1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Copyright 2003 PathScale, Inc.
4  * Derived from include/asm-i386/pgtable.h
5  * Licensed under the GPL
6  */
7 
8 #ifndef __UM_PGTABLE_H
9 #define __UM_PGTABLE_H
10 
11 #include <asm/fixmap.h>
12 
13 #define _PAGE_PRESENT	0x001
14 #define _PAGE_NEWPAGE	0x002
15 #define _PAGE_NEWPROT	0x004
16 #define _PAGE_RW	0x020
17 #define _PAGE_USER	0x040
18 #define _PAGE_ACCESSED	0x080
19 #define _PAGE_DIRTY	0x100
20 /* If _PAGE_PRESENT is clear, we use these: */
21 #define _PAGE_FILE	0x008	/* nonlinear file mapping, saved PTE; unset:swap */
22 #define _PAGE_PROTNONE	0x010	/* if the user mapped it with PROT_NONE;
23 				   pte_present gives true */
24 
25 #ifdef CONFIG_3_LEVEL_PGTABLES
26 #include "asm/pgtable-3level.h"
27 #else
28 #include "asm/pgtable-2level.h"
29 #endif
30 
31 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
32 
33 /* zero page used for uninitialized stuff */
34 extern unsigned long *empty_zero_page;
35 
36 #define pgtable_cache_init() do ; while (0)
37 
38 /* Just any arbitrary offset to the start of the vmalloc VM area: the
39  * current 8MB value just means that there will be a 8MB "hole" after the
40  * physical memory until the kernel virtual memory starts.  That means that
41  * any out-of-bounds memory accesses will hopefully be caught.
42  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
43  * area for the same reason. ;)
44  */
45 
46 extern unsigned long end_iomem;
47 
48 #define VMALLOC_OFFSET	(__va_space)
49 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
50 #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
51 #ifdef CONFIG_HIGHMEM
52 # define VMALLOC_END	(PKMAP_BASE-2*PAGE_SIZE)
53 #else
54 # define VMALLOC_END	(FIXADDR_START-2*PAGE_SIZE)
55 #endif
56 #define MODULES_VADDR	VMALLOC_START
57 #define MODULES_END	VMALLOC_END
58 #define MODULES_LEN	(MODULES_VADDR - MODULES_END)
59 
60 #define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
61 #define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
62 #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
63 #define __PAGE_KERNEL_EXEC                                              \
64 	 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
65 #define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
66 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
67 #define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
68 #define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
69 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
70 #define PAGE_KERNEL_EXEC	__pgprot(__PAGE_KERNEL_EXEC)
71 
72 #define io_remap_pfn_range	remap_pfn_range
73 
74 /*
75  * The i386 can't do page protection for execute, and considers that the same
76  * are read.
77  * Also, write permissions imply read permissions. This is the closest we can
78  * get..
79  */
80 #define __P000	PAGE_NONE
81 #define __P001	PAGE_READONLY
82 #define __P010	PAGE_COPY
83 #define __P011	PAGE_COPY
84 #define __P100	PAGE_READONLY
85 #define __P101	PAGE_READONLY
86 #define __P110	PAGE_COPY
87 #define __P111	PAGE_COPY
88 
89 #define __S000	PAGE_NONE
90 #define __S001	PAGE_READONLY
91 #define __S010	PAGE_SHARED
92 #define __S011	PAGE_SHARED
93 #define __S100	PAGE_READONLY
94 #define __S101	PAGE_READONLY
95 #define __S110	PAGE_SHARED
96 #define __S111	PAGE_SHARED
97 
98 /*
99  * ZERO_PAGE is a global shared page that is always zero: used
100  * for zero-mapped memory areas etc..
101  */
102 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
103 
104 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
105 
106 #define pmd_none(x)	(!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
107 #define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
108 
109 #define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
110 #define pmd_clear(xp)	do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
111 
112 #define pmd_newpage(x)  (pmd_val(x) & _PAGE_NEWPAGE)
113 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
114 
115 #define pud_newpage(x)  (pud_val(x) & _PAGE_NEWPAGE)
116 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
117 
118 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
119 
120 #define pte_page(x) pfn_to_page(pte_pfn(x))
121 
122 #define pte_present(x)	pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
123 
124 /*
125  * =================================
126  * Flags checking section.
127  * =================================
128  */
129 
pte_none(pte_t pte)130 static inline int pte_none(pte_t pte)
131 {
132 	return pte_is_zero(pte);
133 }
134 
135 /*
136  * The following only work if pte_present() is true.
137  * Undefined behaviour if not..
138  */
pte_read(pte_t pte)139 static inline int pte_read(pte_t pte)
140 {
141 	return((pte_get_bits(pte, _PAGE_USER)) &&
142 	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
143 }
144 
pte_exec(pte_t pte)145 static inline int pte_exec(pte_t pte){
146 	return((pte_get_bits(pte, _PAGE_USER)) &&
147 	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
148 }
149 
pte_write(pte_t pte)150 static inline int pte_write(pte_t pte)
151 {
152 	return((pte_get_bits(pte, _PAGE_RW)) &&
153 	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
154 }
155 
156 /*
157  * The following only works if pte_present() is not true.
158  */
pte_file(pte_t pte)159 static inline int pte_file(pte_t pte)
160 {
161 	return pte_get_bits(pte, _PAGE_FILE);
162 }
163 
pte_dirty(pte_t pte)164 static inline int pte_dirty(pte_t pte)
165 {
166 	return pte_get_bits(pte, _PAGE_DIRTY);
167 }
168 
pte_young(pte_t pte)169 static inline int pte_young(pte_t pte)
170 {
171 	return pte_get_bits(pte, _PAGE_ACCESSED);
172 }
173 
pte_newpage(pte_t pte)174 static inline int pte_newpage(pte_t pte)
175 {
176 	return pte_get_bits(pte, _PAGE_NEWPAGE);
177 }
178 
pte_newprot(pte_t pte)179 static inline int pte_newprot(pte_t pte)
180 {
181 	return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
182 }
183 
pte_special(pte_t pte)184 static inline int pte_special(pte_t pte)
185 {
186 	return 0;
187 }
188 
189 /*
190  * =================================
191  * Flags setting section.
192  * =================================
193  */
194 
pte_mknewprot(pte_t pte)195 static inline pte_t pte_mknewprot(pte_t pte)
196 {
197 	pte_set_bits(pte, _PAGE_NEWPROT);
198 	return(pte);
199 }
200 
pte_mkclean(pte_t pte)201 static inline pte_t pte_mkclean(pte_t pte)
202 {
203 	pte_clear_bits(pte, _PAGE_DIRTY);
204 	return(pte);
205 }
206 
pte_mkold(pte_t pte)207 static inline pte_t pte_mkold(pte_t pte)
208 {
209 	pte_clear_bits(pte, _PAGE_ACCESSED);
210 	return(pte);
211 }
212 
pte_wrprotect(pte_t pte)213 static inline pte_t pte_wrprotect(pte_t pte)
214 {
215 	pte_clear_bits(pte, _PAGE_RW);
216 	return(pte_mknewprot(pte));
217 }
218 
pte_mkread(pte_t pte)219 static inline pte_t pte_mkread(pte_t pte)
220 {
221 	pte_set_bits(pte, _PAGE_USER);
222 	return(pte_mknewprot(pte));
223 }
224 
pte_mkdirty(pte_t pte)225 static inline pte_t pte_mkdirty(pte_t pte)
226 {
227 	pte_set_bits(pte, _PAGE_DIRTY);
228 	return(pte);
229 }
230 
pte_mkyoung(pte_t pte)231 static inline pte_t pte_mkyoung(pte_t pte)
232 {
233 	pte_set_bits(pte, _PAGE_ACCESSED);
234 	return(pte);
235 }
236 
pte_mkwrite(pte_t pte)237 static inline pte_t pte_mkwrite(pte_t pte)
238 {
239 	pte_set_bits(pte, _PAGE_RW);
240 	return(pte_mknewprot(pte));
241 }
242 
pte_mkuptodate(pte_t pte)243 static inline pte_t pte_mkuptodate(pte_t pte)
244 {
245 	pte_clear_bits(pte, _PAGE_NEWPAGE);
246 	if(pte_present(pte))
247 		pte_clear_bits(pte, _PAGE_NEWPROT);
248 	return(pte);
249 }
250 
pte_mknewpage(pte_t pte)251 static inline pte_t pte_mknewpage(pte_t pte)
252 {
253 	pte_set_bits(pte, _PAGE_NEWPAGE);
254 	return(pte);
255 }
256 
pte_mkspecial(pte_t pte)257 static inline pte_t pte_mkspecial(pte_t pte)
258 {
259 	return(pte);
260 }
261 
set_pte(pte_t * pteptr,pte_t pteval)262 static inline void set_pte(pte_t *pteptr, pte_t pteval)
263 {
264 	pte_copy(*pteptr, pteval);
265 
266 	/* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
267 	 * fix_range knows to unmap it.  _PAGE_NEWPROT is specific to
268 	 * mapped pages.
269 	 */
270 
271 	*pteptr = pte_mknewpage(*pteptr);
272 	if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
273 }
274 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
275 
276 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)277 static inline int pte_same(pte_t pte_a, pte_t pte_b)
278 {
279 	return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
280 }
281 
282 /*
283  * Conversion functions: convert a page and protection to a page entry,
284  * and a page entry and page directory to the page they refer to.
285  */
286 
287 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
288 #define __virt_to_page(virt) phys_to_page(__pa(virt))
289 #define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page))
290 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
291 
292 #define mk_pte(page, pgprot) \
293 	({ pte_t pte;					\
294 							\
295 	pte_set_val(pte, page_to_phys(page), (pgprot));	\
296 	if (pte_present(pte))				\
297 		pte_mknewprot(pte_mknewpage(pte));	\
298 	pte;})
299 
pte_modify(pte_t pte,pgprot_t newprot)300 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
301 {
302 	pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
303 	return pte;
304 }
305 
306 /*
307  * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
308  *
309  * this macro returns the index of the entry in the pgd page which would
310  * control the given virtual address
311  */
312 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
313 
314 /*
315  * pgd_offset() returns a (pgd_t *)
316  * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
317  */
318 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
319 
320 /*
321  * a shortcut which implies the use of the kernel's pgd, instead
322  * of a process's
323  */
324 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
325 
326 /*
327  * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
328  *
329  * this macro returns the index of the entry in the pmd page which would
330  * control the given virtual address
331  */
332 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
333 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
334 
335 #define pmd_page_vaddr(pmd) \
336 	((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
337 
338 /*
339  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
340  *
341  * this macro returns the index of the entry in the pte page which would
342  * control the given virtual address
343  */
344 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
345 #define pte_offset_kernel(dir, address) \
346 	((pte_t *) pmd_page_vaddr(*(dir)) +  pte_index(address))
347 #define pte_offset_map(dir, address) \
348 	((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
349 #define pte_unmap(pte) do { } while (0)
350 
351 struct mm_struct;
352 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
353 
354 #define update_mmu_cache(vma,address,ptep) do ; while (0)
355 
356 /* Encode and de-code a swap entry */
357 #define __swp_type(x)			(((x).val >> 5) & 0x1f)
358 #define __swp_offset(x)			((x).val >> 11)
359 
360 #define __swp_entry(type, offset) \
361 	((swp_entry_t) { ((type) << 5) | ((offset) << 11) })
362 #define __pte_to_swp_entry(pte) \
363 	((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
364 #define __swp_entry_to_pte(x)		((pte_t) { (x).val })
365 
366 #define kern_addr_valid(addr) (1)
367 
368 #include <asm-generic/pgtable.h>
369 
370 /* Clear a kernel PTE and flush it from the TLB */
371 #define kpte_clear_flush(ptep, vaddr)		\
372 do {						\
373 	pte_clear(&init_mm, (vaddr), (ptep));	\
374 	__flush_tlb_one((vaddr));		\
375 } while (0)
376 
377 #endif
378