1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qed NIC Driver
3 * Copyright (c) 2015-2017 QLogic Corporation
4 * Copyright (c) 2019-2020 Marvell International Ltd.
5 */
6
7 #include <linux/types.h>
8 #include <asm/byteorder.h>
9 #include <linux/io.h>
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/errno.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include "qed.h"
20 #include "qed_hsi.h"
21 #include "qed_hw.h"
22 #include "qed_init_ops.h"
23 #include "qed_int.h"
24 #include "qed_mcp.h"
25 #include "qed_reg_addr.h"
26 #include "qed_sp.h"
27 #include "qed_sriov.h"
28 #include "qed_vf.h"
29
30 struct qed_pi_info {
31 qed_int_comp_cb_t comp_cb;
32 void *cookie;
33 };
34
35 struct qed_sb_sp_info {
36 struct qed_sb_info sb_info;
37
38 /* per protocol index data */
39 struct qed_pi_info pi_info_arr[PIS_PER_SB];
40 };
41
42 enum qed_attention_type {
43 QED_ATTN_TYPE_ATTN,
44 QED_ATTN_TYPE_PARITY,
45 };
46
47 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
48 ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
49
50 struct aeu_invert_reg_bit {
51 char bit_name[30];
52
53 #define ATTENTION_PARITY (1 << 0)
54
55 #define ATTENTION_LENGTH_MASK (0x00000ff0)
56 #define ATTENTION_LENGTH_SHIFT (4)
57 #define ATTENTION_LENGTH(flags) (((flags) & ATTENTION_LENGTH_MASK) >> \
58 ATTENTION_LENGTH_SHIFT)
59 #define ATTENTION_SINGLE BIT(ATTENTION_LENGTH_SHIFT)
60 #define ATTENTION_PAR (ATTENTION_SINGLE | ATTENTION_PARITY)
61 #define ATTENTION_PAR_INT ((2 << ATTENTION_LENGTH_SHIFT) | \
62 ATTENTION_PARITY)
63
64 /* Multiple bits start with this offset */
65 #define ATTENTION_OFFSET_MASK (0x000ff000)
66 #define ATTENTION_OFFSET_SHIFT (12)
67
68 #define ATTENTION_BB_MASK (0x00700000)
69 #define ATTENTION_BB_SHIFT (20)
70 #define ATTENTION_BB(value) (value << ATTENTION_BB_SHIFT)
71 #define ATTENTION_BB_DIFFERENT BIT(23)
72
73 #define ATTENTION_CLEAR_ENABLE BIT(28)
74 unsigned int flags;
75
76 /* Callback to call if attention will be triggered */
77 int (*cb)(struct qed_hwfn *p_hwfn);
78
79 enum block_id block_index;
80 };
81
82 struct aeu_invert_reg {
83 struct aeu_invert_reg_bit bits[32];
84 };
85
86 #define MAX_ATTN_GRPS (8)
87 #define NUM_ATTN_REGS (9)
88
89 /* Specific HW attention callbacks */
qed_mcp_attn_cb(struct qed_hwfn * p_hwfn)90 static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
91 {
92 u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
93
94 /* This might occur on certain instances; Log it once then mask it */
95 DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
96 tmp);
97 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
98 0xffffffff);
99
100 return 0;
101 }
102
103 #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS (0x1)
104 #define ATTENTION_INCORRECT_ACCESS_WR_MASK (0x1)
105 #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT (0)
106 #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK (0xf)
107 #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT (1)
108 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK (0x1)
109 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT (5)
110 #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK (0xff)
111 #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT (6)
112 #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK (0xf)
113 #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT (14)
114 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK (0xff)
115 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT (18)
qed_pswhst_attn_cb(struct qed_hwfn * p_hwfn)116 static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
117 {
118 u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
119 PSWHST_REG_INCORRECT_ACCESS_VALID);
120
121 if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
122 u32 addr, data, length;
123
124 addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
125 PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
126 data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
127 PSWHST_REG_INCORRECT_ACCESS_DATA);
128 length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
129 PSWHST_REG_INCORRECT_ACCESS_LENGTH);
130
131 DP_INFO(p_hwfn->cdev,
132 "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
133 addr, length,
134 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
135 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
136 (u8) GET_FIELD(data,
137 ATTENTION_INCORRECT_ACCESS_VF_VALID),
138 (u8) GET_FIELD(data,
139 ATTENTION_INCORRECT_ACCESS_CLIENT),
140 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
141 (u8) GET_FIELD(data,
142 ATTENTION_INCORRECT_ACCESS_BYTE_EN),
143 data);
144 }
145
146 return 0;
147 }
148
149 #define QED_GRC_ATTENTION_VALID_BIT (1 << 0)
150 #define QED_GRC_ATTENTION_ADDRESS_MASK (0x7fffff)
151 #define QED_GRC_ATTENTION_ADDRESS_SHIFT (0)
152 #define QED_GRC_ATTENTION_RDWR_BIT (1 << 23)
153 #define QED_GRC_ATTENTION_MASTER_MASK (0xf)
154 #define QED_GRC_ATTENTION_MASTER_SHIFT (24)
155 #define QED_GRC_ATTENTION_PF_MASK (0xf)
156 #define QED_GRC_ATTENTION_PF_SHIFT (0)
157 #define QED_GRC_ATTENTION_VF_MASK (0xff)
158 #define QED_GRC_ATTENTION_VF_SHIFT (4)
159 #define QED_GRC_ATTENTION_PRIV_MASK (0x3)
160 #define QED_GRC_ATTENTION_PRIV_SHIFT (14)
161 #define QED_GRC_ATTENTION_PRIV_VF (0)
attn_master_to_str(u8 master)162 static const char *attn_master_to_str(u8 master)
163 {
164 switch (master) {
165 case 1: return "PXP";
166 case 2: return "MCP";
167 case 3: return "MSDM";
168 case 4: return "PSDM";
169 case 5: return "YSDM";
170 case 6: return "USDM";
171 case 7: return "TSDM";
172 case 8: return "XSDM";
173 case 9: return "DBU";
174 case 10: return "DMAE";
175 default:
176 return "Unknown";
177 }
178 }
179
qed_grc_attn_cb(struct qed_hwfn * p_hwfn)180 static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
181 {
182 u32 tmp, tmp2;
183
184 /* We've already cleared the timeout interrupt register, so we learn
185 * of interrupts via the validity register
186 */
187 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
188 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
189 if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
190 goto out;
191
192 /* Read the GRC timeout information */
193 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
194 GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
195 tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
196 GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
197
198 DP_INFO(p_hwfn->cdev,
199 "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
200 tmp2, tmp,
201 (tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
202 GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
203 attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
204 GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
205 (GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
206 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
207 GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
208
209 out:
210 /* Regardles of anything else, clean the validity bit */
211 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
212 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
213 return 0;
214 }
215
216 #define PGLUE_ATTENTION_VALID (1 << 29)
217 #define PGLUE_ATTENTION_RD_VALID (1 << 26)
218 #define PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf)
219 #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
220 #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK (0x1)
221 #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT (19)
222 #define PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff)
223 #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
224 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK (0x1)
225 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT (21)
226 #define PGLUE_ATTENTION_DETAILS2_BME_MASK (0x1)
227 #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT (22)
228 #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK (0x1)
229 #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT (23)
230 #define PGLUE_ATTENTION_ICPL_VALID (1 << 23)
231 #define PGLUE_ATTENTION_ZLR_VALID (1 << 25)
232 #define PGLUE_ATTENTION_ILT_VALID (1 << 23)
233
qed_pglueb_rbc_attn_handler(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,bool hw_init)234 int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
235 bool hw_init)
236 {
237 char msg[256];
238 u32 tmp;
239
240 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
241 if (tmp & PGLUE_ATTENTION_VALID) {
242 u32 addr_lo, addr_hi, details;
243
244 addr_lo = qed_rd(p_hwfn, p_ptt,
245 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
246 addr_hi = qed_rd(p_hwfn, p_ptt,
247 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
248 details = qed_rd(p_hwfn, p_ptt,
249 PGLUE_B_REG_TX_ERR_WR_DETAILS);
250
251 snprintf(msg, sizeof(msg),
252 "Illegal write by chip to [%08x:%08x] blocked.\n"
253 "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
254 "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]",
255 addr_hi, addr_lo, details,
256 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
257 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
258 !!GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VF_VALID),
259 tmp,
260 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR),
261 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME),
262 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN));
263
264 if (hw_init)
265 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
266 else
267 DP_NOTICE(p_hwfn, "%s\n", msg);
268 }
269
270 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
271 if (tmp & PGLUE_ATTENTION_RD_VALID) {
272 u32 addr_lo, addr_hi, details;
273
274 addr_lo = qed_rd(p_hwfn, p_ptt,
275 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
276 addr_hi = qed_rd(p_hwfn, p_ptt,
277 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
278 details = qed_rd(p_hwfn, p_ptt,
279 PGLUE_B_REG_TX_ERR_RD_DETAILS);
280
281 DP_NOTICE(p_hwfn,
282 "Illegal read by chip from [%08x:%08x] blocked.\n"
283 "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
284 "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
285 addr_hi, addr_lo, details,
286 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
287 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
288 GET_FIELD(details,
289 PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
290 tmp,
291 GET_FIELD(tmp,
292 PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
293 GET_FIELD(tmp,
294 PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
295 GET_FIELD(tmp,
296 PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
297 }
298
299 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
300 if (tmp & PGLUE_ATTENTION_ICPL_VALID) {
301 snprintf(msg, sizeof(msg), "ICPL error - %08x", tmp);
302
303 if (hw_init)
304 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
305 else
306 DP_NOTICE(p_hwfn, "%s\n", msg);
307 }
308
309 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
310 if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
311 u32 addr_hi, addr_lo;
312
313 addr_lo = qed_rd(p_hwfn, p_ptt,
314 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
315 addr_hi = qed_rd(p_hwfn, p_ptt,
316 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
317
318 DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n",
319 tmp, addr_hi, addr_lo);
320 }
321
322 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
323 if (tmp & PGLUE_ATTENTION_ILT_VALID) {
324 u32 addr_hi, addr_lo, details;
325
326 addr_lo = qed_rd(p_hwfn, p_ptt,
327 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
328 addr_hi = qed_rd(p_hwfn, p_ptt,
329 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
330 details = qed_rd(p_hwfn, p_ptt,
331 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
332
333 DP_NOTICE(p_hwfn,
334 "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
335 details, tmp, addr_hi, addr_lo);
336 }
337
338 /* Clear the indications */
339 qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2));
340
341 return 0;
342 }
343
qed_pglueb_rbc_attn_cb(struct qed_hwfn * p_hwfn)344 static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn)
345 {
346 return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false);
347 }
348
qed_fw_assertion(struct qed_hwfn * p_hwfn)349 static int qed_fw_assertion(struct qed_hwfn *p_hwfn)
350 {
351 qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_FW_ASSERT,
352 "FW assertion!\n");
353
354 /* Clear assert indications */
355 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MISC_REG_AEU_GENERAL_ATTN_32, 0);
356
357 return -EINVAL;
358 }
359
qed_general_attention_35(struct qed_hwfn * p_hwfn)360 static int qed_general_attention_35(struct qed_hwfn *p_hwfn)
361 {
362 DP_INFO(p_hwfn, "General attention 35!\n");
363
364 return 0;
365 }
366
367 #define QED_DORQ_ATTENTION_REASON_MASK (0xfffff)
368 #define QED_DORQ_ATTENTION_OPAQUE_MASK (0xffff)
369 #define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0)
370 #define QED_DORQ_ATTENTION_SIZE_MASK (0x7f)
371 #define QED_DORQ_ATTENTION_SIZE_SHIFT (16)
372
373 #define QED_DB_REC_COUNT 1000
374 #define QED_DB_REC_INTERVAL 100
375
qed_db_rec_flush_queue(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)376 static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn,
377 struct qed_ptt *p_ptt)
378 {
379 u32 count = QED_DB_REC_COUNT;
380 u32 usage = 1;
381
382 /* Flush any pending (e)dpms as they may never arrive */
383 qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
384
385 /* wait for usage to zero or count to run out. This is necessary since
386 * EDPM doorbell transactions can take multiple 64b cycles, and as such
387 * can "split" over the pci. Possibly, the doorbell drop can happen with
388 * half an EDPM in the queue and other half dropped. Another EDPM
389 * doorbell to the same address (from doorbell recovery mechanism or
390 * from the doorbelling entity) could have first half dropped and second
391 * half interpreted as continuation of the first. To prevent such
392 * malformed doorbells from reaching the device, flush the queue before
393 * releasing the overflow sticky indication.
394 */
395 while (count-- && usage) {
396 usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
397 udelay(QED_DB_REC_INTERVAL);
398 }
399
400 /* should have been depleted by now */
401 if (usage) {
402 DP_NOTICE(p_hwfn->cdev,
403 "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
404 QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage);
405 return -EBUSY;
406 }
407
408 return 0;
409 }
410
qed_db_rec_handler(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)411 int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
412 {
413 u32 attn_ovfl, cur_ovfl;
414 int rc;
415
416 attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT,
417 &p_hwfn->db_recovery_info.overflow);
418 cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
419 if (!cur_ovfl && !attn_ovfl)
420 return 0;
421
422 DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n",
423 attn_ovfl, cur_ovfl);
424
425 if (cur_ovfl && !p_hwfn->db_bar_no_edpm) {
426 rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
427 if (rc)
428 return rc;
429 }
430
431 /* Release overflow sticky indication (stop silently dropping everything) */
432 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
433
434 /* Repeat all last doorbells (doorbell drop recovery) */
435 qed_db_recovery_execute(p_hwfn);
436
437 return 0;
438 }
439
qed_dorq_attn_overflow(struct qed_hwfn * p_hwfn)440 static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn)
441 {
442 struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
443 u32 overflow;
444 int rc;
445
446 overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
447 if (!overflow)
448 goto out;
449
450 /* Run PF doorbell recovery in next periodic handler */
451 set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow);
452
453 if (!p_hwfn->db_bar_no_edpm) {
454 rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
455 if (rc)
456 goto out;
457 }
458
459 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
460 out:
461 /* Schedule the handler even if overflow was not detected */
462 qed_periodic_db_rec_start(p_hwfn);
463 }
464
qed_dorq_attn_int_sts(struct qed_hwfn * p_hwfn)465 static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn)
466 {
467 u32 int_sts, first_drop_reason, details, address, all_drops_reason;
468 struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
469
470 int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
471 if (int_sts == 0xdeadbeaf) {
472 DP_NOTICE(p_hwfn->cdev,
473 "DORQ is being reset, skipping int_sts handler\n");
474
475 return 0;
476 }
477
478 /* int_sts may be zero since all PFs were interrupted for doorbell
479 * overflow but another one already handled it. Can abort here. If
480 * This PF also requires overflow recovery we will be interrupted again.
481 * The masked almost full indication may also be set. Ignoring.
482 */
483 if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
484 return 0;
485
486 DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts);
487
488 /* check if db_drop or overflow happened */
489 if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
490 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
491 /* Obtain data about db drop/overflow */
492 first_drop_reason = qed_rd(p_hwfn, p_ptt,
493 DORQ_REG_DB_DROP_REASON) &
494 QED_DORQ_ATTENTION_REASON_MASK;
495 details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS);
496 address = qed_rd(p_hwfn, p_ptt,
497 DORQ_REG_DB_DROP_DETAILS_ADDRESS);
498 all_drops_reason = qed_rd(p_hwfn, p_ptt,
499 DORQ_REG_DB_DROP_DETAILS_REASON);
500
501 /* Log info */
502 DP_NOTICE(p_hwfn->cdev,
503 "Doorbell drop occurred\n"
504 "Address\t\t0x%08x\t(second BAR address)\n"
505 "FID\t\t0x%04x\t\t(Opaque FID)\n"
506 "Size\t\t0x%04x\t\t(in bytes)\n"
507 "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
508 "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
509 address,
510 GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE),
511 GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
512 first_drop_reason, all_drops_reason);
513
514 /* Clear the doorbell drop details and prepare for next drop */
515 qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
516
517 /* Mark interrupt as handled (note: even if drop was due to a different
518 * reason than overflow we mark as handled)
519 */
520 qed_wr(p_hwfn,
521 p_ptt,
522 DORQ_REG_INT_STS_WR,
523 DORQ_REG_INT_STS_DB_DROP |
524 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
525
526 /* If there are no indications other than drop indications, success */
527 if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
528 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
529 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
530 return 0;
531 }
532
533 /* Some other indication was present - non recoverable */
534 DP_INFO(p_hwfn, "DORQ fatal attention\n");
535
536 return -EINVAL;
537 }
538
qed_dorq_attn_cb(struct qed_hwfn * p_hwfn)539 static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
540 {
541 if (p_hwfn->cdev->recov_in_prog)
542 return 0;
543
544 p_hwfn->db_recovery_info.dorq_attn = true;
545 qed_dorq_attn_overflow(p_hwfn);
546
547 return qed_dorq_attn_int_sts(p_hwfn);
548 }
549
qed_dorq_attn_handler(struct qed_hwfn * p_hwfn)550 static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn)
551 {
552 if (p_hwfn->db_recovery_info.dorq_attn)
553 goto out;
554
555 /* Call DORQ callback if the attention was missed */
556 qed_dorq_attn_cb(p_hwfn);
557 out:
558 p_hwfn->db_recovery_info.dorq_attn = false;
559 }
560
561 /* Instead of major changes to the data-structure, we have a some 'special'
562 * identifiers for sources that changed meaning between adapters.
563 */
564 enum aeu_invert_reg_special_type {
565 AEU_INVERT_REG_SPECIAL_CNIG_0,
566 AEU_INVERT_REG_SPECIAL_CNIG_1,
567 AEU_INVERT_REG_SPECIAL_CNIG_2,
568 AEU_INVERT_REG_SPECIAL_CNIG_3,
569 AEU_INVERT_REG_SPECIAL_MAX,
570 };
571
572 static struct aeu_invert_reg_bit
573 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
574 {"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
575 {"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
576 {"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
577 {"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
578 };
579
580 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
581 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
582 {
583 { /* After Invert 1 */
584 {"GPIO0 function%d",
585 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
586 }
587 },
588
589 {
590 { /* After Invert 2 */
591 {"PGLUE config_space", ATTENTION_SINGLE,
592 NULL, MAX_BLOCK_ID},
593 {"PGLUE misc_flr", ATTENTION_SINGLE,
594 NULL, MAX_BLOCK_ID},
595 {"PGLUE B RBC", ATTENTION_PAR_INT,
596 qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
597 {"PGLUE misc_mctp", ATTENTION_SINGLE,
598 NULL, MAX_BLOCK_ID},
599 {"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
600 {"SMB event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
601 {"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
602 {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
603 (1 << ATTENTION_OFFSET_SHIFT),
604 NULL, MAX_BLOCK_ID},
605 {"PCIE glue/PXP VPD %d",
606 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
607 }
608 },
609
610 {
611 { /* After Invert 3 */
612 {"General Attention %d",
613 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
614 }
615 },
616
617 {
618 { /* After Invert 4 */
619 {"General Attention 32", ATTENTION_SINGLE |
620 ATTENTION_CLEAR_ENABLE, qed_fw_assertion,
621 MAX_BLOCK_ID},
622 {"General Attention %d",
623 (2 << ATTENTION_LENGTH_SHIFT) |
624 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
625 {"General Attention 35", ATTENTION_SINGLE |
626 ATTENTION_CLEAR_ENABLE, qed_general_attention_35,
627 MAX_BLOCK_ID},
628 {"NWS Parity",
629 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
630 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
631 NULL, BLOCK_NWS},
632 {"NWS Interrupt",
633 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
634 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
635 NULL, BLOCK_NWS},
636 {"NWM Parity",
637 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
638 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
639 NULL, BLOCK_NWM},
640 {"NWM Interrupt",
641 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
642 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
643 NULL, BLOCK_NWM},
644 {"MCP CPU", ATTENTION_SINGLE,
645 qed_mcp_attn_cb, MAX_BLOCK_ID},
646 {"MCP Watchdog timer", ATTENTION_SINGLE,
647 NULL, MAX_BLOCK_ID},
648 {"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
649 {"AVS stop status ready", ATTENTION_SINGLE,
650 NULL, MAX_BLOCK_ID},
651 {"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
652 {"MSTAT per-path", ATTENTION_PAR_INT,
653 NULL, MAX_BLOCK_ID},
654 {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
655 NULL, MAX_BLOCK_ID},
656 {"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
657 {"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
658 {"BTB", ATTENTION_PAR_INT, NULL, BLOCK_BTB},
659 {"BRB", ATTENTION_PAR_INT, NULL, BLOCK_BRB},
660 {"PRS", ATTENTION_PAR_INT, NULL, BLOCK_PRS},
661 }
662 },
663
664 {
665 { /* After Invert 5 */
666 {"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
667 {"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
668 {"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
669 {"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
670 {"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
671 {"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
672 {"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
673 {"MCM", ATTENTION_PAR_INT, NULL, BLOCK_MCM},
674 {"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
675 {"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
676 {"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
677 {"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
678 {"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
679 {"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
680 {"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
681 {"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
682 }
683 },
684
685 {
686 { /* After Invert 6 */
687 {"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
688 {"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
689 {"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
690 {"XCM", ATTENTION_PAR_INT, NULL, BLOCK_XCM},
691 {"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
692 {"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
693 {"YCM", ATTENTION_PAR_INT, NULL, BLOCK_YCM},
694 {"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
695 {"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
696 {"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
697 {"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
698 {"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
699 {"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
700 {"DORQ", ATTENTION_PAR_INT,
701 qed_dorq_attn_cb, BLOCK_DORQ},
702 {"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
703 {"IPC", ATTENTION_PAR_INT, NULL, BLOCK_IPC},
704 }
705 },
706
707 {
708 { /* After Invert 7 */
709 {"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
710 {"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
711 {"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
712 {"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
713 {"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
714 {"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
715 {"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
716 {"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
717 {"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
718 {"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
719 {"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
720 {"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
721 {"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
722 {"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
723 {"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
724 {"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
725 {"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
726 }
727 },
728
729 {
730 { /* After Invert 8 */
731 {"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
732 NULL, BLOCK_PSWRQ2},
733 {"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
734 {"PSWWR (pci_clk)", ATTENTION_PAR_INT,
735 NULL, BLOCK_PSWWR2},
736 {"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
737 {"PSWRD (pci_clk)", ATTENTION_PAR_INT,
738 NULL, BLOCK_PSWRD2},
739 {"PSWHST", ATTENTION_PAR_INT,
740 qed_pswhst_attn_cb, BLOCK_PSWHST},
741 {"PSWHST (pci_clk)", ATTENTION_PAR_INT,
742 NULL, BLOCK_PSWHST2},
743 {"GRC", ATTENTION_PAR_INT,
744 qed_grc_attn_cb, BLOCK_GRC},
745 {"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
746 {"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
747 {"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
748 {"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
749 {"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
750 {"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
751 {"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
752 {"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
753 {"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
754 {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
755 NULL, BLOCK_PGLCS},
756 {"PERST_B assertion", ATTENTION_SINGLE,
757 NULL, MAX_BLOCK_ID},
758 {"PERST_B deassertion", ATTENTION_SINGLE,
759 NULL, MAX_BLOCK_ID},
760 {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
761 NULL, MAX_BLOCK_ID},
762 }
763 },
764
765 {
766 { /* After Invert 9 */
767 {"MCP Latched memory", ATTENTION_PAR,
768 NULL, MAX_BLOCK_ID},
769 {"MCP Latched scratchpad cache", ATTENTION_SINGLE,
770 NULL, MAX_BLOCK_ID},
771 {"MCP Latched ump_tx", ATTENTION_PAR,
772 NULL, MAX_BLOCK_ID},
773 {"MCP Latched scratchpad", ATTENTION_PAR,
774 NULL, MAX_BLOCK_ID},
775 {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
776 NULL, MAX_BLOCK_ID},
777 }
778 },
779 };
780
781 static struct aeu_invert_reg_bit *
qed_int_aeu_translate(struct qed_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_bit)782 qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
783 struct aeu_invert_reg_bit *p_bit)
784 {
785 if (!QED_IS_BB(p_hwfn->cdev))
786 return p_bit;
787
788 if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
789 return p_bit;
790
791 return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
792 ATTENTION_BB_SHIFT];
793 }
794
qed_int_is_parity_flag(struct qed_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_bit)795 static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
796 struct aeu_invert_reg_bit *p_bit)
797 {
798 return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
799 ATTENTION_PARITY);
800 }
801
802 #define ATTN_STATE_BITS (0xfff)
803 #define ATTN_BITS_MASKABLE (0x3ff)
804 struct qed_sb_attn_info {
805 /* Virtual & Physical address of the SB */
806 struct atten_status_block *sb_attn;
807 dma_addr_t sb_phys;
808
809 /* Last seen running index */
810 u16 index;
811
812 /* A mask of the AEU bits resulting in a parity error */
813 u32 parity_mask[NUM_ATTN_REGS];
814
815 /* A pointer to the attention description structure */
816 struct aeu_invert_reg *p_aeu_desc;
817
818 /* Previously asserted attentions, which are still unasserted */
819 u16 known_attn;
820
821 /* Cleanup address for the link's general hw attention */
822 u32 mfw_attn_addr;
823 };
824
qed_attn_update_idx(struct qed_hwfn * p_hwfn,struct qed_sb_attn_info * p_sb_desc)825 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
826 struct qed_sb_attn_info *p_sb_desc)
827 {
828 u16 rc = 0, index;
829
830 index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
831 if (p_sb_desc->index != index) {
832 p_sb_desc->index = index;
833 rc = QED_SB_ATT_IDX;
834 }
835
836 return rc;
837 }
838
839 /**
840 * qed_int_assertion() - Handle asserted attention bits.
841 *
842 * @p_hwfn: HW device data.
843 * @asserted_bits: Newly asserted bits.
844 *
845 * Return: Zero value.
846 */
qed_int_assertion(struct qed_hwfn * p_hwfn,u16 asserted_bits)847 static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
848 {
849 struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
850 u32 igu_mask;
851
852 /* Mask the source of the attention in the IGU */
853 igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
854 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
855 igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
856 igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
857 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
858
859 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
860 "inner known ATTN state: 0x%04x --> 0x%04x\n",
861 sb_attn_sw->known_attn,
862 sb_attn_sw->known_attn | asserted_bits);
863 sb_attn_sw->known_attn |= asserted_bits;
864
865 /* Handle MCP events */
866 if (asserted_bits & 0x100) {
867 qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
868 /* Clean the MCP attention */
869 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
870 sb_attn_sw->mfw_attn_addr, 0);
871 }
872
873 DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
874 GTT_BAR0_MAP_REG_IGU_CMD +
875 ((IGU_CMD_ATTN_BIT_SET_UPPER -
876 IGU_CMD_INT_ACK_BASE) << 3),
877 (u32)asserted_bits);
878
879 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
880 asserted_bits);
881
882 return 0;
883 }
884
qed_int_attn_print(struct qed_hwfn * p_hwfn,enum block_id id,enum dbg_attn_type type,bool b_clear)885 static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
886 enum block_id id,
887 enum dbg_attn_type type, bool b_clear)
888 {
889 struct dbg_attn_block_result attn_results;
890 enum dbg_status status;
891
892 memset(&attn_results, 0, sizeof(attn_results));
893
894 status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
895 b_clear, &attn_results);
896 if (status != DBG_STATUS_OK)
897 DP_NOTICE(p_hwfn,
898 "Failed to parse attention information [status: %s]\n",
899 qed_dbg_get_status_str(status));
900 else
901 qed_dbg_parse_attn(p_hwfn, &attn_results);
902 }
903
904 /**
905 * qed_int_deassertion_aeu_bit() - Handles the effects of a single
906 * cause of the attention.
907 *
908 * @p_hwfn: HW device data.
909 * @p_aeu: Descriptor of an AEU bit which caused the attention.
910 * @aeu_en_reg: Register offset of the AEU enable reg. which configured
911 * this bit to this group.
912 * @p_bit_name: AEU bit description for logging purposes.
913 * @bitmask: Index of this bit in the aeu_en_reg.
914 *
915 * Return: Zero on success, negative errno otherwise.
916 */
917 static int
qed_int_deassertion_aeu_bit(struct qed_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_aeu,u32 aeu_en_reg,const char * p_bit_name,u32 bitmask)918 qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
919 struct aeu_invert_reg_bit *p_aeu,
920 u32 aeu_en_reg,
921 const char *p_bit_name, u32 bitmask)
922 {
923 bool b_fatal = false;
924 int rc = -EINVAL;
925 u32 val;
926
927 DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
928 p_bit_name, bitmask);
929
930 /* Call callback before clearing the interrupt status */
931 if (p_aeu->cb) {
932 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
933 p_bit_name);
934 rc = p_aeu->cb(p_hwfn);
935 }
936
937 if (rc)
938 b_fatal = true;
939
940 /* Print HW block interrupt registers */
941 if (p_aeu->block_index != MAX_BLOCK_ID)
942 qed_int_attn_print(p_hwfn, p_aeu->block_index,
943 ATTN_TYPE_INTERRUPT, !b_fatal);
944
945 /* Reach assertion if attention is fatal */
946 if (b_fatal)
947 qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_HW_ATTN,
948 "`%s': Fatal attention\n",
949 p_bit_name);
950 else /* If the attention is benign, no need to prevent it */
951 goto out;
952
953 /* Prevent this Attention from being asserted in the future */
954 val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
955 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
956 DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
957 p_bit_name);
958
959 /* Re-enable FW aassertion (Gen 32) interrupts */
960 val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
961 MISC_REG_AEU_ENABLE4_IGU_OUT_0);
962 val |= MISC_REG_AEU_ENABLE4_IGU_OUT_0_GENERAL_ATTN32;
963 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
964 MISC_REG_AEU_ENABLE4_IGU_OUT_0, val);
965
966 out:
967 return rc;
968 }
969
970 /**
971 * qed_int_deassertion_parity() - Handle a single parity AEU source.
972 *
973 * @p_hwfn: HW device data.
974 * @p_aeu: Descriptor of an AEU bit which caused the parity.
975 * @aeu_en_reg: Address of the AEU enable register.
976 * @bit_index: Index (0-31) of an AEU bit.
977 */
qed_int_deassertion_parity(struct qed_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_aeu,u32 aeu_en_reg,u8 bit_index)978 static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
979 struct aeu_invert_reg_bit *p_aeu,
980 u32 aeu_en_reg, u8 bit_index)
981 {
982 u32 block_id = p_aeu->block_index, mask, val;
983
984 DP_NOTICE(p_hwfn->cdev,
985 "%s parity attention is set [address 0x%08x, bit %d]\n",
986 p_aeu->bit_name, aeu_en_reg, bit_index);
987
988 if (block_id != MAX_BLOCK_ID) {
989 qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
990
991 /* In BB, there's a single parity bit for several blocks */
992 if (block_id == BLOCK_BTB) {
993 qed_int_attn_print(p_hwfn, BLOCK_OPTE,
994 ATTN_TYPE_PARITY, false);
995 qed_int_attn_print(p_hwfn, BLOCK_MCP,
996 ATTN_TYPE_PARITY, false);
997 }
998 }
999
1000 /* Prevent this parity error from being re-asserted */
1001 mask = ~BIT(bit_index);
1002 val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
1003 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
1004 DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
1005 p_aeu->bit_name);
1006 }
1007
1008 /**
1009 * qed_int_deassertion() - Handle deassertion of previously asserted
1010 * attentions.
1011 *
1012 * @p_hwfn: HW device data.
1013 * @deasserted_bits: newly deasserted bits.
1014 *
1015 * Return: Zero value.
1016 */
qed_int_deassertion(struct qed_hwfn * p_hwfn,u16 deasserted_bits)1017 static int qed_int_deassertion(struct qed_hwfn *p_hwfn,
1018 u16 deasserted_bits)
1019 {
1020 struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1021 u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1022 u8 i, j, k, bit_idx;
1023 int rc = 0;
1024
1025 /* Read the attention registers in the AEU */
1026 for (i = 0; i < NUM_ATTN_REGS; i++) {
1027 aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1028 MISC_REG_AEU_AFTER_INVERT_1_IGU +
1029 i * 0x4);
1030 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1031 "Deasserted bits [%d]: %08x\n",
1032 i, aeu_inv_arr[i]);
1033 }
1034
1035 /* Find parity attentions first */
1036 for (i = 0; i < NUM_ATTN_REGS; i++) {
1037 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1038 u32 parities;
1039
1040 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1041 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1042
1043 /* Skip register in which no parity bit is currently set */
1044 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1045 if (!parities)
1046 continue;
1047
1048 for (j = 0, bit_idx = 0; bit_idx < 32 && j < 32; j++) {
1049 struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1050
1051 if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
1052 !!(parities & BIT(bit_idx)))
1053 qed_int_deassertion_parity(p_hwfn, p_bit,
1054 aeu_en, bit_idx);
1055
1056 bit_idx += ATTENTION_LENGTH(p_bit->flags);
1057 }
1058 }
1059
1060 /* Find non-parity cause for attention and act */
1061 for (k = 0; k < MAX_ATTN_GRPS; k++) {
1062 struct aeu_invert_reg_bit *p_aeu;
1063
1064 /* Handle only groups whose attention is currently deasserted */
1065 if (!(deasserted_bits & (1 << k)))
1066 continue;
1067
1068 for (i = 0; i < NUM_ATTN_REGS; i++) {
1069 u32 bits;
1070
1071 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1072 i * sizeof(u32) +
1073 k * sizeof(u32) * NUM_ATTN_REGS;
1074
1075 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1076 bits = aeu_inv_arr[i] & en;
1077
1078 /* Skip if no bit from this group is currently set */
1079 if (!bits)
1080 continue;
1081
1082 /* Find all set bits from current register which belong
1083 * to current group, making them responsible for the
1084 * previous assertion.
1085 */
1086 for (j = 0, bit_idx = 0; bit_idx < 32 && j < 32; j++) {
1087 long unsigned int bitmask;
1088 u8 bit, bit_len;
1089
1090 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1091 p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
1092
1093 bit = bit_idx;
1094 bit_len = ATTENTION_LENGTH(p_aeu->flags);
1095 if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
1096 /* Skip Parity */
1097 bit++;
1098 bit_len--;
1099 }
1100
1101 bitmask = bits & (((1 << bit_len) - 1) << bit);
1102 bitmask >>= bit;
1103
1104 if (bitmask) {
1105 u32 flags = p_aeu->flags;
1106 char bit_name[30];
1107 u8 num;
1108
1109 num = (u8)find_first_bit(&bitmask,
1110 bit_len);
1111
1112 /* Some bits represent more than a
1113 * a single interrupt. Correctly print
1114 * their name.
1115 */
1116 if (ATTENTION_LENGTH(flags) > 2 ||
1117 ((flags & ATTENTION_PAR_INT) &&
1118 ATTENTION_LENGTH(flags) > 1))
1119 snprintf(bit_name, 30,
1120 p_aeu->bit_name, num);
1121 else
1122 strlcpy(bit_name,
1123 p_aeu->bit_name, 30);
1124
1125 /* We now need to pass bitmask in its
1126 * correct position.
1127 */
1128 bitmask <<= bit;
1129
1130 /* Handle source of the attention */
1131 qed_int_deassertion_aeu_bit(p_hwfn,
1132 p_aeu,
1133 aeu_en,
1134 bit_name,
1135 bitmask);
1136 }
1137
1138 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1139 }
1140 }
1141 }
1142
1143 /* Handle missed DORQ attention */
1144 qed_dorq_attn_handler(p_hwfn);
1145
1146 /* Clear IGU indication for the deasserted bits */
1147 DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
1148 GTT_BAR0_MAP_REG_IGU_CMD +
1149 ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1150 IGU_CMD_INT_ACK_BASE) << 3),
1151 ~((u32)deasserted_bits));
1152
1153 /* Unmask deasserted attentions in IGU */
1154 aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
1155 aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1156 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1157
1158 /* Clear deassertion from inner state */
1159 sb_attn_sw->known_attn &= ~deasserted_bits;
1160
1161 return rc;
1162 }
1163
qed_int_attentions(struct qed_hwfn * p_hwfn)1164 static int qed_int_attentions(struct qed_hwfn *p_hwfn)
1165 {
1166 struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1167 struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1168 u32 attn_bits = 0, attn_acks = 0;
1169 u16 asserted_bits, deasserted_bits;
1170 __le16 index;
1171 int rc = 0;
1172
1173 /* Read current attention bits/acks - safeguard against attentions
1174 * by guaranting work on a synchronized timeframe
1175 */
1176 do {
1177 index = p_sb_attn->sb_index;
1178 /* finish reading index before the loop condition */
1179 dma_rmb();
1180 attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
1181 attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
1182 } while (index != p_sb_attn->sb_index);
1183 p_sb_attn->sb_index = index;
1184
1185 /* Attention / Deassertion are meaningful (and in correct state)
1186 * only when they differ and consistent with known state - deassertion
1187 * when previous attention & current ack, and assertion when current
1188 * attention with no previous attention
1189 */
1190 asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1191 ~p_sb_attn_sw->known_attn;
1192 deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1193 p_sb_attn_sw->known_attn;
1194
1195 if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1196 DP_INFO(p_hwfn,
1197 "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1198 index, attn_bits, attn_acks, asserted_bits,
1199 deasserted_bits, p_sb_attn_sw->known_attn);
1200 } else if (asserted_bits == 0x100) {
1201 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1202 "MFW indication via attention\n");
1203 } else {
1204 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1205 "MFW indication [deassertion]\n");
1206 }
1207
1208 if (asserted_bits) {
1209 rc = qed_int_assertion(p_hwfn, asserted_bits);
1210 if (rc)
1211 return rc;
1212 }
1213
1214 if (deasserted_bits)
1215 rc = qed_int_deassertion(p_hwfn, deasserted_bits);
1216
1217 return rc;
1218 }
1219
qed_sb_ack_attn(struct qed_hwfn * p_hwfn,void __iomem * igu_addr,u32 ack_cons)1220 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1221 void __iomem *igu_addr, u32 ack_cons)
1222 {
1223 u32 igu_ack;
1224
1225 igu_ack = ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1226 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1227 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1228 (IGU_SEG_ACCESS_ATTN <<
1229 IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1230
1231 DIRECT_REG_WR(igu_addr, igu_ack);
1232
1233 /* Both segments (interrupts & acks) are written to same place address;
1234 * Need to guarantee all commands will be received (in-order) by HW.
1235 */
1236 barrier();
1237 }
1238
qed_int_sp_dpc(struct tasklet_struct * t)1239 void qed_int_sp_dpc(struct tasklet_struct *t)
1240 {
1241 struct qed_hwfn *p_hwfn = from_tasklet(p_hwfn, t, sp_dpc);
1242 struct qed_pi_info *pi_info = NULL;
1243 struct qed_sb_attn_info *sb_attn;
1244 struct qed_sb_info *sb_info;
1245 int arr_size;
1246 u16 rc = 0;
1247
1248 if (!p_hwfn->p_sp_sb) {
1249 DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1250 return;
1251 }
1252
1253 sb_info = &p_hwfn->p_sp_sb->sb_info;
1254 arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1255 if (!sb_info) {
1256 DP_ERR(p_hwfn->cdev,
1257 "Status block is NULL - cannot ack interrupts\n");
1258 return;
1259 }
1260
1261 if (!p_hwfn->p_sb_attn) {
1262 DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1263 return;
1264 }
1265 sb_attn = p_hwfn->p_sb_attn;
1266
1267 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1268 p_hwfn, p_hwfn->my_id);
1269
1270 /* Disable ack for def status block. Required both for msix +
1271 * inta in non-mask mode, in inta does no harm.
1272 */
1273 qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1274
1275 /* Gather Interrupts/Attentions information */
1276 if (!sb_info->sb_virt) {
1277 DP_ERR(p_hwfn->cdev,
1278 "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1279 } else {
1280 u32 tmp_index = sb_info->sb_ack;
1281
1282 rc = qed_sb_update_sb_idx(sb_info);
1283 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1284 "Interrupt indices: 0x%08x --> 0x%08x\n",
1285 tmp_index, sb_info->sb_ack);
1286 }
1287
1288 if (!sb_attn || !sb_attn->sb_attn) {
1289 DP_ERR(p_hwfn->cdev,
1290 "Attentions Status block is NULL - cannot check for new attentions!\n");
1291 } else {
1292 u16 tmp_index = sb_attn->index;
1293
1294 rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1295 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1296 "Attention indices: 0x%08x --> 0x%08x\n",
1297 tmp_index, sb_attn->index);
1298 }
1299
1300 /* Check if we expect interrupts at this time. if not just ack them */
1301 if (!(rc & QED_SB_EVENT_MASK)) {
1302 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1303 return;
1304 }
1305
1306 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1307 if (!p_hwfn->p_dpc_ptt) {
1308 DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1309 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1310 return;
1311 }
1312
1313 if (rc & QED_SB_ATT_IDX)
1314 qed_int_attentions(p_hwfn);
1315
1316 if (rc & QED_SB_IDX) {
1317 int pi;
1318
1319 /* Look for a free index */
1320 for (pi = 0; pi < arr_size; pi++) {
1321 pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1322 if (pi_info->comp_cb)
1323 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1324 }
1325 }
1326
1327 if (sb_attn && (rc & QED_SB_ATT_IDX))
1328 /* This should be done before the interrupts are enabled,
1329 * since otherwise a new attention will be generated.
1330 */
1331 qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1332
1333 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1334 }
1335
qed_int_sb_attn_free(struct qed_hwfn * p_hwfn)1336 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1337 {
1338 struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1339
1340 if (!p_sb)
1341 return;
1342
1343 if (p_sb->sb_attn)
1344 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1345 SB_ATTN_ALIGNED_SIZE(p_hwfn),
1346 p_sb->sb_attn, p_sb->sb_phys);
1347 kfree(p_sb);
1348 p_hwfn->p_sb_attn = NULL;
1349 }
1350
qed_int_sb_attn_setup(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1351 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1352 struct qed_ptt *p_ptt)
1353 {
1354 struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1355
1356 memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1357
1358 sb_info->index = 0;
1359 sb_info->known_attn = 0;
1360
1361 /* Configure Attention Status Block in IGU */
1362 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1363 lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1364 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1365 upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1366 }
1367
qed_int_sb_attn_init(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,void * sb_virt_addr,dma_addr_t sb_phy_addr)1368 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1369 struct qed_ptt *p_ptt,
1370 void *sb_virt_addr, dma_addr_t sb_phy_addr)
1371 {
1372 struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1373 int i, j, k;
1374
1375 sb_info->sb_attn = sb_virt_addr;
1376 sb_info->sb_phys = sb_phy_addr;
1377
1378 /* Set the pointer to the AEU descriptors */
1379 sb_info->p_aeu_desc = aeu_descs;
1380
1381 /* Calculate Parity Masks */
1382 memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1383 for (i = 0; i < NUM_ATTN_REGS; i++) {
1384 /* j is array index, k is bit index */
1385 for (j = 0, k = 0; k < 32 && j < 32; j++) {
1386 struct aeu_invert_reg_bit *p_aeu;
1387
1388 p_aeu = &aeu_descs[i].bits[j];
1389 if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1390 sb_info->parity_mask[i] |= 1 << k;
1391
1392 k += ATTENTION_LENGTH(p_aeu->flags);
1393 }
1394 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1395 "Attn Mask [Reg %d]: 0x%08x\n",
1396 i, sb_info->parity_mask[i]);
1397 }
1398
1399 /* Set the address of cleanup for the mcp attention */
1400 sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1401 MISC_REG_AEU_GENERAL_ATTN_0;
1402
1403 qed_int_sb_attn_setup(p_hwfn, p_ptt);
1404 }
1405
qed_int_sb_attn_alloc(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1406 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1407 struct qed_ptt *p_ptt)
1408 {
1409 struct qed_dev *cdev = p_hwfn->cdev;
1410 struct qed_sb_attn_info *p_sb;
1411 dma_addr_t p_phys = 0;
1412 void *p_virt;
1413
1414 /* SB struct */
1415 p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1416 if (!p_sb)
1417 return -ENOMEM;
1418
1419 /* SB ring */
1420 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1421 SB_ATTN_ALIGNED_SIZE(p_hwfn),
1422 &p_phys, GFP_KERNEL);
1423
1424 if (!p_virt) {
1425 kfree(p_sb);
1426 return -ENOMEM;
1427 }
1428
1429 /* Attention setup */
1430 p_hwfn->p_sb_attn = p_sb;
1431 qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1432
1433 return 0;
1434 }
1435
1436 /* coalescing timeout = timeset << (timer_res + 1) */
1437 #define QED_CAU_DEF_RX_USECS 24
1438 #define QED_CAU_DEF_TX_USECS 48
1439
qed_init_cau_sb_entry(struct qed_hwfn * p_hwfn,struct cau_sb_entry * p_sb_entry,u8 pf_id,u16 vf_number,u8 vf_valid)1440 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1441 struct cau_sb_entry *p_sb_entry,
1442 u8 pf_id, u16 vf_number, u8 vf_valid)
1443 {
1444 struct qed_dev *cdev = p_hwfn->cdev;
1445 u32 cau_state, params = 0, data = 0;
1446 u8 timer_res;
1447
1448 memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1449
1450 SET_FIELD(params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1451 SET_FIELD(params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1452 SET_FIELD(params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1453 SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1454 SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1455
1456 cau_state = CAU_HC_DISABLE_STATE;
1457
1458 if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1459 cau_state = CAU_HC_ENABLE_STATE;
1460 if (!cdev->rx_coalesce_usecs)
1461 cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1462 if (!cdev->tx_coalesce_usecs)
1463 cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1464 }
1465
1466 /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1467 if (cdev->rx_coalesce_usecs <= 0x7F)
1468 timer_res = 0;
1469 else if (cdev->rx_coalesce_usecs <= 0xFF)
1470 timer_res = 1;
1471 else
1472 timer_res = 2;
1473
1474 SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1475
1476 if (cdev->tx_coalesce_usecs <= 0x7F)
1477 timer_res = 0;
1478 else if (cdev->tx_coalesce_usecs <= 0xFF)
1479 timer_res = 1;
1480 else
1481 timer_res = 2;
1482
1483 SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1484 p_sb_entry->params = cpu_to_le32(params);
1485
1486 SET_FIELD(data, CAU_SB_ENTRY_STATE0, cau_state);
1487 SET_FIELD(data, CAU_SB_ENTRY_STATE1, cau_state);
1488 p_sb_entry->data = cpu_to_le32(data);
1489 }
1490
qed_int_cau_conf_pi(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 igu_sb_id,u32 pi_index,enum qed_coalescing_fsm coalescing_fsm,u8 timeset)1491 static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1492 struct qed_ptt *p_ptt,
1493 u16 igu_sb_id,
1494 u32 pi_index,
1495 enum qed_coalescing_fsm coalescing_fsm,
1496 u8 timeset)
1497 {
1498 u32 sb_offset, pi_offset;
1499 u32 prod = 0;
1500
1501 if (IS_VF(p_hwfn->cdev))
1502 return;
1503
1504 SET_FIELD(prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1505 if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1506 SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 0);
1507 else
1508 SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 1);
1509
1510 sb_offset = igu_sb_id * PIS_PER_SB;
1511 pi_offset = sb_offset + pi_index;
1512
1513 if (p_hwfn->hw_init_done)
1514 qed_wr(p_hwfn, p_ptt,
1515 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32), prod);
1516 else
1517 STORE_RT_REG(p_hwfn, CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1518 prod);
1519 }
1520
qed_int_cau_conf_sb(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,dma_addr_t sb_phys,u16 igu_sb_id,u16 vf_number,u8 vf_valid)1521 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1522 struct qed_ptt *p_ptt,
1523 dma_addr_t sb_phys,
1524 u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1525 {
1526 struct cau_sb_entry sb_entry;
1527
1528 qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1529 vf_number, vf_valid);
1530
1531 if (p_hwfn->hw_init_done) {
1532 /* Wide-bus, initialize via DMAE */
1533 u64 phys_addr = (u64)sb_phys;
1534
1535 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1536 CAU_REG_SB_ADDR_MEMORY +
1537 igu_sb_id * sizeof(u64), 2, NULL);
1538 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1539 CAU_REG_SB_VAR_MEMORY +
1540 igu_sb_id * sizeof(u64), 2, NULL);
1541 } else {
1542 /* Initialize Status Block Address */
1543 STORE_RT_REG_AGG(p_hwfn,
1544 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1545 igu_sb_id * 2,
1546 sb_phys);
1547
1548 STORE_RT_REG_AGG(p_hwfn,
1549 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1550 igu_sb_id * 2,
1551 sb_entry);
1552 }
1553
1554 /* Configure pi coalescing if set */
1555 if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1556 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1557 u8 timeset, timer_res;
1558 u8 i;
1559
1560 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1561 if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1562 timer_res = 0;
1563 else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1564 timer_res = 1;
1565 else
1566 timer_res = 2;
1567 timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1568 qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1569 QED_COAL_RX_STATE_MACHINE, timeset);
1570
1571 if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1572 timer_res = 0;
1573 else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1574 timer_res = 1;
1575 else
1576 timer_res = 2;
1577 timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1578 for (i = 0; i < num_tc; i++) {
1579 qed_int_cau_conf_pi(p_hwfn, p_ptt,
1580 igu_sb_id, TX_PI(i),
1581 QED_COAL_TX_STATE_MACHINE,
1582 timeset);
1583 }
1584 }
1585 }
1586
qed_int_sb_setup(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_sb_info * sb_info)1587 void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1588 struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1589 {
1590 /* zero status block and ack counter */
1591 sb_info->sb_ack = 0;
1592 memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1593
1594 if (IS_PF(p_hwfn->cdev))
1595 qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1596 sb_info->igu_sb_id, 0, 0);
1597 }
1598
qed_get_igu_free_sb(struct qed_hwfn * p_hwfn,bool b_is_pf)1599 struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
1600 {
1601 struct qed_igu_block *p_block;
1602 u16 igu_id;
1603
1604 for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1605 igu_id++) {
1606 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1607
1608 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1609 !(p_block->status & QED_IGU_STATUS_FREE))
1610 continue;
1611
1612 if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
1613 return p_block;
1614 }
1615
1616 return NULL;
1617 }
1618
qed_get_pf_igu_sb_id(struct qed_hwfn * p_hwfn,u16 vector_id)1619 static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
1620 {
1621 struct qed_igu_block *p_block;
1622 u16 igu_id;
1623
1624 for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1625 igu_id++) {
1626 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1627
1628 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1629 !p_block->is_pf ||
1630 p_block->vector_number != vector_id)
1631 continue;
1632
1633 return igu_id;
1634 }
1635
1636 return QED_SB_INVALID_IDX;
1637 }
1638
qed_get_igu_sb_id(struct qed_hwfn * p_hwfn,u16 sb_id)1639 u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1640 {
1641 u16 igu_sb_id;
1642
1643 /* Assuming continuous set of IGU SBs dedicated for given PF */
1644 if (sb_id == QED_SP_SB_ID)
1645 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1646 else if (IS_PF(p_hwfn->cdev))
1647 igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1648 else
1649 igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1650
1651 if (sb_id == QED_SP_SB_ID)
1652 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1653 "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1654 else
1655 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1656 "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1657
1658 return igu_sb_id;
1659 }
1660
qed_int_sb_init(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_sb_info * sb_info,void * sb_virt_addr,dma_addr_t sb_phy_addr,u16 sb_id)1661 int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1662 struct qed_ptt *p_ptt,
1663 struct qed_sb_info *sb_info,
1664 void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1665 {
1666 sb_info->sb_virt = sb_virt_addr;
1667 sb_info->sb_phys = sb_phy_addr;
1668
1669 sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1670
1671 if (sb_id != QED_SP_SB_ID) {
1672 if (IS_PF(p_hwfn->cdev)) {
1673 struct qed_igu_info *p_info;
1674 struct qed_igu_block *p_block;
1675
1676 p_info = p_hwfn->hw_info.p_igu_info;
1677 p_block = &p_info->entry[sb_info->igu_sb_id];
1678
1679 p_block->sb_info = sb_info;
1680 p_block->status &= ~QED_IGU_STATUS_FREE;
1681 p_info->usage.free_cnt--;
1682 } else {
1683 qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1684 }
1685 }
1686
1687 sb_info->cdev = p_hwfn->cdev;
1688
1689 /* The igu address will hold the absolute address that needs to be
1690 * written to for a specific status block
1691 */
1692 if (IS_PF(p_hwfn->cdev)) {
1693 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1694 GTT_BAR0_MAP_REG_IGU_CMD +
1695 (sb_info->igu_sb_id << 3);
1696 } else {
1697 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1698 PXP_VF_BAR0_START_IGU +
1699 ((IGU_CMD_INT_ACK_BASE +
1700 sb_info->igu_sb_id) << 3);
1701 }
1702
1703 sb_info->flags |= QED_SB_INFO_INIT;
1704
1705 qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1706
1707 return 0;
1708 }
1709
qed_int_sb_release(struct qed_hwfn * p_hwfn,struct qed_sb_info * sb_info,u16 sb_id)1710 int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1711 struct qed_sb_info *sb_info, u16 sb_id)
1712 {
1713 struct qed_igu_block *p_block;
1714 struct qed_igu_info *p_info;
1715
1716 if (!sb_info)
1717 return 0;
1718
1719 /* zero status block and ack counter */
1720 sb_info->sb_ack = 0;
1721 memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1722
1723 if (IS_VF(p_hwfn->cdev)) {
1724 qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
1725 return 0;
1726 }
1727
1728 p_info = p_hwfn->hw_info.p_igu_info;
1729 p_block = &p_info->entry[sb_info->igu_sb_id];
1730
1731 /* Vector 0 is reserved to Default SB */
1732 if (!p_block->vector_number) {
1733 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1734 return -EINVAL;
1735 }
1736
1737 /* Lose reference to client's SB info, and fix counters */
1738 p_block->sb_info = NULL;
1739 p_block->status |= QED_IGU_STATUS_FREE;
1740 p_info->usage.free_cnt++;
1741
1742 return 0;
1743 }
1744
qed_int_sp_sb_free(struct qed_hwfn * p_hwfn)1745 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1746 {
1747 struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1748
1749 if (!p_sb)
1750 return;
1751
1752 if (p_sb->sb_info.sb_virt)
1753 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1754 SB_ALIGNED_SIZE(p_hwfn),
1755 p_sb->sb_info.sb_virt,
1756 p_sb->sb_info.sb_phys);
1757 kfree(p_sb);
1758 p_hwfn->p_sp_sb = NULL;
1759 }
1760
qed_int_sp_sb_alloc(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1761 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1762 {
1763 struct qed_sb_sp_info *p_sb;
1764 dma_addr_t p_phys = 0;
1765 void *p_virt;
1766
1767 /* SB struct */
1768 p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1769 if (!p_sb)
1770 return -ENOMEM;
1771
1772 /* SB ring */
1773 p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1774 SB_ALIGNED_SIZE(p_hwfn),
1775 &p_phys, GFP_KERNEL);
1776 if (!p_virt) {
1777 kfree(p_sb);
1778 return -ENOMEM;
1779 }
1780
1781 /* Status Block setup */
1782 p_hwfn->p_sp_sb = p_sb;
1783 qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1784 p_phys, QED_SP_SB_ID);
1785
1786 memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1787
1788 return 0;
1789 }
1790
qed_int_register_cb(struct qed_hwfn * p_hwfn,qed_int_comp_cb_t comp_cb,void * cookie,u8 * sb_idx,__le16 ** p_fw_cons)1791 int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1792 qed_int_comp_cb_t comp_cb,
1793 void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1794 {
1795 struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1796 int rc = -ENOMEM;
1797 u8 pi;
1798
1799 /* Look for a free index */
1800 for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1801 if (p_sp_sb->pi_info_arr[pi].comp_cb)
1802 continue;
1803
1804 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1805 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1806 *sb_idx = pi;
1807 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1808 rc = 0;
1809 break;
1810 }
1811
1812 return rc;
1813 }
1814
qed_int_unregister_cb(struct qed_hwfn * p_hwfn,u8 pi)1815 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1816 {
1817 struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1818
1819 if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1820 return -ENOMEM;
1821
1822 p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1823 p_sp_sb->pi_info_arr[pi].cookie = NULL;
1824
1825 return 0;
1826 }
1827
qed_int_get_sp_sb_id(struct qed_hwfn * p_hwfn)1828 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1829 {
1830 return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1831 }
1832
qed_int_igu_enable_int(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,enum qed_int_mode int_mode)1833 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1834 struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1835 {
1836 u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1837
1838 p_hwfn->cdev->int_mode = int_mode;
1839 switch (p_hwfn->cdev->int_mode) {
1840 case QED_INT_MODE_INTA:
1841 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1842 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1843 break;
1844
1845 case QED_INT_MODE_MSI:
1846 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1847 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1848 break;
1849
1850 case QED_INT_MODE_MSIX:
1851 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1852 break;
1853 case QED_INT_MODE_POLL:
1854 break;
1855 }
1856
1857 qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1858 }
1859
qed_int_igu_enable_attn(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1860 static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1861 struct qed_ptt *p_ptt)
1862 {
1863
1864 /* Configure AEU signal change to produce attentions */
1865 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1866 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1867 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1868 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1869
1870 /* Unmask AEU signals toward IGU */
1871 qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1872 }
1873
1874 int
qed_int_igu_enable(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,enum qed_int_mode int_mode)1875 qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1876 struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1877 {
1878 int rc = 0;
1879
1880 qed_int_igu_enable_attn(p_hwfn, p_ptt);
1881
1882 if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1883 rc = qed_slowpath_irq_req(p_hwfn);
1884 if (rc) {
1885 DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1886 return -EINVAL;
1887 }
1888 p_hwfn->b_int_requested = true;
1889 }
1890 /* Enable interrupt Generation */
1891 qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1892 p_hwfn->b_int_enabled = 1;
1893
1894 return rc;
1895 }
1896
qed_int_igu_disable_int(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1897 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1898 {
1899 p_hwfn->b_int_enabled = 0;
1900
1901 if (IS_VF(p_hwfn->cdev))
1902 return;
1903
1904 qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1905 }
1906
1907 #define IGU_CLEANUP_SLEEP_LENGTH (1000)
qed_int_igu_cleanup_sb(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 igu_sb_id,bool cleanup_set,u16 opaque_fid)1908 static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1909 struct qed_ptt *p_ptt,
1910 u16 igu_sb_id,
1911 bool cleanup_set, u16 opaque_fid)
1912 {
1913 u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1914 u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1915 u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1916
1917 /* Set the data field */
1918 SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1919 SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1920 SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1921
1922 /* Set the control register */
1923 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1924 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1925 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1926
1927 qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1928
1929 barrier();
1930
1931 qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1932
1933 /* calculate where to read the status bit from */
1934 sb_bit = 1 << (igu_sb_id % 32);
1935 sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1936
1937 sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1938
1939 /* Now wait for the command to complete */
1940 do {
1941 val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1942
1943 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1944 break;
1945
1946 usleep_range(5000, 10000);
1947 } while (--sleep_cnt);
1948
1949 if (!sleep_cnt)
1950 DP_NOTICE(p_hwfn,
1951 "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1952 val, igu_sb_id);
1953 }
1954
qed_int_igu_init_pure_rt_single(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 igu_sb_id,u16 opaque,bool b_set)1955 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1956 struct qed_ptt *p_ptt,
1957 u16 igu_sb_id, u16 opaque, bool b_set)
1958 {
1959 struct qed_igu_block *p_block;
1960 int pi, i;
1961
1962 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1963 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1964 "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1965 igu_sb_id,
1966 p_block->function_id,
1967 p_block->is_pf, p_block->vector_number);
1968
1969 /* Set */
1970 if (b_set)
1971 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1972
1973 /* Clear */
1974 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1975
1976 /* Wait for the IGU SB to cleanup */
1977 for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1978 u32 val;
1979
1980 val = qed_rd(p_hwfn, p_ptt,
1981 IGU_REG_WRITE_DONE_PENDING +
1982 ((igu_sb_id / 32) * 4));
1983 if (val & BIT((igu_sb_id % 32)))
1984 usleep_range(10, 20);
1985 else
1986 break;
1987 }
1988 if (i == IGU_CLEANUP_SLEEP_LENGTH)
1989 DP_NOTICE(p_hwfn,
1990 "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1991 igu_sb_id);
1992
1993 /* Clear the CAU for the SB */
1994 for (pi = 0; pi < 12; pi++)
1995 qed_wr(p_hwfn, p_ptt,
1996 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1997 }
1998
qed_int_igu_init_pure_rt(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,bool b_set,bool b_slowpath)1999 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
2000 struct qed_ptt *p_ptt,
2001 bool b_set, bool b_slowpath)
2002 {
2003 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2004 struct qed_igu_block *p_block;
2005 u16 igu_sb_id = 0;
2006 u32 val = 0;
2007
2008 val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2009 val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2010 val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2011 qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2012
2013 for (igu_sb_id = 0;
2014 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2015 p_block = &p_info->entry[igu_sb_id];
2016
2017 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
2018 !p_block->is_pf ||
2019 (p_block->status & QED_IGU_STATUS_DSB))
2020 continue;
2021
2022 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2023 p_hwfn->hw_info.opaque_fid,
2024 b_set);
2025 }
2026
2027 if (b_slowpath)
2028 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2029 p_info->igu_dsb_id,
2030 p_hwfn->hw_info.opaque_fid,
2031 b_set);
2032 }
2033
qed_int_igu_reset_cam(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)2034 int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2035 {
2036 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2037 struct qed_igu_block *p_block;
2038 int pf_sbs, vf_sbs;
2039 u16 igu_sb_id;
2040 u32 val, rval;
2041
2042 if (!RESC_NUM(p_hwfn, QED_SB)) {
2043 p_info->b_allow_pf_vf_change = false;
2044 } else {
2045 /* Use the numbers the MFW have provided -
2046 * don't forget MFW accounts for the default SB as well.
2047 */
2048 p_info->b_allow_pf_vf_change = true;
2049
2050 if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
2051 DP_INFO(p_hwfn,
2052 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2053 RESC_NUM(p_hwfn, QED_SB) - 1,
2054 p_info->usage.cnt);
2055 p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
2056 }
2057
2058 if (IS_PF_SRIOV(p_hwfn)) {
2059 u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
2060
2061 if (vfs != p_info->usage.iov_cnt)
2062 DP_VERBOSE(p_hwfn,
2063 NETIF_MSG_INTR,
2064 "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2065 p_info->usage.iov_cnt, vfs);
2066
2067 /* At this point we know how many SBs we have totally
2068 * in IGU + number of PF SBs. So we can validate that
2069 * we'd have sufficient for VF.
2070 */
2071 if (vfs > p_info->usage.free_cnt +
2072 p_info->usage.free_cnt_iov - p_info->usage.cnt) {
2073 DP_NOTICE(p_hwfn,
2074 "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2075 p_info->usage.free_cnt +
2076 p_info->usage.free_cnt_iov,
2077 p_info->usage.cnt, vfs);
2078 return -EINVAL;
2079 }
2080
2081 /* Currently cap the number of VFs SBs by the
2082 * number of VFs.
2083 */
2084 p_info->usage.iov_cnt = vfs;
2085 }
2086 }
2087
2088 /* Mark all SBs as free, now in the right PF/VFs division */
2089 p_info->usage.free_cnt = p_info->usage.cnt;
2090 p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2091 p_info->usage.orig = p_info->usage.cnt;
2092 p_info->usage.iov_orig = p_info->usage.iov_cnt;
2093
2094 /* We now proceed to re-configure the IGU cam to reflect the initial
2095 * configuration. We can start with the Default SB.
2096 */
2097 pf_sbs = p_info->usage.cnt;
2098 vf_sbs = p_info->usage.iov_cnt;
2099
2100 for (igu_sb_id = p_info->igu_dsb_id;
2101 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2102 p_block = &p_info->entry[igu_sb_id];
2103 val = 0;
2104
2105 if (!(p_block->status & QED_IGU_STATUS_VALID))
2106 continue;
2107
2108 if (p_block->status & QED_IGU_STATUS_DSB) {
2109 p_block->function_id = p_hwfn->rel_pf_id;
2110 p_block->is_pf = 1;
2111 p_block->vector_number = 0;
2112 p_block->status = QED_IGU_STATUS_VALID |
2113 QED_IGU_STATUS_PF |
2114 QED_IGU_STATUS_DSB;
2115 } else if (pf_sbs) {
2116 pf_sbs--;
2117 p_block->function_id = p_hwfn->rel_pf_id;
2118 p_block->is_pf = 1;
2119 p_block->vector_number = p_info->usage.cnt - pf_sbs;
2120 p_block->status = QED_IGU_STATUS_VALID |
2121 QED_IGU_STATUS_PF |
2122 QED_IGU_STATUS_FREE;
2123 } else if (vf_sbs) {
2124 p_block->function_id =
2125 p_hwfn->cdev->p_iov_info->first_vf_in_pf +
2126 p_info->usage.iov_cnt - vf_sbs;
2127 p_block->is_pf = 0;
2128 p_block->vector_number = 0;
2129 p_block->status = QED_IGU_STATUS_VALID |
2130 QED_IGU_STATUS_FREE;
2131 vf_sbs--;
2132 } else {
2133 p_block->function_id = 0;
2134 p_block->is_pf = 0;
2135 p_block->vector_number = 0;
2136 }
2137
2138 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2139 p_block->function_id);
2140 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2141 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2142 p_block->vector_number);
2143
2144 /* VF entries would be enabled when VF is initializaed */
2145 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2146
2147 rval = qed_rd(p_hwfn, p_ptt,
2148 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2149
2150 if (rval != val) {
2151 qed_wr(p_hwfn, p_ptt,
2152 IGU_REG_MAPPING_MEMORY +
2153 sizeof(u32) * igu_sb_id, val);
2154
2155 DP_VERBOSE(p_hwfn,
2156 NETIF_MSG_INTR,
2157 "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2158 igu_sb_id,
2159 p_block->function_id,
2160 p_block->is_pf,
2161 p_block->vector_number, rval, val);
2162 }
2163 }
2164
2165 return 0;
2166 }
2167
qed_int_igu_read_cam_block(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 igu_sb_id)2168 static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
2169 struct qed_ptt *p_ptt, u16 igu_sb_id)
2170 {
2171 u32 val = qed_rd(p_hwfn, p_ptt,
2172 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2173 struct qed_igu_block *p_block;
2174
2175 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2176
2177 /* Fill the block information */
2178 p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2179 p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2180 p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2181 p_block->igu_sb_id = igu_sb_id;
2182 }
2183
qed_int_igu_read_cam(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)2184 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2185 {
2186 struct qed_igu_info *p_igu_info;
2187 struct qed_igu_block *p_block;
2188 u32 min_vf = 0, max_vf = 0;
2189 u16 igu_sb_id;
2190
2191 p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
2192 if (!p_hwfn->hw_info.p_igu_info)
2193 return -ENOMEM;
2194
2195 p_igu_info = p_hwfn->hw_info.p_igu_info;
2196
2197 /* Distinguish between existent and non-existent default SB */
2198 p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
2199
2200 /* Find the range of VF ids whose SB belong to this PF */
2201 if (p_hwfn->cdev->p_iov_info) {
2202 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
2203
2204 min_vf = p_iov->first_vf_in_pf;
2205 max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2206 }
2207
2208 for (igu_sb_id = 0;
2209 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2210 /* Read current entry; Notice it might not belong to this PF */
2211 qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2212 p_block = &p_igu_info->entry[igu_sb_id];
2213
2214 if ((p_block->is_pf) &&
2215 (p_block->function_id == p_hwfn->rel_pf_id)) {
2216 p_block->status = QED_IGU_STATUS_PF |
2217 QED_IGU_STATUS_VALID |
2218 QED_IGU_STATUS_FREE;
2219
2220 if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2221 p_igu_info->usage.cnt++;
2222 } else if (!(p_block->is_pf) &&
2223 (p_block->function_id >= min_vf) &&
2224 (p_block->function_id < max_vf)) {
2225 /* Available for VFs of this PF */
2226 p_block->status = QED_IGU_STATUS_VALID |
2227 QED_IGU_STATUS_FREE;
2228
2229 if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2230 p_igu_info->usage.iov_cnt++;
2231 }
2232
2233 /* Mark the First entry belonging to the PF or its VFs
2234 * as the default SB [we'll reset IGU prior to first usage].
2235 */
2236 if ((p_block->status & QED_IGU_STATUS_VALID) &&
2237 (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
2238 p_igu_info->igu_dsb_id = igu_sb_id;
2239 p_block->status |= QED_IGU_STATUS_DSB;
2240 }
2241
2242 /* limit number of prints by having each PF print only its
2243 * entries with the exception of PF0 which would print
2244 * everything.
2245 */
2246 if ((p_block->status & QED_IGU_STATUS_VALID) ||
2247 (p_hwfn->abs_pf_id == 0)) {
2248 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2249 "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2250 igu_sb_id, p_block->function_id,
2251 p_block->is_pf, p_block->vector_number);
2252 }
2253 }
2254
2255 if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
2256 DP_NOTICE(p_hwfn,
2257 "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2258 p_igu_info->igu_dsb_id);
2259 return -EINVAL;
2260 }
2261
2262 /* All non default SB are considered free at this point */
2263 p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2264 p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2265
2266 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2267 "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2268 p_igu_info->igu_dsb_id,
2269 p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
2270
2271 return 0;
2272 }
2273
2274 /**
2275 * qed_int_igu_init_rt() - Initialize IGU runtime registers.
2276 *
2277 * @p_hwfn: HW device data.
2278 */
qed_int_igu_init_rt(struct qed_hwfn * p_hwfn)2279 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
2280 {
2281 u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2282
2283 STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2284 }
2285
qed_int_igu_read_sisr_reg(struct qed_hwfn * p_hwfn)2286 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
2287 {
2288 u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
2289 IGU_CMD_INT_ACK_BASE;
2290 u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
2291 IGU_CMD_INT_ACK_BASE;
2292 u32 intr_status_hi = 0, intr_status_lo = 0;
2293 u64 intr_status = 0;
2294
2295 intr_status_lo = REG_RD(p_hwfn,
2296 GTT_BAR0_MAP_REG_IGU_CMD +
2297 lsb_igu_cmd_addr * 8);
2298 intr_status_hi = REG_RD(p_hwfn,
2299 GTT_BAR0_MAP_REG_IGU_CMD +
2300 msb_igu_cmd_addr * 8);
2301 intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2302
2303 return intr_status;
2304 }
2305
qed_int_sp_dpc_setup(struct qed_hwfn * p_hwfn)2306 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
2307 {
2308 tasklet_setup(&p_hwfn->sp_dpc, qed_int_sp_dpc);
2309 p_hwfn->b_sp_dpc_enabled = true;
2310 }
2311
qed_int_alloc(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)2312 int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2313 {
2314 int rc = 0;
2315
2316 rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2317 if (rc)
2318 return rc;
2319
2320 rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
2321
2322 return rc;
2323 }
2324
qed_int_free(struct qed_hwfn * p_hwfn)2325 void qed_int_free(struct qed_hwfn *p_hwfn)
2326 {
2327 qed_int_sp_sb_free(p_hwfn);
2328 qed_int_sb_attn_free(p_hwfn);
2329 }
2330
qed_int_setup(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)2331 void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2332 {
2333 qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2334 qed_int_sb_attn_setup(p_hwfn, p_ptt);
2335 qed_int_sp_dpc_setup(p_hwfn);
2336 }
2337
qed_int_get_num_sbs(struct qed_hwfn * p_hwfn,struct qed_sb_cnt_info * p_sb_cnt_info)2338 void qed_int_get_num_sbs(struct qed_hwfn *p_hwfn,
2339 struct qed_sb_cnt_info *p_sb_cnt_info)
2340 {
2341 struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2342
2343 if (!info || !p_sb_cnt_info)
2344 return;
2345
2346 memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
2347 }
2348
qed_int_disable_post_isr_release(struct qed_dev * cdev)2349 void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2350 {
2351 int i;
2352
2353 for_each_hwfn(cdev, i)
2354 cdev->hwfns[i].b_int_requested = false;
2355 }
2356
qed_int_attn_clr_enable(struct qed_dev * cdev,bool clr_enable)2357 void qed_int_attn_clr_enable(struct qed_dev *cdev, bool clr_enable)
2358 {
2359 cdev->attn_clr_en = clr_enable;
2360 }
2361
qed_int_set_timer_res(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u8 timer_res,u16 sb_id,bool tx)2362 int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2363 u8 timer_res, u16 sb_id, bool tx)
2364 {
2365 struct cau_sb_entry sb_entry;
2366 u32 params;
2367 int rc;
2368
2369 if (!p_hwfn->hw_init_done) {
2370 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2371 return -EINVAL;
2372 }
2373
2374 rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2375 sb_id * sizeof(u64),
2376 (u64)(uintptr_t)&sb_entry, 2, NULL);
2377 if (rc) {
2378 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2379 return rc;
2380 }
2381
2382 params = le32_to_cpu(sb_entry.params);
2383
2384 if (tx)
2385 SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2386 else
2387 SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2388
2389 sb_entry.params = cpu_to_le32(params);
2390
2391 rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2392 (u64)(uintptr_t)&sb_entry,
2393 CAU_REG_SB_VAR_MEMORY +
2394 sb_id * sizeof(u64), 2, NULL);
2395 if (rc) {
2396 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2397 return rc;
2398 }
2399
2400 return rc;
2401 }
2402
qed_int_get_sb_dbg(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_sb_info * p_sb,struct qed_sb_info_dbg * p_info)2403 int qed_int_get_sb_dbg(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2404 struct qed_sb_info *p_sb, struct qed_sb_info_dbg *p_info)
2405 {
2406 u16 sbid = p_sb->igu_sb_id;
2407 u32 i;
2408
2409 if (IS_VF(p_hwfn->cdev))
2410 return -EINVAL;
2411
2412 if (sbid >= NUM_OF_SBS(p_hwfn->cdev))
2413 return -EINVAL;
2414
2415 p_info->igu_prod = qed_rd(p_hwfn, p_ptt, IGU_REG_PRODUCER_MEMORY + sbid * 4);
2416 p_info->igu_cons = qed_rd(p_hwfn, p_ptt, IGU_REG_CONSUMER_MEM + sbid * 4);
2417
2418 for (i = 0; i < PIS_PER_SB; i++)
2419 p_info->pi[i] = (u16)qed_rd(p_hwfn, p_ptt,
2420 CAU_REG_PI_MEMORY + sbid * 4 * PIS_PER_SB + i * 4);
2421
2422 return 0;
2423 }
2424