251 u64 len);
3252 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3253 u64 len);
3254 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3255 u64 btrfs_file_extent_end(const struct btrfs_path *path);
3256
3257 /* inode.c */
3258 void btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
3259 int mirror_num, enum btrfs_compression_type compress_type);
3260 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3261 u32 bio_offset, struct page *page,
3262 u64 start, u64 end);
3263 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3264 u64 start, u64 len);
3265 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3266 u64 *orig_start, u64 *orig_block_len,
3267 u64 *ram_bytes, bool strict);
3268
3269 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3270 struct btrfs_inode *inode);
3271 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3272 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3273 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3274 struct btrfs_inode *dir, struct btrfs_inode *inode,
3275 const char *name, int name_len);
3276 int btrfs_add_link(struct btrfs_trans_handle *trans,
3277 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3278 const char *name, int name_len, int add_backref, u64 index);
3279 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3280 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3281 int front);
3282
3283 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3284 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3285 bool in_reclaim_context);
3286 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3287 unsigned int extra_bits,
3288 struct extent_state **cached_state);
3289 struct btrfs_new_inode_args {
3290 /* Input */
3291 struct inode *dir;
3292 struct dentry *dentry;
3293 struct inode *inode;
3294 bool orphan;
3295 bool subvol;
3296
3297 /*
3298 * Output from btrfs_new_inode_prepare(), input to
3299 * btrfs_create_new_inode().
3300 */
3301 struct posix_acl *default_acl;
3302 struct posix_acl *acl;
3303 };
3304 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
3305 unsigned int *trans_num_items);
3306 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
3307 struct btrfs_new_inode_args *args);
3308 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
3309 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
3310 struct inode *dir);
3311 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3312 unsigned *bits);
3313 void btrfs_clear_delalloc_extent(struct inode *inode,
3314 struct extent_state *state, unsigned *bits);
3315 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3316 struct extent_state *other);
3317 void btrfs_split_delalloc_extent(struct inode *inode,
3318 struct extent_state *orig, u64 split);
3319 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3320 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3321 void btrfs_evict_inode(struct inode *inode);
3322 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3323 struct inode *btrfs_alloc_inode(struct super_block *sb);
3324 void btrfs_destroy_inode(struct inode *inode);
3325 void btrfs_free_inode(struct inode *inode);
3326 int btrfs_drop_inode(struct inode *inode);
3327 int __init btrfs_init_cachep(void);
3328 void __cold btrfs_destroy_cachep(void);
3329 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3330 struct btrfs_root *root, struct btrfs_path *path);
3331 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3332 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3333 struct page *page, size_t pg_offset,
3334 u64 start, u64 end);
3335 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3336 struct btrfs_root *root, struct btrfs_inode *inode);
3337 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3338 struct btrfs_root *root, struct btrfs_inode *inode);
3339 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3340 struct btrfs_inode *inode);
3341 int btrfs_orphan_cleanup(struct btrfs_root *root);
3342 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3343 void btrfs_add_delayed_iput(struct inode *inode);
3344 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3345 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3346 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3347 u64 start, u64 num_bytes, u64 min_size,
3348 loff_t actual_len, u64 *alloc_hint);
3349 int btrfs_prealloc_file_range_trans(struct inode *inode,
3350 struct btrfs_trans_handle *trans, int mode,
3351 u64 start, u64 num_bytes, u64 min_size,
3352 loff_t actual_len, u64 *alloc_hint);
3353 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3354 u64 start, u64 end, int *page_started, unsigned long *nr_written,
3355 struct writeback_control *wbc);
3356 int btrfs_writepage_cow_fixup(struct page *page);
3357 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3358 struct page *page, u64 start,
3359 u64 end, bool uptodate);
3360 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
3361 struct btrfs_ioctl_encoded_io_args *encoded);
3362 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
3363 const struct btrfs_ioctl_encoded_io_args *encoded);
3364
3365 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before);
3366
3367 extern const struct dentry_operations btrfs_dentry_operations;
3368
3369 /* Inode locking type flags, by default the exclusive lock is taken */
3370 #define BTRFS_ILOCK_SHARED (1U << 0)
3371 #define BTRFS_ILOCK_TRY (1U << 1)
3372 #define BTRFS_ILOCK_MMAP (1U << 2)
3373
3374 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3375 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3376 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3377 const u64 add_bytes,
3378 const u64 del_bytes);
3379 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
3380
3381 /* ioctl.c */
3382 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3383 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3384 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3385 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3386 struct dentry *dentry, struct fileattr *fa);
3387 int btrfs_ioctl_get_supported_features(void __user *arg);
3388 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3389 int __pure btrfs_is_empty_uuid(u8 *uuid);
3390 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
3391 struct btrfs_ioctl_defrag_range_args *range,
3392 u64 newer_than, unsigned long max_to_defrag);
3393 void btrfs_get_block_group_info(struct list_head *groups_list,
3394 struct btrfs_ioctl_space_info *space);
3395 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3396 struct btrfs_ioctl_balance_args *bargs);
3397 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
3398 enum btrfs_exclusive_operation type);
3399 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
3400 enum btrfs_exclusive_operation type);
3401 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
3402 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
3403 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
3404 enum btrfs_exclusive_operation op);
3405
3406
3407 /* file.c */
3408 int __init btrfs_auto_defrag_init(void);
3409 void __cold btrfs_auto_defrag_exit(void);
3410 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3411 struct btrfs_inode *inode, u32 extent_thresh);
3412 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3413 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3414 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3415 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3416 int skip_pinned);
3417 extern const struct file_operations btrfs_file_operations;
3418 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3419 struct btrfs_root *root, struct btrfs_inode *inode,
3420 struct btrfs_drop_extents_args *args);
3421 int btrfs_replace_file_extents(struct btrfs_inode *inode,
3422 struct btrfs_path *path, const u64 start,
3423 const u64 end,
3424 struct btrfs_replace_extent_info *extent_info,
3425 struct btrfs_trans_handle **trans_out);
3426 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3427 struct btrfs_inode *inode, u64 start, u64 end);
3428 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
3429 const struct btrfs_ioctl_encoded_io_args *encoded);
3430 int btrfs_release_file(struct inode *inode, struct file *file);
3431 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3432 size_t num_pages, loff_t pos, size_t write_bytes,
3433 struct extent_state **cached, bool noreserve);
3434 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3435 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3436 size_t *write_bytes);
3437 void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3438
3439 /* tree-defrag.c */
3440 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3441 struct btrfs_root *root);
3442
3443 /* super.c */
3444 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3445 unsigned long new_flags);
3446 int btrfs_sync_fs(struct super_block *sb, int wait);
3447 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3448 u64 subvol_objectid);
3449
3450 static inline __printf(2, 3) __cold
btrfs_no_printk(const struct btrfs_fs_info * fs_info,const char * fmt,...)3451 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3452 {
3453 }
3454
3455 #ifdef CONFIG_PRINTK_INDEX
3456
3457 #define btrfs_printk(fs_info, fmt, args...) \
3458 do { \
3459 printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt); \
3460 _btrfs_printk(fs_info, fmt, ##args); \
3461 } while (0)
3462
3463 __printf(2, 3)
3464 __cold
3465 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3466
3467 #elif defined(CONFIG_PRINTK)
3468
3469 #define btrfs_printk(fs_info, fmt, args...) \
3470 _btrfs_printk(fs_info, fmt, ##args)
3471
3472 __printf(2, 3)
3473 __cold
3474 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3475
3476 #else
3477
3478 #define btrfs_printk(fs_info, fmt, args...) \
3479 btrfs_no_printk(fs_info, fmt, ##args)
3480 #endif
3481
3482 #define btrfs_emerg(fs_info, fmt, args...) \
3483 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3484 #define btrfs_alert(fs_info, fmt, args...) \
3485 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3486 #define btrfs_crit(fs_info, fmt, args...) \
3487 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3488 #define btrfs_err(fs_info, fmt, args...) \
3489 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3490 #define btrfs_warn(fs_info, fmt, args...) \
3491 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3492 #define btrfs_notice(fs_info, fmt, args...) \
3493 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3494 #define btrfs_info(fs_info, fmt, args...) \
3495 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3496
3497 /*
3498 * Wrappers that use printk_in_rcu
3499 */
3500 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3501 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3502 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3503 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3504 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3505 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3506 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
3507 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3508 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3509 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3510 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3511 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3512 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
3513 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3514
3515 /*
3516 * Wrappers that use a ratelimited printk_in_rcu
3517 */
3518 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3519 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3520 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3521 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3522 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3523 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3524 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3525 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3526 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3527 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3528 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3529 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3530 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3531 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3532
3533 /*
3534 * Wrappers that use a ratelimited printk
3535 */
3536 #define btrfs_emerg_rl(fs_info, fmt, args...) \
3537 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3538 #define btrfs_alert_rl(fs_info, fmt, args...) \
3539 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3540 #define btrfs_crit_rl(fs_info, fmt, args...) \
3541 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3542 #define btrfs_err_rl(fs_info, fmt, args...) \
3543 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3544 #define btrfs_warn_rl(fs_info, fmt, args...) \
3545 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3546 #define btrfs_notice_rl(fs_info, fmt, args...) \
3547 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3548 #define btrfs_info_rl(fs_info, fmt, args...) \
3549 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3550
3551 #if defined(CONFIG_DYNAMIC_DEBUG)
3552 #define btrfs_debug(fs_info, fmt, args...) \
3553 _dynamic_func_call_no_desc(fmt, btrfs_printk, \
3554 fs_info, KERN_DEBUG fmt, ##args)
3555 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3556 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \
3557 fs_info, KERN_DEBUG fmt, ##args)
3558 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3559 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \
3560 fs_info, KERN_DEBUG fmt, ##args)
3561 #define btrfs_debug_rl(fs_info, fmt, args...) \
3562 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \
3563 fs_info, KERN_DEBUG fmt, ##args)
3564 #elif defined(DEBUG)
3565 #define btrfs_debug(fs_info, fmt, args...) \
3566 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3567 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3568 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3569 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3570 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3571 #define btrfs_debug_rl(fs_info, fmt, args...) \
3572 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3573 #else
3574 #define btrfs_debug(fs_info, fmt, args...) \
3575 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3576 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3577 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3578 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3579 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3580 #define btrfs_debug_rl(fs_info, fmt, args...) \
3581 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3582 #endif
3583
3584 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \
3585 do { \
3586 rcu_read_lock(); \
3587 btrfs_printk(fs_info, fmt, ##args); \
3588 rcu_read_unlock(); \
3589 } while (0)
3590
3591 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \
3592 do { \
3593 rcu_read_lock(); \
3594 btrfs_no_printk(fs_info, fmt, ##args); \
3595 rcu_read_unlock(); \
3596 } while (0)
3597
3598 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \
3599 do { \
3600 static DEFINE_RATELIMIT_STATE(_rs, \
3601 DEFAULT_RATELIMIT_INTERVAL, \
3602 DEFAULT_RATELIMIT_BURST); \
3603 if (__ratelimit(&_rs)) \
3604 btrfs_printk(fs_info, fmt, ##args); \
3605 } while (0)
3606
3607 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \
3608 do { \
3609 rcu_read_lock(); \
3610 btrfs_printk_ratelimited(fs_info, fmt, ##args); \
3611 rcu_read_unlock(); \
3612 } while (0)
3613
3614 #ifdef CONFIG_BTRFS_ASSERT
3615 __cold __noreturn
assertfail(const char * expr,const char * file,int line)3616 static inline void assertfail(const char *expr, const char *file, int line)
3617 {
3618 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3619 BUG();
3620 }
3621
3622 #define ASSERT(expr) \
3623 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3624
3625 #else
assertfail(const char * expr,const char * file,int line)3626 static inline void assertfail(const char *expr, const char* file, int line) { }
3627 #define ASSERT(expr) (void)(expr)
3628 #endif
3629
3630 #if BITS_PER_LONG == 32
3631 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3632 /*
3633 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3634 * addresses of extents.
3635 *
3636 * For 4K page size it's about 10T, for 64K it's 160T.
3637 */
3638 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3639 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3640 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3641 #endif
3642
3643 /*
3644 * Get the correct offset inside the page of extent buffer.
3645 *
3646 * @eb: target extent buffer
3647 * @start: offset inside the extent buffer
3648 *
3649 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3650 */
get_eb_offset_in_page(const struct extent_buffer * eb,unsigned long offset)3651 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3652 unsigned long offset)
3653 {
3654 /*
3655 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3656 * to PAGE_SIZE, thus adding it won't cause any difference.
3657 *
3658 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3659 * to the eb, thus we have to take the eb->start into consideration.
3660 */
3661 return offset_in_page(offset + eb->start);
3662 }
3663
get_eb_page_index(unsigned long offset)3664 static inline unsigned long get_eb_page_index(unsigned long offset)
3665 {
3666 /*
3667 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3668 *
3669 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3670 * and have ensured that all tree blocks are contained in one page,
3671 * thus we always get index == 0.
3672 */
3673 return offset >> PAGE_SHIFT;
3674 }
3675
3676 /*
3677 * Use that for functions that are conditionally exported for sanity tests but
3678 * otherwise static
3679 */
3680 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3681 #define EXPORT_FOR_TESTS static
3682 #else
3683 #define EXPORT_FOR_TESTS
3684 #endif
3685
3686 __cold
btrfs_print_v0_err(struct btrfs_fs_info * fs_info)3687 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3688 {
3689 btrfs_err(fs_info,
3690 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3691 }
3692
3693 __printf(5, 6)
3694 __cold
3695 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3696 unsigned int line, int errno, const char *fmt, ...);
3697
3698 const char * __attribute_const__ btrfs_decode_error(int errno);
3699
3700 __cold
3701 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3702 const char *function,
3703 unsigned int line, int errno);
3704
3705 /*
3706 * Call btrfs_abort_transaction as early as possible when an error condition is
3707 * detected, that way the exact line number is reported.
3708 */
3709 #define btrfs_abort_transaction(trans, errno) \
3710 do { \
3711 /* Report first abort since mount */ \
3712 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \
3713 &((trans)->fs_info->fs_state))) { \
3714 if ((errno) != -EIO && (errno) != -EROFS) { \
3715 WARN(1, KERN_DEBUG \
3716 "BTRFS: Transaction aborted (error %d)\n", \
3717 (errno)); \
3718 } else { \
3719 btrfs_debug((trans)->fs_info, \
3720 "Transaction aborted (error %d)", \
3721 (errno)); \
3722 } \
3723 } \
3724 __btrfs_abort_transaction((trans), __func__, \
3725 __LINE__, (errno)); \
3726 } while (0)
3727
3728 #ifdef CONFIG_PRINTK_INDEX
3729
3730 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \
3731 do { \
3732 printk_index_subsys_emit( \
3733 "BTRFS: error (device %s%s) in %s:%d: errno=%d %s", \
3734 KERN_CRIT, fmt); \
3735 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \
3736 (errno), fmt, ##args); \
3737 } while (0)
3738
3739 #else
3740
3741 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \
3742 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \
3743 (errno), fmt, ##args)
3744
3745 #endif
3746
3747 #define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
3748 &(fs_info)->fs_state)))
3749 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info) \
3750 (unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, \
3751 &(fs_info)->fs_state)))
3752
3753 __printf(5, 6)
3754 __cold
3755 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3756 unsigned int line, int errno, const char *fmt, ...);
3757 /*
3758 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3759 * will panic(). Otherwise we BUG() here.
3760 */
3761 #define btrfs_panic(fs_info, errno, fmt, args...) \
3762 do { \
3763 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
3764 BUG(); \
3765 } while (0)
3766
3767
3768 /* compatibility and incompatibility defines */
3769
3770 #define btrfs_set_fs_incompat(__fs_info, opt) \
3771 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3772 #opt)
3773
__btrfs_set_fs_incompat(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3774 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3775 u64 flag, const char* name)
3776 {
3777 struct btrfs_super_block *disk_super;
3778 u64 features;
3779
3780 disk_super = fs_info->super_copy;
3781 features = btrfs_super_incompat_flags(disk_super);
3782 if (!(features & flag)) {
3783 spin_lock(&fs_info->super_lock);
3784 features = btrfs_super_incompat_flags(disk_super);
3785 if (!(features & flag)) {
3786 features |= flag;
3787 btrfs_set_super_incompat_flags(disk_super, features);
3788 btrfs_info(fs_info,
3789 "setting incompat feature flag for %s (0x%llx)",
3790 name, flag);
3791 }
3792 spin_unlock(&fs_info->super_lock);
3793 }
3794 }
3795
3796 #define btrfs_clear_fs_incompat(__fs_info, opt) \
3797 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3798 #opt)
3799
__btrfs_clear_fs_incompat(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3800 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3801 u64 flag, const char* name)
3802 {
3803 struct btrfs_super_block *disk_super;
3804 u64 features;
3805
3806 disk_super = fs_info->super_copy;
3807 features = btrfs_super_incompat_flags(disk_super);
3808 if (features & flag) {
3809 spin_lock(&fs_info->super_lock);
3810 features = btrfs_super_incompat_flags(disk_super);
3811 if (features & flag) {
3812 features &= ~flag;
3813 btrfs_set_super_incompat_flags(disk_super, features);
3814 btrfs_info(fs_info,
3815 "clearing incompat feature flag for %s (0x%llx)",
3816 name, flag);
3817 }
3818 spin_unlock(&fs_info->super_lock);
3819 }
3820 }
3821
3822 #define btrfs_fs_incompat(fs_info, opt) \
3823 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3824
__btrfs_fs_incompat(struct btrfs_fs_info * fs_info,u64 flag)3825 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3826 {
3827 struct btrfs_super_block *disk_super;
3828 disk_super = fs_info->super_copy;
3829 return !!(btrfs_super_incompat_flags(disk_super) & flag);
3830 }
3831
3832 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
3833 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3834 #opt)
3835
__btrfs_set_fs_compat_ro(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3836 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3837 u64 flag, const char *name)
3838 {
3839 struct btrfs_super_block *disk_super;
3840 u64 features;
3841
3842 disk_super = fs_info->super_copy;
3843 features = btrfs_super_compat_ro_flags(disk_super);
3844 if (!(features & flag)) {
3845 spin_lock(&fs_info->super_lock);
3846 features = btrfs_super_compat_ro_flags(disk_super);
3847 if (!(features & flag)) {
3848 features |= flag;
3849 btrfs_set_super_compat_ro_flags(disk_super, features);
3850 btrfs_info(fs_info,
3851 "setting compat-ro feature flag for %s (0x%llx)",
3852 name, flag);
3853 }
3854 spin_unlock(&fs_info->super_lock);
3855 }
3856 }
3857
3858 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3859 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3860 #opt)
3861
__btrfs_clear_fs_compat_ro(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3862 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3863 u64 flag, const char *name)
3864 {
3865 struct btrfs_super_block *disk_super;
3866 u64 features;
3867
3868 disk_super = fs_info->super_copy;
3869 features = btrfs_super_compat_ro_flags(disk_super);
3870 if (features & flag) {
3871 spin_lock(&fs_info->super_lock);
3872 features = btrfs_super_compat_ro_flags(disk_super);
3873 if (features & flag) {
3874 features &= ~flag;
3875 btrfs_set_super_compat_ro_flags(disk_super, features);
3876 btrfs_info(fs_info,
3877 "clearing compat-ro feature flag for %s (0x%llx)",
3878 name, flag);
3879 }
3880 spin_unlock(&fs_info->super_lock);
3881 }
3882 }
3883
3884 #define btrfs_fs_compat_ro(fs_info, opt) \
3885 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3886
__btrfs_fs_compat_ro(struct btrfs_fs_info * fs_info,u64 flag)3887 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3888 {
3889 struct btrfs_super_block *disk_super;
3890 disk_super = fs_info->super_copy;
3891 return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3892 }
3893
3894 /* acl.c */
3895 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3896 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
3897 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3898 struct posix_acl *acl, int type);
3899 int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode,
3900 struct posix_acl *acl, int type);
3901 #else
3902 #define btrfs_get_acl NULL
3903 #define btrfs_set_acl NULL
__btrfs_set_acl(struct btrfs_trans_handle * trans,struct inode * inode,struct posix_acl * acl,int type)3904 static inline int __btrfs_set_acl(struct btrfs_trans_handle *trans,
3905 struct inode *inode, struct posix_acl *acl,
3906 int type)
3907 {
3908 return -EOPNOTSUPP;
3909 }
3910 #endif
3911
3912 /* relocation.c */
3913 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3914 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3915 struct btrfs_root *root);
3916 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3917 struct btrfs_root *root);
3918 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info);
3919 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3920 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3921 struct btrfs_root *root, struct extent_buffer *buf,
3922 struct extent_buffer *cow);
3923 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3924 u64 *bytes_to_reserve);
3925 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3926 struct btrfs_pending_snapshot *pending);
3927 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3928 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3929 u64 bytenr);
3930 int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3931
3932 /* scrub.c */
3933 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3934 u64 end, struct btrfs_scrub_progress *progress,
3935 int readonly, int is_dev_replace);
3936 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3937 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3938 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3939 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3940 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3941 struct btrfs_scrub_progress *progress);
btrfs_init_full_stripe_locks_tree(struct btrfs_full_stripe_locks_tree * locks_root)3942 static inline void btrfs_init_full_stripe_locks_tree(
3943 struct btrfs_full_stripe_locks_tree *locks_root)
3944 {
3945 locks_root->root = RB_ROOT;
3946 mutex_init(&locks_root->lock);
3947 }
3948
3949 /* dev-replace.c */
3950 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3951 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3952 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3953
btrfs_bio_counter_dec(struct btrfs_fs_info * fs_info)3954 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
3955 {
3956 btrfs_bio_counter_sub(fs_info, 1);
3957 }
3958
is_fstree(u64 rootid)3959 static inline int is_fstree(u64 rootid)
3960 {
3961 if (rootid == BTRFS_FS_TREE_OBJECTID ||
3962 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
3963 !btrfs_qgroup_level(rootid)))
3964 return 1;
3965 return 0;
3966 }
3967
btrfs_defrag_cancelled(struct btrfs_fs_info * fs_info)3968 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
3969 {
3970 return signal_pending(current);
3971 }
3972
3973 /* verity.c */
3974 #ifdef CONFIG_FS_VERITY
3975
3976 extern const struct fsverity_operations btrfs_verityops;
3977 int btrfs_drop_verity_items(struct btrfs_inode *inode);
3978
3979 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
3980 encryption, 8);
3981 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
3982 size, 64);
3983 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
3984 struct btrfs_verity_descriptor_item, encryption, 8);
3985 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
3986 struct btrfs_verity_descriptor_item, size, 64);
3987
3988 #else
3989
btrfs_drop_verity_items(struct btrfs_inode * inode)3990 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
3991 {
3992 return 0;
3993 }
3994
3995 #endif
3996
3997 /* Sanity test specific functions */
3998 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3999 void btrfs_test_destroy_inode(struct inode *inode);
btrfs_is_testing(struct btrfs_fs_info * fs_info)4000 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4001 {
4002 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
4003 }
4004 #else
btrfs_is_testing(struct btrfs_fs_info * fs_info)4005 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4006 {
4007 return 0;
4008 }
4009 #endif
4010
btrfs_is_zoned(const struct btrfs_fs_info * fs_info)4011 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
4012 {
4013 return fs_info->zone_size > 0;
4014 }
4015
4016 /*
4017 * Count how many fs_info->max_extent_size cover the @size
4018 */
count_max_extents(struct btrfs_fs_info * fs_info,u64 size)4019 static inline u32 count_max_extents(struct btrfs_fs_info *fs_info, u64 size)
4020 {
4021 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4022 if (!fs_info)
4023 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
4024 #endif
4025
4026 return div_u64(size + fs_info->max_extent_size - 1, fs_info->max_extent_size);
4027 }
4028
btrfs_is_data_reloc_root(const struct btrfs_root * root)4029 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
4030 {
4031 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
4032 }
4033
4034 /*
4035 * We use page status Private2 to indicate there is an ordered extent with
4036 * unfinished IO.
4037 *
4038 * Rename the Private2 accessors to Ordered, to improve readability.
4039 */
4040 #define PageOrdered(page) PagePrivate2(page)
4041 #define SetPageOrdered(page) SetPagePrivate2(page)
4042 #define ClearPageOrdered(page) ClearPagePrivate2(page)
4043 #define folio_test_ordered(folio) folio_test_private_2(folio)
4044 #define folio_set_ordered(folio) folio_set_private_2(folio)
4045 #define folio_clear_ordered(folio) folio_clear_private_2(folio)
4046
4047 #endif
4048