1 /*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Derived from include/asm-i386/pgtable.h
5 * Licensed under the GPL
6 */
7
8 #ifndef __UM_PGTABLE_H
9 #define __UM_PGTABLE_H
10
11 #include <asm/fixmap.h>
12
13 #define _PAGE_PRESENT 0x001
14 #define _PAGE_NEWPAGE 0x002
15 #define _PAGE_NEWPROT 0x004
16 #define _PAGE_RW 0x020
17 #define _PAGE_USER 0x040
18 #define _PAGE_ACCESSED 0x080
19 #define _PAGE_DIRTY 0x100
20 /* If _PAGE_PRESENT is clear, we use these: */
21 #define _PAGE_FILE 0x008 /* nonlinear file mapping, saved PTE; unset:swap */
22 #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
23 pte_present gives true */
24
25 #ifdef CONFIG_3_LEVEL_PGTABLES
26 #include "asm/pgtable-3level.h"
27 #else
28 #include "asm/pgtable-2level.h"
29 #endif
30
31 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
32
33 /* zero page used for uninitialized stuff */
34 extern unsigned long *empty_zero_page;
35
36 #define pgtable_cache_init() do ; while (0)
37
38 /* Just any arbitrary offset to the start of the vmalloc VM area: the
39 * current 8MB value just means that there will be a 8MB "hole" after the
40 * physical memory until the kernel virtual memory starts. That means that
41 * any out-of-bounds memory accesses will hopefully be caught.
42 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
43 * area for the same reason. ;)
44 */
45
46 extern unsigned long end_iomem;
47
48 #define VMALLOC_OFFSET (__va_space)
49 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
50 #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
51 #ifdef CONFIG_HIGHMEM
52 # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
53 #else
54 # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
55 #endif
56 #define MODULES_VADDR VMALLOC_START
57 #define MODULES_END VMALLOC_END
58 #define MODULES_LEN (MODULES_VADDR - MODULES_END)
59
60 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
61 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
62 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
63 #define __PAGE_KERNEL_EXEC \
64 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
65 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
66 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
67 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
68 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
69 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
70 #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
71
72 #define io_remap_pfn_range remap_pfn_range
73
74 /*
75 * The i386 can't do page protection for execute, and considers that the same
76 * are read.
77 * Also, write permissions imply read permissions. This is the closest we can
78 * get..
79 */
80 #define __P000 PAGE_NONE
81 #define __P001 PAGE_READONLY
82 #define __P010 PAGE_COPY
83 #define __P011 PAGE_COPY
84 #define __P100 PAGE_READONLY
85 #define __P101 PAGE_READONLY
86 #define __P110 PAGE_COPY
87 #define __P111 PAGE_COPY
88
89 #define __S000 PAGE_NONE
90 #define __S001 PAGE_READONLY
91 #define __S010 PAGE_SHARED
92 #define __S011 PAGE_SHARED
93 #define __S100 PAGE_READONLY
94 #define __S101 PAGE_READONLY
95 #define __S110 PAGE_SHARED
96 #define __S111 PAGE_SHARED
97
98 /*
99 * ZERO_PAGE is a global shared page that is always zero: used
100 * for zero-mapped memory areas etc..
101 */
102 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
103
104 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
105
106 #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
107 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
108
109 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
110 #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
111
112 #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
113 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
114
115 #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
116 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
117
118 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
119
120 #define pte_page(x) pfn_to_page(pte_pfn(x))
121
122 #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
123
124 /*
125 * =================================
126 * Flags checking section.
127 * =================================
128 */
129
pte_none(pte_t pte)130 static inline int pte_none(pte_t pte)
131 {
132 return pte_is_zero(pte);
133 }
134
135 /*
136 * The following only work if pte_present() is true.
137 * Undefined behaviour if not..
138 */
pte_read(pte_t pte)139 static inline int pte_read(pte_t pte)
140 {
141 return((pte_get_bits(pte, _PAGE_USER)) &&
142 !(pte_get_bits(pte, _PAGE_PROTNONE)));
143 }
144
pte_exec(pte_t pte)145 static inline int pte_exec(pte_t pte){
146 return((pte_get_bits(pte, _PAGE_USER)) &&
147 !(pte_get_bits(pte, _PAGE_PROTNONE)));
148 }
149
pte_write(pte_t pte)150 static inline int pte_write(pte_t pte)
151 {
152 return((pte_get_bits(pte, _PAGE_RW)) &&
153 !(pte_get_bits(pte, _PAGE_PROTNONE)));
154 }
155
156 /*
157 * The following only works if pte_present() is not true.
158 */
pte_file(pte_t pte)159 static inline int pte_file(pte_t pte)
160 {
161 return pte_get_bits(pte, _PAGE_FILE);
162 }
163
pte_dirty(pte_t pte)164 static inline int pte_dirty(pte_t pte)
165 {
166 return pte_get_bits(pte, _PAGE_DIRTY);
167 }
168
pte_young(pte_t pte)169 static inline int pte_young(pte_t pte)
170 {
171 return pte_get_bits(pte, _PAGE_ACCESSED);
172 }
173
pte_newpage(pte_t pte)174 static inline int pte_newpage(pte_t pte)
175 {
176 return pte_get_bits(pte, _PAGE_NEWPAGE);
177 }
178
pte_newprot(pte_t pte)179 static inline int pte_newprot(pte_t pte)
180 {
181 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
182 }
183
pte_special(pte_t pte)184 static inline int pte_special(pte_t pte)
185 {
186 return 0;
187 }
188
189 /*
190 * =================================
191 * Flags setting section.
192 * =================================
193 */
194
pte_mknewprot(pte_t pte)195 static inline pte_t pte_mknewprot(pte_t pte)
196 {
197 pte_set_bits(pte, _PAGE_NEWPROT);
198 return(pte);
199 }
200
pte_mkclean(pte_t pte)201 static inline pte_t pte_mkclean(pte_t pte)
202 {
203 pte_clear_bits(pte, _PAGE_DIRTY);
204 return(pte);
205 }
206
pte_mkold(pte_t pte)207 static inline pte_t pte_mkold(pte_t pte)
208 {
209 pte_clear_bits(pte, _PAGE_ACCESSED);
210 return(pte);
211 }
212
pte_wrprotect(pte_t pte)213 static inline pte_t pte_wrprotect(pte_t pte)
214 {
215 pte_clear_bits(pte, _PAGE_RW);
216 return(pte_mknewprot(pte));
217 }
218
pte_mkread(pte_t pte)219 static inline pte_t pte_mkread(pte_t pte)
220 {
221 pte_set_bits(pte, _PAGE_USER);
222 return(pte_mknewprot(pte));
223 }
224
pte_mkdirty(pte_t pte)225 static inline pte_t pte_mkdirty(pte_t pte)
226 {
227 pte_set_bits(pte, _PAGE_DIRTY);
228 return(pte);
229 }
230
pte_mkyoung(pte_t pte)231 static inline pte_t pte_mkyoung(pte_t pte)
232 {
233 pte_set_bits(pte, _PAGE_ACCESSED);
234 return(pte);
235 }
236
pte_mkwrite(pte_t pte)237 static inline pte_t pte_mkwrite(pte_t pte)
238 {
239 pte_set_bits(pte, _PAGE_RW);
240 return(pte_mknewprot(pte));
241 }
242
pte_mkuptodate(pte_t pte)243 static inline pte_t pte_mkuptodate(pte_t pte)
244 {
245 pte_clear_bits(pte, _PAGE_NEWPAGE);
246 if(pte_present(pte))
247 pte_clear_bits(pte, _PAGE_NEWPROT);
248 return(pte);
249 }
250
pte_mknewpage(pte_t pte)251 static inline pte_t pte_mknewpage(pte_t pte)
252 {
253 pte_set_bits(pte, _PAGE_NEWPAGE);
254 return(pte);
255 }
256
pte_mkspecial(pte_t pte)257 static inline pte_t pte_mkspecial(pte_t pte)
258 {
259 return(pte);
260 }
261
set_pte(pte_t * pteptr,pte_t pteval)262 static inline void set_pte(pte_t *pteptr, pte_t pteval)
263 {
264 pte_copy(*pteptr, pteval);
265
266 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
267 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
268 * mapped pages.
269 */
270
271 *pteptr = pte_mknewpage(*pteptr);
272 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
273 }
274 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
275
276 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)277 static inline int pte_same(pte_t pte_a, pte_t pte_b)
278 {
279 return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
280 }
281
282 /*
283 * Conversion functions: convert a page and protection to a page entry,
284 * and a page entry and page directory to the page they refer to.
285 */
286
287 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
288 #define __virt_to_page(virt) phys_to_page(__pa(virt))
289 #define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page))
290 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
291
292 #define mk_pte(page, pgprot) \
293 ({ pte_t pte; \
294 \
295 pte_set_val(pte, page_to_phys(page), (pgprot)); \
296 if (pte_present(pte)) \
297 pte_mknewprot(pte_mknewpage(pte)); \
298 pte;})
299
pte_modify(pte_t pte,pgprot_t newprot)300 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
301 {
302 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
303 return pte;
304 }
305
306 /*
307 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
308 *
309 * this macro returns the index of the entry in the pgd page which would
310 * control the given virtual address
311 */
312 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
313
314 /*
315 * pgd_offset() returns a (pgd_t *)
316 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
317 */
318 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
319
320 /*
321 * a shortcut which implies the use of the kernel's pgd, instead
322 * of a process's
323 */
324 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
325
326 /*
327 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
328 *
329 * this macro returns the index of the entry in the pmd page which would
330 * control the given virtual address
331 */
332 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
333 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
334
335 #define pmd_page_vaddr(pmd) \
336 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
337
338 /*
339 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
340 *
341 * this macro returns the index of the entry in the pte page which would
342 * control the given virtual address
343 */
344 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
345 #define pte_offset_kernel(dir, address) \
346 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
347 #define pte_offset_map(dir, address) \
348 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
349 #define pte_unmap(pte) do { } while (0)
350
351 struct mm_struct;
352 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
353
354 #define update_mmu_cache(vma,address,ptep) do ; while (0)
355
356 /* Encode and de-code a swap entry */
357 #define __swp_type(x) (((x).val >> 5) & 0x1f)
358 #define __swp_offset(x) ((x).val >> 11)
359
360 #define __swp_entry(type, offset) \
361 ((swp_entry_t) { ((type) << 5) | ((offset) << 11) })
362 #define __pte_to_swp_entry(pte) \
363 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
364 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
365
366 #define kern_addr_valid(addr) (1)
367
368 #include <asm-generic/pgtable.h>
369
370 /* Clear a kernel PTE and flush it from the TLB */
371 #define kpte_clear_flush(ptep, vaddr) \
372 do { \
373 pte_clear(&init_mm, (vaddr), (ptep)); \
374 __flush_tlb_one((vaddr)); \
375 } while (0)
376
377 #endif
378