1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3 * Copyright (c) 2015-2017 QLogic Corporation
4 * Copyright (c) 2019-2020 Marvell International Ltd.
5 */
6
7 #include <linux/netdevice.h>
8 #include <linux/etherdevice.h>
9 #include <linux/skbuff.h>
10 #include <linux/bpf_trace.h>
11 #include <net/udp_tunnel.h>
12 #include <linux/ip.h>
13 #include <net/gro.h>
14 #include <net/ipv6.h>
15 #include <net/tcp.h>
16 #include <linux/if_ether.h>
17 #include <linux/if_vlan.h>
18 #include <net/ip6_checksum.h>
19 #include "qede_ptp.h"
20
21 #include <linux/qed/qed_if.h>
22 #include "qede.h"
23 /*********************************
24 * Content also used by slowpath *
25 *********************************/
26
qede_alloc_rx_buffer(struct qede_rx_queue * rxq,bool allow_lazy)27 int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
28 {
29 struct sw_rx_data *sw_rx_data;
30 struct eth_rx_bd *rx_bd;
31 dma_addr_t mapping;
32 struct page *data;
33
34 /* In case lazy-allocation is allowed, postpone allocation until the
35 * end of the NAPI run. We'd still need to make sure the Rx ring has
36 * sufficient buffers to guarantee an additional Rx interrupt.
37 */
38 if (allow_lazy && likely(rxq->filled_buffers > 12)) {
39 rxq->filled_buffers--;
40 return 0;
41 }
42
43 data = alloc_pages(GFP_ATOMIC, 0);
44 if (unlikely(!data))
45 return -ENOMEM;
46
47 /* Map the entire page as it would be used
48 * for multiple RX buffer segment size mapping.
49 */
50 mapping = dma_map_page(rxq->dev, data, 0,
51 PAGE_SIZE, rxq->data_direction);
52 if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
53 __free_page(data);
54 return -ENOMEM;
55 }
56
57 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
58 sw_rx_data->page_offset = 0;
59 sw_rx_data->data = data;
60 sw_rx_data->mapping = mapping;
61
62 /* Advance PROD and get BD pointer */
63 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
64 WARN_ON(!rx_bd);
65 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
66 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) +
67 rxq->rx_headroom);
68
69 rxq->sw_rx_prod++;
70 rxq->filled_buffers++;
71
72 return 0;
73 }
74
75 /* Unmap the data and free skb */
qede_free_tx_pkt(struct qede_dev * edev,struct qede_tx_queue * txq,int * len)76 int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
77 {
78 u16 idx = txq->sw_tx_cons;
79 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
80 struct eth_tx_1st_bd *first_bd;
81 struct eth_tx_bd *tx_data_bd;
82 int bds_consumed = 0;
83 int nbds;
84 bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
85 int i, split_bd_len = 0;
86
87 if (unlikely(!skb)) {
88 DP_ERR(edev,
89 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
90 idx, txq->sw_tx_cons, txq->sw_tx_prod);
91 return -1;
92 }
93
94 *len = skb->len;
95
96 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
97
98 bds_consumed++;
99
100 nbds = first_bd->data.nbds;
101
102 if (data_split) {
103 struct eth_tx_bd *split = (struct eth_tx_bd *)
104 qed_chain_consume(&txq->tx_pbl);
105 split_bd_len = BD_UNMAP_LEN(split);
106 bds_consumed++;
107 }
108 dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
109 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
110
111 /* Unmap the data of the skb frags */
112 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
113 tx_data_bd = (struct eth_tx_bd *)
114 qed_chain_consume(&txq->tx_pbl);
115 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
116 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
117 }
118
119 while (bds_consumed++ < nbds)
120 qed_chain_consume(&txq->tx_pbl);
121
122 /* Free skb */
123 dev_kfree_skb_any(skb);
124 txq->sw_tx_ring.skbs[idx].skb = NULL;
125 txq->sw_tx_ring.skbs[idx].flags = 0;
126
127 return 0;
128 }
129
130 /* Unmap the data and free skb when mapping failed during start_xmit */
qede_free_failed_tx_pkt(struct qede_tx_queue * txq,struct eth_tx_1st_bd * first_bd,int nbd,bool data_split)131 static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
132 struct eth_tx_1st_bd *first_bd,
133 int nbd, bool data_split)
134 {
135 u16 idx = txq->sw_tx_prod;
136 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
137 struct eth_tx_bd *tx_data_bd;
138 int i, split_bd_len = 0;
139
140 /* Return prod to its position before this skb was handled */
141 qed_chain_set_prod(&txq->tx_pbl,
142 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
143
144 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
145
146 if (data_split) {
147 struct eth_tx_bd *split = (struct eth_tx_bd *)
148 qed_chain_produce(&txq->tx_pbl);
149 split_bd_len = BD_UNMAP_LEN(split);
150 nbd--;
151 }
152
153 dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
154 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
155
156 /* Unmap the data of the skb frags */
157 for (i = 0; i < nbd; i++) {
158 tx_data_bd = (struct eth_tx_bd *)
159 qed_chain_produce(&txq->tx_pbl);
160 if (tx_data_bd->nbytes)
161 dma_unmap_page(txq->dev,
162 BD_UNMAP_ADDR(tx_data_bd),
163 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
164 }
165
166 /* Return again prod to its position before this skb was handled */
167 qed_chain_set_prod(&txq->tx_pbl,
168 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
169
170 /* Free skb */
171 dev_kfree_skb_any(skb);
172 txq->sw_tx_ring.skbs[idx].skb = NULL;
173 txq->sw_tx_ring.skbs[idx].flags = 0;
174 }
175
qede_xmit_type(struct sk_buff * skb,int * ipv6_ext)176 static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
177 {
178 u32 rc = XMIT_L4_CSUM;
179 __be16 l3_proto;
180
181 if (skb->ip_summed != CHECKSUM_PARTIAL)
182 return XMIT_PLAIN;
183
184 l3_proto = vlan_get_protocol(skb);
185 if (l3_proto == htons(ETH_P_IPV6) &&
186 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
187 *ipv6_ext = 1;
188
189 if (skb->encapsulation) {
190 rc |= XMIT_ENC;
191 if (skb_is_gso(skb)) {
192 unsigned short gso_type = skb_shinfo(skb)->gso_type;
193
194 if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
195 (gso_type & SKB_GSO_GRE_CSUM))
196 rc |= XMIT_ENC_GSO_L4_CSUM;
197
198 rc |= XMIT_LSO;
199 return rc;
200 }
201 }
202
203 if (skb_is_gso(skb))
204 rc |= XMIT_LSO;
205
206 return rc;
207 }
208
qede_set_params_for_ipv6_ext(struct sk_buff * skb,struct eth_tx_2nd_bd * second_bd,struct eth_tx_3rd_bd * third_bd)209 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
210 struct eth_tx_2nd_bd *second_bd,
211 struct eth_tx_3rd_bd *third_bd)
212 {
213 u8 l4_proto;
214 u16 bd2_bits1 = 0, bd2_bits2 = 0;
215
216 bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
217
218 bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
219 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
220 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
221
222 bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
223 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
224
225 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
226 l4_proto = ipv6_hdr(skb)->nexthdr;
227 else
228 l4_proto = ip_hdr(skb)->protocol;
229
230 if (l4_proto == IPPROTO_UDP)
231 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
232
233 if (third_bd)
234 third_bd->data.bitfields |=
235 cpu_to_le16(((tcp_hdrlen(skb) / 4) &
236 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
237 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
238
239 second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
240 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
241 }
242
map_frag_to_bd(struct qede_tx_queue * txq,skb_frag_t * frag,struct eth_tx_bd * bd)243 static int map_frag_to_bd(struct qede_tx_queue *txq,
244 skb_frag_t *frag, struct eth_tx_bd *bd)
245 {
246 dma_addr_t mapping;
247
248 /* Map skb non-linear frag data for DMA */
249 mapping = skb_frag_dma_map(txq->dev, frag, 0,
250 skb_frag_size(frag), DMA_TO_DEVICE);
251 if (unlikely(dma_mapping_error(txq->dev, mapping)))
252 return -ENOMEM;
253
254 /* Setup the data pointer of the frag data */
255 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
256
257 return 0;
258 }
259
qede_get_skb_hlen(struct sk_buff * skb,bool is_encap_pkt)260 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
261 {
262 if (is_encap_pkt)
263 return skb_inner_tcp_all_headers(skb);
264
265 return skb_tcp_all_headers(skb);
266 }
267
268 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
269 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
qede_pkt_req_lin(struct sk_buff * skb,u8 xmit_type)270 static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
271 {
272 int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
273
274 if (xmit_type & XMIT_LSO) {
275 int hlen;
276
277 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
278
279 /* linear payload would require its own BD */
280 if (skb_headlen(skb) > hlen)
281 allowed_frags--;
282 }
283
284 return (skb_shinfo(skb)->nr_frags > allowed_frags);
285 }
286 #endif
287
qede_update_tx_producer(struct qede_tx_queue * txq)288 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
289 {
290 /* wmb makes sure that the BDs data is updated before updating the
291 * producer, otherwise FW may read old data from the BDs.
292 */
293 wmb();
294 barrier();
295 writel(txq->tx_db.raw, txq->doorbell_addr);
296
297 /* Fence required to flush the write combined buffer, since another
298 * CPU may write to the same doorbell address and data may be lost
299 * due to relaxed order nature of write combined bar.
300 */
301 wmb();
302 }
303
qede_xdp_xmit(struct qede_tx_queue * txq,dma_addr_t dma,u16 pad,u16 len,struct page * page,struct xdp_frame * xdpf)304 static int qede_xdp_xmit(struct qede_tx_queue *txq, dma_addr_t dma, u16 pad,
305 u16 len, struct page *page, struct xdp_frame *xdpf)
306 {
307 struct eth_tx_1st_bd *bd;
308 struct sw_tx_xdp *xdp;
309 u16 val;
310
311 if (unlikely(qed_chain_get_elem_used(&txq->tx_pbl) >=
312 txq->num_tx_buffers)) {
313 txq->stopped_cnt++;
314 return -ENOMEM;
315 }
316
317 bd = qed_chain_produce(&txq->tx_pbl);
318 bd->data.nbds = 1;
319 bd->data.bd_flags.bitfields = BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
320
321 val = (len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
322 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
323
324 bd->data.bitfields = cpu_to_le16(val);
325
326 /* We can safely ignore the offset, as it's 0 for XDP */
327 BD_SET_UNMAP_ADDR_LEN(bd, dma + pad, len);
328
329 xdp = txq->sw_tx_ring.xdp + txq->sw_tx_prod;
330 xdp->mapping = dma;
331 xdp->page = page;
332 xdp->xdpf = xdpf;
333
334 txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
335
336 return 0;
337 }
338
qede_xdp_transmit(struct net_device * dev,int n_frames,struct xdp_frame ** frames,u32 flags)339 int qede_xdp_transmit(struct net_device *dev, int n_frames,
340 struct xdp_frame **frames, u32 flags)
341 {
342 struct qede_dev *edev = netdev_priv(dev);
343 struct device *dmadev = &edev->pdev->dev;
344 struct qede_tx_queue *xdp_tx;
345 struct xdp_frame *xdpf;
346 dma_addr_t mapping;
347 int i, nxmit = 0;
348 u16 xdp_prod;
349
350 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
351 return -EINVAL;
352
353 if (unlikely(!netif_running(dev)))
354 return -ENETDOWN;
355
356 i = smp_processor_id() % edev->total_xdp_queues;
357 xdp_tx = edev->fp_array[i].xdp_tx;
358
359 spin_lock(&xdp_tx->xdp_tx_lock);
360
361 for (i = 0; i < n_frames; i++) {
362 xdpf = frames[i];
363
364 mapping = dma_map_single(dmadev, xdpf->data, xdpf->len,
365 DMA_TO_DEVICE);
366 if (unlikely(dma_mapping_error(dmadev, mapping)))
367 break;
368
369 if (unlikely(qede_xdp_xmit(xdp_tx, mapping, 0, xdpf->len,
370 NULL, xdpf)))
371 break;
372 nxmit++;
373 }
374
375 if (flags & XDP_XMIT_FLUSH) {
376 xdp_prod = qed_chain_get_prod_idx(&xdp_tx->tx_pbl);
377
378 xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
379 qede_update_tx_producer(xdp_tx);
380 }
381
382 spin_unlock(&xdp_tx->xdp_tx_lock);
383
384 return nxmit;
385 }
386
qede_txq_has_work(struct qede_tx_queue * txq)387 int qede_txq_has_work(struct qede_tx_queue *txq)
388 {
389 u16 hw_bd_cons;
390
391 /* Tell compiler that consumer and producer can change */
392 barrier();
393 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
394 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
395 return 0;
396
397 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
398 }
399
qede_xdp_tx_int(struct qede_dev * edev,struct qede_tx_queue * txq)400 static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
401 {
402 struct sw_tx_xdp *xdp_info, *xdp_arr = txq->sw_tx_ring.xdp;
403 struct device *dev = &edev->pdev->dev;
404 struct xdp_frame *xdpf;
405 u16 hw_bd_cons;
406
407 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
408 barrier();
409
410 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
411 xdp_info = xdp_arr + txq->sw_tx_cons;
412 xdpf = xdp_info->xdpf;
413
414 if (xdpf) {
415 dma_unmap_single(dev, xdp_info->mapping, xdpf->len,
416 DMA_TO_DEVICE);
417 xdp_return_frame(xdpf);
418
419 xdp_info->xdpf = NULL;
420 } else {
421 dma_unmap_page(dev, xdp_info->mapping, PAGE_SIZE,
422 DMA_BIDIRECTIONAL);
423 __free_page(xdp_info->page);
424 }
425
426 qed_chain_consume(&txq->tx_pbl);
427 txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
428 txq->xmit_pkts++;
429 }
430 }
431
qede_tx_int(struct qede_dev * edev,struct qede_tx_queue * txq)432 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
433 {
434 unsigned int pkts_compl = 0, bytes_compl = 0;
435 struct netdev_queue *netdev_txq;
436 u16 hw_bd_cons;
437 int rc;
438
439 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
440
441 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
442 barrier();
443
444 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
445 int len = 0;
446
447 rc = qede_free_tx_pkt(edev, txq, &len);
448 if (rc) {
449 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
450 hw_bd_cons,
451 qed_chain_get_cons_idx(&txq->tx_pbl));
452 break;
453 }
454
455 bytes_compl += len;
456 pkts_compl++;
457 txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
458 txq->xmit_pkts++;
459 }
460
461 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
462
463 /* Need to make the tx_bd_cons update visible to start_xmit()
464 * before checking for netif_tx_queue_stopped(). Without the
465 * memory barrier, there is a small possibility that
466 * start_xmit() will miss it and cause the queue to be stopped
467 * forever.
468 * On the other hand we need an rmb() here to ensure the proper
469 * ordering of bit testing in the following
470 * netif_tx_queue_stopped(txq) call.
471 */
472 smp_mb();
473
474 if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
475 /* Taking tx_lock is needed to prevent reenabling the queue
476 * while it's empty. This could have happen if rx_action() gets
477 * suspended in qede_tx_int() after the condition before
478 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
479 *
480 * stops the queue->sees fresh tx_bd_cons->releases the queue->
481 * sends some packets consuming the whole queue again->
482 * stops the queue
483 */
484
485 __netif_tx_lock(netdev_txq, smp_processor_id());
486
487 if ((netif_tx_queue_stopped(netdev_txq)) &&
488 (edev->state == QEDE_STATE_OPEN) &&
489 (qed_chain_get_elem_left(&txq->tx_pbl)
490 >= (MAX_SKB_FRAGS + 1))) {
491 netif_tx_wake_queue(netdev_txq);
492 DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
493 "Wake queue was called\n");
494 }
495
496 __netif_tx_unlock(netdev_txq);
497 }
498
499 return 0;
500 }
501
qede_has_rx_work(struct qede_rx_queue * rxq)502 bool qede_has_rx_work(struct qede_rx_queue *rxq)
503 {
504 u16 hw_comp_cons, sw_comp_cons;
505
506 /* Tell compiler that status block fields can change */
507 barrier();
508
509 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
510 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
511
512 return hw_comp_cons != sw_comp_cons;
513 }
514
qede_rx_bd_ring_consume(struct qede_rx_queue * rxq)515 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
516 {
517 qed_chain_consume(&rxq->rx_bd_ring);
518 rxq->sw_rx_cons++;
519 }
520
521 /* This function reuses the buffer(from an offset) from
522 * consumer index to producer index in the bd ring
523 */
qede_reuse_page(struct qede_rx_queue * rxq,struct sw_rx_data * curr_cons)524 static inline void qede_reuse_page(struct qede_rx_queue *rxq,
525 struct sw_rx_data *curr_cons)
526 {
527 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
528 struct sw_rx_data *curr_prod;
529 dma_addr_t new_mapping;
530
531 curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
532 *curr_prod = *curr_cons;
533
534 new_mapping = curr_prod->mapping + curr_prod->page_offset;
535
536 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
537 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) +
538 rxq->rx_headroom);
539
540 rxq->sw_rx_prod++;
541 curr_cons->data = NULL;
542 }
543
544 /* In case of allocation failures reuse buffers
545 * from consumer index to produce buffers for firmware
546 */
qede_recycle_rx_bd_ring(struct qede_rx_queue * rxq,u8 count)547 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
548 {
549 struct sw_rx_data *curr_cons;
550
551 for (; count > 0; count--) {
552 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
553 qede_reuse_page(rxq, curr_cons);
554 qede_rx_bd_ring_consume(rxq);
555 }
556 }
557
qede_realloc_rx_buffer(struct qede_rx_queue * rxq,struct sw_rx_data * curr_cons)558 static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
559 struct sw_rx_data *curr_cons)
560 {
561 /* Move to the next segment in the page */
562 curr_cons->page_offset += rxq->rx_buf_seg_size;
563
564 if (curr_cons->page_offset == PAGE_SIZE) {
565 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
566 /* Since we failed to allocate new buffer
567 * current buffer can be used again.
568 */
569 curr_cons->page_offset -= rxq->rx_buf_seg_size;
570
571 return -ENOMEM;
572 }
573
574 dma_unmap_page(rxq->dev, curr_cons->mapping,
575 PAGE_SIZE, rxq->data_direction);
576 } else {
577 /* Increment refcount of the page as we don't want
578 * network stack to take the ownership of the page
579 * which can be recycled multiple times by the driver.
580 */
581 page_ref_inc(curr_cons->data);
582 qede_reuse_page(rxq, curr_cons);
583 }
584
585 return 0;
586 }
587
qede_update_rx_prod(struct qede_dev * edev,struct qede_rx_queue * rxq)588 void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
589 {
590 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
591 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
592 struct eth_rx_prod_data rx_prods = {0};
593
594 /* Update producers */
595 rx_prods.bd_prod = cpu_to_le16(bd_prod);
596 rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
597
598 /* Make sure that the BD and SGE data is updated before updating the
599 * producers since FW might read the BD/SGE right after the producer
600 * is updated.
601 */
602 wmb();
603
604 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
605 (u32 *)&rx_prods);
606 }
607
qede_get_rxhash(struct sk_buff * skb,u8 bitfields,__le32 rss_hash)608 static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
609 {
610 enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
611 enum rss_hash_type htype;
612 u32 hash = 0;
613
614 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
615 if (htype) {
616 hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
617 (htype == RSS_HASH_TYPE_IPV6)) ?
618 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
619 hash = le32_to_cpu(rss_hash);
620 }
621 skb_set_hash(skb, hash, hash_type);
622 }
623
qede_set_skb_csum(struct sk_buff * skb,u8 csum_flag)624 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
625 {
626 skb_checksum_none_assert(skb);
627
628 if (csum_flag & QEDE_CSUM_UNNECESSARY)
629 skb->ip_summed = CHECKSUM_UNNECESSARY;
630
631 if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
632 skb->csum_level = 1;
633 skb->encapsulation = 1;
634 }
635 }
636
qede_skb_receive(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq,struct sk_buff * skb,u16 vlan_tag)637 static inline void qede_skb_receive(struct qede_dev *edev,
638 struct qede_fastpath *fp,
639 struct qede_rx_queue *rxq,
640 struct sk_buff *skb, u16 vlan_tag)
641 {
642 if (vlan_tag)
643 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
644
645 napi_gro_receive(&fp->napi, skb);
646 }
647
qede_set_gro_params(struct qede_dev * edev,struct sk_buff * skb,struct eth_fast_path_rx_tpa_start_cqe * cqe)648 static void qede_set_gro_params(struct qede_dev *edev,
649 struct sk_buff *skb,
650 struct eth_fast_path_rx_tpa_start_cqe *cqe)
651 {
652 u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
653
654 if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
655 PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
656 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
657 else
658 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
659
660 skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
661 cqe->header_len;
662 }
663
qede_fill_frag_skb(struct qede_dev * edev,struct qede_rx_queue * rxq,u8 tpa_agg_index,u16 len_on_bd)664 static int qede_fill_frag_skb(struct qede_dev *edev,
665 struct qede_rx_queue *rxq,
666 u8 tpa_agg_index, u16 len_on_bd)
667 {
668 struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
669 NUM_RX_BDS_MAX];
670 struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
671 struct sk_buff *skb = tpa_info->skb;
672
673 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
674 goto out;
675
676 /* Add one frag and update the appropriate fields in the skb */
677 skb_fill_page_desc(skb, tpa_info->frag_id++,
678 current_bd->data,
679 current_bd->page_offset + rxq->rx_headroom,
680 len_on_bd);
681
682 if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
683 /* Incr page ref count to reuse on allocation failure
684 * so that it doesn't get freed while freeing SKB.
685 */
686 page_ref_inc(current_bd->data);
687 goto out;
688 }
689
690 qede_rx_bd_ring_consume(rxq);
691
692 skb->data_len += len_on_bd;
693 skb->truesize += rxq->rx_buf_seg_size;
694 skb->len += len_on_bd;
695
696 return 0;
697
698 out:
699 tpa_info->state = QEDE_AGG_STATE_ERROR;
700 qede_recycle_rx_bd_ring(rxq, 1);
701
702 return -ENOMEM;
703 }
704
qede_tunn_exist(u16 flag)705 static bool qede_tunn_exist(u16 flag)
706 {
707 return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
708 PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
709 }
710
qede_check_tunn_csum(u16 flag)711 static u8 qede_check_tunn_csum(u16 flag)
712 {
713 u16 csum_flag = 0;
714 u8 tcsum = 0;
715
716 if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
717 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
718 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
719 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
720
721 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
722 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
723 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
724 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
725 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
726 }
727
728 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
729 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
730 PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
731 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
732
733 if (csum_flag & flag)
734 return QEDE_CSUM_ERROR;
735
736 return QEDE_CSUM_UNNECESSARY | tcsum;
737 }
738
739 static inline struct sk_buff *
qede_build_skb(struct qede_rx_queue * rxq,struct sw_rx_data * bd,u16 len,u16 pad)740 qede_build_skb(struct qede_rx_queue *rxq,
741 struct sw_rx_data *bd, u16 len, u16 pad)
742 {
743 struct sk_buff *skb;
744 void *buf;
745
746 buf = page_address(bd->data) + bd->page_offset;
747 skb = build_skb(buf, rxq->rx_buf_seg_size);
748
749 if (unlikely(!skb))
750 return NULL;
751
752 skb_reserve(skb, pad);
753 skb_put(skb, len);
754
755 return skb;
756 }
757
758 static struct sk_buff *
qede_tpa_rx_build_skb(struct qede_dev * edev,struct qede_rx_queue * rxq,struct sw_rx_data * bd,u16 len,u16 pad,bool alloc_skb)759 qede_tpa_rx_build_skb(struct qede_dev *edev,
760 struct qede_rx_queue *rxq,
761 struct sw_rx_data *bd, u16 len, u16 pad,
762 bool alloc_skb)
763 {
764 struct sk_buff *skb;
765
766 skb = qede_build_skb(rxq, bd, len, pad);
767 bd->page_offset += rxq->rx_buf_seg_size;
768
769 if (bd->page_offset == PAGE_SIZE) {
770 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
771 DP_NOTICE(edev,
772 "Failed to allocate RX buffer for tpa start\n");
773 bd->page_offset -= rxq->rx_buf_seg_size;
774 page_ref_inc(bd->data);
775 dev_kfree_skb_any(skb);
776 return NULL;
777 }
778 } else {
779 page_ref_inc(bd->data);
780 qede_reuse_page(rxq, bd);
781 }
782
783 /* We've consumed the first BD and prepared an SKB */
784 qede_rx_bd_ring_consume(rxq);
785
786 return skb;
787 }
788
789 static struct sk_buff *
qede_rx_build_skb(struct qede_dev * edev,struct qede_rx_queue * rxq,struct sw_rx_data * bd,u16 len,u16 pad)790 qede_rx_build_skb(struct qede_dev *edev,
791 struct qede_rx_queue *rxq,
792 struct sw_rx_data *bd, u16 len, u16 pad)
793 {
794 struct sk_buff *skb = NULL;
795
796 /* For smaller frames still need to allocate skb, memcpy
797 * data and benefit in reusing the page segment instead of
798 * un-mapping it.
799 */
800 if ((len + pad <= edev->rx_copybreak)) {
801 unsigned int offset = bd->page_offset + pad;
802
803 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
804 if (unlikely(!skb))
805 return NULL;
806
807 skb_reserve(skb, pad);
808 skb_put_data(skb, page_address(bd->data) + offset, len);
809 qede_reuse_page(rxq, bd);
810 goto out;
811 }
812
813 skb = qede_build_skb(rxq, bd, len, pad);
814
815 if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
816 /* Incr page ref count to reuse on allocation failure so
817 * that it doesn't get freed while freeing SKB [as its
818 * already mapped there].
819 */
820 page_ref_inc(bd->data);
821 dev_kfree_skb_any(skb);
822 return NULL;
823 }
824 out:
825 /* We've consumed the first BD and prepared an SKB */
826 qede_rx_bd_ring_consume(rxq);
827
828 return skb;
829 }
830
qede_tpa_start(struct qede_dev * edev,struct qede_rx_queue * rxq,struct eth_fast_path_rx_tpa_start_cqe * cqe)831 static void qede_tpa_start(struct qede_dev *edev,
832 struct qede_rx_queue *rxq,
833 struct eth_fast_path_rx_tpa_start_cqe *cqe)
834 {
835 struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
836 struct sw_rx_data *sw_rx_data_cons;
837 u16 pad;
838
839 sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
840 pad = cqe->placement_offset + rxq->rx_headroom;
841
842 tpa_info->skb = qede_tpa_rx_build_skb(edev, rxq, sw_rx_data_cons,
843 le16_to_cpu(cqe->len_on_first_bd),
844 pad, false);
845 tpa_info->buffer.page_offset = sw_rx_data_cons->page_offset;
846 tpa_info->buffer.mapping = sw_rx_data_cons->mapping;
847
848 if (unlikely(!tpa_info->skb)) {
849 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
850
851 /* Consume from ring but do not produce since
852 * this might be used by FW still, it will be re-used
853 * at TPA end.
854 */
855 tpa_info->tpa_start_fail = true;
856 qede_rx_bd_ring_consume(rxq);
857 tpa_info->state = QEDE_AGG_STATE_ERROR;
858 goto cons_buf;
859 }
860
861 tpa_info->frag_id = 0;
862 tpa_info->state = QEDE_AGG_STATE_START;
863
864 if ((le16_to_cpu(cqe->pars_flags.flags) >>
865 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
866 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
867 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
868 else
869 tpa_info->vlan_tag = 0;
870
871 qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
872
873 /* This is needed in order to enable forwarding support */
874 qede_set_gro_params(edev, tpa_info->skb, cqe);
875
876 cons_buf: /* We still need to handle bd_len_list to consume buffers */
877 if (likely(cqe->bw_ext_bd_len_list[0]))
878 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
879 le16_to_cpu(cqe->bw_ext_bd_len_list[0]));
880
881 if (unlikely(cqe->bw_ext_bd_len_list[1])) {
882 DP_ERR(edev,
883 "Unlikely - got a TPA aggregation with more than one bw_ext_bd_len_list entry in the TPA start\n");
884 tpa_info->state = QEDE_AGG_STATE_ERROR;
885 }
886 }
887
888 #ifdef CONFIG_INET
qede_gro_ip_csum(struct sk_buff * skb)889 static void qede_gro_ip_csum(struct sk_buff *skb)
890 {
891 const struct iphdr *iph = ip_hdr(skb);
892 struct tcphdr *th;
893
894 skb_set_transport_header(skb, sizeof(struct iphdr));
895 th = tcp_hdr(skb);
896
897 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
898 iph->saddr, iph->daddr, 0);
899
900 tcp_gro_complete(skb);
901 }
902
qede_gro_ipv6_csum(struct sk_buff * skb)903 static void qede_gro_ipv6_csum(struct sk_buff *skb)
904 {
905 struct ipv6hdr *iph = ipv6_hdr(skb);
906 struct tcphdr *th;
907
908 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
909 th = tcp_hdr(skb);
910
911 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
912 &iph->saddr, &iph->daddr, 0);
913 tcp_gro_complete(skb);
914 }
915 #endif
916
qede_gro_receive(struct qede_dev * edev,struct qede_fastpath * fp,struct sk_buff * skb,u16 vlan_tag)917 static void qede_gro_receive(struct qede_dev *edev,
918 struct qede_fastpath *fp,
919 struct sk_buff *skb,
920 u16 vlan_tag)
921 {
922 /* FW can send a single MTU sized packet from gro flow
923 * due to aggregation timeout/last segment etc. which
924 * is not expected to be a gro packet. If a skb has zero
925 * frags then simply push it in the stack as non gso skb.
926 */
927 if (unlikely(!skb->data_len)) {
928 skb_shinfo(skb)->gso_type = 0;
929 skb_shinfo(skb)->gso_size = 0;
930 goto send_skb;
931 }
932
933 #ifdef CONFIG_INET
934 if (skb_shinfo(skb)->gso_size) {
935 skb_reset_network_header(skb);
936
937 switch (skb->protocol) {
938 case htons(ETH_P_IP):
939 qede_gro_ip_csum(skb);
940 break;
941 case htons(ETH_P_IPV6):
942 qede_gro_ipv6_csum(skb);
943 break;
944 default:
945 DP_ERR(edev,
946 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
947 ntohs(skb->protocol));
948 }
949 }
950 #endif
951
952 send_skb:
953 skb_record_rx_queue(skb, fp->rxq->rxq_id);
954 qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
955 }
956
qede_tpa_cont(struct qede_dev * edev,struct qede_rx_queue * rxq,struct eth_fast_path_rx_tpa_cont_cqe * cqe)957 static inline void qede_tpa_cont(struct qede_dev *edev,
958 struct qede_rx_queue *rxq,
959 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
960 {
961 int i;
962
963 for (i = 0; cqe->len_list[i]; i++)
964 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
965 le16_to_cpu(cqe->len_list[i]));
966
967 if (unlikely(i > 1))
968 DP_ERR(edev,
969 "Strange - TPA cont with more than a single len_list entry\n");
970 }
971
qede_tpa_end(struct qede_dev * edev,struct qede_fastpath * fp,struct eth_fast_path_rx_tpa_end_cqe * cqe)972 static int qede_tpa_end(struct qede_dev *edev,
973 struct qede_fastpath *fp,
974 struct eth_fast_path_rx_tpa_end_cqe *cqe)
975 {
976 struct qede_rx_queue *rxq = fp->rxq;
977 struct qede_agg_info *tpa_info;
978 struct sk_buff *skb;
979 int i;
980
981 tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
982 skb = tpa_info->skb;
983
984 if (tpa_info->buffer.page_offset == PAGE_SIZE)
985 dma_unmap_page(rxq->dev, tpa_info->buffer.mapping,
986 PAGE_SIZE, rxq->data_direction);
987
988 for (i = 0; cqe->len_list[i]; i++)
989 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
990 le16_to_cpu(cqe->len_list[i]));
991 if (unlikely(i > 1))
992 DP_ERR(edev,
993 "Strange - TPA emd with more than a single len_list entry\n");
994
995 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
996 goto err;
997
998 /* Sanity */
999 if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1000 DP_ERR(edev,
1001 "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1002 cqe->num_of_bds, tpa_info->frag_id);
1003 if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1004 DP_ERR(edev,
1005 "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1006 le16_to_cpu(cqe->total_packet_len), skb->len);
1007
1008 /* Finalize the SKB */
1009 skb->protocol = eth_type_trans(skb, edev->ndev);
1010 skb->ip_summed = CHECKSUM_UNNECESSARY;
1011
1012 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1013 * to skb_shinfo(skb)->gso_segs
1014 */
1015 NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1016
1017 qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1018
1019 tpa_info->state = QEDE_AGG_STATE_NONE;
1020
1021 return 1;
1022 err:
1023 tpa_info->state = QEDE_AGG_STATE_NONE;
1024
1025 if (tpa_info->tpa_start_fail) {
1026 qede_reuse_page(rxq, &tpa_info->buffer);
1027 tpa_info->tpa_start_fail = false;
1028 }
1029
1030 dev_kfree_skb_any(tpa_info->skb);
1031 tpa_info->skb = NULL;
1032 return 0;
1033 }
1034
qede_check_notunn_csum(u16 flag)1035 static u8 qede_check_notunn_csum(u16 flag)
1036 {
1037 u16 csum_flag = 0;
1038 u8 csum = 0;
1039
1040 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1041 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1042 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1043 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1044 csum = QEDE_CSUM_UNNECESSARY;
1045 }
1046
1047 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1048 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1049
1050 if (csum_flag & flag)
1051 return QEDE_CSUM_ERROR;
1052
1053 return csum;
1054 }
1055
qede_check_csum(u16 flag)1056 static u8 qede_check_csum(u16 flag)
1057 {
1058 if (!qede_tunn_exist(flag))
1059 return qede_check_notunn_csum(flag);
1060 else
1061 return qede_check_tunn_csum(flag);
1062 }
1063
qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe * cqe,u16 flag)1064 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1065 u16 flag)
1066 {
1067 u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1068
1069 if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1070 ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1071 (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1072 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1073 return true;
1074
1075 return false;
1076 }
1077
1078 /* Return true iff packet is to be passed to stack */
qede_rx_xdp(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq,struct bpf_prog * prog,struct sw_rx_data * bd,struct eth_fast_path_rx_reg_cqe * cqe,u16 * data_offset,u16 * len)1079 static bool qede_rx_xdp(struct qede_dev *edev,
1080 struct qede_fastpath *fp,
1081 struct qede_rx_queue *rxq,
1082 struct bpf_prog *prog,
1083 struct sw_rx_data *bd,
1084 struct eth_fast_path_rx_reg_cqe *cqe,
1085 u16 *data_offset, u16 *len)
1086 {
1087 struct xdp_buff xdp;
1088 enum xdp_action act;
1089
1090 xdp_init_buff(&xdp, rxq->rx_buf_seg_size, &rxq->xdp_rxq);
1091 xdp_prepare_buff(&xdp, page_address(bd->data), *data_offset,
1092 *len, false);
1093
1094 act = bpf_prog_run_xdp(prog, &xdp);
1095
1096 /* Recalculate, as XDP might have changed the headers */
1097 *data_offset = xdp.data - xdp.data_hard_start;
1098 *len = xdp.data_end - xdp.data;
1099
1100 if (act == XDP_PASS)
1101 return true;
1102
1103 /* Count number of packets not to be passed to stack */
1104 rxq->xdp_no_pass++;
1105
1106 switch (act) {
1107 case XDP_TX:
1108 /* We need the replacement buffer before transmit. */
1109 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
1110 qede_recycle_rx_bd_ring(rxq, 1);
1111
1112 trace_xdp_exception(edev->ndev, prog, act);
1113 break;
1114 }
1115
1116 /* Now if there's a transmission problem, we'd still have to
1117 * throw current buffer, as replacement was already allocated.
1118 */
1119 if (unlikely(qede_xdp_xmit(fp->xdp_tx, bd->mapping,
1120 *data_offset, *len, bd->data,
1121 NULL))) {
1122 dma_unmap_page(rxq->dev, bd->mapping, PAGE_SIZE,
1123 rxq->data_direction);
1124 __free_page(bd->data);
1125
1126 trace_xdp_exception(edev->ndev, prog, act);
1127 } else {
1128 dma_sync_single_for_device(rxq->dev,
1129 bd->mapping + *data_offset,
1130 *len, rxq->data_direction);
1131 fp->xdp_xmit |= QEDE_XDP_TX;
1132 }
1133
1134 /* Regardless, we've consumed an Rx BD */
1135 qede_rx_bd_ring_consume(rxq);
1136 break;
1137 case XDP_REDIRECT:
1138 /* We need the replacement buffer before transmit. */
1139 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
1140 qede_recycle_rx_bd_ring(rxq, 1);
1141
1142 trace_xdp_exception(edev->ndev, prog, act);
1143 break;
1144 }
1145
1146 dma_unmap_page(rxq->dev, bd->mapping, PAGE_SIZE,
1147 rxq->data_direction);
1148
1149 if (unlikely(xdp_do_redirect(edev->ndev, &xdp, prog)))
1150 DP_NOTICE(edev, "Failed to redirect the packet\n");
1151 else
1152 fp->xdp_xmit |= QEDE_XDP_REDIRECT;
1153
1154 qede_rx_bd_ring_consume(rxq);
1155 break;
1156 default:
1157 bpf_warn_invalid_xdp_action(edev->ndev, prog, act);
1158 fallthrough;
1159 case XDP_ABORTED:
1160 trace_xdp_exception(edev->ndev, prog, act);
1161 fallthrough;
1162 case XDP_DROP:
1163 qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
1164 }
1165
1166 return false;
1167 }
1168
qede_rx_build_jumbo(struct qede_dev * edev,struct qede_rx_queue * rxq,struct sk_buff * skb,struct eth_fast_path_rx_reg_cqe * cqe,u16 first_bd_len)1169 static int qede_rx_build_jumbo(struct qede_dev *edev,
1170 struct qede_rx_queue *rxq,
1171 struct sk_buff *skb,
1172 struct eth_fast_path_rx_reg_cqe *cqe,
1173 u16 first_bd_len)
1174 {
1175 u16 pkt_len = le16_to_cpu(cqe->pkt_len);
1176 struct sw_rx_data *bd;
1177 u16 bd_cons_idx;
1178 u8 num_frags;
1179
1180 pkt_len -= first_bd_len;
1181
1182 /* We've already used one BD for the SKB. Now take care of the rest */
1183 for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
1184 u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1185 pkt_len;
1186
1187 if (unlikely(!cur_size)) {
1188 DP_ERR(edev,
1189 "Still got %d BDs for mapping jumbo, but length became 0\n",
1190 num_frags);
1191 goto out;
1192 }
1193
1194 /* We need a replacement buffer for each BD */
1195 if (unlikely(qede_alloc_rx_buffer(rxq, true)))
1196 goto out;
1197
1198 /* Now that we've allocated the replacement buffer,
1199 * we can safely consume the next BD and map it to the SKB.
1200 */
1201 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1202 bd = &rxq->sw_rx_ring[bd_cons_idx];
1203 qede_rx_bd_ring_consume(rxq);
1204
1205 dma_unmap_page(rxq->dev, bd->mapping,
1206 PAGE_SIZE, DMA_FROM_DEVICE);
1207
1208 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, bd->data,
1209 rxq->rx_headroom, cur_size, PAGE_SIZE);
1210
1211 pkt_len -= cur_size;
1212 }
1213
1214 if (unlikely(pkt_len))
1215 DP_ERR(edev,
1216 "Mapped all BDs of jumbo, but still have %d bytes\n",
1217 pkt_len);
1218
1219 out:
1220 return num_frags;
1221 }
1222
qede_rx_process_tpa_cqe(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq,union eth_rx_cqe * cqe,enum eth_rx_cqe_type type)1223 static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
1224 struct qede_fastpath *fp,
1225 struct qede_rx_queue *rxq,
1226 union eth_rx_cqe *cqe,
1227 enum eth_rx_cqe_type type)
1228 {
1229 switch (type) {
1230 case ETH_RX_CQE_TYPE_TPA_START:
1231 qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
1232 return 0;
1233 case ETH_RX_CQE_TYPE_TPA_CONT:
1234 qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
1235 return 0;
1236 case ETH_RX_CQE_TYPE_TPA_END:
1237 return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
1238 default:
1239 return 0;
1240 }
1241 }
1242
qede_rx_process_cqe(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq)1243 static int qede_rx_process_cqe(struct qede_dev *edev,
1244 struct qede_fastpath *fp,
1245 struct qede_rx_queue *rxq)
1246 {
1247 struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
1248 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1249 u16 len, pad, bd_cons_idx, parse_flag;
1250 enum eth_rx_cqe_type cqe_type;
1251 union eth_rx_cqe *cqe;
1252 struct sw_rx_data *bd;
1253 struct sk_buff *skb;
1254 __le16 flags;
1255 u8 csum_flag;
1256
1257 /* Get the CQE from the completion ring */
1258 cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
1259 cqe_type = cqe->fast_path_regular.type;
1260
1261 /* Process an unlikely slowpath event */
1262 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1263 struct eth_slow_path_rx_cqe *sp_cqe;
1264
1265 sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
1266 edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
1267 return 0;
1268 }
1269
1270 /* Handle TPA cqes */
1271 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
1272 return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
1273
1274 /* Get the data from the SW ring; Consume it only after it's evident
1275 * we wouldn't recycle it.
1276 */
1277 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1278 bd = &rxq->sw_rx_ring[bd_cons_idx];
1279
1280 fp_cqe = &cqe->fast_path_regular;
1281 len = le16_to_cpu(fp_cqe->len_on_first_bd);
1282 pad = fp_cqe->placement_offset + rxq->rx_headroom;
1283
1284 /* Run eBPF program if one is attached */
1285 if (xdp_prog)
1286 if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe,
1287 &pad, &len))
1288 return 0;
1289
1290 /* If this is an error packet then drop it */
1291 flags = cqe->fast_path_regular.pars_flags.flags;
1292 parse_flag = le16_to_cpu(flags);
1293
1294 csum_flag = qede_check_csum(parse_flag);
1295 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1296 if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag))
1297 rxq->rx_ip_frags++;
1298 else
1299 rxq->rx_hw_errors++;
1300 }
1301
1302 /* Basic validation passed; Need to prepare an SKB. This would also
1303 * guarantee to finally consume the first BD upon success.
1304 */
1305 skb = qede_rx_build_skb(edev, rxq, bd, len, pad);
1306 if (!skb) {
1307 rxq->rx_alloc_errors++;
1308 qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1309 return 0;
1310 }
1311
1312 /* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
1313 * by a single cqe.
1314 */
1315 if (fp_cqe->bd_num > 1) {
1316 u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
1317 fp_cqe, len);
1318
1319 if (unlikely(unmapped_frags > 0)) {
1320 qede_recycle_rx_bd_ring(rxq, unmapped_frags);
1321 dev_kfree_skb_any(skb);
1322 return 0;
1323 }
1324 }
1325
1326 /* The SKB contains all the data. Now prepare meta-magic */
1327 skb->protocol = eth_type_trans(skb, edev->ndev);
1328 qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
1329 qede_set_skb_csum(skb, csum_flag);
1330 skb_record_rx_queue(skb, rxq->rxq_id);
1331 qede_ptp_record_rx_ts(edev, cqe, skb);
1332
1333 /* SKB is prepared - pass it to stack */
1334 qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
1335
1336 return 1;
1337 }
1338
qede_rx_int(struct qede_fastpath * fp,int budget)1339 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1340 {
1341 struct qede_rx_queue *rxq = fp->rxq;
1342 struct qede_dev *edev = fp->edev;
1343 int work_done = 0, rcv_pkts = 0;
1344 u16 hw_comp_cons, sw_comp_cons;
1345
1346 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1347 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1348
1349 /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1350 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1351 * read before it is written by FW, then FW writes CQE and SB, and then
1352 * the CPU reads the hw_comp_cons, it will use an old CQE.
1353 */
1354 rmb();
1355
1356 /* Loop to complete all indicated BDs */
1357 while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
1358 rcv_pkts += qede_rx_process_cqe(edev, fp, rxq);
1359 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1360 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1361 work_done++;
1362 }
1363
1364 rxq->rcv_pkts += rcv_pkts;
1365
1366 /* Allocate replacement buffers */
1367 while (rxq->num_rx_buffers - rxq->filled_buffers)
1368 if (qede_alloc_rx_buffer(rxq, false))
1369 break;
1370
1371 /* Update producers */
1372 qede_update_rx_prod(edev, rxq);
1373
1374 return work_done;
1375 }
1376
qede_poll_is_more_work(struct qede_fastpath * fp)1377 static bool qede_poll_is_more_work(struct qede_fastpath *fp)
1378 {
1379 qed_sb_update_sb_idx(fp->sb_info);
1380
1381 /* *_has_*_work() reads the status block, thus we need to ensure that
1382 * status block indices have been actually read (qed_sb_update_sb_idx)
1383 * prior to this check (*_has_*_work) so that we won't write the
1384 * "newer" value of the status block to HW (if there was a DMA right
1385 * after qede_has_rx_work and if there is no rmb, the memory reading
1386 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
1387 * In this case there will never be another interrupt until there is
1388 * another update of the status block, while there is still unhandled
1389 * work.
1390 */
1391 rmb();
1392
1393 if (likely(fp->type & QEDE_FASTPATH_RX))
1394 if (qede_has_rx_work(fp->rxq))
1395 return true;
1396
1397 if (fp->type & QEDE_FASTPATH_XDP)
1398 if (qede_txq_has_work(fp->xdp_tx))
1399 return true;
1400
1401 if (likely(fp->type & QEDE_FASTPATH_TX)) {
1402 int cos;
1403
1404 for_each_cos_in_txq(fp->edev, cos) {
1405 if (qede_txq_has_work(&fp->txq[cos]))
1406 return true;
1407 }
1408 }
1409
1410 return false;
1411 }
1412
1413 /*********************
1414 * NDO & API related *
1415 *********************/
qede_poll(struct napi_struct * napi,int budget)1416 int qede_poll(struct napi_struct *napi, int budget)
1417 {
1418 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1419 napi);
1420 struct qede_dev *edev = fp->edev;
1421 int rx_work_done = 0;
1422 u16 xdp_prod;
1423
1424 fp->xdp_xmit = 0;
1425
1426 if (likely(fp->type & QEDE_FASTPATH_TX)) {
1427 int cos;
1428
1429 for_each_cos_in_txq(fp->edev, cos) {
1430 if (qede_txq_has_work(&fp->txq[cos]))
1431 qede_tx_int(edev, &fp->txq[cos]);
1432 }
1433 }
1434
1435 if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
1436 qede_xdp_tx_int(edev, fp->xdp_tx);
1437
1438 rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1439 qede_has_rx_work(fp->rxq)) ?
1440 qede_rx_int(fp, budget) : 0;
1441 /* Handle case where we are called by netpoll with a budget of 0 */
1442 if (rx_work_done < budget || !budget) {
1443 if (!qede_poll_is_more_work(fp)) {
1444 napi_complete_done(napi, rx_work_done);
1445
1446 /* Update and reenable interrupts */
1447 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
1448 } else {
1449 rx_work_done = budget;
1450 }
1451 }
1452
1453 if (fp->xdp_xmit & QEDE_XDP_TX) {
1454 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
1455
1456 fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
1457 qede_update_tx_producer(fp->xdp_tx);
1458 }
1459
1460 if (fp->xdp_xmit & QEDE_XDP_REDIRECT)
1461 xdp_do_flush_map();
1462
1463 return rx_work_done;
1464 }
1465
qede_msix_fp_int(int irq,void * fp_cookie)1466 irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1467 {
1468 struct qede_fastpath *fp = fp_cookie;
1469
1470 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1471
1472 napi_schedule_irqoff(&fp->napi);
1473 return IRQ_HANDLED;
1474 }
1475
1476 /* Main transmit function */
qede_start_xmit(struct sk_buff * skb,struct net_device * ndev)1477 netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1478 {
1479 struct qede_dev *edev = netdev_priv(ndev);
1480 struct netdev_queue *netdev_txq;
1481 struct qede_tx_queue *txq;
1482 struct eth_tx_1st_bd *first_bd;
1483 struct eth_tx_2nd_bd *second_bd = NULL;
1484 struct eth_tx_3rd_bd *third_bd = NULL;
1485 struct eth_tx_bd *tx_data_bd = NULL;
1486 u16 txq_index, val = 0;
1487 u8 nbd = 0;
1488 dma_addr_t mapping;
1489 int rc, frag_idx = 0, ipv6_ext = 0;
1490 u8 xmit_type;
1491 u16 idx;
1492 u16 hlen;
1493 bool data_split = false;
1494
1495 /* Get tx-queue context and netdev index */
1496 txq_index = skb_get_queue_mapping(skb);
1497 WARN_ON(txq_index >= QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc);
1498 txq = QEDE_NDEV_TXQ_ID_TO_TXQ(edev, txq_index);
1499 netdev_txq = netdev_get_tx_queue(ndev, txq_index);
1500
1501 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
1502
1503 xmit_type = qede_xmit_type(skb, &ipv6_ext);
1504
1505 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
1506 if (qede_pkt_req_lin(skb, xmit_type)) {
1507 if (skb_linearize(skb)) {
1508 txq->tx_mem_alloc_err++;
1509
1510 dev_kfree_skb_any(skb);
1511 return NETDEV_TX_OK;
1512 }
1513 }
1514 #endif
1515
1516 /* Fill the entry in the SW ring and the BDs in the FW ring */
1517 idx = txq->sw_tx_prod;
1518 txq->sw_tx_ring.skbs[idx].skb = skb;
1519 first_bd = (struct eth_tx_1st_bd *)
1520 qed_chain_produce(&txq->tx_pbl);
1521 memset(first_bd, 0, sizeof(*first_bd));
1522 first_bd->data.bd_flags.bitfields =
1523 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1524
1525 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
1526 qede_ptp_tx_ts(edev, skb);
1527
1528 /* Map skb linear data for DMA and set in the first BD */
1529 mapping = dma_map_single(txq->dev, skb->data,
1530 skb_headlen(skb), DMA_TO_DEVICE);
1531 if (unlikely(dma_mapping_error(txq->dev, mapping))) {
1532 DP_NOTICE(edev, "SKB mapping failed\n");
1533 qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1534 qede_update_tx_producer(txq);
1535 return NETDEV_TX_OK;
1536 }
1537 nbd++;
1538 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
1539
1540 /* In case there is IPv6 with extension headers or LSO we need 2nd and
1541 * 3rd BDs.
1542 */
1543 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
1544 second_bd = (struct eth_tx_2nd_bd *)
1545 qed_chain_produce(&txq->tx_pbl);
1546 memset(second_bd, 0, sizeof(*second_bd));
1547
1548 nbd++;
1549 third_bd = (struct eth_tx_3rd_bd *)
1550 qed_chain_produce(&txq->tx_pbl);
1551 memset(third_bd, 0, sizeof(*third_bd));
1552
1553 nbd++;
1554 /* We need to fill in additional data in second_bd... */
1555 tx_data_bd = (struct eth_tx_bd *)second_bd;
1556 }
1557
1558 if (skb_vlan_tag_present(skb)) {
1559 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1560 first_bd->data.bd_flags.bitfields |=
1561 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1562 }
1563
1564 /* Fill the parsing flags & params according to the requested offload */
1565 if (xmit_type & XMIT_L4_CSUM) {
1566 /* We don't re-calculate IP checksum as it is already done by
1567 * the upper stack
1568 */
1569 first_bd->data.bd_flags.bitfields |=
1570 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1571
1572 if (xmit_type & XMIT_ENC) {
1573 first_bd->data.bd_flags.bitfields |=
1574 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1575
1576 val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1577 }
1578
1579 /* Legacy FW had flipped behavior in regard to this bit -
1580 * I.e., needed to set to prevent FW from touching encapsulated
1581 * packets when it didn't need to.
1582 */
1583 if (unlikely(txq->is_legacy))
1584 val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1585
1586 /* If the packet is IPv6 with extension header, indicate that
1587 * to FW and pass few params, since the device cracker doesn't
1588 * support parsing IPv6 with extension header/s.
1589 */
1590 if (unlikely(ipv6_ext))
1591 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
1592 }
1593
1594 if (xmit_type & XMIT_LSO) {
1595 first_bd->data.bd_flags.bitfields |=
1596 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
1597 third_bd->data.lso_mss =
1598 cpu_to_le16(skb_shinfo(skb)->gso_size);
1599
1600 if (unlikely(xmit_type & XMIT_ENC)) {
1601 first_bd->data.bd_flags.bitfields |=
1602 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1603
1604 if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
1605 u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1606
1607 first_bd->data.bd_flags.bitfields |= 1 << tmp;
1608 }
1609 hlen = qede_get_skb_hlen(skb, true);
1610 } else {
1611 first_bd->data.bd_flags.bitfields |=
1612 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1613 hlen = qede_get_skb_hlen(skb, false);
1614 }
1615
1616 /* @@@TBD - if will not be removed need to check */
1617 third_bd->data.bitfields |=
1618 cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
1619
1620 /* Make life easier for FW guys who can't deal with header and
1621 * data on same BD. If we need to split, use the second bd...
1622 */
1623 if (unlikely(skb_headlen(skb) > hlen)) {
1624 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1625 "TSO split header size is %d (%x:%x)\n",
1626 first_bd->nbytes, first_bd->addr.hi,
1627 first_bd->addr.lo);
1628
1629 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
1630 le32_to_cpu(first_bd->addr.lo)) +
1631 hlen;
1632
1633 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
1634 le16_to_cpu(first_bd->nbytes) -
1635 hlen);
1636
1637 /* this marks the BD as one that has no
1638 * individual mapping
1639 */
1640 txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
1641
1642 first_bd->nbytes = cpu_to_le16(hlen);
1643
1644 tx_data_bd = (struct eth_tx_bd *)third_bd;
1645 data_split = true;
1646 }
1647 } else {
1648 if (unlikely(skb->len > ETH_TX_MAX_NON_LSO_PKT_LEN)) {
1649 DP_ERR(edev, "Unexpected non LSO skb length = 0x%x\n", skb->len);
1650 qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1651 qede_update_tx_producer(txq);
1652 return NETDEV_TX_OK;
1653 }
1654
1655 val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
1656 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT);
1657 }
1658
1659 first_bd->data.bitfields = cpu_to_le16(val);
1660
1661 /* Handle fragmented skb */
1662 /* special handle for frags inside 2nd and 3rd bds.. */
1663 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
1664 rc = map_frag_to_bd(txq,
1665 &skb_shinfo(skb)->frags[frag_idx],
1666 tx_data_bd);
1667 if (rc) {
1668 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1669 qede_update_tx_producer(txq);
1670 return NETDEV_TX_OK;
1671 }
1672
1673 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
1674 tx_data_bd = (struct eth_tx_bd *)third_bd;
1675 else
1676 tx_data_bd = NULL;
1677
1678 frag_idx++;
1679 }
1680
1681 /* map last frags into 4th, 5th .... */
1682 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
1683 tx_data_bd = (struct eth_tx_bd *)
1684 qed_chain_produce(&txq->tx_pbl);
1685
1686 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
1687
1688 rc = map_frag_to_bd(txq,
1689 &skb_shinfo(skb)->frags[frag_idx],
1690 tx_data_bd);
1691 if (rc) {
1692 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1693 qede_update_tx_producer(txq);
1694 return NETDEV_TX_OK;
1695 }
1696 }
1697
1698 /* update the first BD with the actual num BDs */
1699 first_bd->data.nbds = nbd;
1700
1701 netdev_tx_sent_queue(netdev_txq, skb->len);
1702
1703 skb_tx_timestamp(skb);
1704
1705 /* Advance packet producer only before sending the packet since mapping
1706 * of pages may fail.
1707 */
1708 txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
1709
1710 /* 'next page' entries are counted in the producer value */
1711 txq->tx_db.data.bd_prod =
1712 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
1713
1714 if (!netdev_xmit_more() || netif_xmit_stopped(netdev_txq))
1715 qede_update_tx_producer(txq);
1716
1717 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
1718 < (MAX_SKB_FRAGS + 1))) {
1719 if (netdev_xmit_more())
1720 qede_update_tx_producer(txq);
1721
1722 netif_tx_stop_queue(netdev_txq);
1723 txq->stopped_cnt++;
1724 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1725 "Stop queue was called\n");
1726 /* paired memory barrier is in qede_tx_int(), we have to keep
1727 * ordering of set_bit() in netif_tx_stop_queue() and read of
1728 * fp->bd_tx_cons
1729 */
1730 smp_mb();
1731
1732 if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
1733 (MAX_SKB_FRAGS + 1)) &&
1734 (edev->state == QEDE_STATE_OPEN)) {
1735 netif_tx_wake_queue(netdev_txq);
1736 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1737 "Wake queue was called\n");
1738 }
1739 }
1740
1741 return NETDEV_TX_OK;
1742 }
1743
qede_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1744 u16 qede_select_queue(struct net_device *dev, struct sk_buff *skb,
1745 struct net_device *sb_dev)
1746 {
1747 struct qede_dev *edev = netdev_priv(dev);
1748 int total_txq;
1749
1750 total_txq = QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc;
1751
1752 return QEDE_TSS_COUNT(edev) ?
1753 netdev_pick_tx(dev, skb, NULL) % total_txq : 0;
1754 }
1755
1756 /* 8B udp header + 8B base tunnel header + 32B option length */
1757 #define QEDE_MAX_TUN_HDR_LEN 48
1758
qede_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)1759 netdev_features_t qede_features_check(struct sk_buff *skb,
1760 struct net_device *dev,
1761 netdev_features_t features)
1762 {
1763 if (skb->encapsulation) {
1764 u8 l4_proto = 0;
1765
1766 switch (vlan_get_protocol(skb)) {
1767 case htons(ETH_P_IP):
1768 l4_proto = ip_hdr(skb)->protocol;
1769 break;
1770 case htons(ETH_P_IPV6):
1771 l4_proto = ipv6_hdr(skb)->nexthdr;
1772 break;
1773 default:
1774 return features;
1775 }
1776
1777 /* Disable offloads for geneve tunnels, as HW can't parse
1778 * the geneve header which has option length greater than 32b
1779 * and disable offloads for the ports which are not offloaded.
1780 */
1781 if (l4_proto == IPPROTO_UDP) {
1782 struct qede_dev *edev = netdev_priv(dev);
1783 u16 hdrlen, vxln_port, gnv_port;
1784
1785 hdrlen = QEDE_MAX_TUN_HDR_LEN;
1786 vxln_port = edev->vxlan_dst_port;
1787 gnv_port = edev->geneve_dst_port;
1788
1789 if ((skb_inner_mac_header(skb) -
1790 skb_transport_header(skb)) > hdrlen ||
1791 (ntohs(udp_hdr(skb)->dest) != vxln_port &&
1792 ntohs(udp_hdr(skb)->dest) != gnv_port))
1793 return features & ~(NETIF_F_CSUM_MASK |
1794 NETIF_F_GSO_MASK);
1795 } else if (l4_proto == IPPROTO_IPIP) {
1796 /* IPIP tunnels are unknown to the device or at least unsupported natively,
1797 * offloads for them can't be done trivially, so disable them for such skb.
1798 */
1799 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1800 }
1801 }
1802
1803 return features;
1804 }
1805