1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright(c) 2020 Intel Corporation.
4 */
5 #include <linux/workqueue.h>
6 #include "intel_pxp.h"
7 #include "intel_pxp_irq.h"
8 #include "intel_pxp_session.h"
9 #include "intel_pxp_tee.h"
10 #include "gem/i915_gem_context.h"
11 #include "gt/intel_context.h"
12 #include "i915_drv.h"
13
14 /**
15 * DOC: PXP
16 *
17 * PXP (Protected Xe Path) is a feature available in Gen12 and newer platforms.
18 * It allows execution and flip to display of protected (i.e. encrypted)
19 * objects. The SW support is enabled via the CONFIG_DRM_I915_PXP kconfig.
20 *
21 * Objects can opt-in to PXP encryption at creation time via the
22 * I915_GEM_CREATE_EXT_PROTECTED_CONTENT create_ext flag. For objects to be
23 * correctly protected they must be used in conjunction with a context created
24 * with the I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. See the documentation
25 * of those two uapi flags for details and restrictions.
26 *
27 * Protected objects are tied to a pxp session; currently we only support one
28 * session, which i915 manages and whose index is available in the uapi
29 * (I915_PROTECTED_CONTENT_DEFAULT_SESSION) for use in instructions targeting
30 * protected objects.
31 * The session is invalidated by the HW when certain events occur (e.g.
32 * suspend/resume). When this happens, all the objects that were used with the
33 * session are marked as invalid and all contexts marked as using protected
34 * content are banned. Any further attempt at using them in an execbuf call is
35 * rejected, while flips are converted to black frames.
36 *
37 * Some of the PXP setup operations are performed by the Management Engine,
38 * which is handled by the mei driver; communication between i915 and mei is
39 * performed via the mei_pxp component module.
40 */
41
pxp_to_gt(const struct intel_pxp * pxp)42 struct intel_gt *pxp_to_gt(const struct intel_pxp *pxp)
43 {
44 return container_of(pxp, struct intel_gt, pxp);
45 }
46
intel_pxp_is_enabled(const struct intel_pxp * pxp)47 bool intel_pxp_is_enabled(const struct intel_pxp *pxp)
48 {
49 return pxp->ce;
50 }
51
intel_pxp_is_active(const struct intel_pxp * pxp)52 bool intel_pxp_is_active(const struct intel_pxp *pxp)
53 {
54 return pxp->arb_is_valid;
55 }
56
57 /* KCR register definitions */
58 #define KCR_INIT _MMIO(0x320f0)
59 /* Setting KCR Init bit is required after system boot */
60 #define KCR_INIT_ALLOW_DISPLAY_ME_WRITES REG_BIT(14)
61
kcr_pxp_enable(struct intel_gt * gt)62 static void kcr_pxp_enable(struct intel_gt *gt)
63 {
64 intel_uncore_write(gt->uncore, KCR_INIT,
65 _MASKED_BIT_ENABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES));
66 }
67
kcr_pxp_disable(struct intel_gt * gt)68 static void kcr_pxp_disable(struct intel_gt *gt)
69 {
70 intel_uncore_write(gt->uncore, KCR_INIT,
71 _MASKED_BIT_DISABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES));
72 }
73
create_vcs_context(struct intel_pxp * pxp)74 static int create_vcs_context(struct intel_pxp *pxp)
75 {
76 static struct lock_class_key pxp_lock;
77 struct intel_gt *gt = pxp_to_gt(pxp);
78 struct intel_engine_cs *engine;
79 struct intel_context *ce;
80 int i;
81
82 /*
83 * Find the first VCS engine present. We're guaranteed there is one
84 * if we're in this function due to the check in has_pxp
85 */
86 for (i = 0, engine = NULL; !engine; i++)
87 engine = gt->engine_class[VIDEO_DECODE_CLASS][i];
88
89 GEM_BUG_ON(!engine || engine->class != VIDEO_DECODE_CLASS);
90
91 ce = intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
92 I915_GEM_HWS_PXP_ADDR,
93 &pxp_lock, "pxp_context");
94 if (IS_ERR(ce)) {
95 drm_err(>->i915->drm, "failed to create VCS ctx for PXP\n");
96 return PTR_ERR(ce);
97 }
98
99 pxp->ce = ce;
100
101 return 0;
102 }
103
destroy_vcs_context(struct intel_pxp * pxp)104 static void destroy_vcs_context(struct intel_pxp *pxp)
105 {
106 intel_engine_destroy_pinned_context(fetch_and_zero(&pxp->ce));
107 }
108
intel_pxp_init(struct intel_pxp * pxp)109 void intel_pxp_init(struct intel_pxp *pxp)
110 {
111 struct intel_gt *gt = pxp_to_gt(pxp);
112 int ret;
113
114 if (!HAS_PXP(gt->i915))
115 return;
116
117 mutex_init(&pxp->tee_mutex);
118
119 /*
120 * we'll use the completion to check if there is a termination pending,
121 * so we start it as completed and we reinit it when a termination
122 * is triggered.
123 */
124 init_completion(&pxp->termination);
125 complete_all(&pxp->termination);
126
127 mutex_init(&pxp->arb_mutex);
128 INIT_WORK(&pxp->session_work, intel_pxp_session_work);
129
130 ret = create_vcs_context(pxp);
131 if (ret)
132 return;
133
134 ret = intel_pxp_tee_component_init(pxp);
135 if (ret)
136 goto out_context;
137
138 drm_info(>->i915->drm, "Protected Xe Path (PXP) protected content support initialized\n");
139
140 return;
141
142 out_context:
143 destroy_vcs_context(pxp);
144 }
145
intel_pxp_fini(struct intel_pxp * pxp)146 void intel_pxp_fini(struct intel_pxp *pxp)
147 {
148 if (!intel_pxp_is_enabled(pxp))
149 return;
150
151 pxp->arb_is_valid = false;
152
153 intel_pxp_tee_component_fini(pxp);
154
155 destroy_vcs_context(pxp);
156 }
157
intel_pxp_mark_termination_in_progress(struct intel_pxp * pxp)158 void intel_pxp_mark_termination_in_progress(struct intel_pxp *pxp)
159 {
160 pxp->arb_is_valid = false;
161 reinit_completion(&pxp->termination);
162 }
163
pxp_queue_termination(struct intel_pxp * pxp)164 static void pxp_queue_termination(struct intel_pxp *pxp)
165 {
166 struct intel_gt *gt = pxp_to_gt(pxp);
167
168 /*
169 * We want to get the same effect as if we received a termination
170 * interrupt, so just pretend that we did.
171 */
172 spin_lock_irq(gt->irq_lock);
173 intel_pxp_mark_termination_in_progress(pxp);
174 pxp->session_events |= PXP_TERMINATION_REQUEST;
175 queue_work(system_unbound_wq, &pxp->session_work);
176 spin_unlock_irq(gt->irq_lock);
177 }
178
pxp_component_bound(struct intel_pxp * pxp)179 static bool pxp_component_bound(struct intel_pxp *pxp)
180 {
181 bool bound = false;
182
183 mutex_lock(&pxp->tee_mutex);
184 if (pxp->pxp_component)
185 bound = true;
186 mutex_unlock(&pxp->tee_mutex);
187
188 return bound;
189 }
190
191 /*
192 * the arb session is restarted from the irq work when we receive the
193 * termination completion interrupt
194 */
intel_pxp_start(struct intel_pxp * pxp)195 int intel_pxp_start(struct intel_pxp *pxp)
196 {
197 int ret = 0;
198
199 if (!intel_pxp_is_enabled(pxp))
200 return -ENODEV;
201
202 if (wait_for(pxp_component_bound(pxp), 250))
203 return -ENXIO;
204
205 mutex_lock(&pxp->arb_mutex);
206
207 if (pxp->arb_is_valid)
208 goto unlock;
209
210 pxp_queue_termination(pxp);
211
212 if (!wait_for_completion_timeout(&pxp->termination,
213 msecs_to_jiffies(250))) {
214 ret = -ETIMEDOUT;
215 goto unlock;
216 }
217
218 /* make sure the compiler doesn't optimize the double access */
219 barrier();
220
221 if (!pxp->arb_is_valid)
222 ret = -EIO;
223
224 unlock:
225 mutex_unlock(&pxp->arb_mutex);
226 return ret;
227 }
228
intel_pxp_init_hw(struct intel_pxp * pxp)229 void intel_pxp_init_hw(struct intel_pxp *pxp)
230 {
231 kcr_pxp_enable(pxp_to_gt(pxp));
232 intel_pxp_irq_enable(pxp);
233 }
234
intel_pxp_fini_hw(struct intel_pxp * pxp)235 void intel_pxp_fini_hw(struct intel_pxp *pxp)
236 {
237 kcr_pxp_disable(pxp_to_gt(pxp));
238
239 intel_pxp_irq_disable(pxp);
240 }
241
intel_pxp_key_check(struct intel_pxp * pxp,struct drm_i915_gem_object * obj,bool assign)242 int intel_pxp_key_check(struct intel_pxp *pxp,
243 struct drm_i915_gem_object *obj,
244 bool assign)
245 {
246 if (!intel_pxp_is_active(pxp))
247 return -ENODEV;
248
249 if (!i915_gem_object_is_protected(obj))
250 return -EINVAL;
251
252 GEM_BUG_ON(!pxp->key_instance);
253
254 /*
255 * If this is the first time we're using this object, it's not
256 * encrypted yet; it will be encrypted with the current key, so mark it
257 * as such. If the object is already encrypted, check instead if the
258 * used key is still valid.
259 */
260 if (!obj->pxp_key_instance && assign)
261 obj->pxp_key_instance = pxp->key_instance;
262
263 if (obj->pxp_key_instance != pxp->key_instance)
264 return -ENOEXEC;
265
266 return 0;
267 }
268
intel_pxp_invalidate(struct intel_pxp * pxp)269 void intel_pxp_invalidate(struct intel_pxp *pxp)
270 {
271 struct drm_i915_private *i915 = pxp_to_gt(pxp)->i915;
272 struct i915_gem_context *ctx, *cn;
273
274 /* ban all contexts marked as protected */
275 spin_lock_irq(&i915->gem.contexts.lock);
276 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
277 struct i915_gem_engines_iter it;
278 struct intel_context *ce;
279
280 if (!kref_get_unless_zero(&ctx->ref))
281 continue;
282
283 if (likely(!i915_gem_context_uses_protected_content(ctx))) {
284 i915_gem_context_put(ctx);
285 continue;
286 }
287
288 spin_unlock_irq(&i915->gem.contexts.lock);
289
290 /*
291 * By the time we get here we are either going to suspend with
292 * quiesced execution or the HW keys are already long gone and
293 * in this case it is worthless to attempt to close the context
294 * and wait for its execution. It will hang the GPU if it has
295 * not already. So, as a fast mitigation, we can ban the
296 * context as quick as we can. That might race with the
297 * execbuffer, but currently this is the best that can be done.
298 */
299 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it)
300 intel_context_ban(ce, NULL);
301 i915_gem_context_unlock_engines(ctx);
302
303 /*
304 * The context has been banned, no need to keep the wakeref.
305 * This is safe from races because the only other place this
306 * is touched is context_release and we're holding a ctx ref
307 */
308 if (ctx->pxp_wakeref) {
309 intel_runtime_pm_put(&i915->runtime_pm,
310 ctx->pxp_wakeref);
311 ctx->pxp_wakeref = 0;
312 }
313
314 spin_lock_irq(&i915->gem.contexts.lock);
315 list_safe_reset_next(ctx, cn, link);
316 i915_gem_context_put(ctx);
317 }
318 spin_unlock_irq(&i915->gem.contexts.lock);
319 }
320