1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
4 * Copyright 2016-2019 NXP
5 *
6 */
7
8 #include <asm/cacheflush.h>
9 #include <linux/io.h>
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <soc/fsl/dpaa2-global.h>
13
14 #include "qbman-portal.h"
15
16 /* All QBMan command and result structures use this "valid bit" encoding */
17 #define QB_VALID_BIT ((u32)0x80)
18
19 /* QBMan portal management command codes */
20 #define QBMAN_MC_ACQUIRE 0x30
21 #define QBMAN_WQCHAN_CONFIGURE 0x46
22
23 /* CINH register offsets */
24 #define QBMAN_CINH_SWP_EQCR_PI 0x800
25 #define QBMAN_CINH_SWP_EQCR_CI 0x840
26 #define QBMAN_CINH_SWP_EQAR 0x8c0
27 #define QBMAN_CINH_SWP_CR_RT 0x900
28 #define QBMAN_CINH_SWP_VDQCR_RT 0x940
29 #define QBMAN_CINH_SWP_EQCR_AM_RT 0x980
30 #define QBMAN_CINH_SWP_RCR_AM_RT 0x9c0
31 #define QBMAN_CINH_SWP_DQPI 0xa00
32 #define QBMAN_CINH_SWP_DQRR_ITR 0xa80
33 #define QBMAN_CINH_SWP_DCAP 0xac0
34 #define QBMAN_CINH_SWP_SDQCR 0xb00
35 #define QBMAN_CINH_SWP_EQCR_AM_RT2 0xb40
36 #define QBMAN_CINH_SWP_RCR_PI 0xc00
37 #define QBMAN_CINH_SWP_RAR 0xcc0
38 #define QBMAN_CINH_SWP_ISR 0xe00
39 #define QBMAN_CINH_SWP_IER 0xe40
40 #define QBMAN_CINH_SWP_ISDR 0xe80
41 #define QBMAN_CINH_SWP_IIR 0xec0
42 #define QBMAN_CINH_SWP_ITPR 0xf40
43
44 /* CENA register offsets */
45 #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
46 #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
47 #define QBMAN_CENA_SWP_RCR(n) (0x400 + ((u32)(n) << 6))
48 #define QBMAN_CENA_SWP_CR 0x600
49 #define QBMAN_CENA_SWP_RR(vb) (0x700 + ((u32)(vb) >> 1))
50 #define QBMAN_CENA_SWP_VDQCR 0x780
51 #define QBMAN_CENA_SWP_EQCR_CI 0x840
52 #define QBMAN_CENA_SWP_EQCR_CI_MEMBACK 0x1840
53
54 /* CENA register offsets in memory-backed mode */
55 #define QBMAN_CENA_SWP_DQRR_MEM(n) (0x800 + ((u32)(n) << 6))
56 #define QBMAN_CENA_SWP_RCR_MEM(n) (0x1400 + ((u32)(n) << 6))
57 #define QBMAN_CENA_SWP_CR_MEM 0x1600
58 #define QBMAN_CENA_SWP_RR_MEM 0x1680
59 #define QBMAN_CENA_SWP_VDQCR_MEM 0x1780
60
61 /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
62 #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
63
64 /* Define token used to determine if response written to memory is valid */
65 #define QMAN_DQ_TOKEN_VALID 1
66
67 /* SDQCR attribute codes */
68 #define QB_SDQCR_FC_SHIFT 29
69 #define QB_SDQCR_FC_MASK 0x1
70 #define QB_SDQCR_DCT_SHIFT 24
71 #define QB_SDQCR_DCT_MASK 0x3
72 #define QB_SDQCR_TOK_SHIFT 16
73 #define QB_SDQCR_TOK_MASK 0xff
74 #define QB_SDQCR_SRC_SHIFT 0
75 #define QB_SDQCR_SRC_MASK 0xffff
76
77 /* opaque token for static dequeues */
78 #define QMAN_SDQCR_TOKEN 0xbb
79
80 #define QBMAN_EQCR_DCA_IDXMASK 0x0f
81 #define QBMAN_ENQUEUE_FLAG_DCA (1ULL << 31)
82
83 #define EQ_DESC_SIZE_WITHOUT_FD 29
84 #define EQ_DESC_SIZE_FD_START 32
85
86 enum qbman_sdqcr_dct {
87 qbman_sdqcr_dct_null = 0,
88 qbman_sdqcr_dct_prio_ics,
89 qbman_sdqcr_dct_active_ics,
90 qbman_sdqcr_dct_active
91 };
92
93 enum qbman_sdqcr_fc {
94 qbman_sdqcr_fc_one = 0,
95 qbman_sdqcr_fc_up_to_3 = 1
96 };
97
98 /* Internal Function declaration */
99 static int qbman_swp_enqueue_direct(struct qbman_swp *s,
100 const struct qbman_eq_desc *d,
101 const struct dpaa2_fd *fd);
102 static int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
103 const struct qbman_eq_desc *d,
104 const struct dpaa2_fd *fd);
105 static int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
106 const struct qbman_eq_desc *d,
107 const struct dpaa2_fd *fd,
108 uint32_t *flags,
109 int num_frames);
110 static int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
111 const struct qbman_eq_desc *d,
112 const struct dpaa2_fd *fd,
113 uint32_t *flags,
114 int num_frames);
115 static int
116 qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
117 const struct qbman_eq_desc *d,
118 const struct dpaa2_fd *fd,
119 int num_frames);
120 static
121 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
122 const struct qbman_eq_desc *d,
123 const struct dpaa2_fd *fd,
124 int num_frames);
125 static int qbman_swp_pull_direct(struct qbman_swp *s,
126 struct qbman_pull_desc *d);
127 static int qbman_swp_pull_mem_back(struct qbman_swp *s,
128 struct qbman_pull_desc *d);
129
130 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s);
131 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s);
132
133 static int qbman_swp_release_direct(struct qbman_swp *s,
134 const struct qbman_release_desc *d,
135 const u64 *buffers,
136 unsigned int num_buffers);
137 static int qbman_swp_release_mem_back(struct qbman_swp *s,
138 const struct qbman_release_desc *d,
139 const u64 *buffers,
140 unsigned int num_buffers);
141
142 /* Function pointers */
143 int (*qbman_swp_enqueue_ptr)(struct qbman_swp *s,
144 const struct qbman_eq_desc *d,
145 const struct dpaa2_fd *fd)
146 = qbman_swp_enqueue_direct;
147
148 int (*qbman_swp_enqueue_multiple_ptr)(struct qbman_swp *s,
149 const struct qbman_eq_desc *d,
150 const struct dpaa2_fd *fd,
151 uint32_t *flags,
152 int num_frames)
153 = qbman_swp_enqueue_multiple_direct;
154
155 int
156 (*qbman_swp_enqueue_multiple_desc_ptr)(struct qbman_swp *s,
157 const struct qbman_eq_desc *d,
158 const struct dpaa2_fd *fd,
159 int num_frames)
160 = qbman_swp_enqueue_multiple_desc_direct;
161
162 int (*qbman_swp_pull_ptr)(struct qbman_swp *s, struct qbman_pull_desc *d)
163 = qbman_swp_pull_direct;
164
165 const struct dpaa2_dq *(*qbman_swp_dqrr_next_ptr)(struct qbman_swp *s)
166 = qbman_swp_dqrr_next_direct;
167
168 int (*qbman_swp_release_ptr)(struct qbman_swp *s,
169 const struct qbman_release_desc *d,
170 const u64 *buffers,
171 unsigned int num_buffers)
172 = qbman_swp_release_direct;
173
174 /* Portal Access */
175
qbman_read_register(struct qbman_swp * p,u32 offset)176 static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
177 {
178 return readl_relaxed(p->addr_cinh + offset);
179 }
180
qbman_write_register(struct qbman_swp * p,u32 offset,u32 value)181 static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
182 u32 value)
183 {
184 writel_relaxed(value, p->addr_cinh + offset);
185 }
186
qbman_get_cmd(struct qbman_swp * p,u32 offset)187 static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
188 {
189 return p->addr_cena + offset;
190 }
191
192 #define QBMAN_CINH_SWP_CFG 0xd00
193
194 #define SWP_CFG_DQRR_MF_SHIFT 20
195 #define SWP_CFG_EST_SHIFT 16
196 #define SWP_CFG_CPBS_SHIFT 15
197 #define SWP_CFG_WN_SHIFT 14
198 #define SWP_CFG_RPM_SHIFT 12
199 #define SWP_CFG_DCM_SHIFT 10
200 #define SWP_CFG_EPM_SHIFT 8
201 #define SWP_CFG_VPM_SHIFT 7
202 #define SWP_CFG_CPM_SHIFT 6
203 #define SWP_CFG_SD_SHIFT 5
204 #define SWP_CFG_SP_SHIFT 4
205 #define SWP_CFG_SE_SHIFT 3
206 #define SWP_CFG_DP_SHIFT 2
207 #define SWP_CFG_DE_SHIFT 1
208 #define SWP_CFG_EP_SHIFT 0
209
qbman_set_swp_cfg(u8 max_fill,u8 wn,u8 est,u8 rpm,u8 dcm,u8 epm,int sd,int sp,int se,int dp,int de,int ep)210 static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn, u8 est, u8 rpm, u8 dcm,
211 u8 epm, int sd, int sp, int se,
212 int dp, int de, int ep)
213 {
214 return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
215 est << SWP_CFG_EST_SHIFT |
216 wn << SWP_CFG_WN_SHIFT |
217 rpm << SWP_CFG_RPM_SHIFT |
218 dcm << SWP_CFG_DCM_SHIFT |
219 epm << SWP_CFG_EPM_SHIFT |
220 sd << SWP_CFG_SD_SHIFT |
221 sp << SWP_CFG_SP_SHIFT |
222 se << SWP_CFG_SE_SHIFT |
223 dp << SWP_CFG_DP_SHIFT |
224 de << SWP_CFG_DE_SHIFT |
225 ep << SWP_CFG_EP_SHIFT);
226 }
227
228 #define QMAN_RT_MODE 0x00000100
229
qm_cyc_diff(u8 ringsize,u8 first,u8 last)230 static inline u8 qm_cyc_diff(u8 ringsize, u8 first, u8 last)
231 {
232 /* 'first' is included, 'last' is excluded */
233 if (first <= last)
234 return last - first;
235 else
236 return (2 * ringsize) - (first - last);
237 }
238
239 /**
240 * qbman_swp_init() - Create a functional object representing the given
241 * QBMan portal descriptor.
242 * @d: the given qbman swp descriptor
243 *
244 * Return qbman_swp portal for success, NULL if the object cannot
245 * be created.
246 */
qbman_swp_init(const struct qbman_swp_desc * d)247 struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
248 {
249 struct qbman_swp *p = kzalloc(sizeof(*p), GFP_KERNEL);
250 u32 reg;
251 u32 mask_size;
252 u32 eqcr_pi;
253
254 if (!p)
255 return NULL;
256
257 spin_lock_init(&p->access_spinlock);
258
259 p->desc = d;
260 p->mc.valid_bit = QB_VALID_BIT;
261 p->sdq = 0;
262 p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
263 p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
264 p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
265 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
266 p->mr.valid_bit = QB_VALID_BIT;
267
268 atomic_set(&p->vdq.available, 1);
269 p->vdq.valid_bit = QB_VALID_BIT;
270 p->dqrr.next_idx = 0;
271 p->dqrr.valid_bit = QB_VALID_BIT;
272
273 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
274 p->dqrr.dqrr_size = 4;
275 p->dqrr.reset_bug = 1;
276 } else {
277 p->dqrr.dqrr_size = 8;
278 p->dqrr.reset_bug = 0;
279 }
280
281 p->addr_cena = d->cena_bar;
282 p->addr_cinh = d->cinh_bar;
283
284 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
285
286 reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
287 1, /* Writes Non-cacheable */
288 0, /* EQCR_CI stashing threshold */
289 3, /* RPM: RCR in array mode */
290 2, /* DCM: Discrete consumption ack */
291 2, /* EPM: EQCR in ring mode */
292 1, /* mem stashing drop enable enable */
293 1, /* mem stashing priority enable */
294 1, /* mem stashing enable */
295 1, /* dequeue stashing priority enable */
296 0, /* dequeue stashing enable enable */
297 0); /* EQCR_CI stashing priority enable */
298 } else {
299 memset(p->addr_cena, 0, 64 * 1024);
300 reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
301 1, /* Writes Non-cacheable */
302 1, /* EQCR_CI stashing threshold */
303 3, /* RPM: RCR in array mode */
304 2, /* DCM: Discrete consumption ack */
305 0, /* EPM: EQCR in ring mode */
306 1, /* mem stashing drop enable */
307 1, /* mem stashing priority enable */
308 1, /* mem stashing enable */
309 1, /* dequeue stashing priority enable */
310 0, /* dequeue stashing enable */
311 0); /* EQCR_CI stashing priority enable */
312 reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */
313 1 << SWP_CFG_VPM_SHIFT | /* VDQCR read triggered mode */
314 1 << SWP_CFG_CPM_SHIFT; /* CR read triggered mode */
315 }
316
317 qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
318 reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
319 if (!reg) {
320 pr_err("qbman: the portal is not enabled!\n");
321 kfree(p);
322 return NULL;
323 }
324
325 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
326 qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE);
327 qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE);
328 }
329 /*
330 * SDQCR needs to be initialized to 0 when no channels are
331 * being dequeued from or else the QMan HW will indicate an
332 * error. The values that were calculated above will be
333 * applied when dequeues from a specific channel are enabled.
334 */
335 qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
336
337 p->eqcr.pi_ring_size = 8;
338 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
339 p->eqcr.pi_ring_size = 32;
340 qbman_swp_enqueue_ptr =
341 qbman_swp_enqueue_mem_back;
342 qbman_swp_enqueue_multiple_ptr =
343 qbman_swp_enqueue_multiple_mem_back;
344 qbman_swp_enqueue_multiple_desc_ptr =
345 qbman_swp_enqueue_multiple_desc_mem_back;
346 qbman_swp_pull_ptr = qbman_swp_pull_mem_back;
347 qbman_swp_dqrr_next_ptr = qbman_swp_dqrr_next_mem_back;
348 qbman_swp_release_ptr = qbman_swp_release_mem_back;
349 }
350
351 for (mask_size = p->eqcr.pi_ring_size; mask_size > 0; mask_size >>= 1)
352 p->eqcr.pi_ci_mask = (p->eqcr.pi_ci_mask << 1) + 1;
353 eqcr_pi = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_PI);
354 p->eqcr.pi = eqcr_pi & p->eqcr.pi_ci_mask;
355 p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT;
356 p->eqcr.ci = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_CI)
357 & p->eqcr.pi_ci_mask;
358 p->eqcr.available = p->eqcr.pi_ring_size;
359
360 /* Initialize the software portal with a irq timeout period of 0us */
361 qbman_swp_set_irq_coalescing(p, p->dqrr.dqrr_size - 1, 0);
362
363 return p;
364 }
365
366 /**
367 * qbman_swp_finish() - Create and destroy a functional object representing
368 * the given QBMan portal descriptor.
369 * @p: the qbman_swp object to be destroyed
370 */
qbman_swp_finish(struct qbman_swp * p)371 void qbman_swp_finish(struct qbman_swp *p)
372 {
373 kfree(p);
374 }
375
376 /**
377 * qbman_swp_interrupt_read_status()
378 * @p: the given software portal
379 *
380 * Return the value in the SWP_ISR register.
381 */
qbman_swp_interrupt_read_status(struct qbman_swp * p)382 u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
383 {
384 return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
385 }
386
387 /**
388 * qbman_swp_interrupt_clear_status()
389 * @p: the given software portal
390 * @mask: The mask to clear in SWP_ISR register
391 */
qbman_swp_interrupt_clear_status(struct qbman_swp * p,u32 mask)392 void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
393 {
394 qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
395 }
396
397 /**
398 * qbman_swp_interrupt_get_trigger() - read interrupt enable register
399 * @p: the given software portal
400 *
401 * Return the value in the SWP_IER register.
402 */
qbman_swp_interrupt_get_trigger(struct qbman_swp * p)403 u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
404 {
405 return qbman_read_register(p, QBMAN_CINH_SWP_IER);
406 }
407
408 /**
409 * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
410 * @p: the given software portal
411 * @mask: The mask of bits to enable in SWP_IER
412 */
qbman_swp_interrupt_set_trigger(struct qbman_swp * p,u32 mask)413 void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
414 {
415 qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
416 }
417
418 /**
419 * qbman_swp_interrupt_get_inhibit() - read interrupt mask register
420 * @p: the given software portal object
421 *
422 * Return the value in the SWP_IIR register.
423 */
qbman_swp_interrupt_get_inhibit(struct qbman_swp * p)424 int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
425 {
426 return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
427 }
428
429 /**
430 * qbman_swp_interrupt_set_inhibit() - write interrupt mask register
431 * @p: the given software portal object
432 * @inhibit: whether to inhibit the IRQs
433 */
qbman_swp_interrupt_set_inhibit(struct qbman_swp * p,int inhibit)434 void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
435 {
436 qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
437 }
438
439 /*
440 * Different management commands all use this common base layer of code to issue
441 * commands and poll for results.
442 */
443
444 /*
445 * Returns a pointer to where the caller should fill in their management command
446 * (caller should ignore the verb byte)
447 */
qbman_swp_mc_start(struct qbman_swp * p)448 void *qbman_swp_mc_start(struct qbman_swp *p)
449 {
450 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
451 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
452 else
453 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM);
454 }
455
456 /*
457 * Commits merges in the caller-supplied command verb (which should not include
458 * the valid-bit) and submits the command to hardware
459 */
qbman_swp_mc_submit(struct qbman_swp * p,void * cmd,u8 cmd_verb)460 void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
461 {
462 u8 *v = cmd;
463
464 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
465 dma_wmb();
466 *v = cmd_verb | p->mc.valid_bit;
467 } else {
468 *v = cmd_verb | p->mc.valid_bit;
469 dma_wmb();
470 qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE);
471 }
472 }
473
474 /*
475 * Checks for a completed response (returns non-NULL if only if the response
476 * is complete).
477 */
qbman_swp_mc_result(struct qbman_swp * p)478 void *qbman_swp_mc_result(struct qbman_swp *p)
479 {
480 u32 *ret, verb;
481
482 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
483 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
484 /* Remove the valid-bit - command completed if the rest
485 * is non-zero.
486 */
487 verb = ret[0] & ~QB_VALID_BIT;
488 if (!verb)
489 return NULL;
490 p->mc.valid_bit ^= QB_VALID_BIT;
491 } else {
492 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM);
493 /* Command completed if the valid bit is toggled */
494 if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT))
495 return NULL;
496 /* Command completed if the rest is non-zero */
497 verb = ret[0] & ~QB_VALID_BIT;
498 if (!verb)
499 return NULL;
500 p->mr.valid_bit ^= QB_VALID_BIT;
501 }
502
503 return ret;
504 }
505
506 #define QB_ENQUEUE_CMD_OPTIONS_SHIFT 0
507 enum qb_enqueue_commands {
508 enqueue_empty = 0,
509 enqueue_response_always = 1,
510 enqueue_rejects_to_fq = 2
511 };
512
513 #define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT 2
514 #define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
515 #define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT 4
516 #define QB_ENQUEUE_CMD_DCA_EN_SHIFT 7
517
518 /*
519 * qbman_eq_desc_clear() - Clear the contents of a descriptor to
520 * default/starting state.
521 */
qbman_eq_desc_clear(struct qbman_eq_desc * d)522 void qbman_eq_desc_clear(struct qbman_eq_desc *d)
523 {
524 memset(d, 0, sizeof(*d));
525 }
526
527 /**
528 * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
529 * @d: the enqueue descriptor.
530 * @respond_success: 1 = enqueue with response always; 0 = enqueue with
531 * rejections returned on a FQ.
532 */
qbman_eq_desc_set_no_orp(struct qbman_eq_desc * d,int respond_success)533 void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
534 {
535 d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
536 if (respond_success)
537 d->verb |= enqueue_response_always;
538 else
539 d->verb |= enqueue_rejects_to_fq;
540 }
541
542 /*
543 * Exactly one of the following descriptor "targets" should be set. (Calling any
544 * one of these will replace the effect of any prior call to one of these.)
545 * -enqueue to a frame queue
546 * -enqueue to a queuing destination
547 */
548
549 /**
550 * qbman_eq_desc_set_fq() - set the FQ for the enqueue command
551 * @d: the enqueue descriptor
552 * @fqid: the id of the frame queue to be enqueued
553 */
qbman_eq_desc_set_fq(struct qbman_eq_desc * d,u32 fqid)554 void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
555 {
556 d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
557 d->tgtid = cpu_to_le32(fqid);
558 }
559
560 /**
561 * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
562 * @d: the enqueue descriptor
563 * @qdid: the id of the queuing destination to be enqueued
564 * @qd_bin: the queuing destination bin
565 * @qd_prio: the queuing destination priority
566 */
qbman_eq_desc_set_qd(struct qbman_eq_desc * d,u32 qdid,u32 qd_bin,u32 qd_prio)567 void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
568 u32 qd_bin, u32 qd_prio)
569 {
570 d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
571 d->tgtid = cpu_to_le32(qdid);
572 d->qdbin = cpu_to_le16(qd_bin);
573 d->qpri = qd_prio;
574 }
575
576 #define EQAR_IDX(eqar) ((eqar) & 0x7)
577 #define EQAR_VB(eqar) ((eqar) & 0x80)
578 #define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
579
580 #define QB_RT_BIT ((u32)0x100)
581 /**
582 * qbman_swp_enqueue_direct() - Issue an enqueue command
583 * @s: the software portal used for enqueue
584 * @d: the enqueue descriptor
585 * @fd: the frame descriptor to be enqueued
586 *
587 * Please note that 'fd' should only be NULL if the "action" of the
588 * descriptor is "orp_hole" or "orp_nesn".
589 *
590 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
591 */
592 static
qbman_swp_enqueue_direct(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd)593 int qbman_swp_enqueue_direct(struct qbman_swp *s,
594 const struct qbman_eq_desc *d,
595 const struct dpaa2_fd *fd)
596 {
597 int flags = 0;
598 int ret = qbman_swp_enqueue_multiple_direct(s, d, fd, &flags, 1);
599
600 if (ret >= 0)
601 ret = 0;
602 else
603 ret = -EBUSY;
604 return ret;
605 }
606
607 /**
608 * qbman_swp_enqueue_mem_back() - Issue an enqueue command
609 * @s: the software portal used for enqueue
610 * @d: the enqueue descriptor
611 * @fd: the frame descriptor to be enqueued
612 *
613 * Please note that 'fd' should only be NULL if the "action" of the
614 * descriptor is "orp_hole" or "orp_nesn".
615 *
616 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
617 */
618 static
qbman_swp_enqueue_mem_back(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd)619 int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
620 const struct qbman_eq_desc *d,
621 const struct dpaa2_fd *fd)
622 {
623 int flags = 0;
624 int ret = qbman_swp_enqueue_multiple_mem_back(s, d, fd, &flags, 1);
625
626 if (ret >= 0)
627 ret = 0;
628 else
629 ret = -EBUSY;
630 return ret;
631 }
632
633 /**
634 * qbman_swp_enqueue_multiple_direct() - Issue a multi enqueue command
635 * using one enqueue descriptor
636 * @s: the software portal used for enqueue
637 * @d: the enqueue descriptor
638 * @fd: table pointer of frame descriptor table to be enqueued
639 * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
640 * @num_frames: number of fd to be enqueued
641 *
642 * Return the number of fd enqueued, or a negative error number.
643 */
644 static
qbman_swp_enqueue_multiple_direct(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd,uint32_t * flags,int num_frames)645 int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
646 const struct qbman_eq_desc *d,
647 const struct dpaa2_fd *fd,
648 uint32_t *flags,
649 int num_frames)
650 {
651 uint32_t *p = NULL;
652 const uint32_t *cl = (uint32_t *)d;
653 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
654 int i, num_enqueued = 0;
655
656 spin_lock(&s->access_spinlock);
657 half_mask = (s->eqcr.pi_ci_mask>>1);
658 full_mask = s->eqcr.pi_ci_mask;
659
660 if (!s->eqcr.available) {
661 eqcr_ci = s->eqcr.ci;
662 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
663 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
664 s->eqcr.ci &= full_mask;
665
666 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
667 eqcr_ci, s->eqcr.ci);
668 if (!s->eqcr.available) {
669 spin_unlock(&s->access_spinlock);
670 return 0;
671 }
672 }
673
674 eqcr_pi = s->eqcr.pi;
675 num_enqueued = (s->eqcr.available < num_frames) ?
676 s->eqcr.available : num_frames;
677 s->eqcr.available -= num_enqueued;
678 /* Fill in the EQCR ring */
679 for (i = 0; i < num_enqueued; i++) {
680 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
681 /* Skip copying the verb */
682 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
683 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
684 &fd[i], sizeof(*fd));
685 eqcr_pi++;
686 }
687
688 dma_wmb();
689
690 /* Set the verb byte, have to substitute in the valid-bit */
691 eqcr_pi = s->eqcr.pi;
692 for (i = 0; i < num_enqueued; i++) {
693 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
694 p[0] = cl[0] | s->eqcr.pi_vb;
695 if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
696 struct qbman_eq_desc *eq_desc = (struct qbman_eq_desc *)p;
697
698 eq_desc->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
699 ((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
700 }
701 eqcr_pi++;
702 if (!(eqcr_pi & half_mask))
703 s->eqcr.pi_vb ^= QB_VALID_BIT;
704 }
705
706 /* Flush all the cacheline without load/store in between */
707 eqcr_pi = s->eqcr.pi;
708 for (i = 0; i < num_enqueued; i++)
709 eqcr_pi++;
710 s->eqcr.pi = eqcr_pi & full_mask;
711 spin_unlock(&s->access_spinlock);
712
713 return num_enqueued;
714 }
715
716 /**
717 * qbman_swp_enqueue_multiple_mem_back() - Issue a multi enqueue command
718 * using one enqueue descriptor
719 * @s: the software portal used for enqueue
720 * @d: the enqueue descriptor
721 * @fd: table pointer of frame descriptor table to be enqueued
722 * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
723 * @num_frames: number of fd to be enqueued
724 *
725 * Return the number of fd enqueued, or a negative error number.
726 */
727 static
qbman_swp_enqueue_multiple_mem_back(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd,uint32_t * flags,int num_frames)728 int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
729 const struct qbman_eq_desc *d,
730 const struct dpaa2_fd *fd,
731 uint32_t *flags,
732 int num_frames)
733 {
734 uint32_t *p = NULL;
735 const uint32_t *cl = (uint32_t *)(d);
736 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
737 int i, num_enqueued = 0;
738 unsigned long irq_flags;
739
740 spin_lock_irqsave(&s->access_spinlock, irq_flags);
741
742 half_mask = (s->eqcr.pi_ci_mask>>1);
743 full_mask = s->eqcr.pi_ci_mask;
744 if (!s->eqcr.available) {
745 eqcr_ci = s->eqcr.ci;
746 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
747 s->eqcr.ci &= full_mask;
748 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
749 eqcr_ci, s->eqcr.ci);
750 if (!s->eqcr.available) {
751 spin_unlock_irqrestore(&s->access_spinlock, irq_flags);
752 return 0;
753 }
754 }
755
756 eqcr_pi = s->eqcr.pi;
757 num_enqueued = (s->eqcr.available < num_frames) ?
758 s->eqcr.available : num_frames;
759 s->eqcr.available -= num_enqueued;
760 /* Fill in the EQCR ring */
761 for (i = 0; i < num_enqueued; i++) {
762 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
763 /* Skip copying the verb */
764 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
765 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
766 &fd[i], sizeof(*fd));
767 eqcr_pi++;
768 }
769
770 /* Set the verb byte, have to substitute in the valid-bit */
771 eqcr_pi = s->eqcr.pi;
772 for (i = 0; i < num_enqueued; i++) {
773 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
774 p[0] = cl[0] | s->eqcr.pi_vb;
775 if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
776 struct qbman_eq_desc *eq_desc = (struct qbman_eq_desc *)p;
777
778 eq_desc->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
779 ((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
780 }
781 eqcr_pi++;
782 if (!(eqcr_pi & half_mask))
783 s->eqcr.pi_vb ^= QB_VALID_BIT;
784 }
785 s->eqcr.pi = eqcr_pi & full_mask;
786
787 dma_wmb();
788 qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
789 (QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
790 spin_unlock_irqrestore(&s->access_spinlock, irq_flags);
791
792 return num_enqueued;
793 }
794
795 /**
796 * qbman_swp_enqueue_multiple_desc_direct() - Issue a multi enqueue command
797 * using multiple enqueue descriptor
798 * @s: the software portal used for enqueue
799 * @d: table of minimal enqueue descriptor
800 * @fd: table pointer of frame descriptor table to be enqueued
801 * @num_frames: number of fd to be enqueued
802 *
803 * Return the number of fd enqueued, or a negative error number.
804 */
805 static
qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd,int num_frames)806 int qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
807 const struct qbman_eq_desc *d,
808 const struct dpaa2_fd *fd,
809 int num_frames)
810 {
811 uint32_t *p;
812 const uint32_t *cl;
813 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
814 int i, num_enqueued = 0;
815
816 half_mask = (s->eqcr.pi_ci_mask>>1);
817 full_mask = s->eqcr.pi_ci_mask;
818 if (!s->eqcr.available) {
819 eqcr_ci = s->eqcr.ci;
820 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
821 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
822 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
823 eqcr_ci, s->eqcr.ci);
824 if (!s->eqcr.available)
825 return 0;
826 }
827
828 eqcr_pi = s->eqcr.pi;
829 num_enqueued = (s->eqcr.available < num_frames) ?
830 s->eqcr.available : num_frames;
831 s->eqcr.available -= num_enqueued;
832 /* Fill in the EQCR ring */
833 for (i = 0; i < num_enqueued; i++) {
834 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
835 cl = (uint32_t *)(&d[i]);
836 /* Skip copying the verb */
837 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
838 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
839 &fd[i], sizeof(*fd));
840 eqcr_pi++;
841 }
842
843 dma_wmb();
844
845 /* Set the verb byte, have to substitute in the valid-bit */
846 eqcr_pi = s->eqcr.pi;
847 for (i = 0; i < num_enqueued; i++) {
848 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
849 cl = (uint32_t *)(&d[i]);
850 p[0] = cl[0] | s->eqcr.pi_vb;
851 eqcr_pi++;
852 if (!(eqcr_pi & half_mask))
853 s->eqcr.pi_vb ^= QB_VALID_BIT;
854 }
855
856 /* Flush all the cacheline without load/store in between */
857 eqcr_pi = s->eqcr.pi;
858 for (i = 0; i < num_enqueued; i++)
859 eqcr_pi++;
860 s->eqcr.pi = eqcr_pi & full_mask;
861
862 return num_enqueued;
863 }
864
865 /**
866 * qbman_swp_enqueue_multiple_desc_mem_back() - Issue a multi enqueue command
867 * using multiple enqueue descriptor
868 * @s: the software portal used for enqueue
869 * @d: table of minimal enqueue descriptor
870 * @fd: table pointer of frame descriptor table to be enqueued
871 * @num_frames: number of fd to be enqueued
872 *
873 * Return the number of fd enqueued, or a negative error number.
874 */
875 static
qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd,int num_frames)876 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
877 const struct qbman_eq_desc *d,
878 const struct dpaa2_fd *fd,
879 int num_frames)
880 {
881 uint32_t *p;
882 const uint32_t *cl;
883 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
884 int i, num_enqueued = 0;
885
886 half_mask = (s->eqcr.pi_ci_mask>>1);
887 full_mask = s->eqcr.pi_ci_mask;
888 if (!s->eqcr.available) {
889 eqcr_ci = s->eqcr.ci;
890 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
891 s->eqcr.ci &= full_mask;
892 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
893 eqcr_ci, s->eqcr.ci);
894 if (!s->eqcr.available)
895 return 0;
896 }
897
898 eqcr_pi = s->eqcr.pi;
899 num_enqueued = (s->eqcr.available < num_frames) ?
900 s->eqcr.available : num_frames;
901 s->eqcr.available -= num_enqueued;
902 /* Fill in the EQCR ring */
903 for (i = 0; i < num_enqueued; i++) {
904 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
905 cl = (uint32_t *)(&d[i]);
906 /* Skip copying the verb */
907 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
908 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
909 &fd[i], sizeof(*fd));
910 eqcr_pi++;
911 }
912
913 /* Set the verb byte, have to substitute in the valid-bit */
914 eqcr_pi = s->eqcr.pi;
915 for (i = 0; i < num_enqueued; i++) {
916 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
917 cl = (uint32_t *)(&d[i]);
918 p[0] = cl[0] | s->eqcr.pi_vb;
919 eqcr_pi++;
920 if (!(eqcr_pi & half_mask))
921 s->eqcr.pi_vb ^= QB_VALID_BIT;
922 }
923
924 s->eqcr.pi = eqcr_pi & full_mask;
925
926 dma_wmb();
927 qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
928 (QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
929
930 return num_enqueued;
931 }
932
933 /* Static (push) dequeue */
934
935 /**
936 * qbman_swp_push_get() - Get the push dequeue setup
937 * @s: the software portal object
938 * @channel_idx: the channel index to query
939 * @enabled: returned boolean to show whether the push dequeue is enabled
940 * for the given channel
941 */
qbman_swp_push_get(struct qbman_swp * s,u8 channel_idx,int * enabled)942 void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
943 {
944 u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
945
946 WARN_ON(channel_idx > 15);
947 *enabled = src | (1 << channel_idx);
948 }
949
950 /**
951 * qbman_swp_push_set() - Enable or disable push dequeue
952 * @s: the software portal object
953 * @channel_idx: the channel index (0 to 15)
954 * @enable: enable or disable push dequeue
955 */
qbman_swp_push_set(struct qbman_swp * s,u8 channel_idx,int enable)956 void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
957 {
958 u16 dqsrc;
959
960 WARN_ON(channel_idx > 15);
961 if (enable)
962 s->sdq |= 1 << channel_idx;
963 else
964 s->sdq &= ~(1 << channel_idx);
965
966 /* Read make the complete src map. If no channels are enabled
967 * the SDQCR must be 0 or else QMan will assert errors
968 */
969 dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
970 if (dqsrc != 0)
971 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
972 else
973 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
974 }
975
976 #define QB_VDQCR_VERB_DCT_SHIFT 0
977 #define QB_VDQCR_VERB_DT_SHIFT 2
978 #define QB_VDQCR_VERB_RLS_SHIFT 4
979 #define QB_VDQCR_VERB_WAE_SHIFT 5
980
981 enum qb_pull_dt_e {
982 qb_pull_dt_channel,
983 qb_pull_dt_workqueue,
984 qb_pull_dt_framequeue
985 };
986
987 /**
988 * qbman_pull_desc_clear() - Clear the contents of a descriptor to
989 * default/starting state
990 * @d: the pull dequeue descriptor to be cleared
991 */
qbman_pull_desc_clear(struct qbman_pull_desc * d)992 void qbman_pull_desc_clear(struct qbman_pull_desc *d)
993 {
994 memset(d, 0, sizeof(*d));
995 }
996
997 /**
998 * qbman_pull_desc_set_storage()- Set the pull dequeue storage
999 * @d: the pull dequeue descriptor to be set
1000 * @storage: the pointer of the memory to store the dequeue result
1001 * @storage_phys: the physical address of the storage memory
1002 * @stash: to indicate whether write allocate is enabled
1003 *
1004 * If not called, or if called with 'storage' as NULL, the result pull dequeues
1005 * will produce results to DQRR. If 'storage' is non-NULL, then results are
1006 * produced to the given memory location (using the DMA address which
1007 * the caller provides in 'storage_phys'), and 'stash' controls whether or not
1008 * those writes to main-memory express a cache-warming attribute.
1009 */
qbman_pull_desc_set_storage(struct qbman_pull_desc * d,struct dpaa2_dq * storage,dma_addr_t storage_phys,int stash)1010 void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
1011 struct dpaa2_dq *storage,
1012 dma_addr_t storage_phys,
1013 int stash)
1014 {
1015 /* save the virtual address */
1016 d->rsp_addr_virt = (u64)(uintptr_t)storage;
1017
1018 if (!storage) {
1019 d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
1020 return;
1021 }
1022 d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
1023 if (stash)
1024 d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
1025 else
1026 d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
1027
1028 d->rsp_addr = cpu_to_le64(storage_phys);
1029 }
1030
1031 /**
1032 * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
1033 * @d: the pull dequeue descriptor to be set
1034 * @numframes: number of frames to be set, must be between 1 and 16, inclusive
1035 */
qbman_pull_desc_set_numframes(struct qbman_pull_desc * d,u8 numframes)1036 void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
1037 {
1038 d->numf = numframes - 1;
1039 }
1040
1041 /*
1042 * Exactly one of the following descriptor "actions" should be set. (Calling any
1043 * one of these will replace the effect of any prior call to one of these.)
1044 * - pull dequeue from the given frame queue (FQ)
1045 * - pull dequeue from any FQ in the given work queue (WQ)
1046 * - pull dequeue from any FQ in any WQ in the given channel
1047 */
1048
1049 /**
1050 * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
1051 * @d: the pull dequeue descriptor to be set
1052 * @fqid: the frame queue index of the given FQ
1053 */
qbman_pull_desc_set_fq(struct qbman_pull_desc * d,u32 fqid)1054 void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
1055 {
1056 d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
1057 d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
1058 d->dq_src = cpu_to_le32(fqid);
1059 }
1060
1061 /**
1062 * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
1063 * @d: the pull dequeue descriptor to be set
1064 * @wqid: composed of channel id and wqid within the channel
1065 * @dct: the dequeue command type
1066 */
qbman_pull_desc_set_wq(struct qbman_pull_desc * d,u32 wqid,enum qbman_pull_type_e dct)1067 void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
1068 enum qbman_pull_type_e dct)
1069 {
1070 d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1071 d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
1072 d->dq_src = cpu_to_le32(wqid);
1073 }
1074
1075 /**
1076 * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
1077 * dequeues
1078 * @d: the pull dequeue descriptor to be set
1079 * @chid: the channel id to be dequeued
1080 * @dct: the dequeue command type
1081 */
qbman_pull_desc_set_channel(struct qbman_pull_desc * d,u32 chid,enum qbman_pull_type_e dct)1082 void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
1083 enum qbman_pull_type_e dct)
1084 {
1085 d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1086 d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
1087 d->dq_src = cpu_to_le32(chid);
1088 }
1089
1090 /**
1091 * qbman_swp_pull_direct() - Issue the pull dequeue command
1092 * @s: the software portal object
1093 * @d: the software portal descriptor which has been configured with
1094 * the set of qbman_pull_desc_set_*() calls
1095 *
1096 * Return 0 for success, and -EBUSY if the software portal is not ready
1097 * to do pull dequeue.
1098 */
1099 static
qbman_swp_pull_direct(struct qbman_swp * s,struct qbman_pull_desc * d)1100 int qbman_swp_pull_direct(struct qbman_swp *s, struct qbman_pull_desc *d)
1101 {
1102 struct qbman_pull_desc *p;
1103
1104 if (!atomic_dec_and_test(&s->vdq.available)) {
1105 atomic_inc(&s->vdq.available);
1106 return -EBUSY;
1107 }
1108 s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1109 if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1110 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1111 else
1112 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1113 p->numf = d->numf;
1114 p->tok = QMAN_DQ_TOKEN_VALID;
1115 p->dq_src = d->dq_src;
1116 p->rsp_addr = d->rsp_addr;
1117 p->rsp_addr_virt = d->rsp_addr_virt;
1118 dma_wmb();
1119 /* Set the verb byte, have to substitute in the valid-bit */
1120 p->verb = d->verb | s->vdq.valid_bit;
1121 s->vdq.valid_bit ^= QB_VALID_BIT;
1122
1123 return 0;
1124 }
1125
1126 /**
1127 * qbman_swp_pull_mem_back() - Issue the pull dequeue command
1128 * @s: the software portal object
1129 * @d: the software portal descriptor which has been configured with
1130 * the set of qbman_pull_desc_set_*() calls
1131 *
1132 * Return 0 for success, and -EBUSY if the software portal is not ready
1133 * to do pull dequeue.
1134 */
1135 static
qbman_swp_pull_mem_back(struct qbman_swp * s,struct qbman_pull_desc * d)1136 int qbman_swp_pull_mem_back(struct qbman_swp *s, struct qbman_pull_desc *d)
1137 {
1138 struct qbman_pull_desc *p;
1139
1140 if (!atomic_dec_and_test(&s->vdq.available)) {
1141 atomic_inc(&s->vdq.available);
1142 return -EBUSY;
1143 }
1144 s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1145 if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1146 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1147 else
1148 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1149 p->numf = d->numf;
1150 p->tok = QMAN_DQ_TOKEN_VALID;
1151 p->dq_src = d->dq_src;
1152 p->rsp_addr = d->rsp_addr;
1153 p->rsp_addr_virt = d->rsp_addr_virt;
1154
1155 /* Set the verb byte, have to substitute in the valid-bit */
1156 p->verb = d->verb | s->vdq.valid_bit;
1157 s->vdq.valid_bit ^= QB_VALID_BIT;
1158 dma_wmb();
1159 qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE);
1160
1161 return 0;
1162 }
1163
1164 #define QMAN_DQRR_PI_MASK 0xf
1165
1166 /**
1167 * qbman_swp_dqrr_next_direct() - Get an valid DQRR entry
1168 * @s: the software portal object
1169 *
1170 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1171 * only once, so repeated calls can return a sequence of DQRR entries, without
1172 * requiring they be consumed immediately or in any particular order.
1173 */
qbman_swp_dqrr_next_direct(struct qbman_swp * s)1174 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s)
1175 {
1176 u32 verb;
1177 u32 response_verb;
1178 u32 flags;
1179 struct dpaa2_dq *p;
1180
1181 /* Before using valid-bit to detect if something is there, we have to
1182 * handle the case of the DQRR reset bug...
1183 */
1184 if (unlikely(s->dqrr.reset_bug)) {
1185 /*
1186 * We pick up new entries by cache-inhibited producer index,
1187 * which means that a non-coherent mapping would require us to
1188 * invalidate and read *only* once that PI has indicated that
1189 * there's an entry here. The first trip around the DQRR ring
1190 * will be much less efficient than all subsequent trips around
1191 * it...
1192 */
1193 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1194 QMAN_DQRR_PI_MASK;
1195
1196 /* there are new entries if pi != next_idx */
1197 if (pi == s->dqrr.next_idx)
1198 return NULL;
1199
1200 /*
1201 * if next_idx is/was the last ring index, and 'pi' is
1202 * different, we can disable the workaround as all the ring
1203 * entries have now been DMA'd to so valid-bit checking is
1204 * repaired. Note: this logic needs to be based on next_idx
1205 * (which increments one at a time), rather than on pi (which
1206 * can burst and wrap-around between our snapshots of it).
1207 */
1208 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1209 pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1210 s->dqrr.next_idx, pi);
1211 s->dqrr.reset_bug = 0;
1212 }
1213 prefetch(qbman_get_cmd(s,
1214 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1215 }
1216
1217 p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
1218 verb = p->dq.verb;
1219
1220 /*
1221 * If the valid-bit isn't of the expected polarity, nothing there. Note,
1222 * in the DQRR reset bug workaround, we shouldn't need to skip these
1223 * check, because we've already determined that a new entry is available
1224 * and we've invalidated the cacheline before reading it, so the
1225 * valid-bit behaviour is repaired and should tell us what we already
1226 * knew from reading PI.
1227 */
1228 if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1229 prefetch(qbman_get_cmd(s,
1230 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1231 return NULL;
1232 }
1233 /*
1234 * There's something there. Move "next_idx" attention to the next ring
1235 * entry (and prefetch it) before returning what we found.
1236 */
1237 s->dqrr.next_idx++;
1238 s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1239 if (!s->dqrr.next_idx)
1240 s->dqrr.valid_bit ^= QB_VALID_BIT;
1241
1242 /*
1243 * If this is the final response to a volatile dequeue command
1244 * indicate that the vdq is available
1245 */
1246 flags = p->dq.stat;
1247 response_verb = verb & QBMAN_RESULT_MASK;
1248 if ((response_verb == QBMAN_RESULT_DQ) &&
1249 (flags & DPAA2_DQ_STAT_VOLATILE) &&
1250 (flags & DPAA2_DQ_STAT_EXPIRED))
1251 atomic_inc(&s->vdq.available);
1252
1253 prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1254
1255 return p;
1256 }
1257
1258 /**
1259 * qbman_swp_dqrr_next_mem_back() - Get an valid DQRR entry
1260 * @s: the software portal object
1261 *
1262 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1263 * only once, so repeated calls can return a sequence of DQRR entries, without
1264 * requiring they be consumed immediately or in any particular order.
1265 */
qbman_swp_dqrr_next_mem_back(struct qbman_swp * s)1266 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s)
1267 {
1268 u32 verb;
1269 u32 response_verb;
1270 u32 flags;
1271 struct dpaa2_dq *p;
1272
1273 /* Before using valid-bit to detect if something is there, we have to
1274 * handle the case of the DQRR reset bug...
1275 */
1276 if (unlikely(s->dqrr.reset_bug)) {
1277 /*
1278 * We pick up new entries by cache-inhibited producer index,
1279 * which means that a non-coherent mapping would require us to
1280 * invalidate and read *only* once that PI has indicated that
1281 * there's an entry here. The first trip around the DQRR ring
1282 * will be much less efficient than all subsequent trips around
1283 * it...
1284 */
1285 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1286 QMAN_DQRR_PI_MASK;
1287
1288 /* there are new entries if pi != next_idx */
1289 if (pi == s->dqrr.next_idx)
1290 return NULL;
1291
1292 /*
1293 * if next_idx is/was the last ring index, and 'pi' is
1294 * different, we can disable the workaround as all the ring
1295 * entries have now been DMA'd to so valid-bit checking is
1296 * repaired. Note: this logic needs to be based on next_idx
1297 * (which increments one at a time), rather than on pi (which
1298 * can burst and wrap-around between our snapshots of it).
1299 */
1300 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1301 pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1302 s->dqrr.next_idx, pi);
1303 s->dqrr.reset_bug = 0;
1304 }
1305 prefetch(qbman_get_cmd(s,
1306 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1307 }
1308
1309 p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx));
1310 verb = p->dq.verb;
1311
1312 /*
1313 * If the valid-bit isn't of the expected polarity, nothing there. Note,
1314 * in the DQRR reset bug workaround, we shouldn't need to skip these
1315 * check, because we've already determined that a new entry is available
1316 * and we've invalidated the cacheline before reading it, so the
1317 * valid-bit behaviour is repaired and should tell us what we already
1318 * knew from reading PI.
1319 */
1320 if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1321 prefetch(qbman_get_cmd(s,
1322 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1323 return NULL;
1324 }
1325 /*
1326 * There's something there. Move "next_idx" attention to the next ring
1327 * entry (and prefetch it) before returning what we found.
1328 */
1329 s->dqrr.next_idx++;
1330 s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1331 if (!s->dqrr.next_idx)
1332 s->dqrr.valid_bit ^= QB_VALID_BIT;
1333
1334 /*
1335 * If this is the final response to a volatile dequeue command
1336 * indicate that the vdq is available
1337 */
1338 flags = p->dq.stat;
1339 response_verb = verb & QBMAN_RESULT_MASK;
1340 if ((response_verb == QBMAN_RESULT_DQ) &&
1341 (flags & DPAA2_DQ_STAT_VOLATILE) &&
1342 (flags & DPAA2_DQ_STAT_EXPIRED))
1343 atomic_inc(&s->vdq.available);
1344
1345 prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1346
1347 return p;
1348 }
1349
1350 /**
1351 * qbman_swp_dqrr_consume() - Consume DQRR entries previously returned from
1352 * qbman_swp_dqrr_next().
1353 * @s: the software portal object
1354 * @dq: the DQRR entry to be consumed
1355 */
qbman_swp_dqrr_consume(struct qbman_swp * s,const struct dpaa2_dq * dq)1356 void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
1357 {
1358 qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
1359 }
1360
1361 /**
1362 * qbman_result_has_new_result() - Check and get the dequeue response from the
1363 * dq storage memory set in pull dequeue command
1364 * @s: the software portal object
1365 * @dq: the dequeue result read from the memory
1366 *
1367 * Return 1 for getting a valid dequeue result, or 0 for not getting a valid
1368 * dequeue result.
1369 *
1370 * Only used for user-provided storage of dequeue results, not DQRR. For
1371 * efficiency purposes, the driver will perform any required endianness
1372 * conversion to ensure that the user's dequeue result storage is in host-endian
1373 * format. As such, once the user has called qbman_result_has_new_result() and
1374 * been returned a valid dequeue result, they should not call it again on
1375 * the same memory location (except of course if another dequeue command has
1376 * been executed to produce a new result to that location).
1377 */
qbman_result_has_new_result(struct qbman_swp * s,const struct dpaa2_dq * dq)1378 int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
1379 {
1380 if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
1381 return 0;
1382
1383 /*
1384 * Set token to be 0 so we will detect change back to 1
1385 * next time the looping is traversed. Const is cast away here
1386 * as we want users to treat the dequeue responses as read only.
1387 */
1388 ((struct dpaa2_dq *)dq)->dq.tok = 0;
1389
1390 /*
1391 * Determine whether VDQCR is available based on whether the
1392 * current result is sitting in the first storage location of
1393 * the busy command.
1394 */
1395 if (s->vdq.storage == dq) {
1396 s->vdq.storage = NULL;
1397 atomic_inc(&s->vdq.available);
1398 }
1399
1400 return 1;
1401 }
1402
1403 /**
1404 * qbman_release_desc_clear() - Clear the contents of a descriptor to
1405 * default/starting state.
1406 * @d: the pull dequeue descriptor to be cleared
1407 */
qbman_release_desc_clear(struct qbman_release_desc * d)1408 void qbman_release_desc_clear(struct qbman_release_desc *d)
1409 {
1410 memset(d, 0, sizeof(*d));
1411 d->verb = 1 << 5; /* Release Command Valid */
1412 }
1413
1414 /**
1415 * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
1416 * @d: the pull dequeue descriptor to be set
1417 * @bpid: the bpid value to be set
1418 */
qbman_release_desc_set_bpid(struct qbman_release_desc * d,u16 bpid)1419 void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
1420 {
1421 d->bpid = cpu_to_le16(bpid);
1422 }
1423
1424 /**
1425 * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
1426 * interrupt source should be asserted after the release command is completed.
1427 * @d: the pull dequeue descriptor to be set
1428 * @enable: enable (1) or disable (0) value
1429 */
qbman_release_desc_set_rcdi(struct qbman_release_desc * d,int enable)1430 void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
1431 {
1432 if (enable)
1433 d->verb |= 1 << 6;
1434 else
1435 d->verb &= ~(1 << 6);
1436 }
1437
1438 #define RAR_IDX(rar) ((rar) & 0x7)
1439 #define RAR_VB(rar) ((rar) & 0x80)
1440 #define RAR_SUCCESS(rar) ((rar) & 0x100)
1441
1442 /**
1443 * qbman_swp_release_direct() - Issue a buffer release command
1444 * @s: the software portal object
1445 * @d: the release descriptor
1446 * @buffers: a pointer pointing to the buffer address to be released
1447 * @num_buffers: number of buffers to be released, must be less than 8
1448 *
1449 * Return 0 for success, -EBUSY if the release command ring is not ready.
1450 */
qbman_swp_release_direct(struct qbman_swp * s,const struct qbman_release_desc * d,const u64 * buffers,unsigned int num_buffers)1451 int qbman_swp_release_direct(struct qbman_swp *s,
1452 const struct qbman_release_desc *d,
1453 const u64 *buffers, unsigned int num_buffers)
1454 {
1455 int i;
1456 struct qbman_release_desc *p;
1457 u32 rar;
1458
1459 if (!num_buffers || (num_buffers > 7))
1460 return -EINVAL;
1461
1462 rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1463 if (!RAR_SUCCESS(rar))
1464 return -EBUSY;
1465
1466 /* Start the release command */
1467 p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
1468
1469 /* Copy the caller's buffer pointers to the command */
1470 for (i = 0; i < num_buffers; i++)
1471 p->buf[i] = cpu_to_le64(buffers[i]);
1472 p->bpid = d->bpid;
1473
1474 /*
1475 * Set the verb byte, have to substitute in the valid-bit
1476 * and the number of buffers.
1477 */
1478 dma_wmb();
1479 p->verb = d->verb | RAR_VB(rar) | num_buffers;
1480
1481 return 0;
1482 }
1483
1484 /**
1485 * qbman_swp_release_mem_back() - Issue a buffer release command
1486 * @s: the software portal object
1487 * @d: the release descriptor
1488 * @buffers: a pointer pointing to the buffer address to be released
1489 * @num_buffers: number of buffers to be released, must be less than 8
1490 *
1491 * Return 0 for success, -EBUSY if the release command ring is not ready.
1492 */
qbman_swp_release_mem_back(struct qbman_swp * s,const struct qbman_release_desc * d,const u64 * buffers,unsigned int num_buffers)1493 int qbman_swp_release_mem_back(struct qbman_swp *s,
1494 const struct qbman_release_desc *d,
1495 const u64 *buffers, unsigned int num_buffers)
1496 {
1497 int i;
1498 struct qbman_release_desc *p;
1499 u32 rar;
1500
1501 if (!num_buffers || (num_buffers > 7))
1502 return -EINVAL;
1503
1504 rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1505 if (!RAR_SUCCESS(rar))
1506 return -EBUSY;
1507
1508 /* Start the release command */
1509 p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar)));
1510
1511 /* Copy the caller's buffer pointers to the command */
1512 for (i = 0; i < num_buffers; i++)
1513 p->buf[i] = cpu_to_le64(buffers[i]);
1514 p->bpid = d->bpid;
1515
1516 p->verb = d->verb | RAR_VB(rar) | num_buffers;
1517 dma_wmb();
1518 qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT +
1519 RAR_IDX(rar) * 4, QMAN_RT_MODE);
1520
1521 return 0;
1522 }
1523
1524 struct qbman_acquire_desc {
1525 u8 verb;
1526 u8 reserved;
1527 __le16 bpid;
1528 u8 num;
1529 u8 reserved2[59];
1530 };
1531
1532 struct qbman_acquire_rslt {
1533 u8 verb;
1534 u8 rslt;
1535 __le16 reserved;
1536 u8 num;
1537 u8 reserved2[3];
1538 __le64 buf[7];
1539 };
1540
1541 /**
1542 * qbman_swp_acquire() - Issue a buffer acquire command
1543 * @s: the software portal object
1544 * @bpid: the buffer pool index
1545 * @buffers: a pointer pointing to the acquired buffer addresses
1546 * @num_buffers: number of buffers to be acquired, must be less than 8
1547 *
1548 * Return 0 for success, or negative error code if the acquire command
1549 * fails.
1550 */
qbman_swp_acquire(struct qbman_swp * s,u16 bpid,u64 * buffers,unsigned int num_buffers)1551 int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
1552 unsigned int num_buffers)
1553 {
1554 struct qbman_acquire_desc *p;
1555 struct qbman_acquire_rslt *r;
1556 int i;
1557
1558 if (!num_buffers || (num_buffers > 7))
1559 return -EINVAL;
1560
1561 /* Start the management command */
1562 p = qbman_swp_mc_start(s);
1563
1564 if (!p)
1565 return -EBUSY;
1566
1567 /* Encode the caller-provided attributes */
1568 p->bpid = cpu_to_le16(bpid);
1569 p->num = num_buffers;
1570
1571 /* Complete the management command */
1572 r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
1573 if (unlikely(!r)) {
1574 pr_err("qbman: acquire from BPID %d failed, no response\n",
1575 bpid);
1576 return -EIO;
1577 }
1578
1579 /* Decode the outcome */
1580 WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
1581
1582 /* Determine success or failure */
1583 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1584 pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
1585 bpid, r->rslt);
1586 return -EIO;
1587 }
1588
1589 WARN_ON(r->num > num_buffers);
1590
1591 /* Copy the acquired buffers to the caller's array */
1592 for (i = 0; i < r->num; i++)
1593 buffers[i] = le64_to_cpu(r->buf[i]);
1594
1595 return (int)r->num;
1596 }
1597
1598 struct qbman_alt_fq_state_desc {
1599 u8 verb;
1600 u8 reserved[3];
1601 __le32 fqid;
1602 u8 reserved2[56];
1603 };
1604
1605 struct qbman_alt_fq_state_rslt {
1606 u8 verb;
1607 u8 rslt;
1608 u8 reserved[62];
1609 };
1610
1611 #define ALT_FQ_FQID_MASK 0x00FFFFFF
1612
qbman_swp_alt_fq_state(struct qbman_swp * s,u32 fqid,u8 alt_fq_verb)1613 int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
1614 u8 alt_fq_verb)
1615 {
1616 struct qbman_alt_fq_state_desc *p;
1617 struct qbman_alt_fq_state_rslt *r;
1618
1619 /* Start the management command */
1620 p = qbman_swp_mc_start(s);
1621 if (!p)
1622 return -EBUSY;
1623
1624 p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
1625
1626 /* Complete the management command */
1627 r = qbman_swp_mc_complete(s, p, alt_fq_verb);
1628 if (unlikely(!r)) {
1629 pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
1630 alt_fq_verb);
1631 return -EIO;
1632 }
1633
1634 /* Decode the outcome */
1635 WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
1636
1637 /* Determine success or failure */
1638 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1639 pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
1640 fqid, r->verb, r->rslt);
1641 return -EIO;
1642 }
1643
1644 return 0;
1645 }
1646
1647 struct qbman_cdan_ctrl_desc {
1648 u8 verb;
1649 u8 reserved;
1650 __le16 ch;
1651 u8 we;
1652 u8 ctrl;
1653 __le16 reserved2;
1654 __le64 cdan_ctx;
1655 u8 reserved3[48];
1656
1657 };
1658
1659 struct qbman_cdan_ctrl_rslt {
1660 u8 verb;
1661 u8 rslt;
1662 __le16 ch;
1663 u8 reserved[60];
1664 };
1665
qbman_swp_CDAN_set(struct qbman_swp * s,u16 channelid,u8 we_mask,u8 cdan_en,u64 ctx)1666 int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
1667 u8 we_mask, u8 cdan_en,
1668 u64 ctx)
1669 {
1670 struct qbman_cdan_ctrl_desc *p = NULL;
1671 struct qbman_cdan_ctrl_rslt *r = NULL;
1672
1673 /* Start the management command */
1674 p = qbman_swp_mc_start(s);
1675 if (!p)
1676 return -EBUSY;
1677
1678 /* Encode the caller-provided attributes */
1679 p->ch = cpu_to_le16(channelid);
1680 p->we = we_mask;
1681 if (cdan_en)
1682 p->ctrl = 1;
1683 else
1684 p->ctrl = 0;
1685 p->cdan_ctx = cpu_to_le64(ctx);
1686
1687 /* Complete the management command */
1688 r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
1689 if (unlikely(!r)) {
1690 pr_err("qbman: wqchan config failed, no response\n");
1691 return -EIO;
1692 }
1693
1694 WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
1695
1696 /* Determine success or failure */
1697 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1698 pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
1699 channelid, r->rslt);
1700 return -EIO;
1701 }
1702
1703 return 0;
1704 }
1705
1706 #define QBMAN_RESPONSE_VERB_MASK 0x7f
1707 #define QBMAN_FQ_QUERY_NP 0x45
1708 #define QBMAN_BP_QUERY 0x32
1709
1710 struct qbman_fq_query_desc {
1711 u8 verb;
1712 u8 reserved[3];
1713 __le32 fqid;
1714 u8 reserved2[56];
1715 };
1716
qbman_fq_query_state(struct qbman_swp * s,u32 fqid,struct qbman_fq_query_np_rslt * r)1717 int qbman_fq_query_state(struct qbman_swp *s, u32 fqid,
1718 struct qbman_fq_query_np_rslt *r)
1719 {
1720 struct qbman_fq_query_desc *p;
1721 void *resp;
1722
1723 p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s);
1724 if (!p)
1725 return -EBUSY;
1726
1727 /* FQID is a 24 bit value */
1728 p->fqid = cpu_to_le32(fqid & 0x00FFFFFF);
1729 resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP);
1730 if (!resp) {
1731 pr_err("qbman: Query FQID %d NP fields failed, no response\n",
1732 fqid);
1733 return -EIO;
1734 }
1735 *r = *(struct qbman_fq_query_np_rslt *)resp;
1736 /* Decode the outcome */
1737 WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP);
1738
1739 /* Determine success or failure */
1740 if (r->rslt != QBMAN_MC_RSLT_OK) {
1741 pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n",
1742 p->fqid, r->rslt);
1743 return -EIO;
1744 }
1745
1746 return 0;
1747 }
1748
qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt * r)1749 u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r)
1750 {
1751 return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF);
1752 }
1753
qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt * r)1754 u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r)
1755 {
1756 return le32_to_cpu(r->byte_cnt);
1757 }
1758
1759 struct qbman_bp_query_desc {
1760 u8 verb;
1761 u8 reserved;
1762 __le16 bpid;
1763 u8 reserved2[60];
1764 };
1765
qbman_bp_query(struct qbman_swp * s,u16 bpid,struct qbman_bp_query_rslt * r)1766 int qbman_bp_query(struct qbman_swp *s, u16 bpid,
1767 struct qbman_bp_query_rslt *r)
1768 {
1769 struct qbman_bp_query_desc *p;
1770 void *resp;
1771
1772 p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s);
1773 if (!p)
1774 return -EBUSY;
1775
1776 p->bpid = cpu_to_le16(bpid);
1777 resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY);
1778 if (!resp) {
1779 pr_err("qbman: Query BPID %d fields failed, no response\n",
1780 bpid);
1781 return -EIO;
1782 }
1783 *r = *(struct qbman_bp_query_rslt *)resp;
1784 /* Decode the outcome */
1785 WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY);
1786
1787 /* Determine success or failure */
1788 if (r->rslt != QBMAN_MC_RSLT_OK) {
1789 pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n",
1790 bpid, r->rslt);
1791 return -EIO;
1792 }
1793
1794 return 0;
1795 }
1796
qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt * a)1797 u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a)
1798 {
1799 return le32_to_cpu(a->fill);
1800 }
1801
1802 /**
1803 * qbman_swp_set_irq_coalescing() - Set new IRQ coalescing values
1804 * @p: the software portal object
1805 * @irq_threshold: interrupt threshold
1806 * @irq_holdoff: interrupt holdoff (timeout) period in us
1807 *
1808 * Return 0 for success, or negative error code on error.
1809 */
qbman_swp_set_irq_coalescing(struct qbman_swp * p,u32 irq_threshold,u32 irq_holdoff)1810 int qbman_swp_set_irq_coalescing(struct qbman_swp *p, u32 irq_threshold,
1811 u32 irq_holdoff)
1812 {
1813 u32 itp, max_holdoff;
1814
1815 /* Convert irq_holdoff value from usecs to 256 QBMAN clock cycles
1816 * increments. This depends on the QBMAN internal frequency.
1817 */
1818 itp = (irq_holdoff * 1000) / p->desc->qman_256_cycles_per_ns;
1819 if (itp > 4096) {
1820 max_holdoff = (p->desc->qman_256_cycles_per_ns * 4096) / 1000;
1821 pr_err("irq_holdoff must be <= %uus\n", max_holdoff);
1822 return -EINVAL;
1823 }
1824
1825 if (irq_threshold >= p->dqrr.dqrr_size) {
1826 pr_err("irq_threshold must be < %u\n", p->dqrr.dqrr_size - 1);
1827 return -EINVAL;
1828 }
1829
1830 p->irq_threshold = irq_threshold;
1831 p->irq_holdoff = irq_holdoff;
1832
1833 qbman_write_register(p, QBMAN_CINH_SWP_DQRR_ITR, irq_threshold);
1834 qbman_write_register(p, QBMAN_CINH_SWP_ITPR, itp);
1835
1836 return 0;
1837 }
1838
1839 /**
1840 * qbman_swp_get_irq_coalescing() - Get the current IRQ coalescing parameters
1841 * @p: the software portal object
1842 * @irq_threshold: interrupt threshold (an IRQ is generated when there are more
1843 * DQRR entries in the portal than the threshold)
1844 * @irq_holdoff: interrupt holdoff (timeout) period in us
1845 */
qbman_swp_get_irq_coalescing(struct qbman_swp * p,u32 * irq_threshold,u32 * irq_holdoff)1846 void qbman_swp_get_irq_coalescing(struct qbman_swp *p, u32 *irq_threshold,
1847 u32 *irq_holdoff)
1848 {
1849 if (irq_threshold)
1850 *irq_threshold = p->irq_threshold;
1851 if (irq_holdoff)
1852 *irq_holdoff = p->irq_holdoff;
1853 }
1854