1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3 * Copyright (C) 2015 Linaro Ltd.
4 */
5 #include <linux/platform_device.h>
6 #include <linux/init.h>
7 #include <linux/interrupt.h>
8 #include <linux/completion.h>
9 #include <linux/cpumask.h>
10 #include <linux/export.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/firmware/qcom/qcom_scm.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_platform.h>
20 #include <linux/clk.h>
21 #include <linux/reset-controller.h>
22 #include <linux/arm-smccc.h>
23
24 #include "qcom_scm.h"
25
26 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
27 module_param(download_mode, bool, 0);
28
29 struct qcom_scm {
30 struct device *dev;
31 struct clk *core_clk;
32 struct clk *iface_clk;
33 struct clk *bus_clk;
34 struct icc_path *path;
35 struct completion waitq_comp;
36 struct reset_controller_dev reset;
37
38 /* control access to the interconnect path */
39 struct mutex scm_bw_lock;
40 int scm_vote_count;
41
42 u64 dload_mode_addr;
43 };
44
45 struct qcom_scm_current_perm_info {
46 __le32 vmid;
47 __le32 perm;
48 __le64 ctx;
49 __le32 ctx_size;
50 __le32 unused;
51 };
52
53 struct qcom_scm_mem_map_info {
54 __le64 mem_addr;
55 __le64 mem_size;
56 };
57
58 /* Each bit configures cold/warm boot address for one of the 4 CPUs */
59 static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
60 0, BIT(0), BIT(3), BIT(5)
61 };
62 static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
63 BIT(2), BIT(1), BIT(4), BIT(6)
64 };
65
66 #define QCOM_SMC_WAITQ_FLAG_WAKE_ONE BIT(0)
67 #define QCOM_SMC_WAITQ_FLAG_WAKE_ALL BIT(1)
68
69 static const char * const qcom_scm_convention_names[] = {
70 [SMC_CONVENTION_UNKNOWN] = "unknown",
71 [SMC_CONVENTION_ARM_32] = "smc arm 32",
72 [SMC_CONVENTION_ARM_64] = "smc arm 64",
73 [SMC_CONVENTION_LEGACY] = "smc legacy",
74 };
75
76 static struct qcom_scm *__scm;
77
qcom_scm_clk_enable(void)78 static int qcom_scm_clk_enable(void)
79 {
80 int ret;
81
82 ret = clk_prepare_enable(__scm->core_clk);
83 if (ret)
84 goto bail;
85
86 ret = clk_prepare_enable(__scm->iface_clk);
87 if (ret)
88 goto disable_core;
89
90 ret = clk_prepare_enable(__scm->bus_clk);
91 if (ret)
92 goto disable_iface;
93
94 return 0;
95
96 disable_iface:
97 clk_disable_unprepare(__scm->iface_clk);
98 disable_core:
99 clk_disable_unprepare(__scm->core_clk);
100 bail:
101 return ret;
102 }
103
qcom_scm_clk_disable(void)104 static void qcom_scm_clk_disable(void)
105 {
106 clk_disable_unprepare(__scm->core_clk);
107 clk_disable_unprepare(__scm->iface_clk);
108 clk_disable_unprepare(__scm->bus_clk);
109 }
110
qcom_scm_bw_enable(void)111 static int qcom_scm_bw_enable(void)
112 {
113 int ret = 0;
114
115 if (!__scm->path)
116 return 0;
117
118 if (IS_ERR(__scm->path))
119 return -EINVAL;
120
121 mutex_lock(&__scm->scm_bw_lock);
122 if (!__scm->scm_vote_count) {
123 ret = icc_set_bw(__scm->path, 0, UINT_MAX);
124 if (ret < 0) {
125 dev_err(__scm->dev, "failed to set bandwidth request\n");
126 goto err_bw;
127 }
128 }
129 __scm->scm_vote_count++;
130 err_bw:
131 mutex_unlock(&__scm->scm_bw_lock);
132
133 return ret;
134 }
135
qcom_scm_bw_disable(void)136 static void qcom_scm_bw_disable(void)
137 {
138 if (IS_ERR_OR_NULL(__scm->path))
139 return;
140
141 mutex_lock(&__scm->scm_bw_lock);
142 if (__scm->scm_vote_count-- == 1)
143 icc_set_bw(__scm->path, 0, 0);
144 mutex_unlock(&__scm->scm_bw_lock);
145 }
146
147 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
148 static DEFINE_SPINLOCK(scm_query_lock);
149
__get_convention(void)150 static enum qcom_scm_convention __get_convention(void)
151 {
152 unsigned long flags;
153 struct qcom_scm_desc desc = {
154 .svc = QCOM_SCM_SVC_INFO,
155 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
156 .args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
157 QCOM_SCM_INFO_IS_CALL_AVAIL) |
158 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
159 .arginfo = QCOM_SCM_ARGS(1),
160 .owner = ARM_SMCCC_OWNER_SIP,
161 };
162 struct qcom_scm_res res;
163 enum qcom_scm_convention probed_convention;
164 int ret;
165 bool forced = false;
166
167 if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
168 return qcom_scm_convention;
169
170 /*
171 * Per the "SMC calling convention specification", the 64-bit calling
172 * convention can only be used when the client is 64-bit, otherwise
173 * system will encounter the undefined behaviour.
174 */
175 #if IS_ENABLED(CONFIG_ARM64)
176 /*
177 * Device isn't required as there is only one argument - no device
178 * needed to dma_map_single to secure world
179 */
180 probed_convention = SMC_CONVENTION_ARM_64;
181 ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
182 if (!ret && res.result[0] == 1)
183 goto found;
184
185 /*
186 * Some SC7180 firmwares didn't implement the
187 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
188 * calling conventions on these firmwares. Luckily we don't make any
189 * early calls into the firmware on these SoCs so the device pointer
190 * will be valid here to check if the compatible matches.
191 */
192 if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
193 forced = true;
194 goto found;
195 }
196 #endif
197
198 probed_convention = SMC_CONVENTION_ARM_32;
199 ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
200 if (!ret && res.result[0] == 1)
201 goto found;
202
203 probed_convention = SMC_CONVENTION_LEGACY;
204 found:
205 spin_lock_irqsave(&scm_query_lock, flags);
206 if (probed_convention != qcom_scm_convention) {
207 qcom_scm_convention = probed_convention;
208 pr_info("qcom_scm: convention: %s%s\n",
209 qcom_scm_convention_names[qcom_scm_convention],
210 forced ? " (forced)" : "");
211 }
212 spin_unlock_irqrestore(&scm_query_lock, flags);
213
214 return qcom_scm_convention;
215 }
216
217 /**
218 * qcom_scm_call() - Invoke a syscall in the secure world
219 * @dev: device
220 * @desc: Descriptor structure containing arguments and return values
221 * @res: Structure containing results from SMC/HVC call
222 *
223 * Sends a command to the SCM and waits for the command to finish processing.
224 * This should *only* be called in pre-emptible context.
225 */
qcom_scm_call(struct device * dev,const struct qcom_scm_desc * desc,struct qcom_scm_res * res)226 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
227 struct qcom_scm_res *res)
228 {
229 might_sleep();
230 switch (__get_convention()) {
231 case SMC_CONVENTION_ARM_32:
232 case SMC_CONVENTION_ARM_64:
233 return scm_smc_call(dev, desc, res, false);
234 case SMC_CONVENTION_LEGACY:
235 return scm_legacy_call(dev, desc, res);
236 default:
237 pr_err("Unknown current SCM calling convention.\n");
238 return -EINVAL;
239 }
240 }
241
242 /**
243 * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
244 * @dev: device
245 * @desc: Descriptor structure containing arguments and return values
246 * @res: Structure containing results from SMC/HVC call
247 *
248 * Sends a command to the SCM and waits for the command to finish processing.
249 * This can be called in atomic context.
250 */
qcom_scm_call_atomic(struct device * dev,const struct qcom_scm_desc * desc,struct qcom_scm_res * res)251 static int qcom_scm_call_atomic(struct device *dev,
252 const struct qcom_scm_desc *desc,
253 struct qcom_scm_res *res)
254 {
255 switch (__get_convention()) {
256 case SMC_CONVENTION_ARM_32:
257 case SMC_CONVENTION_ARM_64:
258 return scm_smc_call(dev, desc, res, true);
259 case SMC_CONVENTION_LEGACY:
260 return scm_legacy_call_atomic(dev, desc, res);
261 default:
262 pr_err("Unknown current SCM calling convention.\n");
263 return -EINVAL;
264 }
265 }
266
__qcom_scm_is_call_available(struct device * dev,u32 svc_id,u32 cmd_id)267 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
268 u32 cmd_id)
269 {
270 int ret;
271 struct qcom_scm_desc desc = {
272 .svc = QCOM_SCM_SVC_INFO,
273 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
274 .owner = ARM_SMCCC_OWNER_SIP,
275 };
276 struct qcom_scm_res res;
277
278 desc.arginfo = QCOM_SCM_ARGS(1);
279 switch (__get_convention()) {
280 case SMC_CONVENTION_ARM_32:
281 case SMC_CONVENTION_ARM_64:
282 desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
283 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
284 break;
285 case SMC_CONVENTION_LEGACY:
286 desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
287 break;
288 default:
289 pr_err("Unknown SMC convention being used\n");
290 return false;
291 }
292
293 ret = qcom_scm_call(dev, &desc, &res);
294
295 return ret ? false : !!res.result[0];
296 }
297
qcom_scm_set_boot_addr(void * entry,const u8 * cpu_bits)298 static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits)
299 {
300 int cpu;
301 unsigned int flags = 0;
302 struct qcom_scm_desc desc = {
303 .svc = QCOM_SCM_SVC_BOOT,
304 .cmd = QCOM_SCM_BOOT_SET_ADDR,
305 .arginfo = QCOM_SCM_ARGS(2),
306 .owner = ARM_SMCCC_OWNER_SIP,
307 };
308
309 for_each_present_cpu(cpu) {
310 if (cpu >= QCOM_SCM_BOOT_MAX_CPUS)
311 return -EINVAL;
312 flags |= cpu_bits[cpu];
313 }
314
315 desc.args[0] = flags;
316 desc.args[1] = virt_to_phys(entry);
317
318 return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
319 }
320
qcom_scm_set_boot_addr_mc(void * entry,unsigned int flags)321 static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags)
322 {
323 struct qcom_scm_desc desc = {
324 .svc = QCOM_SCM_SVC_BOOT,
325 .cmd = QCOM_SCM_BOOT_SET_ADDR_MC,
326 .owner = ARM_SMCCC_OWNER_SIP,
327 .arginfo = QCOM_SCM_ARGS(6),
328 .args = {
329 virt_to_phys(entry),
330 /* Apply to all CPUs in all affinity levels */
331 ~0ULL, ~0ULL, ~0ULL, ~0ULL,
332 flags,
333 },
334 };
335
336 /* Need a device for DMA of the additional arguments */
337 if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY)
338 return -EOPNOTSUPP;
339
340 return qcom_scm_call(__scm->dev, &desc, NULL);
341 }
342
343 /**
344 * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus
345 * @entry: Entry point function for the cpus
346 *
347 * Set the Linux entry point for the SCM to transfer control to when coming
348 * out of a power down. CPU power down may be executed on cpuidle or hotplug.
349 */
qcom_scm_set_warm_boot_addr(void * entry)350 int qcom_scm_set_warm_boot_addr(void *entry)
351 {
352 if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT))
353 /* Fallback to old SCM call */
354 return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits);
355 return 0;
356 }
357 EXPORT_SYMBOL_GPL(qcom_scm_set_warm_boot_addr);
358
359 /**
360 * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus
361 * @entry: Entry point function for the cpus
362 */
qcom_scm_set_cold_boot_addr(void * entry)363 int qcom_scm_set_cold_boot_addr(void *entry)
364 {
365 if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT))
366 /* Fallback to old SCM call */
367 return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits);
368 return 0;
369 }
370 EXPORT_SYMBOL_GPL(qcom_scm_set_cold_boot_addr);
371
372 /**
373 * qcom_scm_cpu_power_down() - Power down the cpu
374 * @flags: Flags to flush cache
375 *
376 * This is an end point to power down cpu. If there was a pending interrupt,
377 * the control would return from this function, otherwise, the cpu jumps to the
378 * warm boot entry point set for this cpu upon reset.
379 */
qcom_scm_cpu_power_down(u32 flags)380 void qcom_scm_cpu_power_down(u32 flags)
381 {
382 struct qcom_scm_desc desc = {
383 .svc = QCOM_SCM_SVC_BOOT,
384 .cmd = QCOM_SCM_BOOT_TERMINATE_PC,
385 .args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
386 .arginfo = QCOM_SCM_ARGS(1),
387 .owner = ARM_SMCCC_OWNER_SIP,
388 };
389
390 qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
391 }
392 EXPORT_SYMBOL_GPL(qcom_scm_cpu_power_down);
393
qcom_scm_set_remote_state(u32 state,u32 id)394 int qcom_scm_set_remote_state(u32 state, u32 id)
395 {
396 struct qcom_scm_desc desc = {
397 .svc = QCOM_SCM_SVC_BOOT,
398 .cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
399 .arginfo = QCOM_SCM_ARGS(2),
400 .args[0] = state,
401 .args[1] = id,
402 .owner = ARM_SMCCC_OWNER_SIP,
403 };
404 struct qcom_scm_res res;
405 int ret;
406
407 ret = qcom_scm_call(__scm->dev, &desc, &res);
408
409 return ret ? : res.result[0];
410 }
411 EXPORT_SYMBOL_GPL(qcom_scm_set_remote_state);
412
__qcom_scm_set_dload_mode(struct device * dev,bool enable)413 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
414 {
415 struct qcom_scm_desc desc = {
416 .svc = QCOM_SCM_SVC_BOOT,
417 .cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
418 .arginfo = QCOM_SCM_ARGS(2),
419 .args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
420 .owner = ARM_SMCCC_OWNER_SIP,
421 };
422
423 desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
424
425 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
426 }
427
qcom_scm_set_download_mode(bool enable)428 static void qcom_scm_set_download_mode(bool enable)
429 {
430 bool avail;
431 int ret = 0;
432
433 avail = __qcom_scm_is_call_available(__scm->dev,
434 QCOM_SCM_SVC_BOOT,
435 QCOM_SCM_BOOT_SET_DLOAD_MODE);
436 if (avail) {
437 ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
438 } else if (__scm->dload_mode_addr) {
439 ret = qcom_scm_io_writel(__scm->dload_mode_addr,
440 enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
441 } else {
442 dev_err(__scm->dev,
443 "No available mechanism for setting download mode\n");
444 }
445
446 if (ret)
447 dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
448 }
449
450 /**
451 * qcom_scm_pas_init_image() - Initialize peripheral authentication service
452 * state machine for a given peripheral, using the
453 * metadata
454 * @peripheral: peripheral id
455 * @metadata: pointer to memory containing ELF header, program header table
456 * and optional blob of data used for authenticating the metadata
457 * and the rest of the firmware
458 * @size: size of the metadata
459 * @ctx: optional metadata context
460 *
461 * Return: 0 on success.
462 *
463 * Upon successful return, the PAS metadata context (@ctx) will be used to
464 * track the metadata allocation, this needs to be released by invoking
465 * qcom_scm_pas_metadata_release() by the caller.
466 */
qcom_scm_pas_init_image(u32 peripheral,const void * metadata,size_t size,struct qcom_scm_pas_metadata * ctx)467 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size,
468 struct qcom_scm_pas_metadata *ctx)
469 {
470 dma_addr_t mdata_phys;
471 void *mdata_buf;
472 int ret;
473 struct qcom_scm_desc desc = {
474 .svc = QCOM_SCM_SVC_PIL,
475 .cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
476 .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
477 .args[0] = peripheral,
478 .owner = ARM_SMCCC_OWNER_SIP,
479 };
480 struct qcom_scm_res res;
481
482 /*
483 * During the scm call memory protection will be enabled for the meta
484 * data blob, so make sure it's physically contiguous, 4K aligned and
485 * non-cachable to avoid XPU violations.
486 */
487 mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
488 GFP_KERNEL);
489 if (!mdata_buf) {
490 dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
491 return -ENOMEM;
492 }
493 memcpy(mdata_buf, metadata, size);
494
495 ret = qcom_scm_clk_enable();
496 if (ret)
497 goto out;
498
499 ret = qcom_scm_bw_enable();
500 if (ret)
501 return ret;
502
503 desc.args[1] = mdata_phys;
504
505 ret = qcom_scm_call(__scm->dev, &desc, &res);
506
507 qcom_scm_bw_disable();
508 qcom_scm_clk_disable();
509
510 out:
511 if (ret < 0 || !ctx) {
512 dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
513 } else if (ctx) {
514 ctx->ptr = mdata_buf;
515 ctx->phys = mdata_phys;
516 ctx->size = size;
517 }
518
519 return ret ? : res.result[0];
520 }
521 EXPORT_SYMBOL_GPL(qcom_scm_pas_init_image);
522
523 /**
524 * qcom_scm_pas_metadata_release() - release metadata context
525 * @ctx: metadata context
526 */
qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata * ctx)527 void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx)
528 {
529 if (!ctx->ptr)
530 return;
531
532 dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys);
533
534 ctx->ptr = NULL;
535 ctx->phys = 0;
536 ctx->size = 0;
537 }
538 EXPORT_SYMBOL_GPL(qcom_scm_pas_metadata_release);
539
540 /**
541 * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
542 * for firmware loading
543 * @peripheral: peripheral id
544 * @addr: start address of memory area to prepare
545 * @size: size of the memory area to prepare
546 *
547 * Returns 0 on success.
548 */
qcom_scm_pas_mem_setup(u32 peripheral,phys_addr_t addr,phys_addr_t size)549 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
550 {
551 int ret;
552 struct qcom_scm_desc desc = {
553 .svc = QCOM_SCM_SVC_PIL,
554 .cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
555 .arginfo = QCOM_SCM_ARGS(3),
556 .args[0] = peripheral,
557 .args[1] = addr,
558 .args[2] = size,
559 .owner = ARM_SMCCC_OWNER_SIP,
560 };
561 struct qcom_scm_res res;
562
563 ret = qcom_scm_clk_enable();
564 if (ret)
565 return ret;
566
567 ret = qcom_scm_bw_enable();
568 if (ret)
569 return ret;
570
571 ret = qcom_scm_call(__scm->dev, &desc, &res);
572 qcom_scm_bw_disable();
573 qcom_scm_clk_disable();
574
575 return ret ? : res.result[0];
576 }
577 EXPORT_SYMBOL_GPL(qcom_scm_pas_mem_setup);
578
579 /**
580 * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
581 * and reset the remote processor
582 * @peripheral: peripheral id
583 *
584 * Return 0 on success.
585 */
qcom_scm_pas_auth_and_reset(u32 peripheral)586 int qcom_scm_pas_auth_and_reset(u32 peripheral)
587 {
588 int ret;
589 struct qcom_scm_desc desc = {
590 .svc = QCOM_SCM_SVC_PIL,
591 .cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
592 .arginfo = QCOM_SCM_ARGS(1),
593 .args[0] = peripheral,
594 .owner = ARM_SMCCC_OWNER_SIP,
595 };
596 struct qcom_scm_res res;
597
598 ret = qcom_scm_clk_enable();
599 if (ret)
600 return ret;
601
602 ret = qcom_scm_bw_enable();
603 if (ret)
604 return ret;
605
606 ret = qcom_scm_call(__scm->dev, &desc, &res);
607 qcom_scm_bw_disable();
608 qcom_scm_clk_disable();
609
610 return ret ? : res.result[0];
611 }
612 EXPORT_SYMBOL_GPL(qcom_scm_pas_auth_and_reset);
613
614 /**
615 * qcom_scm_pas_shutdown() - Shut down the remote processor
616 * @peripheral: peripheral id
617 *
618 * Returns 0 on success.
619 */
qcom_scm_pas_shutdown(u32 peripheral)620 int qcom_scm_pas_shutdown(u32 peripheral)
621 {
622 int ret;
623 struct qcom_scm_desc desc = {
624 .svc = QCOM_SCM_SVC_PIL,
625 .cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
626 .arginfo = QCOM_SCM_ARGS(1),
627 .args[0] = peripheral,
628 .owner = ARM_SMCCC_OWNER_SIP,
629 };
630 struct qcom_scm_res res;
631
632 ret = qcom_scm_clk_enable();
633 if (ret)
634 return ret;
635
636 ret = qcom_scm_bw_enable();
637 if (ret)
638 return ret;
639
640 ret = qcom_scm_call(__scm->dev, &desc, &res);
641
642 qcom_scm_bw_disable();
643 qcom_scm_clk_disable();
644
645 return ret ? : res.result[0];
646 }
647 EXPORT_SYMBOL_GPL(qcom_scm_pas_shutdown);
648
649 /**
650 * qcom_scm_pas_supported() - Check if the peripheral authentication service is
651 * available for the given peripherial
652 * @peripheral: peripheral id
653 *
654 * Returns true if PAS is supported for this peripheral, otherwise false.
655 */
qcom_scm_pas_supported(u32 peripheral)656 bool qcom_scm_pas_supported(u32 peripheral)
657 {
658 int ret;
659 struct qcom_scm_desc desc = {
660 .svc = QCOM_SCM_SVC_PIL,
661 .cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
662 .arginfo = QCOM_SCM_ARGS(1),
663 .args[0] = peripheral,
664 .owner = ARM_SMCCC_OWNER_SIP,
665 };
666 struct qcom_scm_res res;
667
668 if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
669 QCOM_SCM_PIL_PAS_IS_SUPPORTED))
670 return false;
671
672 ret = qcom_scm_call(__scm->dev, &desc, &res);
673
674 return ret ? false : !!res.result[0];
675 }
676 EXPORT_SYMBOL_GPL(qcom_scm_pas_supported);
677
__qcom_scm_pas_mss_reset(struct device * dev,bool reset)678 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
679 {
680 struct qcom_scm_desc desc = {
681 .svc = QCOM_SCM_SVC_PIL,
682 .cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
683 .arginfo = QCOM_SCM_ARGS(2),
684 .args[0] = reset,
685 .args[1] = 0,
686 .owner = ARM_SMCCC_OWNER_SIP,
687 };
688 struct qcom_scm_res res;
689 int ret;
690
691 ret = qcom_scm_call(__scm->dev, &desc, &res);
692
693 return ret ? : res.result[0];
694 }
695
qcom_scm_pas_reset_assert(struct reset_controller_dev * rcdev,unsigned long idx)696 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
697 unsigned long idx)
698 {
699 if (idx != 0)
700 return -EINVAL;
701
702 return __qcom_scm_pas_mss_reset(__scm->dev, 1);
703 }
704
qcom_scm_pas_reset_deassert(struct reset_controller_dev * rcdev,unsigned long idx)705 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
706 unsigned long idx)
707 {
708 if (idx != 0)
709 return -EINVAL;
710
711 return __qcom_scm_pas_mss_reset(__scm->dev, 0);
712 }
713
714 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
715 .assert = qcom_scm_pas_reset_assert,
716 .deassert = qcom_scm_pas_reset_deassert,
717 };
718
qcom_scm_io_readl(phys_addr_t addr,unsigned int * val)719 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
720 {
721 struct qcom_scm_desc desc = {
722 .svc = QCOM_SCM_SVC_IO,
723 .cmd = QCOM_SCM_IO_READ,
724 .arginfo = QCOM_SCM_ARGS(1),
725 .args[0] = addr,
726 .owner = ARM_SMCCC_OWNER_SIP,
727 };
728 struct qcom_scm_res res;
729 int ret;
730
731
732 ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
733 if (ret >= 0)
734 *val = res.result[0];
735
736 return ret < 0 ? ret : 0;
737 }
738 EXPORT_SYMBOL_GPL(qcom_scm_io_readl);
739
qcom_scm_io_writel(phys_addr_t addr,unsigned int val)740 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
741 {
742 struct qcom_scm_desc desc = {
743 .svc = QCOM_SCM_SVC_IO,
744 .cmd = QCOM_SCM_IO_WRITE,
745 .arginfo = QCOM_SCM_ARGS(2),
746 .args[0] = addr,
747 .args[1] = val,
748 .owner = ARM_SMCCC_OWNER_SIP,
749 };
750
751 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
752 }
753 EXPORT_SYMBOL_GPL(qcom_scm_io_writel);
754
755 /**
756 * qcom_scm_restore_sec_cfg_available() - Check if secure environment
757 * supports restore security config interface.
758 *
759 * Return true if restore-cfg interface is supported, false if not.
760 */
qcom_scm_restore_sec_cfg_available(void)761 bool qcom_scm_restore_sec_cfg_available(void)
762 {
763 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
764 QCOM_SCM_MP_RESTORE_SEC_CFG);
765 }
766 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg_available);
767
qcom_scm_restore_sec_cfg(u32 device_id,u32 spare)768 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
769 {
770 struct qcom_scm_desc desc = {
771 .svc = QCOM_SCM_SVC_MP,
772 .cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
773 .arginfo = QCOM_SCM_ARGS(2),
774 .args[0] = device_id,
775 .args[1] = spare,
776 .owner = ARM_SMCCC_OWNER_SIP,
777 };
778 struct qcom_scm_res res;
779 int ret;
780
781 ret = qcom_scm_call(__scm->dev, &desc, &res);
782
783 return ret ? : res.result[0];
784 }
785 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg);
786
qcom_scm_iommu_secure_ptbl_size(u32 spare,size_t * size)787 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
788 {
789 struct qcom_scm_desc desc = {
790 .svc = QCOM_SCM_SVC_MP,
791 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
792 .arginfo = QCOM_SCM_ARGS(1),
793 .args[0] = spare,
794 .owner = ARM_SMCCC_OWNER_SIP,
795 };
796 struct qcom_scm_res res;
797 int ret;
798
799 ret = qcom_scm_call(__scm->dev, &desc, &res);
800
801 if (size)
802 *size = res.result[0];
803
804 return ret ? : res.result[1];
805 }
806 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_size);
807
qcom_scm_iommu_secure_ptbl_init(u64 addr,u32 size,u32 spare)808 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
809 {
810 struct qcom_scm_desc desc = {
811 .svc = QCOM_SCM_SVC_MP,
812 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
813 .arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
814 QCOM_SCM_VAL),
815 .args[0] = addr,
816 .args[1] = size,
817 .args[2] = spare,
818 .owner = ARM_SMCCC_OWNER_SIP,
819 };
820 int ret;
821
822 ret = qcom_scm_call(__scm->dev, &desc, NULL);
823
824 /* the pg table has been initialized already, ignore the error */
825 if (ret == -EPERM)
826 ret = 0;
827
828 return ret;
829 }
830 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_init);
831
qcom_scm_iommu_set_cp_pool_size(u32 spare,u32 size)832 int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size)
833 {
834 struct qcom_scm_desc desc = {
835 .svc = QCOM_SCM_SVC_MP,
836 .cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE,
837 .arginfo = QCOM_SCM_ARGS(2),
838 .args[0] = size,
839 .args[1] = spare,
840 .owner = ARM_SMCCC_OWNER_SIP,
841 };
842
843 return qcom_scm_call(__scm->dev, &desc, NULL);
844 }
845 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_cp_pool_size);
846
qcom_scm_mem_protect_video_var(u32 cp_start,u32 cp_size,u32 cp_nonpixel_start,u32 cp_nonpixel_size)847 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
848 u32 cp_nonpixel_start,
849 u32 cp_nonpixel_size)
850 {
851 int ret;
852 struct qcom_scm_desc desc = {
853 .svc = QCOM_SCM_SVC_MP,
854 .cmd = QCOM_SCM_MP_VIDEO_VAR,
855 .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
856 QCOM_SCM_VAL, QCOM_SCM_VAL),
857 .args[0] = cp_start,
858 .args[1] = cp_size,
859 .args[2] = cp_nonpixel_start,
860 .args[3] = cp_nonpixel_size,
861 .owner = ARM_SMCCC_OWNER_SIP,
862 };
863 struct qcom_scm_res res;
864
865 ret = qcom_scm_call(__scm->dev, &desc, &res);
866
867 return ret ? : res.result[0];
868 }
869 EXPORT_SYMBOL_GPL(qcom_scm_mem_protect_video_var);
870
__qcom_scm_assign_mem(struct device * dev,phys_addr_t mem_region,size_t mem_sz,phys_addr_t src,size_t src_sz,phys_addr_t dest,size_t dest_sz)871 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
872 size_t mem_sz, phys_addr_t src, size_t src_sz,
873 phys_addr_t dest, size_t dest_sz)
874 {
875 int ret;
876 struct qcom_scm_desc desc = {
877 .svc = QCOM_SCM_SVC_MP,
878 .cmd = QCOM_SCM_MP_ASSIGN,
879 .arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
880 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
881 QCOM_SCM_VAL, QCOM_SCM_VAL),
882 .args[0] = mem_region,
883 .args[1] = mem_sz,
884 .args[2] = src,
885 .args[3] = src_sz,
886 .args[4] = dest,
887 .args[5] = dest_sz,
888 .args[6] = 0,
889 .owner = ARM_SMCCC_OWNER_SIP,
890 };
891 struct qcom_scm_res res;
892
893 ret = qcom_scm_call(dev, &desc, &res);
894
895 return ret ? : res.result[0];
896 }
897
898 /**
899 * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
900 * @mem_addr: mem region whose ownership need to be reassigned
901 * @mem_sz: size of the region.
902 * @srcvm: vmid for current set of owners, each set bit in
903 * flag indicate a unique owner
904 * @newvm: array having new owners and corresponding permission
905 * flags
906 * @dest_cnt: number of owners in next set.
907 *
908 * Return negative errno on failure or 0 on success with @srcvm updated.
909 */
qcom_scm_assign_mem(phys_addr_t mem_addr,size_t mem_sz,u64 * srcvm,const struct qcom_scm_vmperm * newvm,unsigned int dest_cnt)910 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
911 u64 *srcvm,
912 const struct qcom_scm_vmperm *newvm,
913 unsigned int dest_cnt)
914 {
915 struct qcom_scm_current_perm_info *destvm;
916 struct qcom_scm_mem_map_info *mem_to_map;
917 phys_addr_t mem_to_map_phys;
918 phys_addr_t dest_phys;
919 dma_addr_t ptr_phys;
920 size_t mem_to_map_sz;
921 size_t dest_sz;
922 size_t src_sz;
923 size_t ptr_sz;
924 int next_vm;
925 __le32 *src;
926 void *ptr;
927 int ret, i, b;
928 u64 srcvm_bits = *srcvm;
929
930 src_sz = hweight64(srcvm_bits) * sizeof(*src);
931 mem_to_map_sz = sizeof(*mem_to_map);
932 dest_sz = dest_cnt * sizeof(*destvm);
933 ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
934 ALIGN(dest_sz, SZ_64);
935
936 ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
937 if (!ptr)
938 return -ENOMEM;
939
940 /* Fill source vmid detail */
941 src = ptr;
942 i = 0;
943 for (b = 0; b < BITS_PER_TYPE(u64); b++) {
944 if (srcvm_bits & BIT(b))
945 src[i++] = cpu_to_le32(b);
946 }
947
948 /* Fill details of mem buff to map */
949 mem_to_map = ptr + ALIGN(src_sz, SZ_64);
950 mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
951 mem_to_map->mem_addr = cpu_to_le64(mem_addr);
952 mem_to_map->mem_size = cpu_to_le64(mem_sz);
953
954 next_vm = 0;
955 /* Fill details of next vmid detail */
956 destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
957 dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
958 for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
959 destvm->vmid = cpu_to_le32(newvm->vmid);
960 destvm->perm = cpu_to_le32(newvm->perm);
961 destvm->ctx = 0;
962 destvm->ctx_size = 0;
963 next_vm |= BIT(newvm->vmid);
964 }
965
966 ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
967 ptr_phys, src_sz, dest_phys, dest_sz);
968 dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
969 if (ret) {
970 dev_err(__scm->dev,
971 "Assign memory protection call failed %d\n", ret);
972 return -EINVAL;
973 }
974
975 *srcvm = next_vm;
976 return 0;
977 }
978 EXPORT_SYMBOL_GPL(qcom_scm_assign_mem);
979
980 /**
981 * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
982 */
qcom_scm_ocmem_lock_available(void)983 bool qcom_scm_ocmem_lock_available(void)
984 {
985 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
986 QCOM_SCM_OCMEM_LOCK_CMD);
987 }
988 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock_available);
989
990 /**
991 * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
992 * region to the specified initiator
993 *
994 * @id: tz initiator id
995 * @offset: OCMEM offset
996 * @size: OCMEM size
997 * @mode: access mode (WIDE/NARROW)
998 */
qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id,u32 offset,u32 size,u32 mode)999 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
1000 u32 mode)
1001 {
1002 struct qcom_scm_desc desc = {
1003 .svc = QCOM_SCM_SVC_OCMEM,
1004 .cmd = QCOM_SCM_OCMEM_LOCK_CMD,
1005 .args[0] = id,
1006 .args[1] = offset,
1007 .args[2] = size,
1008 .args[3] = mode,
1009 .arginfo = QCOM_SCM_ARGS(4),
1010 };
1011
1012 return qcom_scm_call(__scm->dev, &desc, NULL);
1013 }
1014 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock);
1015
1016 /**
1017 * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
1018 * region from the specified initiator
1019 *
1020 * @id: tz initiator id
1021 * @offset: OCMEM offset
1022 * @size: OCMEM size
1023 */
qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id,u32 offset,u32 size)1024 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
1025 {
1026 struct qcom_scm_desc desc = {
1027 .svc = QCOM_SCM_SVC_OCMEM,
1028 .cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
1029 .args[0] = id,
1030 .args[1] = offset,
1031 .args[2] = size,
1032 .arginfo = QCOM_SCM_ARGS(3),
1033 };
1034
1035 return qcom_scm_call(__scm->dev, &desc, NULL);
1036 }
1037 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_unlock);
1038
1039 /**
1040 * qcom_scm_ice_available() - Is the ICE key programming interface available?
1041 *
1042 * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
1043 * qcom_scm_ice_set_key() are available.
1044 */
qcom_scm_ice_available(void)1045 bool qcom_scm_ice_available(void)
1046 {
1047 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1048 QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
1049 __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1050 QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
1051 }
1052 EXPORT_SYMBOL_GPL(qcom_scm_ice_available);
1053
1054 /**
1055 * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
1056 * @index: the keyslot to invalidate
1057 *
1058 * The UFSHCI and eMMC standards define a standard way to do this, but it
1059 * doesn't work on these SoCs; only this SCM call does.
1060 *
1061 * It is assumed that the SoC has only one ICE instance being used, as this SCM
1062 * call doesn't specify which ICE instance the keyslot belongs to.
1063 *
1064 * Return: 0 on success; -errno on failure.
1065 */
qcom_scm_ice_invalidate_key(u32 index)1066 int qcom_scm_ice_invalidate_key(u32 index)
1067 {
1068 struct qcom_scm_desc desc = {
1069 .svc = QCOM_SCM_SVC_ES,
1070 .cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
1071 .arginfo = QCOM_SCM_ARGS(1),
1072 .args[0] = index,
1073 .owner = ARM_SMCCC_OWNER_SIP,
1074 };
1075
1076 return qcom_scm_call(__scm->dev, &desc, NULL);
1077 }
1078 EXPORT_SYMBOL_GPL(qcom_scm_ice_invalidate_key);
1079
1080 /**
1081 * qcom_scm_ice_set_key() - Set an inline encryption key
1082 * @index: the keyslot into which to set the key
1083 * @key: the key to program
1084 * @key_size: the size of the key in bytes
1085 * @cipher: the encryption algorithm the key is for
1086 * @data_unit_size: the encryption data unit size, i.e. the size of each
1087 * individual plaintext and ciphertext. Given in 512-byte
1088 * units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1089 *
1090 * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1091 * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1092 *
1093 * The UFSHCI and eMMC standards define a standard way to do this, but it
1094 * doesn't work on these SoCs; only this SCM call does.
1095 *
1096 * It is assumed that the SoC has only one ICE instance being used, as this SCM
1097 * call doesn't specify which ICE instance the keyslot belongs to.
1098 *
1099 * Return: 0 on success; -errno on failure.
1100 */
qcom_scm_ice_set_key(u32 index,const u8 * key,u32 key_size,enum qcom_scm_ice_cipher cipher,u32 data_unit_size)1101 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1102 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1103 {
1104 struct qcom_scm_desc desc = {
1105 .svc = QCOM_SCM_SVC_ES,
1106 .cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1107 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1108 QCOM_SCM_VAL, QCOM_SCM_VAL,
1109 QCOM_SCM_VAL),
1110 .args[0] = index,
1111 .args[2] = key_size,
1112 .args[3] = cipher,
1113 .args[4] = data_unit_size,
1114 .owner = ARM_SMCCC_OWNER_SIP,
1115 };
1116 void *keybuf;
1117 dma_addr_t key_phys;
1118 int ret;
1119
1120 /*
1121 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1122 * physical address that's been properly flushed. The sanctioned way to
1123 * do this is by using the DMA API. But as is best practice for crypto
1124 * keys, we also must wipe the key after use. This makes kmemdup() +
1125 * dma_map_single() not clearly correct, since the DMA API can use
1126 * bounce buffers. Instead, just use dma_alloc_coherent(). Programming
1127 * keys is normally rare and thus not performance-critical.
1128 */
1129
1130 keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1131 GFP_KERNEL);
1132 if (!keybuf)
1133 return -ENOMEM;
1134 memcpy(keybuf, key, key_size);
1135 desc.args[1] = key_phys;
1136
1137 ret = qcom_scm_call(__scm->dev, &desc, NULL);
1138
1139 memzero_explicit(keybuf, key_size);
1140
1141 dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1142 return ret;
1143 }
1144 EXPORT_SYMBOL_GPL(qcom_scm_ice_set_key);
1145
1146 /**
1147 * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1148 *
1149 * Return true if HDCP is supported, false if not.
1150 */
qcom_scm_hdcp_available(void)1151 bool qcom_scm_hdcp_available(void)
1152 {
1153 bool avail;
1154 int ret = qcom_scm_clk_enable();
1155
1156 if (ret)
1157 return ret;
1158
1159 avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1160 QCOM_SCM_HDCP_INVOKE);
1161
1162 qcom_scm_clk_disable();
1163
1164 return avail;
1165 }
1166 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_available);
1167
1168 /**
1169 * qcom_scm_hdcp_req() - Send HDCP request.
1170 * @req: HDCP request array
1171 * @req_cnt: HDCP request array count
1172 * @resp: response buffer passed to SCM
1173 *
1174 * Write HDCP register(s) through SCM.
1175 */
qcom_scm_hdcp_req(struct qcom_scm_hdcp_req * req,u32 req_cnt,u32 * resp)1176 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1177 {
1178 int ret;
1179 struct qcom_scm_desc desc = {
1180 .svc = QCOM_SCM_SVC_HDCP,
1181 .cmd = QCOM_SCM_HDCP_INVOKE,
1182 .arginfo = QCOM_SCM_ARGS(10),
1183 .args = {
1184 req[0].addr,
1185 req[0].val,
1186 req[1].addr,
1187 req[1].val,
1188 req[2].addr,
1189 req[2].val,
1190 req[3].addr,
1191 req[3].val,
1192 req[4].addr,
1193 req[4].val
1194 },
1195 .owner = ARM_SMCCC_OWNER_SIP,
1196 };
1197 struct qcom_scm_res res;
1198
1199 if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1200 return -ERANGE;
1201
1202 ret = qcom_scm_clk_enable();
1203 if (ret)
1204 return ret;
1205
1206 ret = qcom_scm_call(__scm->dev, &desc, &res);
1207 *resp = res.result[0];
1208
1209 qcom_scm_clk_disable();
1210
1211 return ret;
1212 }
1213 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_req);
1214
qcom_scm_iommu_set_pt_format(u32 sec_id,u32 ctx_num,u32 pt_fmt)1215 int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt)
1216 {
1217 struct qcom_scm_desc desc = {
1218 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1219 .cmd = QCOM_SCM_SMMU_PT_FORMAT,
1220 .arginfo = QCOM_SCM_ARGS(3),
1221 .args[0] = sec_id,
1222 .args[1] = ctx_num,
1223 .args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */
1224 .owner = ARM_SMCCC_OWNER_SIP,
1225 };
1226
1227 return qcom_scm_call(__scm->dev, &desc, NULL);
1228 }
1229 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_pt_format);
1230
qcom_scm_qsmmu500_wait_safe_toggle(bool en)1231 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1232 {
1233 struct qcom_scm_desc desc = {
1234 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1235 .cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1236 .arginfo = QCOM_SCM_ARGS(2),
1237 .args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1238 .args[1] = en,
1239 .owner = ARM_SMCCC_OWNER_SIP,
1240 };
1241
1242
1243 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1244 }
1245 EXPORT_SYMBOL_GPL(qcom_scm_qsmmu500_wait_safe_toggle);
1246
qcom_scm_lmh_dcvsh_available(void)1247 bool qcom_scm_lmh_dcvsh_available(void)
1248 {
1249 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1250 }
1251 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh_available);
1252
qcom_scm_lmh_profile_change(u32 profile_id)1253 int qcom_scm_lmh_profile_change(u32 profile_id)
1254 {
1255 struct qcom_scm_desc desc = {
1256 .svc = QCOM_SCM_SVC_LMH,
1257 .cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1258 .arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1259 .args[0] = profile_id,
1260 .owner = ARM_SMCCC_OWNER_SIP,
1261 };
1262
1263 return qcom_scm_call(__scm->dev, &desc, NULL);
1264 }
1265 EXPORT_SYMBOL_GPL(qcom_scm_lmh_profile_change);
1266
qcom_scm_lmh_dcvsh(u32 payload_fn,u32 payload_reg,u32 payload_val,u64 limit_node,u32 node_id,u64 version)1267 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1268 u64 limit_node, u32 node_id, u64 version)
1269 {
1270 dma_addr_t payload_phys;
1271 u32 *payload_buf;
1272 int ret, payload_size = 5 * sizeof(u32);
1273
1274 struct qcom_scm_desc desc = {
1275 .svc = QCOM_SCM_SVC_LMH,
1276 .cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1277 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1278 QCOM_SCM_VAL, QCOM_SCM_VAL),
1279 .args[1] = payload_size,
1280 .args[2] = limit_node,
1281 .args[3] = node_id,
1282 .args[4] = version,
1283 .owner = ARM_SMCCC_OWNER_SIP,
1284 };
1285
1286 payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL);
1287 if (!payload_buf)
1288 return -ENOMEM;
1289
1290 payload_buf[0] = payload_fn;
1291 payload_buf[1] = 0;
1292 payload_buf[2] = payload_reg;
1293 payload_buf[3] = 1;
1294 payload_buf[4] = payload_val;
1295
1296 desc.args[0] = payload_phys;
1297
1298 ret = qcom_scm_call(__scm->dev, &desc, NULL);
1299
1300 dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys);
1301 return ret;
1302 }
1303 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh);
1304
qcom_scm_find_dload_address(struct device * dev,u64 * addr)1305 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1306 {
1307 struct device_node *tcsr;
1308 struct device_node *np = dev->of_node;
1309 struct resource res;
1310 u32 offset;
1311 int ret;
1312
1313 tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1314 if (!tcsr)
1315 return 0;
1316
1317 ret = of_address_to_resource(tcsr, 0, &res);
1318 of_node_put(tcsr);
1319 if (ret)
1320 return ret;
1321
1322 ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1323 if (ret < 0)
1324 return ret;
1325
1326 *addr = res.start + offset;
1327
1328 return 0;
1329 }
1330
1331 /**
1332 * qcom_scm_is_available() - Checks if SCM is available
1333 */
qcom_scm_is_available(void)1334 bool qcom_scm_is_available(void)
1335 {
1336 return !!__scm;
1337 }
1338 EXPORT_SYMBOL_GPL(qcom_scm_is_available);
1339
qcom_scm_assert_valid_wq_ctx(u32 wq_ctx)1340 static int qcom_scm_assert_valid_wq_ctx(u32 wq_ctx)
1341 {
1342 /* FW currently only supports a single wq_ctx (zero).
1343 * TODO: Update this logic to include dynamic allocation and lookup of
1344 * completion structs when FW supports more wq_ctx values.
1345 */
1346 if (wq_ctx != 0) {
1347 dev_err(__scm->dev, "Firmware unexpectedly passed non-zero wq_ctx\n");
1348 return -EINVAL;
1349 }
1350
1351 return 0;
1352 }
1353
qcom_scm_wait_for_wq_completion(u32 wq_ctx)1354 int qcom_scm_wait_for_wq_completion(u32 wq_ctx)
1355 {
1356 int ret;
1357
1358 ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1359 if (ret)
1360 return ret;
1361
1362 wait_for_completion(&__scm->waitq_comp);
1363
1364 return 0;
1365 }
1366
qcom_scm_waitq_wakeup(struct qcom_scm * scm,unsigned int wq_ctx)1367 static int qcom_scm_waitq_wakeup(struct qcom_scm *scm, unsigned int wq_ctx)
1368 {
1369 int ret;
1370
1371 ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1372 if (ret)
1373 return ret;
1374
1375 complete(&__scm->waitq_comp);
1376
1377 return 0;
1378 }
1379
qcom_scm_irq_handler(int irq,void * data)1380 static irqreturn_t qcom_scm_irq_handler(int irq, void *data)
1381 {
1382 int ret;
1383 struct qcom_scm *scm = data;
1384 u32 wq_ctx, flags, more_pending = 0;
1385
1386 do {
1387 ret = scm_get_wq_ctx(&wq_ctx, &flags, &more_pending);
1388 if (ret) {
1389 dev_err(scm->dev, "GET_WQ_CTX SMC call failed: %d\n", ret);
1390 goto out;
1391 }
1392
1393 if (flags != QCOM_SMC_WAITQ_FLAG_WAKE_ONE &&
1394 flags != QCOM_SMC_WAITQ_FLAG_WAKE_ALL) {
1395 dev_err(scm->dev, "Invalid flags found for wq_ctx: %u\n", flags);
1396 goto out;
1397 }
1398
1399 ret = qcom_scm_waitq_wakeup(scm, wq_ctx);
1400 if (ret)
1401 goto out;
1402 } while (more_pending);
1403
1404 out:
1405 return IRQ_HANDLED;
1406 }
1407
qcom_scm_probe(struct platform_device * pdev)1408 static int qcom_scm_probe(struct platform_device *pdev)
1409 {
1410 struct qcom_scm *scm;
1411 int irq, ret;
1412
1413 scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1414 if (!scm)
1415 return -ENOMEM;
1416
1417 ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1418 if (ret < 0)
1419 return ret;
1420
1421 mutex_init(&scm->scm_bw_lock);
1422
1423 scm->path = devm_of_icc_get(&pdev->dev, NULL);
1424 if (IS_ERR(scm->path))
1425 return dev_err_probe(&pdev->dev, PTR_ERR(scm->path),
1426 "failed to acquire interconnect path\n");
1427
1428 scm->core_clk = devm_clk_get_optional(&pdev->dev, "core");
1429 if (IS_ERR(scm->core_clk))
1430 return PTR_ERR(scm->core_clk);
1431
1432 scm->iface_clk = devm_clk_get_optional(&pdev->dev, "iface");
1433 if (IS_ERR(scm->iface_clk))
1434 return PTR_ERR(scm->iface_clk);
1435
1436 scm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
1437 if (IS_ERR(scm->bus_clk))
1438 return PTR_ERR(scm->bus_clk);
1439
1440 scm->reset.ops = &qcom_scm_pas_reset_ops;
1441 scm->reset.nr_resets = 1;
1442 scm->reset.of_node = pdev->dev.of_node;
1443 ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1444 if (ret)
1445 return ret;
1446
1447 /* vote for max clk rate for highest performance */
1448 ret = clk_set_rate(scm->core_clk, INT_MAX);
1449 if (ret)
1450 return ret;
1451
1452 __scm = scm;
1453 __scm->dev = &pdev->dev;
1454
1455 init_completion(&__scm->waitq_comp);
1456
1457 irq = platform_get_irq_optional(pdev, 0);
1458 if (irq < 0) {
1459 if (irq != -ENXIO)
1460 return irq;
1461 } else {
1462 ret = devm_request_threaded_irq(__scm->dev, irq, NULL, qcom_scm_irq_handler,
1463 IRQF_ONESHOT, "qcom-scm", __scm);
1464 if (ret < 0)
1465 return dev_err_probe(scm->dev, ret, "Failed to request qcom-scm irq\n");
1466 }
1467
1468 __get_convention();
1469
1470 /*
1471 * If requested enable "download mode", from this point on warmboot
1472 * will cause the boot stages to enter download mode, unless
1473 * disabled below by a clean shutdown/reboot.
1474 */
1475 if (download_mode)
1476 qcom_scm_set_download_mode(true);
1477
1478 return 0;
1479 }
1480
qcom_scm_shutdown(struct platform_device * pdev)1481 static void qcom_scm_shutdown(struct platform_device *pdev)
1482 {
1483 /* Clean shutdown, disable download mode to allow normal restart */
1484 qcom_scm_set_download_mode(false);
1485 }
1486
1487 static const struct of_device_id qcom_scm_dt_match[] = {
1488 { .compatible = "qcom,scm" },
1489
1490 /* Legacy entries kept for backwards compatibility */
1491 { .compatible = "qcom,scm-apq8064" },
1492 { .compatible = "qcom,scm-apq8084" },
1493 { .compatible = "qcom,scm-ipq4019" },
1494 { .compatible = "qcom,scm-msm8953" },
1495 { .compatible = "qcom,scm-msm8974" },
1496 { .compatible = "qcom,scm-msm8996" },
1497 {}
1498 };
1499 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
1500
1501 static struct platform_driver qcom_scm_driver = {
1502 .driver = {
1503 .name = "qcom_scm",
1504 .of_match_table = qcom_scm_dt_match,
1505 .suppress_bind_attrs = true,
1506 },
1507 .probe = qcom_scm_probe,
1508 .shutdown = qcom_scm_shutdown,
1509 };
1510
qcom_scm_init(void)1511 static int __init qcom_scm_init(void)
1512 {
1513 return platform_driver_register(&qcom_scm_driver);
1514 }
1515 subsys_initcall(qcom_scm_init);
1516
1517 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
1518 MODULE_LICENSE("GPL v2");
1519