1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40
41 #include "internal.h"
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45
46 /* How many pages do we try to swap or page in/out together? */
47 int page_cluster;
48
49 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
50 struct lru_rotate {
51 local_lock_t lock;
52 struct pagevec pvec;
53 };
54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55 .lock = INIT_LOCAL_LOCK(lock),
56 };
57
58 /*
59 * The following struct pagevec are grouped together because they are protected
60 * by disabling preemption (and interrupts remain enabled).
61 */
62 struct lru_pvecs {
63 local_lock_t lock;
64 struct pagevec lru_add;
65 struct pagevec lru_deactivate_file;
66 struct pagevec lru_deactivate;
67 struct pagevec lru_lazyfree;
68 #ifdef CONFIG_SMP
69 struct pagevec activate_page;
70 #endif
71 };
72 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
73 .lock = INIT_LOCAL_LOCK(lock),
74 };
75
76 /*
77 * This path almost never happens for VM activity - pages are normally freed
78 * via pagevecs. But it gets used by networking - and for compound pages.
79 */
__page_cache_release(struct page * page)80 static void __page_cache_release(struct page *page)
81 {
82 if (PageLRU(page)) {
83 struct folio *folio = page_folio(page);
84 struct lruvec *lruvec;
85 unsigned long flags;
86
87 lruvec = folio_lruvec_lock_irqsave(folio, &flags);
88 del_page_from_lru_list(page, lruvec);
89 __clear_page_lru_flags(page);
90 unlock_page_lruvec_irqrestore(lruvec, flags);
91 }
92 /* See comment on PageMlocked in release_pages() */
93 if (unlikely(PageMlocked(page))) {
94 int nr_pages = thp_nr_pages(page);
95
96 __ClearPageMlocked(page);
97 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
98 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
99 }
100 }
101
__put_single_page(struct page * page)102 static void __put_single_page(struct page *page)
103 {
104 __page_cache_release(page);
105 mem_cgroup_uncharge(page_folio(page));
106 free_unref_page(page, 0);
107 }
108
__put_compound_page(struct page * page)109 static void __put_compound_page(struct page *page)
110 {
111 /*
112 * __page_cache_release() is supposed to be called for thp, not for
113 * hugetlb. This is because hugetlb page does never have PageLRU set
114 * (it's never listed to any LRU lists) and no memcg routines should
115 * be called for hugetlb (it has a separate hugetlb_cgroup.)
116 */
117 if (!PageHuge(page))
118 __page_cache_release(page);
119 destroy_compound_page(page);
120 }
121
__put_page(struct page * page)122 void __put_page(struct page *page)
123 {
124 if (unlikely(is_zone_device_page(page)))
125 free_zone_device_page(page);
126 else if (unlikely(PageCompound(page)))
127 __put_compound_page(page);
128 else
129 __put_single_page(page);
130 }
131 EXPORT_SYMBOL(__put_page);
132
133 /**
134 * put_pages_list() - release a list of pages
135 * @pages: list of pages threaded on page->lru
136 *
137 * Release a list of pages which are strung together on page.lru.
138 */
put_pages_list(struct list_head * pages)139 void put_pages_list(struct list_head *pages)
140 {
141 struct page *page, *next;
142
143 list_for_each_entry_safe(page, next, pages, lru) {
144 if (!put_page_testzero(page)) {
145 list_del(&page->lru);
146 continue;
147 }
148 if (PageHead(page)) {
149 list_del(&page->lru);
150 __put_compound_page(page);
151 continue;
152 }
153 /* Cannot be PageLRU because it's passed to us using the lru */
154 }
155
156 free_unref_page_list(pages);
157 INIT_LIST_HEAD(pages);
158 }
159 EXPORT_SYMBOL(put_pages_list);
160
161 /*
162 * get_kernel_pages() - pin kernel pages in memory
163 * @kiov: An array of struct kvec structures
164 * @nr_segs: number of segments to pin
165 * @write: pinning for read/write, currently ignored
166 * @pages: array that receives pointers to the pages pinned.
167 * Should be at least nr_segs long.
168 *
169 * Returns number of pages pinned. This may be fewer than the number requested.
170 * If nr_segs is 0 or negative, returns 0. If no pages were pinned, returns 0.
171 * Each page returned must be released with a put_page() call when it is
172 * finished with.
173 */
get_kernel_pages(const struct kvec * kiov,int nr_segs,int write,struct page ** pages)174 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
175 struct page **pages)
176 {
177 int seg;
178
179 for (seg = 0; seg < nr_segs; seg++) {
180 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
181 return seg;
182
183 pages[seg] = kmap_to_page(kiov[seg].iov_base);
184 get_page(pages[seg]);
185 }
186
187 return seg;
188 }
189 EXPORT_SYMBOL_GPL(get_kernel_pages);
190
pagevec_lru_move_fn(struct pagevec * pvec,void (* move_fn)(struct page * page,struct lruvec * lruvec))191 static void pagevec_lru_move_fn(struct pagevec *pvec,
192 void (*move_fn)(struct page *page, struct lruvec *lruvec))
193 {
194 int i;
195 struct lruvec *lruvec = NULL;
196 unsigned long flags = 0;
197
198 for (i = 0; i < pagevec_count(pvec); i++) {
199 struct page *page = pvec->pages[i];
200 struct folio *folio = page_folio(page);
201
202 /* block memcg migration during page moving between lru */
203 if (!TestClearPageLRU(page))
204 continue;
205
206 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
207 (*move_fn)(page, lruvec);
208
209 SetPageLRU(page);
210 }
211 if (lruvec)
212 unlock_page_lruvec_irqrestore(lruvec, flags);
213 release_pages(pvec->pages, pvec->nr);
214 pagevec_reinit(pvec);
215 }
216
pagevec_move_tail_fn(struct page * page,struct lruvec * lruvec)217 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
218 {
219 struct folio *folio = page_folio(page);
220
221 if (!folio_test_unevictable(folio)) {
222 lruvec_del_folio(lruvec, folio);
223 folio_clear_active(folio);
224 lruvec_add_folio_tail(lruvec, folio);
225 __count_vm_events(PGROTATED, folio_nr_pages(folio));
226 }
227 }
228
229 /* return true if pagevec needs to drain */
pagevec_add_and_need_flush(struct pagevec * pvec,struct page * page)230 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
231 {
232 bool ret = false;
233
234 if (!pagevec_add(pvec, page) || PageCompound(page) ||
235 lru_cache_disabled())
236 ret = true;
237
238 return ret;
239 }
240
241 /*
242 * Writeback is about to end against a folio which has been marked for
243 * immediate reclaim. If it still appears to be reclaimable, move it
244 * to the tail of the inactive list.
245 *
246 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
247 */
folio_rotate_reclaimable(struct folio * folio)248 void folio_rotate_reclaimable(struct folio *folio)
249 {
250 if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
251 !folio_test_unevictable(folio) && folio_test_lru(folio)) {
252 struct pagevec *pvec;
253 unsigned long flags;
254
255 folio_get(folio);
256 local_lock_irqsave(&lru_rotate.lock, flags);
257 pvec = this_cpu_ptr(&lru_rotate.pvec);
258 if (pagevec_add_and_need_flush(pvec, &folio->page))
259 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
260 local_unlock_irqrestore(&lru_rotate.lock, flags);
261 }
262 }
263
lru_note_cost(struct lruvec * lruvec,bool file,unsigned int nr_pages)264 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
265 {
266 do {
267 unsigned long lrusize;
268
269 /*
270 * Hold lruvec->lru_lock is safe here, since
271 * 1) The pinned lruvec in reclaim, or
272 * 2) From a pre-LRU page during refault (which also holds the
273 * rcu lock, so would be safe even if the page was on the LRU
274 * and could move simultaneously to a new lruvec).
275 */
276 spin_lock_irq(&lruvec->lru_lock);
277 /* Record cost event */
278 if (file)
279 lruvec->file_cost += nr_pages;
280 else
281 lruvec->anon_cost += nr_pages;
282
283 /*
284 * Decay previous events
285 *
286 * Because workloads change over time (and to avoid
287 * overflow) we keep these statistics as a floating
288 * average, which ends up weighing recent refaults
289 * more than old ones.
290 */
291 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
292 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
293 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
294 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
295
296 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
297 lruvec->file_cost /= 2;
298 lruvec->anon_cost /= 2;
299 }
300 spin_unlock_irq(&lruvec->lru_lock);
301 } while ((lruvec = parent_lruvec(lruvec)));
302 }
303
lru_note_cost_folio(struct folio * folio)304 void lru_note_cost_folio(struct folio *folio)
305 {
306 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
307 folio_nr_pages(folio));
308 }
309
__folio_activate(struct folio * folio,struct lruvec * lruvec)310 static void __folio_activate(struct folio *folio, struct lruvec *lruvec)
311 {
312 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
313 long nr_pages = folio_nr_pages(folio);
314
315 lruvec_del_folio(lruvec, folio);
316 folio_set_active(folio);
317 lruvec_add_folio(lruvec, folio);
318 trace_mm_lru_activate(folio);
319
320 __count_vm_events(PGACTIVATE, nr_pages);
321 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
322 nr_pages);
323 }
324 }
325
326 #ifdef CONFIG_SMP
__activate_page(struct page * page,struct lruvec * lruvec)327 static void __activate_page(struct page *page, struct lruvec *lruvec)
328 {
329 return __folio_activate(page_folio(page), lruvec);
330 }
331
activate_page_drain(int cpu)332 static void activate_page_drain(int cpu)
333 {
334 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
335
336 if (pagevec_count(pvec))
337 pagevec_lru_move_fn(pvec, __activate_page);
338 }
339
need_activate_page_drain(int cpu)340 static bool need_activate_page_drain(int cpu)
341 {
342 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
343 }
344
folio_activate(struct folio * folio)345 static void folio_activate(struct folio *folio)
346 {
347 if (folio_test_lru(folio) && !folio_test_active(folio) &&
348 !folio_test_unevictable(folio)) {
349 struct pagevec *pvec;
350
351 folio_get(folio);
352 local_lock(&lru_pvecs.lock);
353 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
354 if (pagevec_add_and_need_flush(pvec, &folio->page))
355 pagevec_lru_move_fn(pvec, __activate_page);
356 local_unlock(&lru_pvecs.lock);
357 }
358 }
359
360 #else
activate_page_drain(int cpu)361 static inline void activate_page_drain(int cpu)
362 {
363 }
364
folio_activate(struct folio * folio)365 static void folio_activate(struct folio *folio)
366 {
367 struct lruvec *lruvec;
368
369 if (folio_test_clear_lru(folio)) {
370 lruvec = folio_lruvec_lock_irq(folio);
371 __folio_activate(folio, lruvec);
372 unlock_page_lruvec_irq(lruvec);
373 folio_set_lru(folio);
374 }
375 }
376 #endif
377
__lru_cache_activate_folio(struct folio * folio)378 static void __lru_cache_activate_folio(struct folio *folio)
379 {
380 struct pagevec *pvec;
381 int i;
382
383 local_lock(&lru_pvecs.lock);
384 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
385
386 /*
387 * Search backwards on the optimistic assumption that the page being
388 * activated has just been added to this pagevec. Note that only
389 * the local pagevec is examined as a !PageLRU page could be in the
390 * process of being released, reclaimed, migrated or on a remote
391 * pagevec that is currently being drained. Furthermore, marking
392 * a remote pagevec's page PageActive potentially hits a race where
393 * a page is marked PageActive just after it is added to the inactive
394 * list causing accounting errors and BUG_ON checks to trigger.
395 */
396 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
397 struct page *pagevec_page = pvec->pages[i];
398
399 if (pagevec_page == &folio->page) {
400 folio_set_active(folio);
401 break;
402 }
403 }
404
405 local_unlock(&lru_pvecs.lock);
406 }
407
408 /*
409 * Mark a page as having seen activity.
410 *
411 * inactive,unreferenced -> inactive,referenced
412 * inactive,referenced -> active,unreferenced
413 * active,unreferenced -> active,referenced
414 *
415 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
416 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
417 */
folio_mark_accessed(struct folio * folio)418 void folio_mark_accessed(struct folio *folio)
419 {
420 if (!folio_test_referenced(folio)) {
421 folio_set_referenced(folio);
422 } else if (folio_test_unevictable(folio)) {
423 /*
424 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
425 * this list is never rotated or maintained, so marking an
426 * unevictable page accessed has no effect.
427 */
428 } else if (!folio_test_active(folio)) {
429 /*
430 * If the page is on the LRU, queue it for activation via
431 * lru_pvecs.activate_page. Otherwise, assume the page is on a
432 * pagevec, mark it active and it'll be moved to the active
433 * LRU on the next drain.
434 */
435 if (folio_test_lru(folio))
436 folio_activate(folio);
437 else
438 __lru_cache_activate_folio(folio);
439 folio_clear_referenced(folio);
440 workingset_activation(folio);
441 }
442 if (folio_test_idle(folio))
443 folio_clear_idle(folio);
444 }
445 EXPORT_SYMBOL(folio_mark_accessed);
446
447 /**
448 * folio_add_lru - Add a folio to an LRU list.
449 * @folio: The folio to be added to the LRU.
450 *
451 * Queue the folio for addition to the LRU. The decision on whether
452 * to add the page to the [in]active [file|anon] list is deferred until the
453 * pagevec is drained. This gives a chance for the caller of folio_add_lru()
454 * have the folio added to the active list using folio_mark_accessed().
455 */
folio_add_lru(struct folio * folio)456 void folio_add_lru(struct folio *folio)
457 {
458 struct pagevec *pvec;
459
460 VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio);
461 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
462
463 folio_get(folio);
464 local_lock(&lru_pvecs.lock);
465 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
466 if (pagevec_add_and_need_flush(pvec, &folio->page))
467 __pagevec_lru_add(pvec);
468 local_unlock(&lru_pvecs.lock);
469 }
470 EXPORT_SYMBOL(folio_add_lru);
471
472 /**
473 * lru_cache_add_inactive_or_unevictable
474 * @page: the page to be added to LRU
475 * @vma: vma in which page is mapped for determining reclaimability
476 *
477 * Place @page on the inactive or unevictable LRU list, depending on its
478 * evictability.
479 */
lru_cache_add_inactive_or_unevictable(struct page * page,struct vm_area_struct * vma)480 void lru_cache_add_inactive_or_unevictable(struct page *page,
481 struct vm_area_struct *vma)
482 {
483 VM_BUG_ON_PAGE(PageLRU(page), page);
484
485 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
486 mlock_new_page(page);
487 else
488 lru_cache_add(page);
489 }
490
491 /*
492 * If the page can not be invalidated, it is moved to the
493 * inactive list to speed up its reclaim. It is moved to the
494 * head of the list, rather than the tail, to give the flusher
495 * threads some time to write it out, as this is much more
496 * effective than the single-page writeout from reclaim.
497 *
498 * If the page isn't page_mapped and dirty/writeback, the page
499 * could reclaim asap using PG_reclaim.
500 *
501 * 1. active, mapped page -> none
502 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
503 * 3. inactive, mapped page -> none
504 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
505 * 5. inactive, clean -> inactive, tail
506 * 6. Others -> none
507 *
508 * In 4, why it moves inactive's head, the VM expects the page would
509 * be write it out by flusher threads as this is much more effective
510 * than the single-page writeout from reclaim.
511 */
lru_deactivate_file_fn(struct page * page,struct lruvec * lruvec)512 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
513 {
514 bool active = PageActive(page);
515 int nr_pages = thp_nr_pages(page);
516
517 if (PageUnevictable(page))
518 return;
519
520 /* Some processes are using the page */
521 if (page_mapped(page))
522 return;
523
524 del_page_from_lru_list(page, lruvec);
525 ClearPageActive(page);
526 ClearPageReferenced(page);
527
528 if (PageWriteback(page) || PageDirty(page)) {
529 /*
530 * PG_reclaim could be raced with end_page_writeback
531 * It can make readahead confusing. But race window
532 * is _really_ small and it's non-critical problem.
533 */
534 add_page_to_lru_list(page, lruvec);
535 SetPageReclaim(page);
536 } else {
537 /*
538 * The page's writeback ends up during pagevec
539 * We move that page into tail of inactive.
540 */
541 add_page_to_lru_list_tail(page, lruvec);
542 __count_vm_events(PGROTATED, nr_pages);
543 }
544
545 if (active) {
546 __count_vm_events(PGDEACTIVATE, nr_pages);
547 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
548 nr_pages);
549 }
550 }
551
lru_deactivate_fn(struct page * page,struct lruvec * lruvec)552 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
553 {
554 if (PageActive(page) && !PageUnevictable(page)) {
555 int nr_pages = thp_nr_pages(page);
556
557 del_page_from_lru_list(page, lruvec);
558 ClearPageActive(page);
559 ClearPageReferenced(page);
560 add_page_to_lru_list(page, lruvec);
561
562 __count_vm_events(PGDEACTIVATE, nr_pages);
563 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
564 nr_pages);
565 }
566 }
567
lru_lazyfree_fn(struct page * page,struct lruvec * lruvec)568 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
569 {
570 if (PageAnon(page) && PageSwapBacked(page) &&
571 !PageSwapCache(page) && !PageUnevictable(page)) {
572 int nr_pages = thp_nr_pages(page);
573
574 del_page_from_lru_list(page, lruvec);
575 ClearPageActive(page);
576 ClearPageReferenced(page);
577 /*
578 * Lazyfree pages are clean anonymous pages. They have
579 * PG_swapbacked flag cleared, to distinguish them from normal
580 * anonymous pages
581 */
582 ClearPageSwapBacked(page);
583 add_page_to_lru_list(page, lruvec);
584
585 __count_vm_events(PGLAZYFREE, nr_pages);
586 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
587 nr_pages);
588 }
589 }
590
591 /*
592 * Drain pages out of the cpu's pagevecs.
593 * Either "cpu" is the current CPU, and preemption has already been
594 * disabled; or "cpu" is being hot-unplugged, and is already dead.
595 */
lru_add_drain_cpu(int cpu)596 void lru_add_drain_cpu(int cpu)
597 {
598 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
599
600 if (pagevec_count(pvec))
601 __pagevec_lru_add(pvec);
602
603 pvec = &per_cpu(lru_rotate.pvec, cpu);
604 /* Disabling interrupts below acts as a compiler barrier. */
605 if (data_race(pagevec_count(pvec))) {
606 unsigned long flags;
607
608 /* No harm done if a racing interrupt already did this */
609 local_lock_irqsave(&lru_rotate.lock, flags);
610 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
611 local_unlock_irqrestore(&lru_rotate.lock, flags);
612 }
613
614 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
615 if (pagevec_count(pvec))
616 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
617
618 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
619 if (pagevec_count(pvec))
620 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
621
622 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
623 if (pagevec_count(pvec))
624 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
625
626 activate_page_drain(cpu);
627 }
628
629 /**
630 * deactivate_file_folio() - Forcefully deactivate a file folio.
631 * @folio: Folio to deactivate.
632 *
633 * This function hints to the VM that @folio is a good reclaim candidate,
634 * for example if its invalidation fails due to the folio being dirty
635 * or under writeback.
636 *
637 * Context: Caller holds a reference on the page.
638 */
deactivate_file_folio(struct folio * folio)639 void deactivate_file_folio(struct folio *folio)
640 {
641 struct pagevec *pvec;
642
643 /*
644 * In a workload with many unevictable pages such as mprotect,
645 * unevictable folio deactivation for accelerating reclaim is pointless.
646 */
647 if (folio_test_unevictable(folio))
648 return;
649
650 folio_get(folio);
651 local_lock(&lru_pvecs.lock);
652 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
653
654 if (pagevec_add_and_need_flush(pvec, &folio->page))
655 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
656 local_unlock(&lru_pvecs.lock);
657 }
658
659 /*
660 * deactivate_page - deactivate a page
661 * @page: page to deactivate
662 *
663 * deactivate_page() moves @page to the inactive list if @page was on the active
664 * list and was not an unevictable page. This is done to accelerate the reclaim
665 * of @page.
666 */
deactivate_page(struct page * page)667 void deactivate_page(struct page *page)
668 {
669 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
670 struct pagevec *pvec;
671
672 local_lock(&lru_pvecs.lock);
673 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
674 get_page(page);
675 if (pagevec_add_and_need_flush(pvec, page))
676 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
677 local_unlock(&lru_pvecs.lock);
678 }
679 }
680
681 /**
682 * mark_page_lazyfree - make an anon page lazyfree
683 * @page: page to deactivate
684 *
685 * mark_page_lazyfree() moves @page to the inactive file list.
686 * This is done to accelerate the reclaim of @page.
687 */
mark_page_lazyfree(struct page * page)688 void mark_page_lazyfree(struct page *page)
689 {
690 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
691 !PageSwapCache(page) && !PageUnevictable(page)) {
692 struct pagevec *pvec;
693
694 local_lock(&lru_pvecs.lock);
695 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
696 get_page(page);
697 if (pagevec_add_and_need_flush(pvec, page))
698 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
699 local_unlock(&lru_pvecs.lock);
700 }
701 }
702
lru_add_drain(void)703 void lru_add_drain(void)
704 {
705 local_lock(&lru_pvecs.lock);
706 lru_add_drain_cpu(smp_processor_id());
707 local_unlock(&lru_pvecs.lock);
708 mlock_page_drain_local();
709 }
710
711 /*
712 * It's called from per-cpu workqueue context in SMP case so
713 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
714 * the same cpu. It shouldn't be a problem in !SMP case since
715 * the core is only one and the locks will disable preemption.
716 */
lru_add_and_bh_lrus_drain(void)717 static void lru_add_and_bh_lrus_drain(void)
718 {
719 local_lock(&lru_pvecs.lock);
720 lru_add_drain_cpu(smp_processor_id());
721 local_unlock(&lru_pvecs.lock);
722 invalidate_bh_lrus_cpu();
723 mlock_page_drain_local();
724 }
725
lru_add_drain_cpu_zone(struct zone * zone)726 void lru_add_drain_cpu_zone(struct zone *zone)
727 {
728 local_lock(&lru_pvecs.lock);
729 lru_add_drain_cpu(smp_processor_id());
730 drain_local_pages(zone);
731 local_unlock(&lru_pvecs.lock);
732 mlock_page_drain_local();
733 }
734
735 #ifdef CONFIG_SMP
736
737 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
738
lru_add_drain_per_cpu(struct work_struct * dummy)739 static void lru_add_drain_per_cpu(struct work_struct *dummy)
740 {
741 lru_add_and_bh_lrus_drain();
742 }
743
744 /*
745 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
746 * kworkers being shut down before our page_alloc_cpu_dead callback is
747 * executed on the offlined cpu.
748 * Calling this function with cpu hotplug locks held can actually lead
749 * to obscure indirect dependencies via WQ context.
750 */
__lru_add_drain_all(bool force_all_cpus)751 static inline void __lru_add_drain_all(bool force_all_cpus)
752 {
753 /*
754 * lru_drain_gen - Global pages generation number
755 *
756 * (A) Definition: global lru_drain_gen = x implies that all generations
757 * 0 < n <= x are already *scheduled* for draining.
758 *
759 * This is an optimization for the highly-contended use case where a
760 * user space workload keeps constantly generating a flow of pages for
761 * each CPU.
762 */
763 static unsigned int lru_drain_gen;
764 static struct cpumask has_work;
765 static DEFINE_MUTEX(lock);
766 unsigned cpu, this_gen;
767
768 /*
769 * Make sure nobody triggers this path before mm_percpu_wq is fully
770 * initialized.
771 */
772 if (WARN_ON(!mm_percpu_wq))
773 return;
774
775 /*
776 * Guarantee pagevec counter stores visible by this CPU are visible to
777 * other CPUs before loading the current drain generation.
778 */
779 smp_mb();
780
781 /*
782 * (B) Locally cache global LRU draining generation number
783 *
784 * The read barrier ensures that the counter is loaded before the mutex
785 * is taken. It pairs with smp_mb() inside the mutex critical section
786 * at (D).
787 */
788 this_gen = smp_load_acquire(&lru_drain_gen);
789
790 mutex_lock(&lock);
791
792 /*
793 * (C) Exit the draining operation if a newer generation, from another
794 * lru_add_drain_all(), was already scheduled for draining. Check (A).
795 */
796 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
797 goto done;
798
799 /*
800 * (D) Increment global generation number
801 *
802 * Pairs with smp_load_acquire() at (B), outside of the critical
803 * section. Use a full memory barrier to guarantee that the new global
804 * drain generation number is stored before loading pagevec counters.
805 *
806 * This pairing must be done here, before the for_each_online_cpu loop
807 * below which drains the page vectors.
808 *
809 * Let x, y, and z represent some system CPU numbers, where x < y < z.
810 * Assume CPU #z is in the middle of the for_each_online_cpu loop
811 * below and has already reached CPU #y's per-cpu data. CPU #x comes
812 * along, adds some pages to its per-cpu vectors, then calls
813 * lru_add_drain_all().
814 *
815 * If the paired barrier is done at any later step, e.g. after the
816 * loop, CPU #x will just exit at (C) and miss flushing out all of its
817 * added pages.
818 */
819 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
820 smp_mb();
821
822 cpumask_clear(&has_work);
823 for_each_online_cpu(cpu) {
824 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
825
826 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
827 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
828 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
829 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
830 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
831 need_activate_page_drain(cpu) ||
832 need_mlock_page_drain(cpu) ||
833 has_bh_in_lru(cpu, NULL)) {
834 INIT_WORK(work, lru_add_drain_per_cpu);
835 queue_work_on(cpu, mm_percpu_wq, work);
836 __cpumask_set_cpu(cpu, &has_work);
837 }
838 }
839
840 for_each_cpu(cpu, &has_work)
841 flush_work(&per_cpu(lru_add_drain_work, cpu));
842
843 done:
844 mutex_unlock(&lock);
845 }
846
lru_add_drain_all(void)847 void lru_add_drain_all(void)
848 {
849 __lru_add_drain_all(false);
850 }
851 #else
lru_add_drain_all(void)852 void lru_add_drain_all(void)
853 {
854 lru_add_drain();
855 }
856 #endif /* CONFIG_SMP */
857
858 atomic_t lru_disable_count = ATOMIC_INIT(0);
859
860 /*
861 * lru_cache_disable() needs to be called before we start compiling
862 * a list of pages to be migrated using isolate_lru_page().
863 * It drains pages on LRU cache and then disable on all cpus until
864 * lru_cache_enable is called.
865 *
866 * Must be paired with a call to lru_cache_enable().
867 */
lru_cache_disable(void)868 void lru_cache_disable(void)
869 {
870 atomic_inc(&lru_disable_count);
871 /*
872 * Readers of lru_disable_count are protected by either disabling
873 * preemption or rcu_read_lock:
874 *
875 * preempt_disable, local_irq_disable [bh_lru_lock()]
876 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT]
877 * preempt_disable [local_lock !CONFIG_PREEMPT_RT]
878 *
879 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
880 * preempt_disable() regions of code. So any CPU which sees
881 * lru_disable_count = 0 will have exited the critical
882 * section when synchronize_rcu() returns.
883 */
884 synchronize_rcu_expedited();
885 #ifdef CONFIG_SMP
886 __lru_add_drain_all(true);
887 #else
888 lru_add_and_bh_lrus_drain();
889 #endif
890 }
891
892 /**
893 * release_pages - batched put_page()
894 * @pages: array of pages to release
895 * @nr: number of pages
896 *
897 * Decrement the reference count on all the pages in @pages. If it
898 * fell to zero, remove the page from the LRU and free it.
899 */
release_pages(struct page ** pages,int nr)900 void release_pages(struct page **pages, int nr)
901 {
902 int i;
903 LIST_HEAD(pages_to_free);
904 struct lruvec *lruvec = NULL;
905 unsigned long flags = 0;
906 unsigned int lock_batch;
907
908 for (i = 0; i < nr; i++) {
909 struct page *page = pages[i];
910 struct folio *folio = page_folio(page);
911
912 /*
913 * Make sure the IRQ-safe lock-holding time does not get
914 * excessive with a continuous string of pages from the
915 * same lruvec. The lock is held only if lruvec != NULL.
916 */
917 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
918 unlock_page_lruvec_irqrestore(lruvec, flags);
919 lruvec = NULL;
920 }
921
922 page = &folio->page;
923 if (is_huge_zero_page(page))
924 continue;
925
926 if (is_zone_device_page(page)) {
927 if (lruvec) {
928 unlock_page_lruvec_irqrestore(lruvec, flags);
929 lruvec = NULL;
930 }
931 if (put_devmap_managed_page(page))
932 continue;
933 if (put_page_testzero(page))
934 free_zone_device_page(page);
935 continue;
936 }
937
938 if (!put_page_testzero(page))
939 continue;
940
941 if (PageCompound(page)) {
942 if (lruvec) {
943 unlock_page_lruvec_irqrestore(lruvec, flags);
944 lruvec = NULL;
945 }
946 __put_compound_page(page);
947 continue;
948 }
949
950 if (PageLRU(page)) {
951 struct lruvec *prev_lruvec = lruvec;
952
953 lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
954 &flags);
955 if (prev_lruvec != lruvec)
956 lock_batch = 0;
957
958 del_page_from_lru_list(page, lruvec);
959 __clear_page_lru_flags(page);
960 }
961
962 /*
963 * In rare cases, when truncation or holepunching raced with
964 * munlock after VM_LOCKED was cleared, Mlocked may still be
965 * found set here. This does not indicate a problem, unless
966 * "unevictable_pgs_cleared" appears worryingly large.
967 */
968 if (unlikely(PageMlocked(page))) {
969 __ClearPageMlocked(page);
970 dec_zone_page_state(page, NR_MLOCK);
971 count_vm_event(UNEVICTABLE_PGCLEARED);
972 }
973
974 list_add(&page->lru, &pages_to_free);
975 }
976 if (lruvec)
977 unlock_page_lruvec_irqrestore(lruvec, flags);
978
979 mem_cgroup_uncharge_list(&pages_to_free);
980 free_unref_page_list(&pages_to_free);
981 }
982 EXPORT_SYMBOL(release_pages);
983
984 /*
985 * The pages which we're about to release may be in the deferred lru-addition
986 * queues. That would prevent them from really being freed right now. That's
987 * OK from a correctness point of view but is inefficient - those pages may be
988 * cache-warm and we want to give them back to the page allocator ASAP.
989 *
990 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
991 * and __pagevec_lru_add_active() call release_pages() directly to avoid
992 * mutual recursion.
993 */
__pagevec_release(struct pagevec * pvec)994 void __pagevec_release(struct pagevec *pvec)
995 {
996 if (!pvec->percpu_pvec_drained) {
997 lru_add_drain();
998 pvec->percpu_pvec_drained = true;
999 }
1000 release_pages(pvec->pages, pagevec_count(pvec));
1001 pagevec_reinit(pvec);
1002 }
1003 EXPORT_SYMBOL(__pagevec_release);
1004
__pagevec_lru_add_fn(struct folio * folio,struct lruvec * lruvec)1005 static void __pagevec_lru_add_fn(struct folio *folio, struct lruvec *lruvec)
1006 {
1007 int was_unevictable = folio_test_clear_unevictable(folio);
1008 long nr_pages = folio_nr_pages(folio);
1009
1010 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1011
1012 folio_set_lru(folio);
1013 /*
1014 * Is an smp_mb__after_atomic() still required here, before
1015 * folio_evictable() tests PageMlocked, to rule out the possibility
1016 * of stranding an evictable folio on an unevictable LRU? I think
1017 * not, because __munlock_page() only clears PageMlocked while the LRU
1018 * lock is held.
1019 *
1020 * (That is not true of __page_cache_release(), and not necessarily
1021 * true of release_pages(): but those only clear PageMlocked after
1022 * put_page_testzero() has excluded any other users of the page.)
1023 */
1024 if (folio_evictable(folio)) {
1025 if (was_unevictable)
1026 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1027 } else {
1028 folio_clear_active(folio);
1029 folio_set_unevictable(folio);
1030 /*
1031 * folio->mlock_count = !!folio_test_mlocked(folio)?
1032 * But that leaves __mlock_page() in doubt whether another
1033 * actor has already counted the mlock or not. Err on the
1034 * safe side, underestimate, let page reclaim fix it, rather
1035 * than leaving a page on the unevictable LRU indefinitely.
1036 */
1037 folio->mlock_count = 0;
1038 if (!was_unevictable)
1039 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1040 }
1041
1042 lruvec_add_folio(lruvec, folio);
1043 trace_mm_lru_insertion(folio);
1044 }
1045
1046 /*
1047 * Add the passed pages to the LRU, then drop the caller's refcount
1048 * on them. Reinitialises the caller's pagevec.
1049 */
__pagevec_lru_add(struct pagevec * pvec)1050 void __pagevec_lru_add(struct pagevec *pvec)
1051 {
1052 int i;
1053 struct lruvec *lruvec = NULL;
1054 unsigned long flags = 0;
1055
1056 for (i = 0; i < pagevec_count(pvec); i++) {
1057 struct folio *folio = page_folio(pvec->pages[i]);
1058
1059 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
1060 __pagevec_lru_add_fn(folio, lruvec);
1061 }
1062 if (lruvec)
1063 unlock_page_lruvec_irqrestore(lruvec, flags);
1064 release_pages(pvec->pages, pvec->nr);
1065 pagevec_reinit(pvec);
1066 }
1067
1068 /**
1069 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1070 * @fbatch: The batch to prune
1071 *
1072 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1073 * entries. This function prunes all the non-folio entries from @fbatch
1074 * without leaving holes, so that it can be passed on to folio-only batch
1075 * operations.
1076 */
folio_batch_remove_exceptionals(struct folio_batch * fbatch)1077 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1078 {
1079 unsigned int i, j;
1080
1081 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1082 struct folio *folio = fbatch->folios[i];
1083 if (!xa_is_value(folio))
1084 fbatch->folios[j++] = folio;
1085 }
1086 fbatch->nr = j;
1087 }
1088
1089 /**
1090 * pagevec_lookup_range - gang pagecache lookup
1091 * @pvec: Where the resulting pages are placed
1092 * @mapping: The address_space to search
1093 * @start: The starting page index
1094 * @end: The final page index
1095 *
1096 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1097 * pages in the mapping starting from index @start and upto index @end
1098 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1099 * reference against the pages in @pvec.
1100 *
1101 * The search returns a group of mapping-contiguous pages with ascending
1102 * indexes. There may be holes in the indices due to not-present pages. We
1103 * also update @start to index the next page for the traversal.
1104 *
1105 * pagevec_lookup_range() returns the number of pages which were found. If this
1106 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1107 * reached.
1108 */
pagevec_lookup_range(struct pagevec * pvec,struct address_space * mapping,pgoff_t * start,pgoff_t end)1109 unsigned pagevec_lookup_range(struct pagevec *pvec,
1110 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1111 {
1112 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1113 pvec->pages);
1114 return pagevec_count(pvec);
1115 }
1116 EXPORT_SYMBOL(pagevec_lookup_range);
1117
pagevec_lookup_range_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,xa_mark_t tag)1118 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1119 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1120 xa_mark_t tag)
1121 {
1122 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1123 PAGEVEC_SIZE, pvec->pages);
1124 return pagevec_count(pvec);
1125 }
1126 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1127
1128 /*
1129 * Perform any setup for the swap system
1130 */
swap_setup(void)1131 void __init swap_setup(void)
1132 {
1133 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1134
1135 /* Use a smaller cluster for small-memory machines */
1136 if (megs < 16)
1137 page_cluster = 2;
1138 else
1139 page_cluster = 3;
1140 /*
1141 * Right now other parts of the system means that we
1142 * _really_ don't want to cluster much more
1143 */
1144 }
1145