1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3  * Copyright (C) 2015 Linaro Ltd.
4  */
5 #include <linux/platform_device.h>
6 #include <linux/init.h>
7 #include <linux/interrupt.h>
8 #include <linux/completion.h>
9 #include <linux/cpumask.h>
10 #include <linux/export.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/firmware/qcom/qcom_scm.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_platform.h>
20 #include <linux/clk.h>
21 #include <linux/reset-controller.h>
22 #include <linux/arm-smccc.h>
23 
24 #include "qcom_scm.h"
25 
26 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
27 module_param(download_mode, bool, 0);
28 
29 struct qcom_scm {
30 	struct device *dev;
31 	struct clk *core_clk;
32 	struct clk *iface_clk;
33 	struct clk *bus_clk;
34 	struct icc_path *path;
35 	struct completion waitq_comp;
36 	struct reset_controller_dev reset;
37 
38 	/* control access to the interconnect path */
39 	struct mutex scm_bw_lock;
40 	int scm_vote_count;
41 
42 	u64 dload_mode_addr;
43 };
44 
45 struct qcom_scm_current_perm_info {
46 	__le32 vmid;
47 	__le32 perm;
48 	__le64 ctx;
49 	__le32 ctx_size;
50 	__le32 unused;
51 };
52 
53 struct qcom_scm_mem_map_info {
54 	__le64 mem_addr;
55 	__le64 mem_size;
56 };
57 
58 /* Each bit configures cold/warm boot address for one of the 4 CPUs */
59 static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
60 	0, BIT(0), BIT(3), BIT(5)
61 };
62 static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
63 	BIT(2), BIT(1), BIT(4), BIT(6)
64 };
65 
66 #define QCOM_SMC_WAITQ_FLAG_WAKE_ONE	BIT(0)
67 #define QCOM_SMC_WAITQ_FLAG_WAKE_ALL	BIT(1)
68 
69 static const char * const qcom_scm_convention_names[] = {
70 	[SMC_CONVENTION_UNKNOWN] = "unknown",
71 	[SMC_CONVENTION_ARM_32] = "smc arm 32",
72 	[SMC_CONVENTION_ARM_64] = "smc arm 64",
73 	[SMC_CONVENTION_LEGACY] = "smc legacy",
74 };
75 
76 static struct qcom_scm *__scm;
77 
qcom_scm_clk_enable(void)78 static int qcom_scm_clk_enable(void)
79 {
80 	int ret;
81 
82 	ret = clk_prepare_enable(__scm->core_clk);
83 	if (ret)
84 		goto bail;
85 
86 	ret = clk_prepare_enable(__scm->iface_clk);
87 	if (ret)
88 		goto disable_core;
89 
90 	ret = clk_prepare_enable(__scm->bus_clk);
91 	if (ret)
92 		goto disable_iface;
93 
94 	return 0;
95 
96 disable_iface:
97 	clk_disable_unprepare(__scm->iface_clk);
98 disable_core:
99 	clk_disable_unprepare(__scm->core_clk);
100 bail:
101 	return ret;
102 }
103 
qcom_scm_clk_disable(void)104 static void qcom_scm_clk_disable(void)
105 {
106 	clk_disable_unprepare(__scm->core_clk);
107 	clk_disable_unprepare(__scm->iface_clk);
108 	clk_disable_unprepare(__scm->bus_clk);
109 }
110 
qcom_scm_bw_enable(void)111 static int qcom_scm_bw_enable(void)
112 {
113 	int ret = 0;
114 
115 	if (!__scm->path)
116 		return 0;
117 
118 	if (IS_ERR(__scm->path))
119 		return -EINVAL;
120 
121 	mutex_lock(&__scm->scm_bw_lock);
122 	if (!__scm->scm_vote_count) {
123 		ret = icc_set_bw(__scm->path, 0, UINT_MAX);
124 		if (ret < 0) {
125 			dev_err(__scm->dev, "failed to set bandwidth request\n");
126 			goto err_bw;
127 		}
128 	}
129 	__scm->scm_vote_count++;
130 err_bw:
131 	mutex_unlock(&__scm->scm_bw_lock);
132 
133 	return ret;
134 }
135 
qcom_scm_bw_disable(void)136 static void qcom_scm_bw_disable(void)
137 {
138 	if (IS_ERR_OR_NULL(__scm->path))
139 		return;
140 
141 	mutex_lock(&__scm->scm_bw_lock);
142 	if (__scm->scm_vote_count-- == 1)
143 		icc_set_bw(__scm->path, 0, 0);
144 	mutex_unlock(&__scm->scm_bw_lock);
145 }
146 
147 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
148 static DEFINE_SPINLOCK(scm_query_lock);
149 
__get_convention(void)150 static enum qcom_scm_convention __get_convention(void)
151 {
152 	unsigned long flags;
153 	struct qcom_scm_desc desc = {
154 		.svc = QCOM_SCM_SVC_INFO,
155 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
156 		.args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
157 					   QCOM_SCM_INFO_IS_CALL_AVAIL) |
158 			   (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
159 		.arginfo = QCOM_SCM_ARGS(1),
160 		.owner = ARM_SMCCC_OWNER_SIP,
161 	};
162 	struct qcom_scm_res res;
163 	enum qcom_scm_convention probed_convention;
164 	int ret;
165 	bool forced = false;
166 
167 	if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
168 		return qcom_scm_convention;
169 
170 	/*
171 	 * Per the "SMC calling convention specification", the 64-bit calling
172 	 * convention can only be used when the client is 64-bit, otherwise
173 	 * system will encounter the undefined behaviour.
174 	 */
175 #if IS_ENABLED(CONFIG_ARM64)
176 	/*
177 	 * Device isn't required as there is only one argument - no device
178 	 * needed to dma_map_single to secure world
179 	 */
180 	probed_convention = SMC_CONVENTION_ARM_64;
181 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
182 	if (!ret && res.result[0] == 1)
183 		goto found;
184 
185 	/*
186 	 * Some SC7180 firmwares didn't implement the
187 	 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
188 	 * calling conventions on these firmwares. Luckily we don't make any
189 	 * early calls into the firmware on these SoCs so the device pointer
190 	 * will be valid here to check if the compatible matches.
191 	 */
192 	if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
193 		forced = true;
194 		goto found;
195 	}
196 #endif
197 
198 	probed_convention = SMC_CONVENTION_ARM_32;
199 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
200 	if (!ret && res.result[0] == 1)
201 		goto found;
202 
203 	probed_convention = SMC_CONVENTION_LEGACY;
204 found:
205 	spin_lock_irqsave(&scm_query_lock, flags);
206 	if (probed_convention != qcom_scm_convention) {
207 		qcom_scm_convention = probed_convention;
208 		pr_info("qcom_scm: convention: %s%s\n",
209 			qcom_scm_convention_names[qcom_scm_convention],
210 			forced ? " (forced)" : "");
211 	}
212 	spin_unlock_irqrestore(&scm_query_lock, flags);
213 
214 	return qcom_scm_convention;
215 }
216 
217 /**
218  * qcom_scm_call() - Invoke a syscall in the secure world
219  * @dev:	device
220  * @desc:	Descriptor structure containing arguments and return values
221  * @res:        Structure containing results from SMC/HVC call
222  *
223  * Sends a command to the SCM and waits for the command to finish processing.
224  * This should *only* be called in pre-emptible context.
225  */
qcom_scm_call(struct device * dev,const struct qcom_scm_desc * desc,struct qcom_scm_res * res)226 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
227 			 struct qcom_scm_res *res)
228 {
229 	might_sleep();
230 	switch (__get_convention()) {
231 	case SMC_CONVENTION_ARM_32:
232 	case SMC_CONVENTION_ARM_64:
233 		return scm_smc_call(dev, desc, res, false);
234 	case SMC_CONVENTION_LEGACY:
235 		return scm_legacy_call(dev, desc, res);
236 	default:
237 		pr_err("Unknown current SCM calling convention.\n");
238 		return -EINVAL;
239 	}
240 }
241 
242 /**
243  * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
244  * @dev:	device
245  * @desc:	Descriptor structure containing arguments and return values
246  * @res:	Structure containing results from SMC/HVC call
247  *
248  * Sends a command to the SCM and waits for the command to finish processing.
249  * This can be called in atomic context.
250  */
qcom_scm_call_atomic(struct device * dev,const struct qcom_scm_desc * desc,struct qcom_scm_res * res)251 static int qcom_scm_call_atomic(struct device *dev,
252 				const struct qcom_scm_desc *desc,
253 				struct qcom_scm_res *res)
254 {
255 	switch (__get_convention()) {
256 	case SMC_CONVENTION_ARM_32:
257 	case SMC_CONVENTION_ARM_64:
258 		return scm_smc_call(dev, desc, res, true);
259 	case SMC_CONVENTION_LEGACY:
260 		return scm_legacy_call_atomic(dev, desc, res);
261 	default:
262 		pr_err("Unknown current SCM calling convention.\n");
263 		return -EINVAL;
264 	}
265 }
266 
__qcom_scm_is_call_available(struct device * dev,u32 svc_id,u32 cmd_id)267 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
268 					 u32 cmd_id)
269 {
270 	int ret;
271 	struct qcom_scm_desc desc = {
272 		.svc = QCOM_SCM_SVC_INFO,
273 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
274 		.owner = ARM_SMCCC_OWNER_SIP,
275 	};
276 	struct qcom_scm_res res;
277 
278 	desc.arginfo = QCOM_SCM_ARGS(1);
279 	switch (__get_convention()) {
280 	case SMC_CONVENTION_ARM_32:
281 	case SMC_CONVENTION_ARM_64:
282 		desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
283 				(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
284 		break;
285 	case SMC_CONVENTION_LEGACY:
286 		desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
287 		break;
288 	default:
289 		pr_err("Unknown SMC convention being used\n");
290 		return false;
291 	}
292 
293 	ret = qcom_scm_call(dev, &desc, &res);
294 
295 	return ret ? false : !!res.result[0];
296 }
297 
qcom_scm_set_boot_addr(void * entry,const u8 * cpu_bits)298 static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits)
299 {
300 	int cpu;
301 	unsigned int flags = 0;
302 	struct qcom_scm_desc desc = {
303 		.svc = QCOM_SCM_SVC_BOOT,
304 		.cmd = QCOM_SCM_BOOT_SET_ADDR,
305 		.arginfo = QCOM_SCM_ARGS(2),
306 		.owner = ARM_SMCCC_OWNER_SIP,
307 	};
308 
309 	for_each_present_cpu(cpu) {
310 		if (cpu >= QCOM_SCM_BOOT_MAX_CPUS)
311 			return -EINVAL;
312 		flags |= cpu_bits[cpu];
313 	}
314 
315 	desc.args[0] = flags;
316 	desc.args[1] = virt_to_phys(entry);
317 
318 	return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
319 }
320 
qcom_scm_set_boot_addr_mc(void * entry,unsigned int flags)321 static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags)
322 {
323 	struct qcom_scm_desc desc = {
324 		.svc = QCOM_SCM_SVC_BOOT,
325 		.cmd = QCOM_SCM_BOOT_SET_ADDR_MC,
326 		.owner = ARM_SMCCC_OWNER_SIP,
327 		.arginfo = QCOM_SCM_ARGS(6),
328 		.args = {
329 			virt_to_phys(entry),
330 			/* Apply to all CPUs in all affinity levels */
331 			~0ULL, ~0ULL, ~0ULL, ~0ULL,
332 			flags,
333 		},
334 	};
335 
336 	/* Need a device for DMA of the additional arguments */
337 	if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY)
338 		return -EOPNOTSUPP;
339 
340 	return qcom_scm_call(__scm->dev, &desc, NULL);
341 }
342 
343 /**
344  * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus
345  * @entry: Entry point function for the cpus
346  *
347  * Set the Linux entry point for the SCM to transfer control to when coming
348  * out of a power down. CPU power down may be executed on cpuidle or hotplug.
349  */
qcom_scm_set_warm_boot_addr(void * entry)350 int qcom_scm_set_warm_boot_addr(void *entry)
351 {
352 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT))
353 		/* Fallback to old SCM call */
354 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits);
355 	return 0;
356 }
357 EXPORT_SYMBOL_GPL(qcom_scm_set_warm_boot_addr);
358 
359 /**
360  * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus
361  * @entry: Entry point function for the cpus
362  */
qcom_scm_set_cold_boot_addr(void * entry)363 int qcom_scm_set_cold_boot_addr(void *entry)
364 {
365 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT))
366 		/* Fallback to old SCM call */
367 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits);
368 	return 0;
369 }
370 EXPORT_SYMBOL_GPL(qcom_scm_set_cold_boot_addr);
371 
372 /**
373  * qcom_scm_cpu_power_down() - Power down the cpu
374  * @flags:	Flags to flush cache
375  *
376  * This is an end point to power down cpu. If there was a pending interrupt,
377  * the control would return from this function, otherwise, the cpu jumps to the
378  * warm boot entry point set for this cpu upon reset.
379  */
qcom_scm_cpu_power_down(u32 flags)380 void qcom_scm_cpu_power_down(u32 flags)
381 {
382 	struct qcom_scm_desc desc = {
383 		.svc = QCOM_SCM_SVC_BOOT,
384 		.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
385 		.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
386 		.arginfo = QCOM_SCM_ARGS(1),
387 		.owner = ARM_SMCCC_OWNER_SIP,
388 	};
389 
390 	qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
391 }
392 EXPORT_SYMBOL_GPL(qcom_scm_cpu_power_down);
393 
qcom_scm_set_remote_state(u32 state,u32 id)394 int qcom_scm_set_remote_state(u32 state, u32 id)
395 {
396 	struct qcom_scm_desc desc = {
397 		.svc = QCOM_SCM_SVC_BOOT,
398 		.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
399 		.arginfo = QCOM_SCM_ARGS(2),
400 		.args[0] = state,
401 		.args[1] = id,
402 		.owner = ARM_SMCCC_OWNER_SIP,
403 	};
404 	struct qcom_scm_res res;
405 	int ret;
406 
407 	ret = qcom_scm_call(__scm->dev, &desc, &res);
408 
409 	return ret ? : res.result[0];
410 }
411 EXPORT_SYMBOL_GPL(qcom_scm_set_remote_state);
412 
__qcom_scm_set_dload_mode(struct device * dev,bool enable)413 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
414 {
415 	struct qcom_scm_desc desc = {
416 		.svc = QCOM_SCM_SVC_BOOT,
417 		.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
418 		.arginfo = QCOM_SCM_ARGS(2),
419 		.args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
420 		.owner = ARM_SMCCC_OWNER_SIP,
421 	};
422 
423 	desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
424 
425 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
426 }
427 
qcom_scm_set_download_mode(bool enable)428 static void qcom_scm_set_download_mode(bool enable)
429 {
430 	bool avail;
431 	int ret = 0;
432 
433 	avail = __qcom_scm_is_call_available(__scm->dev,
434 					     QCOM_SCM_SVC_BOOT,
435 					     QCOM_SCM_BOOT_SET_DLOAD_MODE);
436 	if (avail) {
437 		ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
438 	} else if (__scm->dload_mode_addr) {
439 		ret = qcom_scm_io_writel(__scm->dload_mode_addr,
440 				enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
441 	} else {
442 		dev_err(__scm->dev,
443 			"No available mechanism for setting download mode\n");
444 	}
445 
446 	if (ret)
447 		dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
448 }
449 
450 /**
451  * qcom_scm_pas_init_image() - Initialize peripheral authentication service
452  *			       state machine for a given peripheral, using the
453  *			       metadata
454  * @peripheral: peripheral id
455  * @metadata:	pointer to memory containing ELF header, program header table
456  *		and optional blob of data used for authenticating the metadata
457  *		and the rest of the firmware
458  * @size:	size of the metadata
459  * @ctx:	optional metadata context
460  *
461  * Return: 0 on success.
462  *
463  * Upon successful return, the PAS metadata context (@ctx) will be used to
464  * track the metadata allocation, this needs to be released by invoking
465  * qcom_scm_pas_metadata_release() by the caller.
466  */
qcom_scm_pas_init_image(u32 peripheral,const void * metadata,size_t size,struct qcom_scm_pas_metadata * ctx)467 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size,
468 			    struct qcom_scm_pas_metadata *ctx)
469 {
470 	dma_addr_t mdata_phys;
471 	void *mdata_buf;
472 	int ret;
473 	struct qcom_scm_desc desc = {
474 		.svc = QCOM_SCM_SVC_PIL,
475 		.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
476 		.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
477 		.args[0] = peripheral,
478 		.owner = ARM_SMCCC_OWNER_SIP,
479 	};
480 	struct qcom_scm_res res;
481 
482 	/*
483 	 * During the scm call memory protection will be enabled for the meta
484 	 * data blob, so make sure it's physically contiguous, 4K aligned and
485 	 * non-cachable to avoid XPU violations.
486 	 */
487 	mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
488 				       GFP_KERNEL);
489 	if (!mdata_buf) {
490 		dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
491 		return -ENOMEM;
492 	}
493 	memcpy(mdata_buf, metadata, size);
494 
495 	ret = qcom_scm_clk_enable();
496 	if (ret)
497 		goto out;
498 
499 	ret = qcom_scm_bw_enable();
500 	if (ret)
501 		return ret;
502 
503 	desc.args[1] = mdata_phys;
504 
505 	ret = qcom_scm_call(__scm->dev, &desc, &res);
506 
507 	qcom_scm_bw_disable();
508 	qcom_scm_clk_disable();
509 
510 out:
511 	if (ret < 0 || !ctx) {
512 		dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
513 	} else if (ctx) {
514 		ctx->ptr = mdata_buf;
515 		ctx->phys = mdata_phys;
516 		ctx->size = size;
517 	}
518 
519 	return ret ? : res.result[0];
520 }
521 EXPORT_SYMBOL_GPL(qcom_scm_pas_init_image);
522 
523 /**
524  * qcom_scm_pas_metadata_release() - release metadata context
525  * @ctx:	metadata context
526  */
qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata * ctx)527 void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx)
528 {
529 	if (!ctx->ptr)
530 		return;
531 
532 	dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys);
533 
534 	ctx->ptr = NULL;
535 	ctx->phys = 0;
536 	ctx->size = 0;
537 }
538 EXPORT_SYMBOL_GPL(qcom_scm_pas_metadata_release);
539 
540 /**
541  * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
542  *			      for firmware loading
543  * @peripheral:	peripheral id
544  * @addr:	start address of memory area to prepare
545  * @size:	size of the memory area to prepare
546  *
547  * Returns 0 on success.
548  */
qcom_scm_pas_mem_setup(u32 peripheral,phys_addr_t addr,phys_addr_t size)549 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
550 {
551 	int ret;
552 	struct qcom_scm_desc desc = {
553 		.svc = QCOM_SCM_SVC_PIL,
554 		.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
555 		.arginfo = QCOM_SCM_ARGS(3),
556 		.args[0] = peripheral,
557 		.args[1] = addr,
558 		.args[2] = size,
559 		.owner = ARM_SMCCC_OWNER_SIP,
560 	};
561 	struct qcom_scm_res res;
562 
563 	ret = qcom_scm_clk_enable();
564 	if (ret)
565 		return ret;
566 
567 	ret = qcom_scm_bw_enable();
568 	if (ret)
569 		return ret;
570 
571 	ret = qcom_scm_call(__scm->dev, &desc, &res);
572 	qcom_scm_bw_disable();
573 	qcom_scm_clk_disable();
574 
575 	return ret ? : res.result[0];
576 }
577 EXPORT_SYMBOL_GPL(qcom_scm_pas_mem_setup);
578 
579 /**
580  * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
581  *				   and reset the remote processor
582  * @peripheral:	peripheral id
583  *
584  * Return 0 on success.
585  */
qcom_scm_pas_auth_and_reset(u32 peripheral)586 int qcom_scm_pas_auth_and_reset(u32 peripheral)
587 {
588 	int ret;
589 	struct qcom_scm_desc desc = {
590 		.svc = QCOM_SCM_SVC_PIL,
591 		.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
592 		.arginfo = QCOM_SCM_ARGS(1),
593 		.args[0] = peripheral,
594 		.owner = ARM_SMCCC_OWNER_SIP,
595 	};
596 	struct qcom_scm_res res;
597 
598 	ret = qcom_scm_clk_enable();
599 	if (ret)
600 		return ret;
601 
602 	ret = qcom_scm_bw_enable();
603 	if (ret)
604 		return ret;
605 
606 	ret = qcom_scm_call(__scm->dev, &desc, &res);
607 	qcom_scm_bw_disable();
608 	qcom_scm_clk_disable();
609 
610 	return ret ? : res.result[0];
611 }
612 EXPORT_SYMBOL_GPL(qcom_scm_pas_auth_and_reset);
613 
614 /**
615  * qcom_scm_pas_shutdown() - Shut down the remote processor
616  * @peripheral: peripheral id
617  *
618  * Returns 0 on success.
619  */
qcom_scm_pas_shutdown(u32 peripheral)620 int qcom_scm_pas_shutdown(u32 peripheral)
621 {
622 	int ret;
623 	struct qcom_scm_desc desc = {
624 		.svc = QCOM_SCM_SVC_PIL,
625 		.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
626 		.arginfo = QCOM_SCM_ARGS(1),
627 		.args[0] = peripheral,
628 		.owner = ARM_SMCCC_OWNER_SIP,
629 	};
630 	struct qcom_scm_res res;
631 
632 	ret = qcom_scm_clk_enable();
633 	if (ret)
634 		return ret;
635 
636 	ret = qcom_scm_bw_enable();
637 	if (ret)
638 		return ret;
639 
640 	ret = qcom_scm_call(__scm->dev, &desc, &res);
641 
642 	qcom_scm_bw_disable();
643 	qcom_scm_clk_disable();
644 
645 	return ret ? : res.result[0];
646 }
647 EXPORT_SYMBOL_GPL(qcom_scm_pas_shutdown);
648 
649 /**
650  * qcom_scm_pas_supported() - Check if the peripheral authentication service is
651  *			      available for the given peripherial
652  * @peripheral:	peripheral id
653  *
654  * Returns true if PAS is supported for this peripheral, otherwise false.
655  */
qcom_scm_pas_supported(u32 peripheral)656 bool qcom_scm_pas_supported(u32 peripheral)
657 {
658 	int ret;
659 	struct qcom_scm_desc desc = {
660 		.svc = QCOM_SCM_SVC_PIL,
661 		.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
662 		.arginfo = QCOM_SCM_ARGS(1),
663 		.args[0] = peripheral,
664 		.owner = ARM_SMCCC_OWNER_SIP,
665 	};
666 	struct qcom_scm_res res;
667 
668 	if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
669 					  QCOM_SCM_PIL_PAS_IS_SUPPORTED))
670 		return false;
671 
672 	ret = qcom_scm_call(__scm->dev, &desc, &res);
673 
674 	return ret ? false : !!res.result[0];
675 }
676 EXPORT_SYMBOL_GPL(qcom_scm_pas_supported);
677 
__qcom_scm_pas_mss_reset(struct device * dev,bool reset)678 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
679 {
680 	struct qcom_scm_desc desc = {
681 		.svc = QCOM_SCM_SVC_PIL,
682 		.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
683 		.arginfo = QCOM_SCM_ARGS(2),
684 		.args[0] = reset,
685 		.args[1] = 0,
686 		.owner = ARM_SMCCC_OWNER_SIP,
687 	};
688 	struct qcom_scm_res res;
689 	int ret;
690 
691 	ret = qcom_scm_call(__scm->dev, &desc, &res);
692 
693 	return ret ? : res.result[0];
694 }
695 
qcom_scm_pas_reset_assert(struct reset_controller_dev * rcdev,unsigned long idx)696 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
697 				     unsigned long idx)
698 {
699 	if (idx != 0)
700 		return -EINVAL;
701 
702 	return __qcom_scm_pas_mss_reset(__scm->dev, 1);
703 }
704 
qcom_scm_pas_reset_deassert(struct reset_controller_dev * rcdev,unsigned long idx)705 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
706 				       unsigned long idx)
707 {
708 	if (idx != 0)
709 		return -EINVAL;
710 
711 	return __qcom_scm_pas_mss_reset(__scm->dev, 0);
712 }
713 
714 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
715 	.assert = qcom_scm_pas_reset_assert,
716 	.deassert = qcom_scm_pas_reset_deassert,
717 };
718 
qcom_scm_io_readl(phys_addr_t addr,unsigned int * val)719 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
720 {
721 	struct qcom_scm_desc desc = {
722 		.svc = QCOM_SCM_SVC_IO,
723 		.cmd = QCOM_SCM_IO_READ,
724 		.arginfo = QCOM_SCM_ARGS(1),
725 		.args[0] = addr,
726 		.owner = ARM_SMCCC_OWNER_SIP,
727 	};
728 	struct qcom_scm_res res;
729 	int ret;
730 
731 
732 	ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
733 	if (ret >= 0)
734 		*val = res.result[0];
735 
736 	return ret < 0 ? ret : 0;
737 }
738 EXPORT_SYMBOL_GPL(qcom_scm_io_readl);
739 
qcom_scm_io_writel(phys_addr_t addr,unsigned int val)740 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
741 {
742 	struct qcom_scm_desc desc = {
743 		.svc = QCOM_SCM_SVC_IO,
744 		.cmd = QCOM_SCM_IO_WRITE,
745 		.arginfo = QCOM_SCM_ARGS(2),
746 		.args[0] = addr,
747 		.args[1] = val,
748 		.owner = ARM_SMCCC_OWNER_SIP,
749 	};
750 
751 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
752 }
753 EXPORT_SYMBOL_GPL(qcom_scm_io_writel);
754 
755 /**
756  * qcom_scm_restore_sec_cfg_available() - Check if secure environment
757  * supports restore security config interface.
758  *
759  * Return true if restore-cfg interface is supported, false if not.
760  */
qcom_scm_restore_sec_cfg_available(void)761 bool qcom_scm_restore_sec_cfg_available(void)
762 {
763 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
764 					    QCOM_SCM_MP_RESTORE_SEC_CFG);
765 }
766 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg_available);
767 
qcom_scm_restore_sec_cfg(u32 device_id,u32 spare)768 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
769 {
770 	struct qcom_scm_desc desc = {
771 		.svc = QCOM_SCM_SVC_MP,
772 		.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
773 		.arginfo = QCOM_SCM_ARGS(2),
774 		.args[0] = device_id,
775 		.args[1] = spare,
776 		.owner = ARM_SMCCC_OWNER_SIP,
777 	};
778 	struct qcom_scm_res res;
779 	int ret;
780 
781 	ret = qcom_scm_call(__scm->dev, &desc, &res);
782 
783 	return ret ? : res.result[0];
784 }
785 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg);
786 
qcom_scm_iommu_secure_ptbl_size(u32 spare,size_t * size)787 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
788 {
789 	struct qcom_scm_desc desc = {
790 		.svc = QCOM_SCM_SVC_MP,
791 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
792 		.arginfo = QCOM_SCM_ARGS(1),
793 		.args[0] = spare,
794 		.owner = ARM_SMCCC_OWNER_SIP,
795 	};
796 	struct qcom_scm_res res;
797 	int ret;
798 
799 	ret = qcom_scm_call(__scm->dev, &desc, &res);
800 
801 	if (size)
802 		*size = res.result[0];
803 
804 	return ret ? : res.result[1];
805 }
806 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_size);
807 
qcom_scm_iommu_secure_ptbl_init(u64 addr,u32 size,u32 spare)808 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
809 {
810 	struct qcom_scm_desc desc = {
811 		.svc = QCOM_SCM_SVC_MP,
812 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
813 		.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
814 					 QCOM_SCM_VAL),
815 		.args[0] = addr,
816 		.args[1] = size,
817 		.args[2] = spare,
818 		.owner = ARM_SMCCC_OWNER_SIP,
819 	};
820 	int ret;
821 
822 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
823 
824 	/* the pg table has been initialized already, ignore the error */
825 	if (ret == -EPERM)
826 		ret = 0;
827 
828 	return ret;
829 }
830 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_init);
831 
qcom_scm_iommu_set_cp_pool_size(u32 spare,u32 size)832 int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size)
833 {
834 	struct qcom_scm_desc desc = {
835 		.svc = QCOM_SCM_SVC_MP,
836 		.cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE,
837 		.arginfo = QCOM_SCM_ARGS(2),
838 		.args[0] = size,
839 		.args[1] = spare,
840 		.owner = ARM_SMCCC_OWNER_SIP,
841 	};
842 
843 	return qcom_scm_call(__scm->dev, &desc, NULL);
844 }
845 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_cp_pool_size);
846 
qcom_scm_mem_protect_video_var(u32 cp_start,u32 cp_size,u32 cp_nonpixel_start,u32 cp_nonpixel_size)847 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
848 				   u32 cp_nonpixel_start,
849 				   u32 cp_nonpixel_size)
850 {
851 	int ret;
852 	struct qcom_scm_desc desc = {
853 		.svc = QCOM_SCM_SVC_MP,
854 		.cmd = QCOM_SCM_MP_VIDEO_VAR,
855 		.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
856 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
857 		.args[0] = cp_start,
858 		.args[1] = cp_size,
859 		.args[2] = cp_nonpixel_start,
860 		.args[3] = cp_nonpixel_size,
861 		.owner = ARM_SMCCC_OWNER_SIP,
862 	};
863 	struct qcom_scm_res res;
864 
865 	ret = qcom_scm_call(__scm->dev, &desc, &res);
866 
867 	return ret ? : res.result[0];
868 }
869 EXPORT_SYMBOL_GPL(qcom_scm_mem_protect_video_var);
870 
__qcom_scm_assign_mem(struct device * dev,phys_addr_t mem_region,size_t mem_sz,phys_addr_t src,size_t src_sz,phys_addr_t dest,size_t dest_sz)871 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
872 				 size_t mem_sz, phys_addr_t src, size_t src_sz,
873 				 phys_addr_t dest, size_t dest_sz)
874 {
875 	int ret;
876 	struct qcom_scm_desc desc = {
877 		.svc = QCOM_SCM_SVC_MP,
878 		.cmd = QCOM_SCM_MP_ASSIGN,
879 		.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
880 					 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
881 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
882 		.args[0] = mem_region,
883 		.args[1] = mem_sz,
884 		.args[2] = src,
885 		.args[3] = src_sz,
886 		.args[4] = dest,
887 		.args[5] = dest_sz,
888 		.args[6] = 0,
889 		.owner = ARM_SMCCC_OWNER_SIP,
890 	};
891 	struct qcom_scm_res res;
892 
893 	ret = qcom_scm_call(dev, &desc, &res);
894 
895 	return ret ? : res.result[0];
896 }
897 
898 /**
899  * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
900  * @mem_addr: mem region whose ownership need to be reassigned
901  * @mem_sz:   size of the region.
902  * @srcvm:    vmid for current set of owners, each set bit in
903  *            flag indicate a unique owner
904  * @newvm:    array having new owners and corresponding permission
905  *            flags
906  * @dest_cnt: number of owners in next set.
907  *
908  * Return negative errno on failure or 0 on success with @srcvm updated.
909  */
qcom_scm_assign_mem(phys_addr_t mem_addr,size_t mem_sz,u64 * srcvm,const struct qcom_scm_vmperm * newvm,unsigned int dest_cnt)910 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
911 			u64 *srcvm,
912 			const struct qcom_scm_vmperm *newvm,
913 			unsigned int dest_cnt)
914 {
915 	struct qcom_scm_current_perm_info *destvm;
916 	struct qcom_scm_mem_map_info *mem_to_map;
917 	phys_addr_t mem_to_map_phys;
918 	phys_addr_t dest_phys;
919 	dma_addr_t ptr_phys;
920 	size_t mem_to_map_sz;
921 	size_t dest_sz;
922 	size_t src_sz;
923 	size_t ptr_sz;
924 	int next_vm;
925 	__le32 *src;
926 	void *ptr;
927 	int ret, i, b;
928 	u64 srcvm_bits = *srcvm;
929 
930 	src_sz = hweight64(srcvm_bits) * sizeof(*src);
931 	mem_to_map_sz = sizeof(*mem_to_map);
932 	dest_sz = dest_cnt * sizeof(*destvm);
933 	ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
934 			ALIGN(dest_sz, SZ_64);
935 
936 	ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
937 	if (!ptr)
938 		return -ENOMEM;
939 
940 	/* Fill source vmid detail */
941 	src = ptr;
942 	i = 0;
943 	for (b = 0; b < BITS_PER_TYPE(u64); b++) {
944 		if (srcvm_bits & BIT(b))
945 			src[i++] = cpu_to_le32(b);
946 	}
947 
948 	/* Fill details of mem buff to map */
949 	mem_to_map = ptr + ALIGN(src_sz, SZ_64);
950 	mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
951 	mem_to_map->mem_addr = cpu_to_le64(mem_addr);
952 	mem_to_map->mem_size = cpu_to_le64(mem_sz);
953 
954 	next_vm = 0;
955 	/* Fill details of next vmid detail */
956 	destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
957 	dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
958 	for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
959 		destvm->vmid = cpu_to_le32(newvm->vmid);
960 		destvm->perm = cpu_to_le32(newvm->perm);
961 		destvm->ctx = 0;
962 		destvm->ctx_size = 0;
963 		next_vm |= BIT(newvm->vmid);
964 	}
965 
966 	ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
967 				    ptr_phys, src_sz, dest_phys, dest_sz);
968 	dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
969 	if (ret) {
970 		dev_err(__scm->dev,
971 			"Assign memory protection call failed %d\n", ret);
972 		return -EINVAL;
973 	}
974 
975 	*srcvm = next_vm;
976 	return 0;
977 }
978 EXPORT_SYMBOL_GPL(qcom_scm_assign_mem);
979 
980 /**
981  * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
982  */
qcom_scm_ocmem_lock_available(void)983 bool qcom_scm_ocmem_lock_available(void)
984 {
985 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
986 					    QCOM_SCM_OCMEM_LOCK_CMD);
987 }
988 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock_available);
989 
990 /**
991  * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
992  * region to the specified initiator
993  *
994  * @id:     tz initiator id
995  * @offset: OCMEM offset
996  * @size:   OCMEM size
997  * @mode:   access mode (WIDE/NARROW)
998  */
qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id,u32 offset,u32 size,u32 mode)999 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
1000 			u32 mode)
1001 {
1002 	struct qcom_scm_desc desc = {
1003 		.svc = QCOM_SCM_SVC_OCMEM,
1004 		.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
1005 		.args[0] = id,
1006 		.args[1] = offset,
1007 		.args[2] = size,
1008 		.args[3] = mode,
1009 		.arginfo = QCOM_SCM_ARGS(4),
1010 	};
1011 
1012 	return qcom_scm_call(__scm->dev, &desc, NULL);
1013 }
1014 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock);
1015 
1016 /**
1017  * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
1018  * region from the specified initiator
1019  *
1020  * @id:     tz initiator id
1021  * @offset: OCMEM offset
1022  * @size:   OCMEM size
1023  */
qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id,u32 offset,u32 size)1024 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
1025 {
1026 	struct qcom_scm_desc desc = {
1027 		.svc = QCOM_SCM_SVC_OCMEM,
1028 		.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
1029 		.args[0] = id,
1030 		.args[1] = offset,
1031 		.args[2] = size,
1032 		.arginfo = QCOM_SCM_ARGS(3),
1033 	};
1034 
1035 	return qcom_scm_call(__scm->dev, &desc, NULL);
1036 }
1037 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_unlock);
1038 
1039 /**
1040  * qcom_scm_ice_available() - Is the ICE key programming interface available?
1041  *
1042  * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
1043  *	   qcom_scm_ice_set_key() are available.
1044  */
qcom_scm_ice_available(void)1045 bool qcom_scm_ice_available(void)
1046 {
1047 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1048 					    QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
1049 		__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1050 					     QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
1051 }
1052 EXPORT_SYMBOL_GPL(qcom_scm_ice_available);
1053 
1054 /**
1055  * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
1056  * @index: the keyslot to invalidate
1057  *
1058  * The UFSHCI and eMMC standards define a standard way to do this, but it
1059  * doesn't work on these SoCs; only this SCM call does.
1060  *
1061  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1062  * call doesn't specify which ICE instance the keyslot belongs to.
1063  *
1064  * Return: 0 on success; -errno on failure.
1065  */
qcom_scm_ice_invalidate_key(u32 index)1066 int qcom_scm_ice_invalidate_key(u32 index)
1067 {
1068 	struct qcom_scm_desc desc = {
1069 		.svc = QCOM_SCM_SVC_ES,
1070 		.cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
1071 		.arginfo = QCOM_SCM_ARGS(1),
1072 		.args[0] = index,
1073 		.owner = ARM_SMCCC_OWNER_SIP,
1074 	};
1075 
1076 	return qcom_scm_call(__scm->dev, &desc, NULL);
1077 }
1078 EXPORT_SYMBOL_GPL(qcom_scm_ice_invalidate_key);
1079 
1080 /**
1081  * qcom_scm_ice_set_key() - Set an inline encryption key
1082  * @index: the keyslot into which to set the key
1083  * @key: the key to program
1084  * @key_size: the size of the key in bytes
1085  * @cipher: the encryption algorithm the key is for
1086  * @data_unit_size: the encryption data unit size, i.e. the size of each
1087  *		    individual plaintext and ciphertext.  Given in 512-byte
1088  *		    units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1089  *
1090  * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1091  * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1092  *
1093  * The UFSHCI and eMMC standards define a standard way to do this, but it
1094  * doesn't work on these SoCs; only this SCM call does.
1095  *
1096  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1097  * call doesn't specify which ICE instance the keyslot belongs to.
1098  *
1099  * Return: 0 on success; -errno on failure.
1100  */
qcom_scm_ice_set_key(u32 index,const u8 * key,u32 key_size,enum qcom_scm_ice_cipher cipher,u32 data_unit_size)1101 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1102 			 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1103 {
1104 	struct qcom_scm_desc desc = {
1105 		.svc = QCOM_SCM_SVC_ES,
1106 		.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1107 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1108 					 QCOM_SCM_VAL, QCOM_SCM_VAL,
1109 					 QCOM_SCM_VAL),
1110 		.args[0] = index,
1111 		.args[2] = key_size,
1112 		.args[3] = cipher,
1113 		.args[4] = data_unit_size,
1114 		.owner = ARM_SMCCC_OWNER_SIP,
1115 	};
1116 	void *keybuf;
1117 	dma_addr_t key_phys;
1118 	int ret;
1119 
1120 	/*
1121 	 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1122 	 * physical address that's been properly flushed.  The sanctioned way to
1123 	 * do this is by using the DMA API.  But as is best practice for crypto
1124 	 * keys, we also must wipe the key after use.  This makes kmemdup() +
1125 	 * dma_map_single() not clearly correct, since the DMA API can use
1126 	 * bounce buffers.  Instead, just use dma_alloc_coherent().  Programming
1127 	 * keys is normally rare and thus not performance-critical.
1128 	 */
1129 
1130 	keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1131 				    GFP_KERNEL);
1132 	if (!keybuf)
1133 		return -ENOMEM;
1134 	memcpy(keybuf, key, key_size);
1135 	desc.args[1] = key_phys;
1136 
1137 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1138 
1139 	memzero_explicit(keybuf, key_size);
1140 
1141 	dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1142 	return ret;
1143 }
1144 EXPORT_SYMBOL_GPL(qcom_scm_ice_set_key);
1145 
1146 /**
1147  * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1148  *
1149  * Return true if HDCP is supported, false if not.
1150  */
qcom_scm_hdcp_available(void)1151 bool qcom_scm_hdcp_available(void)
1152 {
1153 	bool avail;
1154 	int ret = qcom_scm_clk_enable();
1155 
1156 	if (ret)
1157 		return ret;
1158 
1159 	avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1160 						QCOM_SCM_HDCP_INVOKE);
1161 
1162 	qcom_scm_clk_disable();
1163 
1164 	return avail;
1165 }
1166 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_available);
1167 
1168 /**
1169  * qcom_scm_hdcp_req() - Send HDCP request.
1170  * @req: HDCP request array
1171  * @req_cnt: HDCP request array count
1172  * @resp: response buffer passed to SCM
1173  *
1174  * Write HDCP register(s) through SCM.
1175  */
qcom_scm_hdcp_req(struct qcom_scm_hdcp_req * req,u32 req_cnt,u32 * resp)1176 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1177 {
1178 	int ret;
1179 	struct qcom_scm_desc desc = {
1180 		.svc = QCOM_SCM_SVC_HDCP,
1181 		.cmd = QCOM_SCM_HDCP_INVOKE,
1182 		.arginfo = QCOM_SCM_ARGS(10),
1183 		.args = {
1184 			req[0].addr,
1185 			req[0].val,
1186 			req[1].addr,
1187 			req[1].val,
1188 			req[2].addr,
1189 			req[2].val,
1190 			req[3].addr,
1191 			req[3].val,
1192 			req[4].addr,
1193 			req[4].val
1194 		},
1195 		.owner = ARM_SMCCC_OWNER_SIP,
1196 	};
1197 	struct qcom_scm_res res;
1198 
1199 	if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1200 		return -ERANGE;
1201 
1202 	ret = qcom_scm_clk_enable();
1203 	if (ret)
1204 		return ret;
1205 
1206 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1207 	*resp = res.result[0];
1208 
1209 	qcom_scm_clk_disable();
1210 
1211 	return ret;
1212 }
1213 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_req);
1214 
qcom_scm_iommu_set_pt_format(u32 sec_id,u32 ctx_num,u32 pt_fmt)1215 int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt)
1216 {
1217 	struct qcom_scm_desc desc = {
1218 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1219 		.cmd = QCOM_SCM_SMMU_PT_FORMAT,
1220 		.arginfo = QCOM_SCM_ARGS(3),
1221 		.args[0] = sec_id,
1222 		.args[1] = ctx_num,
1223 		.args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */
1224 		.owner = ARM_SMCCC_OWNER_SIP,
1225 	};
1226 
1227 	return qcom_scm_call(__scm->dev, &desc, NULL);
1228 }
1229 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_pt_format);
1230 
qcom_scm_qsmmu500_wait_safe_toggle(bool en)1231 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1232 {
1233 	struct qcom_scm_desc desc = {
1234 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1235 		.cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1236 		.arginfo = QCOM_SCM_ARGS(2),
1237 		.args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1238 		.args[1] = en,
1239 		.owner = ARM_SMCCC_OWNER_SIP,
1240 	};
1241 
1242 
1243 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1244 }
1245 EXPORT_SYMBOL_GPL(qcom_scm_qsmmu500_wait_safe_toggle);
1246 
qcom_scm_lmh_dcvsh_available(void)1247 bool qcom_scm_lmh_dcvsh_available(void)
1248 {
1249 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1250 }
1251 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh_available);
1252 
qcom_scm_lmh_profile_change(u32 profile_id)1253 int qcom_scm_lmh_profile_change(u32 profile_id)
1254 {
1255 	struct qcom_scm_desc desc = {
1256 		.svc = QCOM_SCM_SVC_LMH,
1257 		.cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1258 		.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1259 		.args[0] = profile_id,
1260 		.owner = ARM_SMCCC_OWNER_SIP,
1261 	};
1262 
1263 	return qcom_scm_call(__scm->dev, &desc, NULL);
1264 }
1265 EXPORT_SYMBOL_GPL(qcom_scm_lmh_profile_change);
1266 
qcom_scm_lmh_dcvsh(u32 payload_fn,u32 payload_reg,u32 payload_val,u64 limit_node,u32 node_id,u64 version)1267 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1268 		       u64 limit_node, u32 node_id, u64 version)
1269 {
1270 	dma_addr_t payload_phys;
1271 	u32 *payload_buf;
1272 	int ret, payload_size = 5 * sizeof(u32);
1273 
1274 	struct qcom_scm_desc desc = {
1275 		.svc = QCOM_SCM_SVC_LMH,
1276 		.cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1277 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1278 					QCOM_SCM_VAL, QCOM_SCM_VAL),
1279 		.args[1] = payload_size,
1280 		.args[2] = limit_node,
1281 		.args[3] = node_id,
1282 		.args[4] = version,
1283 		.owner = ARM_SMCCC_OWNER_SIP,
1284 	};
1285 
1286 	payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL);
1287 	if (!payload_buf)
1288 		return -ENOMEM;
1289 
1290 	payload_buf[0] = payload_fn;
1291 	payload_buf[1] = 0;
1292 	payload_buf[2] = payload_reg;
1293 	payload_buf[3] = 1;
1294 	payload_buf[4] = payload_val;
1295 
1296 	desc.args[0] = payload_phys;
1297 
1298 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1299 
1300 	dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys);
1301 	return ret;
1302 }
1303 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh);
1304 
qcom_scm_find_dload_address(struct device * dev,u64 * addr)1305 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1306 {
1307 	struct device_node *tcsr;
1308 	struct device_node *np = dev->of_node;
1309 	struct resource res;
1310 	u32 offset;
1311 	int ret;
1312 
1313 	tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1314 	if (!tcsr)
1315 		return 0;
1316 
1317 	ret = of_address_to_resource(tcsr, 0, &res);
1318 	of_node_put(tcsr);
1319 	if (ret)
1320 		return ret;
1321 
1322 	ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1323 	if (ret < 0)
1324 		return ret;
1325 
1326 	*addr = res.start + offset;
1327 
1328 	return 0;
1329 }
1330 
1331 /**
1332  * qcom_scm_is_available() - Checks if SCM is available
1333  */
qcom_scm_is_available(void)1334 bool qcom_scm_is_available(void)
1335 {
1336 	return !!__scm;
1337 }
1338 EXPORT_SYMBOL_GPL(qcom_scm_is_available);
1339 
qcom_scm_assert_valid_wq_ctx(u32 wq_ctx)1340 static int qcom_scm_assert_valid_wq_ctx(u32 wq_ctx)
1341 {
1342 	/* FW currently only supports a single wq_ctx (zero).
1343 	 * TODO: Update this logic to include dynamic allocation and lookup of
1344 	 * completion structs when FW supports more wq_ctx values.
1345 	 */
1346 	if (wq_ctx != 0) {
1347 		dev_err(__scm->dev, "Firmware unexpectedly passed non-zero wq_ctx\n");
1348 		return -EINVAL;
1349 	}
1350 
1351 	return 0;
1352 }
1353 
qcom_scm_wait_for_wq_completion(u32 wq_ctx)1354 int qcom_scm_wait_for_wq_completion(u32 wq_ctx)
1355 {
1356 	int ret;
1357 
1358 	ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1359 	if (ret)
1360 		return ret;
1361 
1362 	wait_for_completion(&__scm->waitq_comp);
1363 
1364 	return 0;
1365 }
1366 
qcom_scm_waitq_wakeup(struct qcom_scm * scm,unsigned int wq_ctx)1367 static int qcom_scm_waitq_wakeup(struct qcom_scm *scm, unsigned int wq_ctx)
1368 {
1369 	int ret;
1370 
1371 	ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1372 	if (ret)
1373 		return ret;
1374 
1375 	complete(&__scm->waitq_comp);
1376 
1377 	return 0;
1378 }
1379 
qcom_scm_irq_handler(int irq,void * data)1380 static irqreturn_t qcom_scm_irq_handler(int irq, void *data)
1381 {
1382 	int ret;
1383 	struct qcom_scm *scm = data;
1384 	u32 wq_ctx, flags, more_pending = 0;
1385 
1386 	do {
1387 		ret = scm_get_wq_ctx(&wq_ctx, &flags, &more_pending);
1388 		if (ret) {
1389 			dev_err(scm->dev, "GET_WQ_CTX SMC call failed: %d\n", ret);
1390 			goto out;
1391 		}
1392 
1393 		if (flags != QCOM_SMC_WAITQ_FLAG_WAKE_ONE &&
1394 		    flags != QCOM_SMC_WAITQ_FLAG_WAKE_ALL) {
1395 			dev_err(scm->dev, "Invalid flags found for wq_ctx: %u\n", flags);
1396 			goto out;
1397 		}
1398 
1399 		ret = qcom_scm_waitq_wakeup(scm, wq_ctx);
1400 		if (ret)
1401 			goto out;
1402 	} while (more_pending);
1403 
1404 out:
1405 	return IRQ_HANDLED;
1406 }
1407 
qcom_scm_probe(struct platform_device * pdev)1408 static int qcom_scm_probe(struct platform_device *pdev)
1409 {
1410 	struct qcom_scm *scm;
1411 	int irq, ret;
1412 
1413 	scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1414 	if (!scm)
1415 		return -ENOMEM;
1416 
1417 	ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1418 	if (ret < 0)
1419 		return ret;
1420 
1421 	mutex_init(&scm->scm_bw_lock);
1422 
1423 	scm->path = devm_of_icc_get(&pdev->dev, NULL);
1424 	if (IS_ERR(scm->path))
1425 		return dev_err_probe(&pdev->dev, PTR_ERR(scm->path),
1426 				     "failed to acquire interconnect path\n");
1427 
1428 	scm->core_clk = devm_clk_get_optional(&pdev->dev, "core");
1429 	if (IS_ERR(scm->core_clk))
1430 		return PTR_ERR(scm->core_clk);
1431 
1432 	scm->iface_clk = devm_clk_get_optional(&pdev->dev, "iface");
1433 	if (IS_ERR(scm->iface_clk))
1434 		return PTR_ERR(scm->iface_clk);
1435 
1436 	scm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
1437 	if (IS_ERR(scm->bus_clk))
1438 		return PTR_ERR(scm->bus_clk);
1439 
1440 	scm->reset.ops = &qcom_scm_pas_reset_ops;
1441 	scm->reset.nr_resets = 1;
1442 	scm->reset.of_node = pdev->dev.of_node;
1443 	ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1444 	if (ret)
1445 		return ret;
1446 
1447 	/* vote for max clk rate for highest performance */
1448 	ret = clk_set_rate(scm->core_clk, INT_MAX);
1449 	if (ret)
1450 		return ret;
1451 
1452 	__scm = scm;
1453 	__scm->dev = &pdev->dev;
1454 
1455 	init_completion(&__scm->waitq_comp);
1456 
1457 	irq = platform_get_irq_optional(pdev, 0);
1458 	if (irq < 0) {
1459 		if (irq != -ENXIO)
1460 			return irq;
1461 	} else {
1462 		ret = devm_request_threaded_irq(__scm->dev, irq, NULL, qcom_scm_irq_handler,
1463 						IRQF_ONESHOT, "qcom-scm", __scm);
1464 		if (ret < 0)
1465 			return dev_err_probe(scm->dev, ret, "Failed to request qcom-scm irq\n");
1466 	}
1467 
1468 	__get_convention();
1469 
1470 	/*
1471 	 * If requested enable "download mode", from this point on warmboot
1472 	 * will cause the boot stages to enter download mode, unless
1473 	 * disabled below by a clean shutdown/reboot.
1474 	 */
1475 	if (download_mode)
1476 		qcom_scm_set_download_mode(true);
1477 
1478 	return 0;
1479 }
1480 
qcom_scm_shutdown(struct platform_device * pdev)1481 static void qcom_scm_shutdown(struct platform_device *pdev)
1482 {
1483 	/* Clean shutdown, disable download mode to allow normal restart */
1484 	qcom_scm_set_download_mode(false);
1485 }
1486 
1487 static const struct of_device_id qcom_scm_dt_match[] = {
1488 	{ .compatible = "qcom,scm" },
1489 
1490 	/* Legacy entries kept for backwards compatibility */
1491 	{ .compatible = "qcom,scm-apq8064" },
1492 	{ .compatible = "qcom,scm-apq8084" },
1493 	{ .compatible = "qcom,scm-ipq4019" },
1494 	{ .compatible = "qcom,scm-msm8953" },
1495 	{ .compatible = "qcom,scm-msm8974" },
1496 	{ .compatible = "qcom,scm-msm8996" },
1497 	{}
1498 };
1499 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
1500 
1501 static struct platform_driver qcom_scm_driver = {
1502 	.driver = {
1503 		.name	= "qcom_scm",
1504 		.of_match_table = qcom_scm_dt_match,
1505 		.suppress_bind_attrs = true,
1506 	},
1507 	.probe = qcom_scm_probe,
1508 	.shutdown = qcom_scm_shutdown,
1509 };
1510 
qcom_scm_init(void)1511 static int __init qcom_scm_init(void)
1512 {
1513 	return platform_driver_register(&qcom_scm_driver);
1514 }
1515 subsys_initcall(qcom_scm_init);
1516 
1517 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
1518 MODULE_LICENSE("GPL v2");
1519