1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3 * Copyright (c) 2015-2017 QLogic Corporation
4 * Copyright (c) 2019-2020 Marvell International Ltd.
5 */
6
7 #include <linux/netdevice.h>
8 #include <linux/etherdevice.h>
9 #include <linux/skbuff.h>
10 #include <linux/bpf_trace.h>
11 #include <net/udp_tunnel.h>
12 #include <linux/ip.h>
13 #include <net/gro.h>
14 #include <net/ipv6.h>
15 #include <net/tcp.h>
16 #include <linux/if_ether.h>
17 #include <linux/if_vlan.h>
18 #include <net/ip6_checksum.h>
19 #include "qede_ptp.h"
20
21 #include <linux/qed/qed_if.h>
22 #include "qede.h"
23 /*********************************
24 * Content also used by slowpath *
25 *********************************/
26
qede_alloc_rx_buffer(struct qede_rx_queue * rxq,bool allow_lazy)27 int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
28 {
29 struct sw_rx_data *sw_rx_data;
30 struct eth_rx_bd *rx_bd;
31 dma_addr_t mapping;
32 struct page *data;
33
34 /* In case lazy-allocation is allowed, postpone allocation until the
35 * end of the NAPI run. We'd still need to make sure the Rx ring has
36 * sufficient buffers to guarantee an additional Rx interrupt.
37 */
38 if (allow_lazy && likely(rxq->filled_buffers > 12)) {
39 rxq->filled_buffers--;
40 return 0;
41 }
42
43 data = alloc_pages(GFP_ATOMIC, 0);
44 if (unlikely(!data))
45 return -ENOMEM;
46
47 /* Map the entire page as it would be used
48 * for multiple RX buffer segment size mapping.
49 */
50 mapping = dma_map_page(rxq->dev, data, 0,
51 PAGE_SIZE, rxq->data_direction);
52 if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
53 __free_page(data);
54 return -ENOMEM;
55 }
56
57 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
58 sw_rx_data->page_offset = 0;
59 sw_rx_data->data = data;
60 sw_rx_data->mapping = mapping;
61
62 /* Advance PROD and get BD pointer */
63 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
64 WARN_ON(!rx_bd);
65 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
66 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) +
67 rxq->rx_headroom);
68
69 rxq->sw_rx_prod++;
70 rxq->filled_buffers++;
71
72 return 0;
73 }
74
75 /* Unmap the data and free skb */
qede_free_tx_pkt(struct qede_dev * edev,struct qede_tx_queue * txq,int * len)76 int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
77 {
78 u16 idx = txq->sw_tx_cons;
79 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
80 struct eth_tx_1st_bd *first_bd;
81 struct eth_tx_bd *tx_data_bd;
82 int bds_consumed = 0;
83 int nbds;
84 bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
85 int i, split_bd_len = 0;
86
87 if (unlikely(!skb)) {
88 DP_ERR(edev,
89 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
90 idx, txq->sw_tx_cons, txq->sw_tx_prod);
91 return -1;
92 }
93
94 *len = skb->len;
95
96 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
97
98 bds_consumed++;
99
100 nbds = first_bd->data.nbds;
101
102 if (data_split) {
103 struct eth_tx_bd *split = (struct eth_tx_bd *)
104 qed_chain_consume(&txq->tx_pbl);
105 split_bd_len = BD_UNMAP_LEN(split);
106 bds_consumed++;
107 }
108 dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
109 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
110
111 /* Unmap the data of the skb frags */
112 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
113 tx_data_bd = (struct eth_tx_bd *)
114 qed_chain_consume(&txq->tx_pbl);
115 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
116 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
117 }
118
119 while (bds_consumed++ < nbds)
120 qed_chain_consume(&txq->tx_pbl);
121
122 /* Free skb */
123 dev_kfree_skb_any(skb);
124 txq->sw_tx_ring.skbs[idx].skb = NULL;
125 txq->sw_tx_ring.skbs[idx].flags = 0;
126
127 return 0;
128 }
129
130 /* Unmap the data and free skb when mapping failed during start_xmit */
qede_free_failed_tx_pkt(struct qede_tx_queue * txq,struct eth_tx_1st_bd * first_bd,int nbd,bool data_split)131 static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
132 struct eth_tx_1st_bd *first_bd,
133 int nbd, bool data_split)
134 {
135 u16 idx = txq->sw_tx_prod;
136 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
137 struct eth_tx_bd *tx_data_bd;
138 int i, split_bd_len = 0;
139
140 /* Return prod to its position before this skb was handled */
141 qed_chain_set_prod(&txq->tx_pbl,
142 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
143
144 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
145
146 if (data_split) {
147 struct eth_tx_bd *split = (struct eth_tx_bd *)
148 qed_chain_produce(&txq->tx_pbl);
149 split_bd_len = BD_UNMAP_LEN(split);
150 nbd--;
151 }
152
153 dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
154 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
155
156 /* Unmap the data of the skb frags */
157 for (i = 0; i < nbd; i++) {
158 tx_data_bd = (struct eth_tx_bd *)
159 qed_chain_produce(&txq->tx_pbl);
160 if (tx_data_bd->nbytes)
161 dma_unmap_page(txq->dev,
162 BD_UNMAP_ADDR(tx_data_bd),
163 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
164 }
165
166 /* Return again prod to its position before this skb was handled */
167 qed_chain_set_prod(&txq->tx_pbl,
168 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
169
170 /* Free skb */
171 dev_kfree_skb_any(skb);
172 txq->sw_tx_ring.skbs[idx].skb = NULL;
173 txq->sw_tx_ring.skbs[idx].flags = 0;
174 }
175
qede_xmit_type(struct sk_buff * skb,int * ipv6_ext)176 static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
177 {
178 u32 rc = XMIT_L4_CSUM;
179 __be16 l3_proto;
180
181 if (skb->ip_summed != CHECKSUM_PARTIAL)
182 return XMIT_PLAIN;
183
184 l3_proto = vlan_get_protocol(skb);
185 if (l3_proto == htons(ETH_P_IPV6) &&
186 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
187 *ipv6_ext = 1;
188
189 if (skb->encapsulation) {
190 rc |= XMIT_ENC;
191 if (skb_is_gso(skb)) {
192 unsigned short gso_type = skb_shinfo(skb)->gso_type;
193
194 if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
195 (gso_type & SKB_GSO_GRE_CSUM))
196 rc |= XMIT_ENC_GSO_L4_CSUM;
197
198 rc |= XMIT_LSO;
199 return rc;
200 }
201 }
202
203 if (skb_is_gso(skb))
204 rc |= XMIT_LSO;
205
206 return rc;
207 }
208
qede_set_params_for_ipv6_ext(struct sk_buff * skb,struct eth_tx_2nd_bd * second_bd,struct eth_tx_3rd_bd * third_bd)209 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
210 struct eth_tx_2nd_bd *second_bd,
211 struct eth_tx_3rd_bd *third_bd)
212 {
213 u8 l4_proto;
214 u16 bd2_bits1 = 0, bd2_bits2 = 0;
215
216 bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
217
218 bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
219 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
220 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
221
222 bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
223 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
224
225 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
226 l4_proto = ipv6_hdr(skb)->nexthdr;
227 else
228 l4_proto = ip_hdr(skb)->protocol;
229
230 if (l4_proto == IPPROTO_UDP)
231 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
232
233 if (third_bd)
234 third_bd->data.bitfields |=
235 cpu_to_le16(((tcp_hdrlen(skb) / 4) &
236 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
237 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
238
239 second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
240 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
241 }
242
map_frag_to_bd(struct qede_tx_queue * txq,skb_frag_t * frag,struct eth_tx_bd * bd)243 static int map_frag_to_bd(struct qede_tx_queue *txq,
244 skb_frag_t *frag, struct eth_tx_bd *bd)
245 {
246 dma_addr_t mapping;
247
248 /* Map skb non-linear frag data for DMA */
249 mapping = skb_frag_dma_map(txq->dev, frag, 0,
250 skb_frag_size(frag), DMA_TO_DEVICE);
251 if (unlikely(dma_mapping_error(txq->dev, mapping)))
252 return -ENOMEM;
253
254 /* Setup the data pointer of the frag data */
255 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
256
257 return 0;
258 }
259
qede_get_skb_hlen(struct sk_buff * skb,bool is_encap_pkt)260 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
261 {
262 if (is_encap_pkt)
263 return (skb_inner_transport_header(skb) +
264 inner_tcp_hdrlen(skb) - skb->data);
265 else
266 return (skb_transport_header(skb) +
267 tcp_hdrlen(skb) - skb->data);
268 }
269
270 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
271 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
qede_pkt_req_lin(struct sk_buff * skb,u8 xmit_type)272 static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
273 {
274 int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
275
276 if (xmit_type & XMIT_LSO) {
277 int hlen;
278
279 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
280
281 /* linear payload would require its own BD */
282 if (skb_headlen(skb) > hlen)
283 allowed_frags--;
284 }
285
286 return (skb_shinfo(skb)->nr_frags > allowed_frags);
287 }
288 #endif
289
qede_update_tx_producer(struct qede_tx_queue * txq)290 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
291 {
292 /* wmb makes sure that the BDs data is updated before updating the
293 * producer, otherwise FW may read old data from the BDs.
294 */
295 wmb();
296 barrier();
297 writel(txq->tx_db.raw, txq->doorbell_addr);
298
299 /* Fence required to flush the write combined buffer, since another
300 * CPU may write to the same doorbell address and data may be lost
301 * due to relaxed order nature of write combined bar.
302 */
303 wmb();
304 }
305
qede_xdp_xmit(struct qede_tx_queue * txq,dma_addr_t dma,u16 pad,u16 len,struct page * page,struct xdp_frame * xdpf)306 static int qede_xdp_xmit(struct qede_tx_queue *txq, dma_addr_t dma, u16 pad,
307 u16 len, struct page *page, struct xdp_frame *xdpf)
308 {
309 struct eth_tx_1st_bd *bd;
310 struct sw_tx_xdp *xdp;
311 u16 val;
312
313 if (unlikely(qed_chain_get_elem_used(&txq->tx_pbl) >=
314 txq->num_tx_buffers)) {
315 txq->stopped_cnt++;
316 return -ENOMEM;
317 }
318
319 bd = qed_chain_produce(&txq->tx_pbl);
320 bd->data.nbds = 1;
321 bd->data.bd_flags.bitfields = BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
322
323 val = (len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
324 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
325
326 bd->data.bitfields = cpu_to_le16(val);
327
328 /* We can safely ignore the offset, as it's 0 for XDP */
329 BD_SET_UNMAP_ADDR_LEN(bd, dma + pad, len);
330
331 xdp = txq->sw_tx_ring.xdp + txq->sw_tx_prod;
332 xdp->mapping = dma;
333 xdp->page = page;
334 xdp->xdpf = xdpf;
335
336 txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
337
338 return 0;
339 }
340
qede_xdp_transmit(struct net_device * dev,int n_frames,struct xdp_frame ** frames,u32 flags)341 int qede_xdp_transmit(struct net_device *dev, int n_frames,
342 struct xdp_frame **frames, u32 flags)
343 {
344 struct qede_dev *edev = netdev_priv(dev);
345 struct device *dmadev = &edev->pdev->dev;
346 struct qede_tx_queue *xdp_tx;
347 struct xdp_frame *xdpf;
348 dma_addr_t mapping;
349 int i, nxmit = 0;
350 u16 xdp_prod;
351
352 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
353 return -EINVAL;
354
355 if (unlikely(!netif_running(dev)))
356 return -ENETDOWN;
357
358 i = smp_processor_id() % edev->total_xdp_queues;
359 xdp_tx = edev->fp_array[i].xdp_tx;
360
361 spin_lock(&xdp_tx->xdp_tx_lock);
362
363 for (i = 0; i < n_frames; i++) {
364 xdpf = frames[i];
365
366 mapping = dma_map_single(dmadev, xdpf->data, xdpf->len,
367 DMA_TO_DEVICE);
368 if (unlikely(dma_mapping_error(dmadev, mapping)))
369 break;
370
371 if (unlikely(qede_xdp_xmit(xdp_tx, mapping, 0, xdpf->len,
372 NULL, xdpf)))
373 break;
374 nxmit++;
375 }
376
377 if (flags & XDP_XMIT_FLUSH) {
378 xdp_prod = qed_chain_get_prod_idx(&xdp_tx->tx_pbl);
379
380 xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
381 qede_update_tx_producer(xdp_tx);
382 }
383
384 spin_unlock(&xdp_tx->xdp_tx_lock);
385
386 return nxmit;
387 }
388
qede_txq_has_work(struct qede_tx_queue * txq)389 int qede_txq_has_work(struct qede_tx_queue *txq)
390 {
391 u16 hw_bd_cons;
392
393 /* Tell compiler that consumer and producer can change */
394 barrier();
395 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
396 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
397 return 0;
398
399 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
400 }
401
qede_xdp_tx_int(struct qede_dev * edev,struct qede_tx_queue * txq)402 static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
403 {
404 struct sw_tx_xdp *xdp_info, *xdp_arr = txq->sw_tx_ring.xdp;
405 struct device *dev = &edev->pdev->dev;
406 struct xdp_frame *xdpf;
407 u16 hw_bd_cons;
408
409 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
410 barrier();
411
412 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
413 xdp_info = xdp_arr + txq->sw_tx_cons;
414 xdpf = xdp_info->xdpf;
415
416 if (xdpf) {
417 dma_unmap_single(dev, xdp_info->mapping, xdpf->len,
418 DMA_TO_DEVICE);
419 xdp_return_frame(xdpf);
420
421 xdp_info->xdpf = NULL;
422 } else {
423 dma_unmap_page(dev, xdp_info->mapping, PAGE_SIZE,
424 DMA_BIDIRECTIONAL);
425 __free_page(xdp_info->page);
426 }
427
428 qed_chain_consume(&txq->tx_pbl);
429 txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
430 txq->xmit_pkts++;
431 }
432 }
433
qede_tx_int(struct qede_dev * edev,struct qede_tx_queue * txq)434 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
435 {
436 unsigned int pkts_compl = 0, bytes_compl = 0;
437 struct netdev_queue *netdev_txq;
438 u16 hw_bd_cons;
439 int rc;
440
441 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
442
443 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
444 barrier();
445
446 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
447 int len = 0;
448
449 rc = qede_free_tx_pkt(edev, txq, &len);
450 if (rc) {
451 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
452 hw_bd_cons,
453 qed_chain_get_cons_idx(&txq->tx_pbl));
454 break;
455 }
456
457 bytes_compl += len;
458 pkts_compl++;
459 txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
460 txq->xmit_pkts++;
461 }
462
463 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
464
465 /* Need to make the tx_bd_cons update visible to start_xmit()
466 * before checking for netif_tx_queue_stopped(). Without the
467 * memory barrier, there is a small possibility that
468 * start_xmit() will miss it and cause the queue to be stopped
469 * forever.
470 * On the other hand we need an rmb() here to ensure the proper
471 * ordering of bit testing in the following
472 * netif_tx_queue_stopped(txq) call.
473 */
474 smp_mb();
475
476 if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
477 /* Taking tx_lock is needed to prevent reenabling the queue
478 * while it's empty. This could have happen if rx_action() gets
479 * suspended in qede_tx_int() after the condition before
480 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
481 *
482 * stops the queue->sees fresh tx_bd_cons->releases the queue->
483 * sends some packets consuming the whole queue again->
484 * stops the queue
485 */
486
487 __netif_tx_lock(netdev_txq, smp_processor_id());
488
489 if ((netif_tx_queue_stopped(netdev_txq)) &&
490 (edev->state == QEDE_STATE_OPEN) &&
491 (qed_chain_get_elem_left(&txq->tx_pbl)
492 >= (MAX_SKB_FRAGS + 1))) {
493 netif_tx_wake_queue(netdev_txq);
494 DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
495 "Wake queue was called\n");
496 }
497
498 __netif_tx_unlock(netdev_txq);
499 }
500
501 return 0;
502 }
503
qede_has_rx_work(struct qede_rx_queue * rxq)504 bool qede_has_rx_work(struct qede_rx_queue *rxq)
505 {
506 u16 hw_comp_cons, sw_comp_cons;
507
508 /* Tell compiler that status block fields can change */
509 barrier();
510
511 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
512 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
513
514 return hw_comp_cons != sw_comp_cons;
515 }
516
qede_rx_bd_ring_consume(struct qede_rx_queue * rxq)517 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
518 {
519 qed_chain_consume(&rxq->rx_bd_ring);
520 rxq->sw_rx_cons++;
521 }
522
523 /* This function reuses the buffer(from an offset) from
524 * consumer index to producer index in the bd ring
525 */
qede_reuse_page(struct qede_rx_queue * rxq,struct sw_rx_data * curr_cons)526 static inline void qede_reuse_page(struct qede_rx_queue *rxq,
527 struct sw_rx_data *curr_cons)
528 {
529 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
530 struct sw_rx_data *curr_prod;
531 dma_addr_t new_mapping;
532
533 curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
534 *curr_prod = *curr_cons;
535
536 new_mapping = curr_prod->mapping + curr_prod->page_offset;
537
538 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
539 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) +
540 rxq->rx_headroom);
541
542 rxq->sw_rx_prod++;
543 curr_cons->data = NULL;
544 }
545
546 /* In case of allocation failures reuse buffers
547 * from consumer index to produce buffers for firmware
548 */
qede_recycle_rx_bd_ring(struct qede_rx_queue * rxq,u8 count)549 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
550 {
551 struct sw_rx_data *curr_cons;
552
553 for (; count > 0; count--) {
554 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
555 qede_reuse_page(rxq, curr_cons);
556 qede_rx_bd_ring_consume(rxq);
557 }
558 }
559
qede_realloc_rx_buffer(struct qede_rx_queue * rxq,struct sw_rx_data * curr_cons)560 static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
561 struct sw_rx_data *curr_cons)
562 {
563 /* Move to the next segment in the page */
564 curr_cons->page_offset += rxq->rx_buf_seg_size;
565
566 if (curr_cons->page_offset == PAGE_SIZE) {
567 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
568 /* Since we failed to allocate new buffer
569 * current buffer can be used again.
570 */
571 curr_cons->page_offset -= rxq->rx_buf_seg_size;
572
573 return -ENOMEM;
574 }
575
576 dma_unmap_page(rxq->dev, curr_cons->mapping,
577 PAGE_SIZE, rxq->data_direction);
578 } else {
579 /* Increment refcount of the page as we don't want
580 * network stack to take the ownership of the page
581 * which can be recycled multiple times by the driver.
582 */
583 page_ref_inc(curr_cons->data);
584 qede_reuse_page(rxq, curr_cons);
585 }
586
587 return 0;
588 }
589
qede_update_rx_prod(struct qede_dev * edev,struct qede_rx_queue * rxq)590 void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
591 {
592 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
593 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
594 struct eth_rx_prod_data rx_prods = {0};
595
596 /* Update producers */
597 rx_prods.bd_prod = cpu_to_le16(bd_prod);
598 rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
599
600 /* Make sure that the BD and SGE data is updated before updating the
601 * producers since FW might read the BD/SGE right after the producer
602 * is updated.
603 */
604 wmb();
605
606 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
607 (u32 *)&rx_prods);
608 }
609
qede_get_rxhash(struct sk_buff * skb,u8 bitfields,__le32 rss_hash)610 static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
611 {
612 enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
613 enum rss_hash_type htype;
614 u32 hash = 0;
615
616 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
617 if (htype) {
618 hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
619 (htype == RSS_HASH_TYPE_IPV6)) ?
620 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
621 hash = le32_to_cpu(rss_hash);
622 }
623 skb_set_hash(skb, hash, hash_type);
624 }
625
qede_set_skb_csum(struct sk_buff * skb,u8 csum_flag)626 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
627 {
628 skb_checksum_none_assert(skb);
629
630 if (csum_flag & QEDE_CSUM_UNNECESSARY)
631 skb->ip_summed = CHECKSUM_UNNECESSARY;
632
633 if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
634 skb->csum_level = 1;
635 skb->encapsulation = 1;
636 }
637 }
638
qede_skb_receive(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq,struct sk_buff * skb,u16 vlan_tag)639 static inline void qede_skb_receive(struct qede_dev *edev,
640 struct qede_fastpath *fp,
641 struct qede_rx_queue *rxq,
642 struct sk_buff *skb, u16 vlan_tag)
643 {
644 if (vlan_tag)
645 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
646
647 napi_gro_receive(&fp->napi, skb);
648 }
649
qede_set_gro_params(struct qede_dev * edev,struct sk_buff * skb,struct eth_fast_path_rx_tpa_start_cqe * cqe)650 static void qede_set_gro_params(struct qede_dev *edev,
651 struct sk_buff *skb,
652 struct eth_fast_path_rx_tpa_start_cqe *cqe)
653 {
654 u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
655
656 if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
657 PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
658 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
659 else
660 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
661
662 skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
663 cqe->header_len;
664 }
665
qede_fill_frag_skb(struct qede_dev * edev,struct qede_rx_queue * rxq,u8 tpa_agg_index,u16 len_on_bd)666 static int qede_fill_frag_skb(struct qede_dev *edev,
667 struct qede_rx_queue *rxq,
668 u8 tpa_agg_index, u16 len_on_bd)
669 {
670 struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
671 NUM_RX_BDS_MAX];
672 struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
673 struct sk_buff *skb = tpa_info->skb;
674
675 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
676 goto out;
677
678 /* Add one frag and update the appropriate fields in the skb */
679 skb_fill_page_desc(skb, tpa_info->frag_id++,
680 current_bd->data,
681 current_bd->page_offset + rxq->rx_headroom,
682 len_on_bd);
683
684 if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
685 /* Incr page ref count to reuse on allocation failure
686 * so that it doesn't get freed while freeing SKB.
687 */
688 page_ref_inc(current_bd->data);
689 goto out;
690 }
691
692 qede_rx_bd_ring_consume(rxq);
693
694 skb->data_len += len_on_bd;
695 skb->truesize += rxq->rx_buf_seg_size;
696 skb->len += len_on_bd;
697
698 return 0;
699
700 out:
701 tpa_info->state = QEDE_AGG_STATE_ERROR;
702 qede_recycle_rx_bd_ring(rxq, 1);
703
704 return -ENOMEM;
705 }
706
qede_tunn_exist(u16 flag)707 static bool qede_tunn_exist(u16 flag)
708 {
709 return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
710 PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
711 }
712
qede_check_tunn_csum(u16 flag)713 static u8 qede_check_tunn_csum(u16 flag)
714 {
715 u16 csum_flag = 0;
716 u8 tcsum = 0;
717
718 if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
719 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
720 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
721 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
722
723 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
724 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
725 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
726 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
727 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
728 }
729
730 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
731 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
732 PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
733 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
734
735 if (csum_flag & flag)
736 return QEDE_CSUM_ERROR;
737
738 return QEDE_CSUM_UNNECESSARY | tcsum;
739 }
740
741 static inline struct sk_buff *
qede_build_skb(struct qede_rx_queue * rxq,struct sw_rx_data * bd,u16 len,u16 pad)742 qede_build_skb(struct qede_rx_queue *rxq,
743 struct sw_rx_data *bd, u16 len, u16 pad)
744 {
745 struct sk_buff *skb;
746 void *buf;
747
748 buf = page_address(bd->data) + bd->page_offset;
749 skb = build_skb(buf, rxq->rx_buf_seg_size);
750
751 if (unlikely(!skb))
752 return NULL;
753
754 skb_reserve(skb, pad);
755 skb_put(skb, len);
756
757 return skb;
758 }
759
760 static struct sk_buff *
qede_tpa_rx_build_skb(struct qede_dev * edev,struct qede_rx_queue * rxq,struct sw_rx_data * bd,u16 len,u16 pad,bool alloc_skb)761 qede_tpa_rx_build_skb(struct qede_dev *edev,
762 struct qede_rx_queue *rxq,
763 struct sw_rx_data *bd, u16 len, u16 pad,
764 bool alloc_skb)
765 {
766 struct sk_buff *skb;
767
768 skb = qede_build_skb(rxq, bd, len, pad);
769 bd->page_offset += rxq->rx_buf_seg_size;
770
771 if (bd->page_offset == PAGE_SIZE) {
772 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
773 DP_NOTICE(edev,
774 "Failed to allocate RX buffer for tpa start\n");
775 bd->page_offset -= rxq->rx_buf_seg_size;
776 page_ref_inc(bd->data);
777 dev_kfree_skb_any(skb);
778 return NULL;
779 }
780 } else {
781 page_ref_inc(bd->data);
782 qede_reuse_page(rxq, bd);
783 }
784
785 /* We've consumed the first BD and prepared an SKB */
786 qede_rx_bd_ring_consume(rxq);
787
788 return skb;
789 }
790
791 static struct sk_buff *
qede_rx_build_skb(struct qede_dev * edev,struct qede_rx_queue * rxq,struct sw_rx_data * bd,u16 len,u16 pad)792 qede_rx_build_skb(struct qede_dev *edev,
793 struct qede_rx_queue *rxq,
794 struct sw_rx_data *bd, u16 len, u16 pad)
795 {
796 struct sk_buff *skb = NULL;
797
798 /* For smaller frames still need to allocate skb, memcpy
799 * data and benefit in reusing the page segment instead of
800 * un-mapping it.
801 */
802 if ((len + pad <= edev->rx_copybreak)) {
803 unsigned int offset = bd->page_offset + pad;
804
805 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
806 if (unlikely(!skb))
807 return NULL;
808
809 skb_reserve(skb, pad);
810 skb_put_data(skb, page_address(bd->data) + offset, len);
811 qede_reuse_page(rxq, bd);
812 goto out;
813 }
814
815 skb = qede_build_skb(rxq, bd, len, pad);
816
817 if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
818 /* Incr page ref count to reuse on allocation failure so
819 * that it doesn't get freed while freeing SKB [as its
820 * already mapped there].
821 */
822 page_ref_inc(bd->data);
823 dev_kfree_skb_any(skb);
824 return NULL;
825 }
826 out:
827 /* We've consumed the first BD and prepared an SKB */
828 qede_rx_bd_ring_consume(rxq);
829
830 return skb;
831 }
832
qede_tpa_start(struct qede_dev * edev,struct qede_rx_queue * rxq,struct eth_fast_path_rx_tpa_start_cqe * cqe)833 static void qede_tpa_start(struct qede_dev *edev,
834 struct qede_rx_queue *rxq,
835 struct eth_fast_path_rx_tpa_start_cqe *cqe)
836 {
837 struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
838 struct sw_rx_data *sw_rx_data_cons;
839 u16 pad;
840
841 sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
842 pad = cqe->placement_offset + rxq->rx_headroom;
843
844 tpa_info->skb = qede_tpa_rx_build_skb(edev, rxq, sw_rx_data_cons,
845 le16_to_cpu(cqe->len_on_first_bd),
846 pad, false);
847 tpa_info->buffer.page_offset = sw_rx_data_cons->page_offset;
848 tpa_info->buffer.mapping = sw_rx_data_cons->mapping;
849
850 if (unlikely(!tpa_info->skb)) {
851 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
852
853 /* Consume from ring but do not produce since
854 * this might be used by FW still, it will be re-used
855 * at TPA end.
856 */
857 tpa_info->tpa_start_fail = true;
858 qede_rx_bd_ring_consume(rxq);
859 tpa_info->state = QEDE_AGG_STATE_ERROR;
860 goto cons_buf;
861 }
862
863 tpa_info->frag_id = 0;
864 tpa_info->state = QEDE_AGG_STATE_START;
865
866 if ((le16_to_cpu(cqe->pars_flags.flags) >>
867 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
868 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
869 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
870 else
871 tpa_info->vlan_tag = 0;
872
873 qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
874
875 /* This is needed in order to enable forwarding support */
876 qede_set_gro_params(edev, tpa_info->skb, cqe);
877
878 cons_buf: /* We still need to handle bd_len_list to consume buffers */
879 if (likely(cqe->bw_ext_bd_len_list[0]))
880 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
881 le16_to_cpu(cqe->bw_ext_bd_len_list[0]));
882
883 if (unlikely(cqe->bw_ext_bd_len_list[1])) {
884 DP_ERR(edev,
885 "Unlikely - got a TPA aggregation with more than one bw_ext_bd_len_list entry in the TPA start\n");
886 tpa_info->state = QEDE_AGG_STATE_ERROR;
887 }
888 }
889
890 #ifdef CONFIG_INET
qede_gro_ip_csum(struct sk_buff * skb)891 static void qede_gro_ip_csum(struct sk_buff *skb)
892 {
893 const struct iphdr *iph = ip_hdr(skb);
894 struct tcphdr *th;
895
896 skb_set_transport_header(skb, sizeof(struct iphdr));
897 th = tcp_hdr(skb);
898
899 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
900 iph->saddr, iph->daddr, 0);
901
902 tcp_gro_complete(skb);
903 }
904
qede_gro_ipv6_csum(struct sk_buff * skb)905 static void qede_gro_ipv6_csum(struct sk_buff *skb)
906 {
907 struct ipv6hdr *iph = ipv6_hdr(skb);
908 struct tcphdr *th;
909
910 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
911 th = tcp_hdr(skb);
912
913 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
914 &iph->saddr, &iph->daddr, 0);
915 tcp_gro_complete(skb);
916 }
917 #endif
918
qede_gro_receive(struct qede_dev * edev,struct qede_fastpath * fp,struct sk_buff * skb,u16 vlan_tag)919 static void qede_gro_receive(struct qede_dev *edev,
920 struct qede_fastpath *fp,
921 struct sk_buff *skb,
922 u16 vlan_tag)
923 {
924 /* FW can send a single MTU sized packet from gro flow
925 * due to aggregation timeout/last segment etc. which
926 * is not expected to be a gro packet. If a skb has zero
927 * frags then simply push it in the stack as non gso skb.
928 */
929 if (unlikely(!skb->data_len)) {
930 skb_shinfo(skb)->gso_type = 0;
931 skb_shinfo(skb)->gso_size = 0;
932 goto send_skb;
933 }
934
935 #ifdef CONFIG_INET
936 if (skb_shinfo(skb)->gso_size) {
937 skb_reset_network_header(skb);
938
939 switch (skb->protocol) {
940 case htons(ETH_P_IP):
941 qede_gro_ip_csum(skb);
942 break;
943 case htons(ETH_P_IPV6):
944 qede_gro_ipv6_csum(skb);
945 break;
946 default:
947 DP_ERR(edev,
948 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
949 ntohs(skb->protocol));
950 }
951 }
952 #endif
953
954 send_skb:
955 skb_record_rx_queue(skb, fp->rxq->rxq_id);
956 qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
957 }
958
qede_tpa_cont(struct qede_dev * edev,struct qede_rx_queue * rxq,struct eth_fast_path_rx_tpa_cont_cqe * cqe)959 static inline void qede_tpa_cont(struct qede_dev *edev,
960 struct qede_rx_queue *rxq,
961 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
962 {
963 int i;
964
965 for (i = 0; cqe->len_list[i]; i++)
966 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
967 le16_to_cpu(cqe->len_list[i]));
968
969 if (unlikely(i > 1))
970 DP_ERR(edev,
971 "Strange - TPA cont with more than a single len_list entry\n");
972 }
973
qede_tpa_end(struct qede_dev * edev,struct qede_fastpath * fp,struct eth_fast_path_rx_tpa_end_cqe * cqe)974 static int qede_tpa_end(struct qede_dev *edev,
975 struct qede_fastpath *fp,
976 struct eth_fast_path_rx_tpa_end_cqe *cqe)
977 {
978 struct qede_rx_queue *rxq = fp->rxq;
979 struct qede_agg_info *tpa_info;
980 struct sk_buff *skb;
981 int i;
982
983 tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
984 skb = tpa_info->skb;
985
986 if (tpa_info->buffer.page_offset == PAGE_SIZE)
987 dma_unmap_page(rxq->dev, tpa_info->buffer.mapping,
988 PAGE_SIZE, rxq->data_direction);
989
990 for (i = 0; cqe->len_list[i]; i++)
991 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
992 le16_to_cpu(cqe->len_list[i]));
993 if (unlikely(i > 1))
994 DP_ERR(edev,
995 "Strange - TPA emd with more than a single len_list entry\n");
996
997 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
998 goto err;
999
1000 /* Sanity */
1001 if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1002 DP_ERR(edev,
1003 "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1004 cqe->num_of_bds, tpa_info->frag_id);
1005 if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1006 DP_ERR(edev,
1007 "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1008 le16_to_cpu(cqe->total_packet_len), skb->len);
1009
1010 /* Finalize the SKB */
1011 skb->protocol = eth_type_trans(skb, edev->ndev);
1012 skb->ip_summed = CHECKSUM_UNNECESSARY;
1013
1014 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1015 * to skb_shinfo(skb)->gso_segs
1016 */
1017 NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1018
1019 qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1020
1021 tpa_info->state = QEDE_AGG_STATE_NONE;
1022
1023 return 1;
1024 err:
1025 tpa_info->state = QEDE_AGG_STATE_NONE;
1026
1027 if (tpa_info->tpa_start_fail) {
1028 qede_reuse_page(rxq, &tpa_info->buffer);
1029 tpa_info->tpa_start_fail = false;
1030 }
1031
1032 dev_kfree_skb_any(tpa_info->skb);
1033 tpa_info->skb = NULL;
1034 return 0;
1035 }
1036
qede_check_notunn_csum(u16 flag)1037 static u8 qede_check_notunn_csum(u16 flag)
1038 {
1039 u16 csum_flag = 0;
1040 u8 csum = 0;
1041
1042 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1043 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1044 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1045 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1046 csum = QEDE_CSUM_UNNECESSARY;
1047 }
1048
1049 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1050 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1051
1052 if (csum_flag & flag)
1053 return QEDE_CSUM_ERROR;
1054
1055 return csum;
1056 }
1057
qede_check_csum(u16 flag)1058 static u8 qede_check_csum(u16 flag)
1059 {
1060 if (!qede_tunn_exist(flag))
1061 return qede_check_notunn_csum(flag);
1062 else
1063 return qede_check_tunn_csum(flag);
1064 }
1065
qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe * cqe,u16 flag)1066 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1067 u16 flag)
1068 {
1069 u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1070
1071 if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1072 ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1073 (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1074 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1075 return true;
1076
1077 return false;
1078 }
1079
1080 /* Return true iff packet is to be passed to stack */
qede_rx_xdp(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq,struct bpf_prog * prog,struct sw_rx_data * bd,struct eth_fast_path_rx_reg_cqe * cqe,u16 * data_offset,u16 * len)1081 static bool qede_rx_xdp(struct qede_dev *edev,
1082 struct qede_fastpath *fp,
1083 struct qede_rx_queue *rxq,
1084 struct bpf_prog *prog,
1085 struct sw_rx_data *bd,
1086 struct eth_fast_path_rx_reg_cqe *cqe,
1087 u16 *data_offset, u16 *len)
1088 {
1089 struct xdp_buff xdp;
1090 enum xdp_action act;
1091
1092 xdp_init_buff(&xdp, rxq->rx_buf_seg_size, &rxq->xdp_rxq);
1093 xdp_prepare_buff(&xdp, page_address(bd->data), *data_offset,
1094 *len, false);
1095
1096 act = bpf_prog_run_xdp(prog, &xdp);
1097
1098 /* Recalculate, as XDP might have changed the headers */
1099 *data_offset = xdp.data - xdp.data_hard_start;
1100 *len = xdp.data_end - xdp.data;
1101
1102 if (act == XDP_PASS)
1103 return true;
1104
1105 /* Count number of packets not to be passed to stack */
1106 rxq->xdp_no_pass++;
1107
1108 switch (act) {
1109 case XDP_TX:
1110 /* We need the replacement buffer before transmit. */
1111 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
1112 qede_recycle_rx_bd_ring(rxq, 1);
1113
1114 trace_xdp_exception(edev->ndev, prog, act);
1115 break;
1116 }
1117
1118 /* Now if there's a transmission problem, we'd still have to
1119 * throw current buffer, as replacement was already allocated.
1120 */
1121 if (unlikely(qede_xdp_xmit(fp->xdp_tx, bd->mapping,
1122 *data_offset, *len, bd->data,
1123 NULL))) {
1124 dma_unmap_page(rxq->dev, bd->mapping, PAGE_SIZE,
1125 rxq->data_direction);
1126 __free_page(bd->data);
1127
1128 trace_xdp_exception(edev->ndev, prog, act);
1129 } else {
1130 dma_sync_single_for_device(rxq->dev,
1131 bd->mapping + *data_offset,
1132 *len, rxq->data_direction);
1133 fp->xdp_xmit |= QEDE_XDP_TX;
1134 }
1135
1136 /* Regardless, we've consumed an Rx BD */
1137 qede_rx_bd_ring_consume(rxq);
1138 break;
1139 case XDP_REDIRECT:
1140 /* We need the replacement buffer before transmit. */
1141 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
1142 qede_recycle_rx_bd_ring(rxq, 1);
1143
1144 trace_xdp_exception(edev->ndev, prog, act);
1145 break;
1146 }
1147
1148 dma_unmap_page(rxq->dev, bd->mapping, PAGE_SIZE,
1149 rxq->data_direction);
1150
1151 if (unlikely(xdp_do_redirect(edev->ndev, &xdp, prog)))
1152 DP_NOTICE(edev, "Failed to redirect the packet\n");
1153 else
1154 fp->xdp_xmit |= QEDE_XDP_REDIRECT;
1155
1156 qede_rx_bd_ring_consume(rxq);
1157 break;
1158 default:
1159 bpf_warn_invalid_xdp_action(edev->ndev, prog, act);
1160 fallthrough;
1161 case XDP_ABORTED:
1162 trace_xdp_exception(edev->ndev, prog, act);
1163 fallthrough;
1164 case XDP_DROP:
1165 qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
1166 }
1167
1168 return false;
1169 }
1170
qede_rx_build_jumbo(struct qede_dev * edev,struct qede_rx_queue * rxq,struct sk_buff * skb,struct eth_fast_path_rx_reg_cqe * cqe,u16 first_bd_len)1171 static int qede_rx_build_jumbo(struct qede_dev *edev,
1172 struct qede_rx_queue *rxq,
1173 struct sk_buff *skb,
1174 struct eth_fast_path_rx_reg_cqe *cqe,
1175 u16 first_bd_len)
1176 {
1177 u16 pkt_len = le16_to_cpu(cqe->pkt_len);
1178 struct sw_rx_data *bd;
1179 u16 bd_cons_idx;
1180 u8 num_frags;
1181
1182 pkt_len -= first_bd_len;
1183
1184 /* We've already used one BD for the SKB. Now take care of the rest */
1185 for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
1186 u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1187 pkt_len;
1188
1189 if (unlikely(!cur_size)) {
1190 DP_ERR(edev,
1191 "Still got %d BDs for mapping jumbo, but length became 0\n",
1192 num_frags);
1193 goto out;
1194 }
1195
1196 /* We need a replacement buffer for each BD */
1197 if (unlikely(qede_alloc_rx_buffer(rxq, true)))
1198 goto out;
1199
1200 /* Now that we've allocated the replacement buffer,
1201 * we can safely consume the next BD and map it to the SKB.
1202 */
1203 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1204 bd = &rxq->sw_rx_ring[bd_cons_idx];
1205 qede_rx_bd_ring_consume(rxq);
1206
1207 dma_unmap_page(rxq->dev, bd->mapping,
1208 PAGE_SIZE, DMA_FROM_DEVICE);
1209
1210 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, bd->data,
1211 rxq->rx_headroom, cur_size, PAGE_SIZE);
1212
1213 pkt_len -= cur_size;
1214 }
1215
1216 if (unlikely(pkt_len))
1217 DP_ERR(edev,
1218 "Mapped all BDs of jumbo, but still have %d bytes\n",
1219 pkt_len);
1220
1221 out:
1222 return num_frags;
1223 }
1224
qede_rx_process_tpa_cqe(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq,union eth_rx_cqe * cqe,enum eth_rx_cqe_type type)1225 static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
1226 struct qede_fastpath *fp,
1227 struct qede_rx_queue *rxq,
1228 union eth_rx_cqe *cqe,
1229 enum eth_rx_cqe_type type)
1230 {
1231 switch (type) {
1232 case ETH_RX_CQE_TYPE_TPA_START:
1233 qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
1234 return 0;
1235 case ETH_RX_CQE_TYPE_TPA_CONT:
1236 qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
1237 return 0;
1238 case ETH_RX_CQE_TYPE_TPA_END:
1239 return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
1240 default:
1241 return 0;
1242 }
1243 }
1244
qede_rx_process_cqe(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq)1245 static int qede_rx_process_cqe(struct qede_dev *edev,
1246 struct qede_fastpath *fp,
1247 struct qede_rx_queue *rxq)
1248 {
1249 struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
1250 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1251 u16 len, pad, bd_cons_idx, parse_flag;
1252 enum eth_rx_cqe_type cqe_type;
1253 union eth_rx_cqe *cqe;
1254 struct sw_rx_data *bd;
1255 struct sk_buff *skb;
1256 __le16 flags;
1257 u8 csum_flag;
1258
1259 /* Get the CQE from the completion ring */
1260 cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
1261 cqe_type = cqe->fast_path_regular.type;
1262
1263 /* Process an unlikely slowpath event */
1264 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1265 struct eth_slow_path_rx_cqe *sp_cqe;
1266
1267 sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
1268 edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
1269 return 0;
1270 }
1271
1272 /* Handle TPA cqes */
1273 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
1274 return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
1275
1276 /* Get the data from the SW ring; Consume it only after it's evident
1277 * we wouldn't recycle it.
1278 */
1279 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1280 bd = &rxq->sw_rx_ring[bd_cons_idx];
1281
1282 fp_cqe = &cqe->fast_path_regular;
1283 len = le16_to_cpu(fp_cqe->len_on_first_bd);
1284 pad = fp_cqe->placement_offset + rxq->rx_headroom;
1285
1286 /* Run eBPF program if one is attached */
1287 if (xdp_prog)
1288 if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe,
1289 &pad, &len))
1290 return 0;
1291
1292 /* If this is an error packet then drop it */
1293 flags = cqe->fast_path_regular.pars_flags.flags;
1294 parse_flag = le16_to_cpu(flags);
1295
1296 csum_flag = qede_check_csum(parse_flag);
1297 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1298 if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag))
1299 rxq->rx_ip_frags++;
1300 else
1301 rxq->rx_hw_errors++;
1302 }
1303
1304 /* Basic validation passed; Need to prepare an SKB. This would also
1305 * guarantee to finally consume the first BD upon success.
1306 */
1307 skb = qede_rx_build_skb(edev, rxq, bd, len, pad);
1308 if (!skb) {
1309 rxq->rx_alloc_errors++;
1310 qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1311 return 0;
1312 }
1313
1314 /* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
1315 * by a single cqe.
1316 */
1317 if (fp_cqe->bd_num > 1) {
1318 u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
1319 fp_cqe, len);
1320
1321 if (unlikely(unmapped_frags > 0)) {
1322 qede_recycle_rx_bd_ring(rxq, unmapped_frags);
1323 dev_kfree_skb_any(skb);
1324 return 0;
1325 }
1326 }
1327
1328 /* The SKB contains all the data. Now prepare meta-magic */
1329 skb->protocol = eth_type_trans(skb, edev->ndev);
1330 qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
1331 qede_set_skb_csum(skb, csum_flag);
1332 skb_record_rx_queue(skb, rxq->rxq_id);
1333 qede_ptp_record_rx_ts(edev, cqe, skb);
1334
1335 /* SKB is prepared - pass it to stack */
1336 qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
1337
1338 return 1;
1339 }
1340
qede_rx_int(struct qede_fastpath * fp,int budget)1341 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1342 {
1343 struct qede_rx_queue *rxq = fp->rxq;
1344 struct qede_dev *edev = fp->edev;
1345 int work_done = 0, rcv_pkts = 0;
1346 u16 hw_comp_cons, sw_comp_cons;
1347
1348 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1349 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1350
1351 /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1352 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1353 * read before it is written by FW, then FW writes CQE and SB, and then
1354 * the CPU reads the hw_comp_cons, it will use an old CQE.
1355 */
1356 rmb();
1357
1358 /* Loop to complete all indicated BDs */
1359 while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
1360 rcv_pkts += qede_rx_process_cqe(edev, fp, rxq);
1361 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1362 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1363 work_done++;
1364 }
1365
1366 rxq->rcv_pkts += rcv_pkts;
1367
1368 /* Allocate replacement buffers */
1369 while (rxq->num_rx_buffers - rxq->filled_buffers)
1370 if (qede_alloc_rx_buffer(rxq, false))
1371 break;
1372
1373 /* Update producers */
1374 qede_update_rx_prod(edev, rxq);
1375
1376 return work_done;
1377 }
1378
qede_poll_is_more_work(struct qede_fastpath * fp)1379 static bool qede_poll_is_more_work(struct qede_fastpath *fp)
1380 {
1381 qed_sb_update_sb_idx(fp->sb_info);
1382
1383 /* *_has_*_work() reads the status block, thus we need to ensure that
1384 * status block indices have been actually read (qed_sb_update_sb_idx)
1385 * prior to this check (*_has_*_work) so that we won't write the
1386 * "newer" value of the status block to HW (if there was a DMA right
1387 * after qede_has_rx_work and if there is no rmb, the memory reading
1388 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
1389 * In this case there will never be another interrupt until there is
1390 * another update of the status block, while there is still unhandled
1391 * work.
1392 */
1393 rmb();
1394
1395 if (likely(fp->type & QEDE_FASTPATH_RX))
1396 if (qede_has_rx_work(fp->rxq))
1397 return true;
1398
1399 if (fp->type & QEDE_FASTPATH_XDP)
1400 if (qede_txq_has_work(fp->xdp_tx))
1401 return true;
1402
1403 if (likely(fp->type & QEDE_FASTPATH_TX)) {
1404 int cos;
1405
1406 for_each_cos_in_txq(fp->edev, cos) {
1407 if (qede_txq_has_work(&fp->txq[cos]))
1408 return true;
1409 }
1410 }
1411
1412 return false;
1413 }
1414
1415 /*********************
1416 * NDO & API related *
1417 *********************/
qede_poll(struct napi_struct * napi,int budget)1418 int qede_poll(struct napi_struct *napi, int budget)
1419 {
1420 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1421 napi);
1422 struct qede_dev *edev = fp->edev;
1423 int rx_work_done = 0;
1424 u16 xdp_prod;
1425
1426 fp->xdp_xmit = 0;
1427
1428 if (likely(fp->type & QEDE_FASTPATH_TX)) {
1429 int cos;
1430
1431 for_each_cos_in_txq(fp->edev, cos) {
1432 if (qede_txq_has_work(&fp->txq[cos]))
1433 qede_tx_int(edev, &fp->txq[cos]);
1434 }
1435 }
1436
1437 if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
1438 qede_xdp_tx_int(edev, fp->xdp_tx);
1439
1440 rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1441 qede_has_rx_work(fp->rxq)) ?
1442 qede_rx_int(fp, budget) : 0;
1443 /* Handle case where we are called by netpoll with a budget of 0 */
1444 if (rx_work_done < budget || !budget) {
1445 if (!qede_poll_is_more_work(fp)) {
1446 napi_complete_done(napi, rx_work_done);
1447
1448 /* Update and reenable interrupts */
1449 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
1450 } else {
1451 rx_work_done = budget;
1452 }
1453 }
1454
1455 if (fp->xdp_xmit & QEDE_XDP_TX) {
1456 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
1457
1458 fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
1459 qede_update_tx_producer(fp->xdp_tx);
1460 }
1461
1462 if (fp->xdp_xmit & QEDE_XDP_REDIRECT)
1463 xdp_do_flush_map();
1464
1465 return rx_work_done;
1466 }
1467
qede_msix_fp_int(int irq,void * fp_cookie)1468 irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1469 {
1470 struct qede_fastpath *fp = fp_cookie;
1471
1472 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1473
1474 napi_schedule_irqoff(&fp->napi);
1475 return IRQ_HANDLED;
1476 }
1477
1478 /* Main transmit function */
qede_start_xmit(struct sk_buff * skb,struct net_device * ndev)1479 netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1480 {
1481 struct qede_dev *edev = netdev_priv(ndev);
1482 struct netdev_queue *netdev_txq;
1483 struct qede_tx_queue *txq;
1484 struct eth_tx_1st_bd *first_bd;
1485 struct eth_tx_2nd_bd *second_bd = NULL;
1486 struct eth_tx_3rd_bd *third_bd = NULL;
1487 struct eth_tx_bd *tx_data_bd = NULL;
1488 u16 txq_index, val = 0;
1489 u8 nbd = 0;
1490 dma_addr_t mapping;
1491 int rc, frag_idx = 0, ipv6_ext = 0;
1492 u8 xmit_type;
1493 u16 idx;
1494 u16 hlen;
1495 bool data_split = false;
1496
1497 /* Get tx-queue context and netdev index */
1498 txq_index = skb_get_queue_mapping(skb);
1499 WARN_ON(txq_index >= QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc);
1500 txq = QEDE_NDEV_TXQ_ID_TO_TXQ(edev, txq_index);
1501 netdev_txq = netdev_get_tx_queue(ndev, txq_index);
1502
1503 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
1504
1505 xmit_type = qede_xmit_type(skb, &ipv6_ext);
1506
1507 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
1508 if (qede_pkt_req_lin(skb, xmit_type)) {
1509 if (skb_linearize(skb)) {
1510 txq->tx_mem_alloc_err++;
1511
1512 dev_kfree_skb_any(skb);
1513 return NETDEV_TX_OK;
1514 }
1515 }
1516 #endif
1517
1518 /* Fill the entry in the SW ring and the BDs in the FW ring */
1519 idx = txq->sw_tx_prod;
1520 txq->sw_tx_ring.skbs[idx].skb = skb;
1521 first_bd = (struct eth_tx_1st_bd *)
1522 qed_chain_produce(&txq->tx_pbl);
1523 memset(first_bd, 0, sizeof(*first_bd));
1524 first_bd->data.bd_flags.bitfields =
1525 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1526
1527 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
1528 qede_ptp_tx_ts(edev, skb);
1529
1530 /* Map skb linear data for DMA and set in the first BD */
1531 mapping = dma_map_single(txq->dev, skb->data,
1532 skb_headlen(skb), DMA_TO_DEVICE);
1533 if (unlikely(dma_mapping_error(txq->dev, mapping))) {
1534 DP_NOTICE(edev, "SKB mapping failed\n");
1535 qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1536 qede_update_tx_producer(txq);
1537 return NETDEV_TX_OK;
1538 }
1539 nbd++;
1540 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
1541
1542 /* In case there is IPv6 with extension headers or LSO we need 2nd and
1543 * 3rd BDs.
1544 */
1545 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
1546 second_bd = (struct eth_tx_2nd_bd *)
1547 qed_chain_produce(&txq->tx_pbl);
1548 memset(second_bd, 0, sizeof(*second_bd));
1549
1550 nbd++;
1551 third_bd = (struct eth_tx_3rd_bd *)
1552 qed_chain_produce(&txq->tx_pbl);
1553 memset(third_bd, 0, sizeof(*third_bd));
1554
1555 nbd++;
1556 /* We need to fill in additional data in second_bd... */
1557 tx_data_bd = (struct eth_tx_bd *)second_bd;
1558 }
1559
1560 if (skb_vlan_tag_present(skb)) {
1561 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1562 first_bd->data.bd_flags.bitfields |=
1563 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1564 }
1565
1566 /* Fill the parsing flags & params according to the requested offload */
1567 if (xmit_type & XMIT_L4_CSUM) {
1568 /* We don't re-calculate IP checksum as it is already done by
1569 * the upper stack
1570 */
1571 first_bd->data.bd_flags.bitfields |=
1572 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1573
1574 if (xmit_type & XMIT_ENC) {
1575 first_bd->data.bd_flags.bitfields |=
1576 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1577
1578 val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1579 }
1580
1581 /* Legacy FW had flipped behavior in regard to this bit -
1582 * I.e., needed to set to prevent FW from touching encapsulated
1583 * packets when it didn't need to.
1584 */
1585 if (unlikely(txq->is_legacy))
1586 val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1587
1588 /* If the packet is IPv6 with extension header, indicate that
1589 * to FW and pass few params, since the device cracker doesn't
1590 * support parsing IPv6 with extension header/s.
1591 */
1592 if (unlikely(ipv6_ext))
1593 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
1594 }
1595
1596 if (xmit_type & XMIT_LSO) {
1597 first_bd->data.bd_flags.bitfields |=
1598 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
1599 third_bd->data.lso_mss =
1600 cpu_to_le16(skb_shinfo(skb)->gso_size);
1601
1602 if (unlikely(xmit_type & XMIT_ENC)) {
1603 first_bd->data.bd_flags.bitfields |=
1604 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1605
1606 if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
1607 u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1608
1609 first_bd->data.bd_flags.bitfields |= 1 << tmp;
1610 }
1611 hlen = qede_get_skb_hlen(skb, true);
1612 } else {
1613 first_bd->data.bd_flags.bitfields |=
1614 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1615 hlen = qede_get_skb_hlen(skb, false);
1616 }
1617
1618 /* @@@TBD - if will not be removed need to check */
1619 third_bd->data.bitfields |=
1620 cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
1621
1622 /* Make life easier for FW guys who can't deal with header and
1623 * data on same BD. If we need to split, use the second bd...
1624 */
1625 if (unlikely(skb_headlen(skb) > hlen)) {
1626 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1627 "TSO split header size is %d (%x:%x)\n",
1628 first_bd->nbytes, first_bd->addr.hi,
1629 first_bd->addr.lo);
1630
1631 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
1632 le32_to_cpu(first_bd->addr.lo)) +
1633 hlen;
1634
1635 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
1636 le16_to_cpu(first_bd->nbytes) -
1637 hlen);
1638
1639 /* this marks the BD as one that has no
1640 * individual mapping
1641 */
1642 txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
1643
1644 first_bd->nbytes = cpu_to_le16(hlen);
1645
1646 tx_data_bd = (struct eth_tx_bd *)third_bd;
1647 data_split = true;
1648 }
1649 } else {
1650 if (unlikely(skb->len > ETH_TX_MAX_NON_LSO_PKT_LEN)) {
1651 DP_ERR(edev, "Unexpected non LSO skb length = 0x%x\n", skb->len);
1652 qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1653 qede_update_tx_producer(txq);
1654 return NETDEV_TX_OK;
1655 }
1656
1657 val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
1658 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT);
1659 }
1660
1661 first_bd->data.bitfields = cpu_to_le16(val);
1662
1663 /* Handle fragmented skb */
1664 /* special handle for frags inside 2nd and 3rd bds.. */
1665 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
1666 rc = map_frag_to_bd(txq,
1667 &skb_shinfo(skb)->frags[frag_idx],
1668 tx_data_bd);
1669 if (rc) {
1670 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1671 qede_update_tx_producer(txq);
1672 return NETDEV_TX_OK;
1673 }
1674
1675 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
1676 tx_data_bd = (struct eth_tx_bd *)third_bd;
1677 else
1678 tx_data_bd = NULL;
1679
1680 frag_idx++;
1681 }
1682
1683 /* map last frags into 4th, 5th .... */
1684 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
1685 tx_data_bd = (struct eth_tx_bd *)
1686 qed_chain_produce(&txq->tx_pbl);
1687
1688 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
1689
1690 rc = map_frag_to_bd(txq,
1691 &skb_shinfo(skb)->frags[frag_idx],
1692 tx_data_bd);
1693 if (rc) {
1694 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1695 qede_update_tx_producer(txq);
1696 return NETDEV_TX_OK;
1697 }
1698 }
1699
1700 /* update the first BD with the actual num BDs */
1701 first_bd->data.nbds = nbd;
1702
1703 netdev_tx_sent_queue(netdev_txq, skb->len);
1704
1705 skb_tx_timestamp(skb);
1706
1707 /* Advance packet producer only before sending the packet since mapping
1708 * of pages may fail.
1709 */
1710 txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
1711
1712 /* 'next page' entries are counted in the producer value */
1713 txq->tx_db.data.bd_prod =
1714 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
1715
1716 if (!netdev_xmit_more() || netif_xmit_stopped(netdev_txq))
1717 qede_update_tx_producer(txq);
1718
1719 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
1720 < (MAX_SKB_FRAGS + 1))) {
1721 if (netdev_xmit_more())
1722 qede_update_tx_producer(txq);
1723
1724 netif_tx_stop_queue(netdev_txq);
1725 txq->stopped_cnt++;
1726 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1727 "Stop queue was called\n");
1728 /* paired memory barrier is in qede_tx_int(), we have to keep
1729 * ordering of set_bit() in netif_tx_stop_queue() and read of
1730 * fp->bd_tx_cons
1731 */
1732 smp_mb();
1733
1734 if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
1735 (MAX_SKB_FRAGS + 1)) &&
1736 (edev->state == QEDE_STATE_OPEN)) {
1737 netif_tx_wake_queue(netdev_txq);
1738 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1739 "Wake queue was called\n");
1740 }
1741 }
1742
1743 return NETDEV_TX_OK;
1744 }
1745
qede_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1746 u16 qede_select_queue(struct net_device *dev, struct sk_buff *skb,
1747 struct net_device *sb_dev)
1748 {
1749 struct qede_dev *edev = netdev_priv(dev);
1750 int total_txq;
1751
1752 total_txq = QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc;
1753
1754 return QEDE_TSS_COUNT(edev) ?
1755 netdev_pick_tx(dev, skb, NULL) % total_txq : 0;
1756 }
1757
1758 /* 8B udp header + 8B base tunnel header + 32B option length */
1759 #define QEDE_MAX_TUN_HDR_LEN 48
1760
qede_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)1761 netdev_features_t qede_features_check(struct sk_buff *skb,
1762 struct net_device *dev,
1763 netdev_features_t features)
1764 {
1765 if (skb->encapsulation) {
1766 u8 l4_proto = 0;
1767
1768 switch (vlan_get_protocol(skb)) {
1769 case htons(ETH_P_IP):
1770 l4_proto = ip_hdr(skb)->protocol;
1771 break;
1772 case htons(ETH_P_IPV6):
1773 l4_proto = ipv6_hdr(skb)->nexthdr;
1774 break;
1775 default:
1776 return features;
1777 }
1778
1779 /* Disable offloads for geneve tunnels, as HW can't parse
1780 * the geneve header which has option length greater than 32b
1781 * and disable offloads for the ports which are not offloaded.
1782 */
1783 if (l4_proto == IPPROTO_UDP) {
1784 struct qede_dev *edev = netdev_priv(dev);
1785 u16 hdrlen, vxln_port, gnv_port;
1786
1787 hdrlen = QEDE_MAX_TUN_HDR_LEN;
1788 vxln_port = edev->vxlan_dst_port;
1789 gnv_port = edev->geneve_dst_port;
1790
1791 if ((skb_inner_mac_header(skb) -
1792 skb_transport_header(skb)) > hdrlen ||
1793 (ntohs(udp_hdr(skb)->dest) != vxln_port &&
1794 ntohs(udp_hdr(skb)->dest) != gnv_port))
1795 return features & ~(NETIF_F_CSUM_MASK |
1796 NETIF_F_GSO_MASK);
1797 } else if (l4_proto == IPPROTO_IPIP) {
1798 /* IPIP tunnels are unknown to the device or at least unsupported natively,
1799 * offloads for them can't be done trivially, so disable them for such skb.
1800 */
1801 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1802 }
1803 }
1804
1805 return features;
1806 }
1807