1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3 * Copyright (C) 2015 Linaro Ltd.
4 */
5 #include <linux/platform_device.h>
6 #include <linux/init.h>
7 #include <linux/cpumask.h>
8 #include <linux/export.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/qcom_scm.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_platform.h>
16 #include <linux/clk.h>
17 #include <linux/reset-controller.h>
18 #include <linux/arm-smccc.h>
19
20 #include "qcom_scm.h"
21
22 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
23 module_param(download_mode, bool, 0);
24
25 #define SCM_HAS_CORE_CLK BIT(0)
26 #define SCM_HAS_IFACE_CLK BIT(1)
27 #define SCM_HAS_BUS_CLK BIT(2)
28
29 struct qcom_scm {
30 struct device *dev;
31 struct clk *core_clk;
32 struct clk *iface_clk;
33 struct clk *bus_clk;
34 struct reset_controller_dev reset;
35
36 u64 dload_mode_addr;
37 };
38
39 struct qcom_scm_current_perm_info {
40 __le32 vmid;
41 __le32 perm;
42 __le64 ctx;
43 __le32 ctx_size;
44 __le32 unused;
45 };
46
47 struct qcom_scm_mem_map_info {
48 __le64 mem_addr;
49 __le64 mem_size;
50 };
51
52 /* Each bit configures cold/warm boot address for one of the 4 CPUs */
53 static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
54 0, BIT(0), BIT(3), BIT(5)
55 };
56 static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
57 BIT(2), BIT(1), BIT(4), BIT(6)
58 };
59
60 static const char * const qcom_scm_convention_names[] = {
61 [SMC_CONVENTION_UNKNOWN] = "unknown",
62 [SMC_CONVENTION_ARM_32] = "smc arm 32",
63 [SMC_CONVENTION_ARM_64] = "smc arm 64",
64 [SMC_CONVENTION_LEGACY] = "smc legacy",
65 };
66
67 static struct qcom_scm *__scm;
68
qcom_scm_clk_enable(void)69 static int qcom_scm_clk_enable(void)
70 {
71 int ret;
72
73 ret = clk_prepare_enable(__scm->core_clk);
74 if (ret)
75 goto bail;
76
77 ret = clk_prepare_enable(__scm->iface_clk);
78 if (ret)
79 goto disable_core;
80
81 ret = clk_prepare_enable(__scm->bus_clk);
82 if (ret)
83 goto disable_iface;
84
85 return 0;
86
87 disable_iface:
88 clk_disable_unprepare(__scm->iface_clk);
89 disable_core:
90 clk_disable_unprepare(__scm->core_clk);
91 bail:
92 return ret;
93 }
94
qcom_scm_clk_disable(void)95 static void qcom_scm_clk_disable(void)
96 {
97 clk_disable_unprepare(__scm->core_clk);
98 clk_disable_unprepare(__scm->iface_clk);
99 clk_disable_unprepare(__scm->bus_clk);
100 }
101
102 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
103 static DEFINE_SPINLOCK(scm_query_lock);
104
__get_convention(void)105 static enum qcom_scm_convention __get_convention(void)
106 {
107 unsigned long flags;
108 struct qcom_scm_desc desc = {
109 .svc = QCOM_SCM_SVC_INFO,
110 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
111 .args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
112 QCOM_SCM_INFO_IS_CALL_AVAIL) |
113 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
114 .arginfo = QCOM_SCM_ARGS(1),
115 .owner = ARM_SMCCC_OWNER_SIP,
116 };
117 struct qcom_scm_res res;
118 enum qcom_scm_convention probed_convention;
119 int ret;
120 bool forced = false;
121
122 if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
123 return qcom_scm_convention;
124
125 /*
126 * Device isn't required as there is only one argument - no device
127 * needed to dma_map_single to secure world
128 */
129 probed_convention = SMC_CONVENTION_ARM_64;
130 ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
131 if (!ret && res.result[0] == 1)
132 goto found;
133
134 /*
135 * Some SC7180 firmwares didn't implement the
136 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
137 * calling conventions on these firmwares. Luckily we don't make any
138 * early calls into the firmware on these SoCs so the device pointer
139 * will be valid here to check if the compatible matches.
140 */
141 if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
142 forced = true;
143 goto found;
144 }
145
146 probed_convention = SMC_CONVENTION_ARM_32;
147 ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
148 if (!ret && res.result[0] == 1)
149 goto found;
150
151 probed_convention = SMC_CONVENTION_LEGACY;
152 found:
153 spin_lock_irqsave(&scm_query_lock, flags);
154 if (probed_convention != qcom_scm_convention) {
155 qcom_scm_convention = probed_convention;
156 pr_info("qcom_scm: convention: %s%s\n",
157 qcom_scm_convention_names[qcom_scm_convention],
158 forced ? " (forced)" : "");
159 }
160 spin_unlock_irqrestore(&scm_query_lock, flags);
161
162 return qcom_scm_convention;
163 }
164
165 /**
166 * qcom_scm_call() - Invoke a syscall in the secure world
167 * @dev: device
168 * @desc: Descriptor structure containing arguments and return values
169 * @res: Structure containing results from SMC/HVC call
170 *
171 * Sends a command to the SCM and waits for the command to finish processing.
172 * This should *only* be called in pre-emptible context.
173 */
qcom_scm_call(struct device * dev,const struct qcom_scm_desc * desc,struct qcom_scm_res * res)174 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
175 struct qcom_scm_res *res)
176 {
177 might_sleep();
178 switch (__get_convention()) {
179 case SMC_CONVENTION_ARM_32:
180 case SMC_CONVENTION_ARM_64:
181 return scm_smc_call(dev, desc, res, false);
182 case SMC_CONVENTION_LEGACY:
183 return scm_legacy_call(dev, desc, res);
184 default:
185 pr_err("Unknown current SCM calling convention.\n");
186 return -EINVAL;
187 }
188 }
189
190 /**
191 * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
192 * @dev: device
193 * @desc: Descriptor structure containing arguments and return values
194 * @res: Structure containing results from SMC/HVC call
195 *
196 * Sends a command to the SCM and waits for the command to finish processing.
197 * This can be called in atomic context.
198 */
qcom_scm_call_atomic(struct device * dev,const struct qcom_scm_desc * desc,struct qcom_scm_res * res)199 static int qcom_scm_call_atomic(struct device *dev,
200 const struct qcom_scm_desc *desc,
201 struct qcom_scm_res *res)
202 {
203 switch (__get_convention()) {
204 case SMC_CONVENTION_ARM_32:
205 case SMC_CONVENTION_ARM_64:
206 return scm_smc_call(dev, desc, res, true);
207 case SMC_CONVENTION_LEGACY:
208 return scm_legacy_call_atomic(dev, desc, res);
209 default:
210 pr_err("Unknown current SCM calling convention.\n");
211 return -EINVAL;
212 }
213 }
214
__qcom_scm_is_call_available(struct device * dev,u32 svc_id,u32 cmd_id)215 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
216 u32 cmd_id)
217 {
218 int ret;
219 struct qcom_scm_desc desc = {
220 .svc = QCOM_SCM_SVC_INFO,
221 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
222 .owner = ARM_SMCCC_OWNER_SIP,
223 };
224 struct qcom_scm_res res;
225
226 desc.arginfo = QCOM_SCM_ARGS(1);
227 switch (__get_convention()) {
228 case SMC_CONVENTION_ARM_32:
229 case SMC_CONVENTION_ARM_64:
230 desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
231 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
232 break;
233 case SMC_CONVENTION_LEGACY:
234 desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
235 break;
236 default:
237 pr_err("Unknown SMC convention being used\n");
238 return false;
239 }
240
241 ret = qcom_scm_call(dev, &desc, &res);
242
243 return ret ? false : !!res.result[0];
244 }
245
qcom_scm_set_boot_addr(void * entry,const u8 * cpu_bits)246 static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits)
247 {
248 int cpu;
249 unsigned int flags = 0;
250 struct qcom_scm_desc desc = {
251 .svc = QCOM_SCM_SVC_BOOT,
252 .cmd = QCOM_SCM_BOOT_SET_ADDR,
253 .arginfo = QCOM_SCM_ARGS(2),
254 .owner = ARM_SMCCC_OWNER_SIP,
255 };
256
257 for_each_present_cpu(cpu) {
258 if (cpu >= QCOM_SCM_BOOT_MAX_CPUS)
259 return -EINVAL;
260 flags |= cpu_bits[cpu];
261 }
262
263 desc.args[0] = flags;
264 desc.args[1] = virt_to_phys(entry);
265
266 return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
267 }
268
qcom_scm_set_boot_addr_mc(void * entry,unsigned int flags)269 static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags)
270 {
271 struct qcom_scm_desc desc = {
272 .svc = QCOM_SCM_SVC_BOOT,
273 .cmd = QCOM_SCM_BOOT_SET_ADDR_MC,
274 .owner = ARM_SMCCC_OWNER_SIP,
275 .arginfo = QCOM_SCM_ARGS(6),
276 .args = {
277 virt_to_phys(entry),
278 /* Apply to all CPUs in all affinity levels */
279 ~0ULL, ~0ULL, ~0ULL, ~0ULL,
280 flags,
281 },
282 };
283
284 /* Need a device for DMA of the additional arguments */
285 if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY)
286 return -EOPNOTSUPP;
287
288 return qcom_scm_call(__scm->dev, &desc, NULL);
289 }
290
291 /**
292 * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus
293 * @entry: Entry point function for the cpus
294 *
295 * Set the Linux entry point for the SCM to transfer control to when coming
296 * out of a power down. CPU power down may be executed on cpuidle or hotplug.
297 */
qcom_scm_set_warm_boot_addr(void * entry)298 int qcom_scm_set_warm_boot_addr(void *entry)
299 {
300 if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT))
301 /* Fallback to old SCM call */
302 return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits);
303 return 0;
304 }
305 EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
306
307 /**
308 * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus
309 * @entry: Entry point function for the cpus
310 */
qcom_scm_set_cold_boot_addr(void * entry)311 int qcom_scm_set_cold_boot_addr(void *entry)
312 {
313 if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT))
314 /* Fallback to old SCM call */
315 return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits);
316 return 0;
317 }
318 EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
319
320 /**
321 * qcom_scm_cpu_power_down() - Power down the cpu
322 * @flags: Flags to flush cache
323 *
324 * This is an end point to power down cpu. If there was a pending interrupt,
325 * the control would return from this function, otherwise, the cpu jumps to the
326 * warm boot entry point set for this cpu upon reset.
327 */
qcom_scm_cpu_power_down(u32 flags)328 void qcom_scm_cpu_power_down(u32 flags)
329 {
330 struct qcom_scm_desc desc = {
331 .svc = QCOM_SCM_SVC_BOOT,
332 .cmd = QCOM_SCM_BOOT_TERMINATE_PC,
333 .args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
334 .arginfo = QCOM_SCM_ARGS(1),
335 .owner = ARM_SMCCC_OWNER_SIP,
336 };
337
338 qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
339 }
340 EXPORT_SYMBOL(qcom_scm_cpu_power_down);
341
qcom_scm_set_remote_state(u32 state,u32 id)342 int qcom_scm_set_remote_state(u32 state, u32 id)
343 {
344 struct qcom_scm_desc desc = {
345 .svc = QCOM_SCM_SVC_BOOT,
346 .cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
347 .arginfo = QCOM_SCM_ARGS(2),
348 .args[0] = state,
349 .args[1] = id,
350 .owner = ARM_SMCCC_OWNER_SIP,
351 };
352 struct qcom_scm_res res;
353 int ret;
354
355 ret = qcom_scm_call(__scm->dev, &desc, &res);
356
357 return ret ? : res.result[0];
358 }
359 EXPORT_SYMBOL(qcom_scm_set_remote_state);
360
__qcom_scm_set_dload_mode(struct device * dev,bool enable)361 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
362 {
363 struct qcom_scm_desc desc = {
364 .svc = QCOM_SCM_SVC_BOOT,
365 .cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
366 .arginfo = QCOM_SCM_ARGS(2),
367 .args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
368 .owner = ARM_SMCCC_OWNER_SIP,
369 };
370
371 desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
372
373 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
374 }
375
qcom_scm_set_download_mode(bool enable)376 static void qcom_scm_set_download_mode(bool enable)
377 {
378 bool avail;
379 int ret = 0;
380
381 avail = __qcom_scm_is_call_available(__scm->dev,
382 QCOM_SCM_SVC_BOOT,
383 QCOM_SCM_BOOT_SET_DLOAD_MODE);
384 if (avail) {
385 ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
386 } else if (__scm->dload_mode_addr) {
387 ret = qcom_scm_io_writel(__scm->dload_mode_addr,
388 enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
389 } else {
390 dev_err(__scm->dev,
391 "No available mechanism for setting download mode\n");
392 }
393
394 if (ret)
395 dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
396 }
397
398 /**
399 * qcom_scm_pas_init_image() - Initialize peripheral authentication service
400 * state machine for a given peripheral, using the
401 * metadata
402 * @peripheral: peripheral id
403 * @metadata: pointer to memory containing ELF header, program header table
404 * and optional blob of data used for authenticating the metadata
405 * and the rest of the firmware
406 * @size: size of the metadata
407 * @ctx: optional metadata context
408 *
409 * Return: 0 on success.
410 *
411 * Upon successful return, the PAS metadata context (@ctx) will be used to
412 * track the metadata allocation, this needs to be released by invoking
413 * qcom_scm_pas_metadata_release() by the caller.
414 */
qcom_scm_pas_init_image(u32 peripheral,const void * metadata,size_t size,struct qcom_scm_pas_metadata * ctx)415 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size,
416 struct qcom_scm_pas_metadata *ctx)
417 {
418 dma_addr_t mdata_phys;
419 void *mdata_buf;
420 int ret;
421 struct qcom_scm_desc desc = {
422 .svc = QCOM_SCM_SVC_PIL,
423 .cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
424 .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
425 .args[0] = peripheral,
426 .owner = ARM_SMCCC_OWNER_SIP,
427 };
428 struct qcom_scm_res res;
429
430 /*
431 * During the scm call memory protection will be enabled for the meta
432 * data blob, so make sure it's physically contiguous, 4K aligned and
433 * non-cachable to avoid XPU violations.
434 */
435 mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
436 GFP_KERNEL);
437 if (!mdata_buf) {
438 dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
439 return -ENOMEM;
440 }
441 memcpy(mdata_buf, metadata, size);
442
443 ret = qcom_scm_clk_enable();
444 if (ret)
445 goto out;
446
447 desc.args[1] = mdata_phys;
448
449 ret = qcom_scm_call(__scm->dev, &desc, &res);
450
451 qcom_scm_clk_disable();
452
453 out:
454 if (ret < 0 || !ctx) {
455 dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
456 } else if (ctx) {
457 ctx->ptr = mdata_buf;
458 ctx->phys = mdata_phys;
459 ctx->size = size;
460 }
461
462 return ret ? : res.result[0];
463 }
464 EXPORT_SYMBOL(qcom_scm_pas_init_image);
465
466 /**
467 * qcom_scm_pas_metadata_release() - release metadata context
468 * @ctx: metadata context
469 */
qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata * ctx)470 void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx)
471 {
472 if (!ctx->ptr)
473 return;
474
475 dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys);
476
477 ctx->ptr = NULL;
478 ctx->phys = 0;
479 ctx->size = 0;
480 }
481 EXPORT_SYMBOL(qcom_scm_pas_metadata_release);
482
483 /**
484 * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
485 * for firmware loading
486 * @peripheral: peripheral id
487 * @addr: start address of memory area to prepare
488 * @size: size of the memory area to prepare
489 *
490 * Returns 0 on success.
491 */
qcom_scm_pas_mem_setup(u32 peripheral,phys_addr_t addr,phys_addr_t size)492 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
493 {
494 int ret;
495 struct qcom_scm_desc desc = {
496 .svc = QCOM_SCM_SVC_PIL,
497 .cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
498 .arginfo = QCOM_SCM_ARGS(3),
499 .args[0] = peripheral,
500 .args[1] = addr,
501 .args[2] = size,
502 .owner = ARM_SMCCC_OWNER_SIP,
503 };
504 struct qcom_scm_res res;
505
506 ret = qcom_scm_clk_enable();
507 if (ret)
508 return ret;
509
510 ret = qcom_scm_call(__scm->dev, &desc, &res);
511 qcom_scm_clk_disable();
512
513 return ret ? : res.result[0];
514 }
515 EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
516
517 /**
518 * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
519 * and reset the remote processor
520 * @peripheral: peripheral id
521 *
522 * Return 0 on success.
523 */
qcom_scm_pas_auth_and_reset(u32 peripheral)524 int qcom_scm_pas_auth_and_reset(u32 peripheral)
525 {
526 int ret;
527 struct qcom_scm_desc desc = {
528 .svc = QCOM_SCM_SVC_PIL,
529 .cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
530 .arginfo = QCOM_SCM_ARGS(1),
531 .args[0] = peripheral,
532 .owner = ARM_SMCCC_OWNER_SIP,
533 };
534 struct qcom_scm_res res;
535
536 ret = qcom_scm_clk_enable();
537 if (ret)
538 return ret;
539
540 ret = qcom_scm_call(__scm->dev, &desc, &res);
541 qcom_scm_clk_disable();
542
543 return ret ? : res.result[0];
544 }
545 EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
546
547 /**
548 * qcom_scm_pas_shutdown() - Shut down the remote processor
549 * @peripheral: peripheral id
550 *
551 * Returns 0 on success.
552 */
qcom_scm_pas_shutdown(u32 peripheral)553 int qcom_scm_pas_shutdown(u32 peripheral)
554 {
555 int ret;
556 struct qcom_scm_desc desc = {
557 .svc = QCOM_SCM_SVC_PIL,
558 .cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
559 .arginfo = QCOM_SCM_ARGS(1),
560 .args[0] = peripheral,
561 .owner = ARM_SMCCC_OWNER_SIP,
562 };
563 struct qcom_scm_res res;
564
565 ret = qcom_scm_clk_enable();
566 if (ret)
567 return ret;
568
569 ret = qcom_scm_call(__scm->dev, &desc, &res);
570
571 qcom_scm_clk_disable();
572
573 return ret ? : res.result[0];
574 }
575 EXPORT_SYMBOL(qcom_scm_pas_shutdown);
576
577 /**
578 * qcom_scm_pas_supported() - Check if the peripheral authentication service is
579 * available for the given peripherial
580 * @peripheral: peripheral id
581 *
582 * Returns true if PAS is supported for this peripheral, otherwise false.
583 */
qcom_scm_pas_supported(u32 peripheral)584 bool qcom_scm_pas_supported(u32 peripheral)
585 {
586 int ret;
587 struct qcom_scm_desc desc = {
588 .svc = QCOM_SCM_SVC_PIL,
589 .cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
590 .arginfo = QCOM_SCM_ARGS(1),
591 .args[0] = peripheral,
592 .owner = ARM_SMCCC_OWNER_SIP,
593 };
594 struct qcom_scm_res res;
595
596 if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
597 QCOM_SCM_PIL_PAS_IS_SUPPORTED))
598 return false;
599
600 ret = qcom_scm_call(__scm->dev, &desc, &res);
601
602 return ret ? false : !!res.result[0];
603 }
604 EXPORT_SYMBOL(qcom_scm_pas_supported);
605
__qcom_scm_pas_mss_reset(struct device * dev,bool reset)606 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
607 {
608 struct qcom_scm_desc desc = {
609 .svc = QCOM_SCM_SVC_PIL,
610 .cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
611 .arginfo = QCOM_SCM_ARGS(2),
612 .args[0] = reset,
613 .args[1] = 0,
614 .owner = ARM_SMCCC_OWNER_SIP,
615 };
616 struct qcom_scm_res res;
617 int ret;
618
619 ret = qcom_scm_call(__scm->dev, &desc, &res);
620
621 return ret ? : res.result[0];
622 }
623
qcom_scm_pas_reset_assert(struct reset_controller_dev * rcdev,unsigned long idx)624 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
625 unsigned long idx)
626 {
627 if (idx != 0)
628 return -EINVAL;
629
630 return __qcom_scm_pas_mss_reset(__scm->dev, 1);
631 }
632
qcom_scm_pas_reset_deassert(struct reset_controller_dev * rcdev,unsigned long idx)633 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
634 unsigned long idx)
635 {
636 if (idx != 0)
637 return -EINVAL;
638
639 return __qcom_scm_pas_mss_reset(__scm->dev, 0);
640 }
641
642 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
643 .assert = qcom_scm_pas_reset_assert,
644 .deassert = qcom_scm_pas_reset_deassert,
645 };
646
qcom_scm_io_readl(phys_addr_t addr,unsigned int * val)647 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
648 {
649 struct qcom_scm_desc desc = {
650 .svc = QCOM_SCM_SVC_IO,
651 .cmd = QCOM_SCM_IO_READ,
652 .arginfo = QCOM_SCM_ARGS(1),
653 .args[0] = addr,
654 .owner = ARM_SMCCC_OWNER_SIP,
655 };
656 struct qcom_scm_res res;
657 int ret;
658
659
660 ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
661 if (ret >= 0)
662 *val = res.result[0];
663
664 return ret < 0 ? ret : 0;
665 }
666 EXPORT_SYMBOL(qcom_scm_io_readl);
667
qcom_scm_io_writel(phys_addr_t addr,unsigned int val)668 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
669 {
670 struct qcom_scm_desc desc = {
671 .svc = QCOM_SCM_SVC_IO,
672 .cmd = QCOM_SCM_IO_WRITE,
673 .arginfo = QCOM_SCM_ARGS(2),
674 .args[0] = addr,
675 .args[1] = val,
676 .owner = ARM_SMCCC_OWNER_SIP,
677 };
678
679 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
680 }
681 EXPORT_SYMBOL(qcom_scm_io_writel);
682
683 /**
684 * qcom_scm_restore_sec_cfg_available() - Check if secure environment
685 * supports restore security config interface.
686 *
687 * Return true if restore-cfg interface is supported, false if not.
688 */
qcom_scm_restore_sec_cfg_available(void)689 bool qcom_scm_restore_sec_cfg_available(void)
690 {
691 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
692 QCOM_SCM_MP_RESTORE_SEC_CFG);
693 }
694 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
695
qcom_scm_restore_sec_cfg(u32 device_id,u32 spare)696 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
697 {
698 struct qcom_scm_desc desc = {
699 .svc = QCOM_SCM_SVC_MP,
700 .cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
701 .arginfo = QCOM_SCM_ARGS(2),
702 .args[0] = device_id,
703 .args[1] = spare,
704 .owner = ARM_SMCCC_OWNER_SIP,
705 };
706 struct qcom_scm_res res;
707 int ret;
708
709 ret = qcom_scm_call(__scm->dev, &desc, &res);
710
711 return ret ? : res.result[0];
712 }
713 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
714
qcom_scm_iommu_secure_ptbl_size(u32 spare,size_t * size)715 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
716 {
717 struct qcom_scm_desc desc = {
718 .svc = QCOM_SCM_SVC_MP,
719 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
720 .arginfo = QCOM_SCM_ARGS(1),
721 .args[0] = spare,
722 .owner = ARM_SMCCC_OWNER_SIP,
723 };
724 struct qcom_scm_res res;
725 int ret;
726
727 ret = qcom_scm_call(__scm->dev, &desc, &res);
728
729 if (size)
730 *size = res.result[0];
731
732 return ret ? : res.result[1];
733 }
734 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
735
qcom_scm_iommu_secure_ptbl_init(u64 addr,u32 size,u32 spare)736 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
737 {
738 struct qcom_scm_desc desc = {
739 .svc = QCOM_SCM_SVC_MP,
740 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
741 .arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
742 QCOM_SCM_VAL),
743 .args[0] = addr,
744 .args[1] = size,
745 .args[2] = spare,
746 .owner = ARM_SMCCC_OWNER_SIP,
747 };
748 int ret;
749
750 ret = qcom_scm_call(__scm->dev, &desc, NULL);
751
752 /* the pg table has been initialized already, ignore the error */
753 if (ret == -EPERM)
754 ret = 0;
755
756 return ret;
757 }
758 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
759
qcom_scm_iommu_set_cp_pool_size(u32 spare,u32 size)760 int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size)
761 {
762 struct qcom_scm_desc desc = {
763 .svc = QCOM_SCM_SVC_MP,
764 .cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE,
765 .arginfo = QCOM_SCM_ARGS(2),
766 .args[0] = size,
767 .args[1] = spare,
768 .owner = ARM_SMCCC_OWNER_SIP,
769 };
770
771 return qcom_scm_call(__scm->dev, &desc, NULL);
772 }
773 EXPORT_SYMBOL(qcom_scm_iommu_set_cp_pool_size);
774
qcom_scm_mem_protect_video_var(u32 cp_start,u32 cp_size,u32 cp_nonpixel_start,u32 cp_nonpixel_size)775 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
776 u32 cp_nonpixel_start,
777 u32 cp_nonpixel_size)
778 {
779 int ret;
780 struct qcom_scm_desc desc = {
781 .svc = QCOM_SCM_SVC_MP,
782 .cmd = QCOM_SCM_MP_VIDEO_VAR,
783 .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
784 QCOM_SCM_VAL, QCOM_SCM_VAL),
785 .args[0] = cp_start,
786 .args[1] = cp_size,
787 .args[2] = cp_nonpixel_start,
788 .args[3] = cp_nonpixel_size,
789 .owner = ARM_SMCCC_OWNER_SIP,
790 };
791 struct qcom_scm_res res;
792
793 ret = qcom_scm_call(__scm->dev, &desc, &res);
794
795 return ret ? : res.result[0];
796 }
797 EXPORT_SYMBOL(qcom_scm_mem_protect_video_var);
798
__qcom_scm_assign_mem(struct device * dev,phys_addr_t mem_region,size_t mem_sz,phys_addr_t src,size_t src_sz,phys_addr_t dest,size_t dest_sz)799 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
800 size_t mem_sz, phys_addr_t src, size_t src_sz,
801 phys_addr_t dest, size_t dest_sz)
802 {
803 int ret;
804 struct qcom_scm_desc desc = {
805 .svc = QCOM_SCM_SVC_MP,
806 .cmd = QCOM_SCM_MP_ASSIGN,
807 .arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
808 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
809 QCOM_SCM_VAL, QCOM_SCM_VAL),
810 .args[0] = mem_region,
811 .args[1] = mem_sz,
812 .args[2] = src,
813 .args[3] = src_sz,
814 .args[4] = dest,
815 .args[5] = dest_sz,
816 .args[6] = 0,
817 .owner = ARM_SMCCC_OWNER_SIP,
818 };
819 struct qcom_scm_res res;
820
821 ret = qcom_scm_call(dev, &desc, &res);
822
823 return ret ? : res.result[0];
824 }
825
826 /**
827 * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
828 * @mem_addr: mem region whose ownership need to be reassigned
829 * @mem_sz: size of the region.
830 * @srcvm: vmid for current set of owners, each set bit in
831 * flag indicate a unique owner
832 * @newvm: array having new owners and corresponding permission
833 * flags
834 * @dest_cnt: number of owners in next set.
835 *
836 * Return negative errno on failure or 0 on success with @srcvm updated.
837 */
qcom_scm_assign_mem(phys_addr_t mem_addr,size_t mem_sz,unsigned int * srcvm,const struct qcom_scm_vmperm * newvm,unsigned int dest_cnt)838 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
839 unsigned int *srcvm,
840 const struct qcom_scm_vmperm *newvm,
841 unsigned int dest_cnt)
842 {
843 struct qcom_scm_current_perm_info *destvm;
844 struct qcom_scm_mem_map_info *mem_to_map;
845 phys_addr_t mem_to_map_phys;
846 phys_addr_t dest_phys;
847 dma_addr_t ptr_phys;
848 size_t mem_to_map_sz;
849 size_t dest_sz;
850 size_t src_sz;
851 size_t ptr_sz;
852 int next_vm;
853 __le32 *src;
854 void *ptr;
855 int ret, i, b;
856 unsigned long srcvm_bits = *srcvm;
857
858 src_sz = hweight_long(srcvm_bits) * sizeof(*src);
859 mem_to_map_sz = sizeof(*mem_to_map);
860 dest_sz = dest_cnt * sizeof(*destvm);
861 ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
862 ALIGN(dest_sz, SZ_64);
863
864 ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
865 if (!ptr)
866 return -ENOMEM;
867
868 /* Fill source vmid detail */
869 src = ptr;
870 i = 0;
871 for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG)
872 src[i++] = cpu_to_le32(b);
873
874 /* Fill details of mem buff to map */
875 mem_to_map = ptr + ALIGN(src_sz, SZ_64);
876 mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
877 mem_to_map->mem_addr = cpu_to_le64(mem_addr);
878 mem_to_map->mem_size = cpu_to_le64(mem_sz);
879
880 next_vm = 0;
881 /* Fill details of next vmid detail */
882 destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
883 dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
884 for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
885 destvm->vmid = cpu_to_le32(newvm->vmid);
886 destvm->perm = cpu_to_le32(newvm->perm);
887 destvm->ctx = 0;
888 destvm->ctx_size = 0;
889 next_vm |= BIT(newvm->vmid);
890 }
891
892 ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
893 ptr_phys, src_sz, dest_phys, dest_sz);
894 dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
895 if (ret) {
896 dev_err(__scm->dev,
897 "Assign memory protection call failed %d\n", ret);
898 return -EINVAL;
899 }
900
901 *srcvm = next_vm;
902 return 0;
903 }
904 EXPORT_SYMBOL(qcom_scm_assign_mem);
905
906 /**
907 * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
908 */
qcom_scm_ocmem_lock_available(void)909 bool qcom_scm_ocmem_lock_available(void)
910 {
911 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
912 QCOM_SCM_OCMEM_LOCK_CMD);
913 }
914 EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
915
916 /**
917 * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
918 * region to the specified initiator
919 *
920 * @id: tz initiator id
921 * @offset: OCMEM offset
922 * @size: OCMEM size
923 * @mode: access mode (WIDE/NARROW)
924 */
qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id,u32 offset,u32 size,u32 mode)925 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
926 u32 mode)
927 {
928 struct qcom_scm_desc desc = {
929 .svc = QCOM_SCM_SVC_OCMEM,
930 .cmd = QCOM_SCM_OCMEM_LOCK_CMD,
931 .args[0] = id,
932 .args[1] = offset,
933 .args[2] = size,
934 .args[3] = mode,
935 .arginfo = QCOM_SCM_ARGS(4),
936 };
937
938 return qcom_scm_call(__scm->dev, &desc, NULL);
939 }
940 EXPORT_SYMBOL(qcom_scm_ocmem_lock);
941
942 /**
943 * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
944 * region from the specified initiator
945 *
946 * @id: tz initiator id
947 * @offset: OCMEM offset
948 * @size: OCMEM size
949 */
qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id,u32 offset,u32 size)950 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
951 {
952 struct qcom_scm_desc desc = {
953 .svc = QCOM_SCM_SVC_OCMEM,
954 .cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
955 .args[0] = id,
956 .args[1] = offset,
957 .args[2] = size,
958 .arginfo = QCOM_SCM_ARGS(3),
959 };
960
961 return qcom_scm_call(__scm->dev, &desc, NULL);
962 }
963 EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
964
965 /**
966 * qcom_scm_ice_available() - Is the ICE key programming interface available?
967 *
968 * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
969 * qcom_scm_ice_set_key() are available.
970 */
qcom_scm_ice_available(void)971 bool qcom_scm_ice_available(void)
972 {
973 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
974 QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
975 __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
976 QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
977 }
978 EXPORT_SYMBOL(qcom_scm_ice_available);
979
980 /**
981 * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
982 * @index: the keyslot to invalidate
983 *
984 * The UFSHCI and eMMC standards define a standard way to do this, but it
985 * doesn't work on these SoCs; only this SCM call does.
986 *
987 * It is assumed that the SoC has only one ICE instance being used, as this SCM
988 * call doesn't specify which ICE instance the keyslot belongs to.
989 *
990 * Return: 0 on success; -errno on failure.
991 */
qcom_scm_ice_invalidate_key(u32 index)992 int qcom_scm_ice_invalidate_key(u32 index)
993 {
994 struct qcom_scm_desc desc = {
995 .svc = QCOM_SCM_SVC_ES,
996 .cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
997 .arginfo = QCOM_SCM_ARGS(1),
998 .args[0] = index,
999 .owner = ARM_SMCCC_OWNER_SIP,
1000 };
1001
1002 return qcom_scm_call(__scm->dev, &desc, NULL);
1003 }
1004 EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
1005
1006 /**
1007 * qcom_scm_ice_set_key() - Set an inline encryption key
1008 * @index: the keyslot into which to set the key
1009 * @key: the key to program
1010 * @key_size: the size of the key in bytes
1011 * @cipher: the encryption algorithm the key is for
1012 * @data_unit_size: the encryption data unit size, i.e. the size of each
1013 * individual plaintext and ciphertext. Given in 512-byte
1014 * units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1015 *
1016 * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1017 * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1018 *
1019 * The UFSHCI and eMMC standards define a standard way to do this, but it
1020 * doesn't work on these SoCs; only this SCM call does.
1021 *
1022 * It is assumed that the SoC has only one ICE instance being used, as this SCM
1023 * call doesn't specify which ICE instance the keyslot belongs to.
1024 *
1025 * Return: 0 on success; -errno on failure.
1026 */
qcom_scm_ice_set_key(u32 index,const u8 * key,u32 key_size,enum qcom_scm_ice_cipher cipher,u32 data_unit_size)1027 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1028 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1029 {
1030 struct qcom_scm_desc desc = {
1031 .svc = QCOM_SCM_SVC_ES,
1032 .cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1033 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1034 QCOM_SCM_VAL, QCOM_SCM_VAL,
1035 QCOM_SCM_VAL),
1036 .args[0] = index,
1037 .args[2] = key_size,
1038 .args[3] = cipher,
1039 .args[4] = data_unit_size,
1040 .owner = ARM_SMCCC_OWNER_SIP,
1041 };
1042 void *keybuf;
1043 dma_addr_t key_phys;
1044 int ret;
1045
1046 /*
1047 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1048 * physical address that's been properly flushed. The sanctioned way to
1049 * do this is by using the DMA API. But as is best practice for crypto
1050 * keys, we also must wipe the key after use. This makes kmemdup() +
1051 * dma_map_single() not clearly correct, since the DMA API can use
1052 * bounce buffers. Instead, just use dma_alloc_coherent(). Programming
1053 * keys is normally rare and thus not performance-critical.
1054 */
1055
1056 keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1057 GFP_KERNEL);
1058 if (!keybuf)
1059 return -ENOMEM;
1060 memcpy(keybuf, key, key_size);
1061 desc.args[1] = key_phys;
1062
1063 ret = qcom_scm_call(__scm->dev, &desc, NULL);
1064
1065 memzero_explicit(keybuf, key_size);
1066
1067 dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1068 return ret;
1069 }
1070 EXPORT_SYMBOL(qcom_scm_ice_set_key);
1071
1072 /**
1073 * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1074 *
1075 * Return true if HDCP is supported, false if not.
1076 */
qcom_scm_hdcp_available(void)1077 bool qcom_scm_hdcp_available(void)
1078 {
1079 bool avail;
1080 int ret = qcom_scm_clk_enable();
1081
1082 if (ret)
1083 return ret;
1084
1085 avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1086 QCOM_SCM_HDCP_INVOKE);
1087
1088 qcom_scm_clk_disable();
1089
1090 return avail;
1091 }
1092 EXPORT_SYMBOL(qcom_scm_hdcp_available);
1093
1094 /**
1095 * qcom_scm_hdcp_req() - Send HDCP request.
1096 * @req: HDCP request array
1097 * @req_cnt: HDCP request array count
1098 * @resp: response buffer passed to SCM
1099 *
1100 * Write HDCP register(s) through SCM.
1101 */
qcom_scm_hdcp_req(struct qcom_scm_hdcp_req * req,u32 req_cnt,u32 * resp)1102 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1103 {
1104 int ret;
1105 struct qcom_scm_desc desc = {
1106 .svc = QCOM_SCM_SVC_HDCP,
1107 .cmd = QCOM_SCM_HDCP_INVOKE,
1108 .arginfo = QCOM_SCM_ARGS(10),
1109 .args = {
1110 req[0].addr,
1111 req[0].val,
1112 req[1].addr,
1113 req[1].val,
1114 req[2].addr,
1115 req[2].val,
1116 req[3].addr,
1117 req[3].val,
1118 req[4].addr,
1119 req[4].val
1120 },
1121 .owner = ARM_SMCCC_OWNER_SIP,
1122 };
1123 struct qcom_scm_res res;
1124
1125 if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1126 return -ERANGE;
1127
1128 ret = qcom_scm_clk_enable();
1129 if (ret)
1130 return ret;
1131
1132 ret = qcom_scm_call(__scm->dev, &desc, &res);
1133 *resp = res.result[0];
1134
1135 qcom_scm_clk_disable();
1136
1137 return ret;
1138 }
1139 EXPORT_SYMBOL(qcom_scm_hdcp_req);
1140
qcom_scm_iommu_set_pt_format(u32 sec_id,u32 ctx_num,u32 pt_fmt)1141 int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt)
1142 {
1143 struct qcom_scm_desc desc = {
1144 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1145 .cmd = QCOM_SCM_SMMU_PT_FORMAT,
1146 .arginfo = QCOM_SCM_ARGS(3),
1147 .args[0] = sec_id,
1148 .args[1] = ctx_num,
1149 .args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */
1150 .owner = ARM_SMCCC_OWNER_SIP,
1151 };
1152
1153 return qcom_scm_call(__scm->dev, &desc, NULL);
1154 }
1155 EXPORT_SYMBOL(qcom_scm_iommu_set_pt_format);
1156
qcom_scm_qsmmu500_wait_safe_toggle(bool en)1157 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1158 {
1159 struct qcom_scm_desc desc = {
1160 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1161 .cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1162 .arginfo = QCOM_SCM_ARGS(2),
1163 .args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1164 .args[1] = en,
1165 .owner = ARM_SMCCC_OWNER_SIP,
1166 };
1167
1168
1169 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1170 }
1171 EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
1172
qcom_scm_lmh_dcvsh_available(void)1173 bool qcom_scm_lmh_dcvsh_available(void)
1174 {
1175 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1176 }
1177 EXPORT_SYMBOL(qcom_scm_lmh_dcvsh_available);
1178
qcom_scm_lmh_profile_change(u32 profile_id)1179 int qcom_scm_lmh_profile_change(u32 profile_id)
1180 {
1181 struct qcom_scm_desc desc = {
1182 .svc = QCOM_SCM_SVC_LMH,
1183 .cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1184 .arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1185 .args[0] = profile_id,
1186 .owner = ARM_SMCCC_OWNER_SIP,
1187 };
1188
1189 return qcom_scm_call(__scm->dev, &desc, NULL);
1190 }
1191 EXPORT_SYMBOL(qcom_scm_lmh_profile_change);
1192
qcom_scm_lmh_dcvsh(u32 payload_fn,u32 payload_reg,u32 payload_val,u64 limit_node,u32 node_id,u64 version)1193 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1194 u64 limit_node, u32 node_id, u64 version)
1195 {
1196 dma_addr_t payload_phys;
1197 u32 *payload_buf;
1198 int ret, payload_size = 5 * sizeof(u32);
1199
1200 struct qcom_scm_desc desc = {
1201 .svc = QCOM_SCM_SVC_LMH,
1202 .cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1203 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1204 QCOM_SCM_VAL, QCOM_SCM_VAL),
1205 .args[1] = payload_size,
1206 .args[2] = limit_node,
1207 .args[3] = node_id,
1208 .args[4] = version,
1209 .owner = ARM_SMCCC_OWNER_SIP,
1210 };
1211
1212 payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL);
1213 if (!payload_buf)
1214 return -ENOMEM;
1215
1216 payload_buf[0] = payload_fn;
1217 payload_buf[1] = 0;
1218 payload_buf[2] = payload_reg;
1219 payload_buf[3] = 1;
1220 payload_buf[4] = payload_val;
1221
1222 desc.args[0] = payload_phys;
1223
1224 ret = qcom_scm_call(__scm->dev, &desc, NULL);
1225
1226 dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys);
1227 return ret;
1228 }
1229 EXPORT_SYMBOL(qcom_scm_lmh_dcvsh);
1230
qcom_scm_find_dload_address(struct device * dev,u64 * addr)1231 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1232 {
1233 struct device_node *tcsr;
1234 struct device_node *np = dev->of_node;
1235 struct resource res;
1236 u32 offset;
1237 int ret;
1238
1239 tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1240 if (!tcsr)
1241 return 0;
1242
1243 ret = of_address_to_resource(tcsr, 0, &res);
1244 of_node_put(tcsr);
1245 if (ret)
1246 return ret;
1247
1248 ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1249 if (ret < 0)
1250 return ret;
1251
1252 *addr = res.start + offset;
1253
1254 return 0;
1255 }
1256
1257 /**
1258 * qcom_scm_is_available() - Checks if SCM is available
1259 */
qcom_scm_is_available(void)1260 bool qcom_scm_is_available(void)
1261 {
1262 return !!__scm;
1263 }
1264 EXPORT_SYMBOL(qcom_scm_is_available);
1265
qcom_scm_probe(struct platform_device * pdev)1266 static int qcom_scm_probe(struct platform_device *pdev)
1267 {
1268 struct qcom_scm *scm;
1269 unsigned long clks;
1270 int ret;
1271
1272 scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1273 if (!scm)
1274 return -ENOMEM;
1275
1276 ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1277 if (ret < 0)
1278 return ret;
1279
1280 clks = (unsigned long)of_device_get_match_data(&pdev->dev);
1281
1282 scm->core_clk = devm_clk_get(&pdev->dev, "core");
1283 if (IS_ERR(scm->core_clk)) {
1284 if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
1285 return PTR_ERR(scm->core_clk);
1286
1287 if (clks & SCM_HAS_CORE_CLK) {
1288 dev_err(&pdev->dev, "failed to acquire core clk\n");
1289 return PTR_ERR(scm->core_clk);
1290 }
1291
1292 scm->core_clk = NULL;
1293 }
1294
1295 scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
1296 if (IS_ERR(scm->iface_clk)) {
1297 if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
1298 return PTR_ERR(scm->iface_clk);
1299
1300 if (clks & SCM_HAS_IFACE_CLK) {
1301 dev_err(&pdev->dev, "failed to acquire iface clk\n");
1302 return PTR_ERR(scm->iface_clk);
1303 }
1304
1305 scm->iface_clk = NULL;
1306 }
1307
1308 scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
1309 if (IS_ERR(scm->bus_clk)) {
1310 if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
1311 return PTR_ERR(scm->bus_clk);
1312
1313 if (clks & SCM_HAS_BUS_CLK) {
1314 dev_err(&pdev->dev, "failed to acquire bus clk\n");
1315 return PTR_ERR(scm->bus_clk);
1316 }
1317
1318 scm->bus_clk = NULL;
1319 }
1320
1321 scm->reset.ops = &qcom_scm_pas_reset_ops;
1322 scm->reset.nr_resets = 1;
1323 scm->reset.of_node = pdev->dev.of_node;
1324 ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1325 if (ret)
1326 return ret;
1327
1328 /* vote for max clk rate for highest performance */
1329 ret = clk_set_rate(scm->core_clk, INT_MAX);
1330 if (ret)
1331 return ret;
1332
1333 __scm = scm;
1334 __scm->dev = &pdev->dev;
1335
1336 __get_convention();
1337
1338 /*
1339 * If requested enable "download mode", from this point on warmboot
1340 * will cause the the boot stages to enter download mode, unless
1341 * disabled below by a clean shutdown/reboot.
1342 */
1343 if (download_mode)
1344 qcom_scm_set_download_mode(true);
1345
1346 return 0;
1347 }
1348
qcom_scm_shutdown(struct platform_device * pdev)1349 static void qcom_scm_shutdown(struct platform_device *pdev)
1350 {
1351 /* Clean shutdown, disable download mode to allow normal restart */
1352 if (download_mode)
1353 qcom_scm_set_download_mode(false);
1354 }
1355
1356 static const struct of_device_id qcom_scm_dt_match[] = {
1357 { .compatible = "qcom,scm-apq8064",
1358 /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
1359 },
1360 { .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
1361 SCM_HAS_IFACE_CLK |
1362 SCM_HAS_BUS_CLK)
1363 },
1364 { .compatible = "qcom,scm-ipq4019" },
1365 { .compatible = "qcom,scm-mdm9607", .data = (void *)(SCM_HAS_CORE_CLK |
1366 SCM_HAS_IFACE_CLK |
1367 SCM_HAS_BUS_CLK) },
1368 { .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
1369 { .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
1370 { .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
1371 SCM_HAS_IFACE_CLK |
1372 SCM_HAS_BUS_CLK)
1373 },
1374 { .compatible = "qcom,scm-msm8953", .data = (void *)(SCM_HAS_CORE_CLK |
1375 SCM_HAS_IFACE_CLK |
1376 SCM_HAS_BUS_CLK)
1377 },
1378 { .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
1379 SCM_HAS_IFACE_CLK |
1380 SCM_HAS_BUS_CLK)
1381 },
1382 { .compatible = "qcom,scm-msm8976", .data = (void *)(SCM_HAS_CORE_CLK |
1383 SCM_HAS_IFACE_CLK |
1384 SCM_HAS_BUS_CLK)
1385 },
1386 { .compatible = "qcom,scm-msm8994" },
1387 { .compatible = "qcom,scm-msm8996" },
1388 { .compatible = "qcom,scm" },
1389 {}
1390 };
1391 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
1392
1393 static struct platform_driver qcom_scm_driver = {
1394 .driver = {
1395 .name = "qcom_scm",
1396 .of_match_table = qcom_scm_dt_match,
1397 .suppress_bind_attrs = true,
1398 },
1399 .probe = qcom_scm_probe,
1400 .shutdown = qcom_scm_shutdown,
1401 };
1402
qcom_scm_init(void)1403 static int __init qcom_scm_init(void)
1404 {
1405 return platform_driver_register(&qcom_scm_driver);
1406 }
1407 subsys_initcall(qcom_scm_init);
1408
1409 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
1410 MODULE_LICENSE("GPL v2");
1411