1 /*
2 * PS3 address space management.
3 *
4 * Copyright (C) 2006 Sony Computer Entertainment Inc.
5 * Copyright 2006 Sony Corp.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26
27 #include <asm/cell-regs.h>
28 #include <asm/firmware.h>
29 #include <asm/prom.h>
30 #include <asm/udbg.h>
31 #include <asm/lv1call.h>
32
33 #include "platform.h"
34
35 #if defined(DEBUG)
36 #define DBG udbg_printf
37 #else
38 #define DBG pr_devel
39 #endif
40
41 enum {
42 #if defined(CONFIG_PS3_DYNAMIC_DMA)
43 USE_DYNAMIC_DMA = 1,
44 #else
45 USE_DYNAMIC_DMA = 0,
46 #endif
47 };
48
49 enum {
50 PAGE_SHIFT_4K = 12U,
51 PAGE_SHIFT_64K = 16U,
52 PAGE_SHIFT_16M = 24U,
53 };
54
make_page_sizes(unsigned long a,unsigned long b)55 static unsigned long make_page_sizes(unsigned long a, unsigned long b)
56 {
57 return (a << 56) | (b << 48);
58 }
59
60 enum {
61 ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04,
62 ALLOCATE_MEMORY_ADDR_ZERO = 0X08,
63 };
64
65 /* valid htab sizes are {18,19,20} = 256K, 512K, 1M */
66
67 enum {
68 HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */
69 HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */
70 };
71
72 /*============================================================================*/
73 /* virtual address space routines */
74 /*============================================================================*/
75
76 /**
77 * struct mem_region - memory region structure
78 * @base: base address
79 * @size: size in bytes
80 * @offset: difference between base and rm.size
81 */
82
83 struct mem_region {
84 u64 base;
85 u64 size;
86 unsigned long offset;
87 };
88
89 /**
90 * struct map - address space state variables holder
91 * @total: total memory available as reported by HV
92 * @vas_id - HV virtual address space id
93 * @htab_size: htab size in bytes
94 *
95 * The HV virtual address space (vas) allows for hotplug memory regions.
96 * Memory regions can be created and destroyed in the vas at runtime.
97 * @rm: real mode (bootmem) region
98 * @r1: hotplug memory region(s)
99 *
100 * ps3 addresses
101 * virt_addr: a cpu 'translated' effective address
102 * phys_addr: an address in what Linux thinks is the physical address space
103 * lpar_addr: an address in the HV virtual address space
104 * bus_addr: an io controller 'translated' address on a device bus
105 */
106
107 struct map {
108 u64 total;
109 u64 vas_id;
110 u64 htab_size;
111 struct mem_region rm;
112 struct mem_region r1;
113 };
114
115 #define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__)
_debug_dump_map(const struct map * m,const char * func,int line)116 static void __maybe_unused _debug_dump_map(const struct map *m,
117 const char *func, int line)
118 {
119 DBG("%s:%d: map.total = %llxh\n", func, line, m->total);
120 DBG("%s:%d: map.rm.size = %llxh\n", func, line, m->rm.size);
121 DBG("%s:%d: map.vas_id = %llu\n", func, line, m->vas_id);
122 DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size);
123 DBG("%s:%d: map.r1.base = %llxh\n", func, line, m->r1.base);
124 DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset);
125 DBG("%s:%d: map.r1.size = %llxh\n", func, line, m->r1.size);
126 }
127
128 static struct map map;
129
130 /**
131 * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address
132 * @phys_addr: linux physical address
133 */
134
ps3_mm_phys_to_lpar(unsigned long phys_addr)135 unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr)
136 {
137 BUG_ON(is_kernel_addr(phys_addr));
138 return (phys_addr < map.rm.size || phys_addr >= map.total)
139 ? phys_addr : phys_addr + map.r1.offset;
140 }
141
142 EXPORT_SYMBOL(ps3_mm_phys_to_lpar);
143
144 /**
145 * ps3_mm_vas_create - create the virtual address space
146 */
147
ps3_mm_vas_create(unsigned long * htab_size)148 void __init ps3_mm_vas_create(unsigned long* htab_size)
149 {
150 int result;
151 u64 start_address;
152 u64 size;
153 u64 access_right;
154 u64 max_page_size;
155 u64 flags;
156
157 result = lv1_query_logical_partition_address_region_info(0,
158 &start_address, &size, &access_right, &max_page_size,
159 &flags);
160
161 if (result) {
162 DBG("%s:%d: lv1_query_logical_partition_address_region_info "
163 "failed: %s\n", __func__, __LINE__,
164 ps3_result(result));
165 goto fail;
166 }
167
168 if (max_page_size < PAGE_SHIFT_16M) {
169 DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__,
170 max_page_size);
171 goto fail;
172 }
173
174 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX);
175 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN);
176
177 result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE,
178 2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K),
179 &map.vas_id, &map.htab_size);
180
181 if (result) {
182 DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n",
183 __func__, __LINE__, ps3_result(result));
184 goto fail;
185 }
186
187 result = lv1_select_virtual_address_space(map.vas_id);
188
189 if (result) {
190 DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n",
191 __func__, __LINE__, ps3_result(result));
192 goto fail;
193 }
194
195 *htab_size = map.htab_size;
196
197 debug_dump_map(&map);
198
199 return;
200
201 fail:
202 panic("ps3_mm_vas_create failed");
203 }
204
205 /**
206 * ps3_mm_vas_destroy -
207 */
208
ps3_mm_vas_destroy(void)209 void ps3_mm_vas_destroy(void)
210 {
211 int result;
212
213 DBG("%s:%d: map.vas_id = %llu\n", __func__, __LINE__, map.vas_id);
214
215 if (map.vas_id) {
216 result = lv1_select_virtual_address_space(0);
217 BUG_ON(result);
218 result = lv1_destruct_virtual_address_space(map.vas_id);
219 BUG_ON(result);
220 map.vas_id = 0;
221 }
222 }
223
224 /*============================================================================*/
225 /* memory hotplug routines */
226 /*============================================================================*/
227
228 /**
229 * ps3_mm_region_create - create a memory region in the vas
230 * @r: pointer to a struct mem_region to accept initialized values
231 * @size: requested region size
232 *
233 * This implementation creates the region with the vas large page size.
234 * @size is rounded down to a multiple of the vas large page size.
235 */
236
ps3_mm_region_create(struct mem_region * r,unsigned long size)237 static int ps3_mm_region_create(struct mem_region *r, unsigned long size)
238 {
239 int result;
240 u64 muid;
241
242 r->size = _ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M);
243
244 DBG("%s:%d requested %lxh\n", __func__, __LINE__, size);
245 DBG("%s:%d actual %llxh\n", __func__, __LINE__, r->size);
246 DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__,
247 size - r->size, (size - r->size) / 1024 / 1024);
248
249 if (r->size == 0) {
250 DBG("%s:%d: size == 0\n", __func__, __LINE__);
251 result = -1;
252 goto zero_region;
253 }
254
255 result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0,
256 ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid);
257
258 if (result || r->base < map.rm.size) {
259 DBG("%s:%d: lv1_allocate_memory failed: %s\n",
260 __func__, __LINE__, ps3_result(result));
261 goto zero_region;
262 }
263
264 r->offset = r->base - map.rm.size;
265 return result;
266
267 zero_region:
268 r->size = r->base = r->offset = 0;
269 return result;
270 }
271
272 /**
273 * ps3_mm_region_destroy - destroy a memory region
274 * @r: pointer to struct mem_region
275 */
276
ps3_mm_region_destroy(struct mem_region * r)277 static void ps3_mm_region_destroy(struct mem_region *r)
278 {
279 int result;
280
281 DBG("%s:%d: r->base = %llxh\n", __func__, __LINE__, r->base);
282 if (r->base) {
283 result = lv1_release_memory(r->base);
284 BUG_ON(result);
285 r->size = r->base = r->offset = 0;
286 map.total = map.rm.size;
287 }
288 }
289
290 /**
291 * ps3_mm_add_memory - hot add memory
292 */
293
ps3_mm_add_memory(void)294 static int __init ps3_mm_add_memory(void)
295 {
296 int result;
297 unsigned long start_addr;
298 unsigned long start_pfn;
299 unsigned long nr_pages;
300
301 if (!firmware_has_feature(FW_FEATURE_PS3_LV1))
302 return -ENODEV;
303
304 BUG_ON(!mem_init_done);
305
306 start_addr = map.rm.size;
307 start_pfn = start_addr >> PAGE_SHIFT;
308 nr_pages = (map.r1.size + PAGE_SIZE - 1) >> PAGE_SHIFT;
309
310 DBG("%s:%d: start_addr %lxh, start_pfn %lxh, nr_pages %lxh\n",
311 __func__, __LINE__, start_addr, start_pfn, nr_pages);
312
313 result = add_memory(0, start_addr, map.r1.size);
314
315 if (result) {
316 pr_err("%s:%d: add_memory failed: (%d)\n",
317 __func__, __LINE__, result);
318 return result;
319 }
320
321 memblock_add(start_addr, map.r1.size);
322 memblock_analyze();
323
324 result = online_pages(start_pfn, nr_pages);
325
326 if (result)
327 pr_err("%s:%d: online_pages failed: (%d)\n",
328 __func__, __LINE__, result);
329
330 return result;
331 }
332
333 device_initcall(ps3_mm_add_memory);
334
335 /*============================================================================*/
336 /* dma routines */
337 /*============================================================================*/
338
339 /**
340 * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address.
341 * @r: pointer to dma region structure
342 * @lpar_addr: HV lpar address
343 */
344
dma_sb_lpar_to_bus(struct ps3_dma_region * r,unsigned long lpar_addr)345 static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r,
346 unsigned long lpar_addr)
347 {
348 if (lpar_addr >= map.rm.size)
349 lpar_addr -= map.r1.offset;
350 BUG_ON(lpar_addr < r->offset);
351 BUG_ON(lpar_addr >= r->offset + r->len);
352 return r->bus_addr + lpar_addr - r->offset;
353 }
354
355 #define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__)
_dma_dump_region(const struct ps3_dma_region * r,const char * func,int line)356 static void __maybe_unused _dma_dump_region(const struct ps3_dma_region *r,
357 const char *func, int line)
358 {
359 DBG("%s:%d: dev %llu:%llu\n", func, line, r->dev->bus_id,
360 r->dev->dev_id);
361 DBG("%s:%d: page_size %u\n", func, line, r->page_size);
362 DBG("%s:%d: bus_addr %lxh\n", func, line, r->bus_addr);
363 DBG("%s:%d: len %lxh\n", func, line, r->len);
364 DBG("%s:%d: offset %lxh\n", func, line, r->offset);
365 }
366
367 /**
368 * dma_chunk - A chunk of dma pages mapped by the io controller.
369 * @region - The dma region that owns this chunk.
370 * @lpar_addr: Starting lpar address of the area to map.
371 * @bus_addr: Starting ioc bus address of the area to map.
372 * @len: Length in bytes of the area to map.
373 * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the
374 * list of all chuncks owned by the region.
375 *
376 * This implementation uses a very simple dma page manager
377 * based on the dma_chunk structure. This scheme assumes
378 * that all drivers use very well behaved dma ops.
379 */
380
381 struct dma_chunk {
382 struct ps3_dma_region *region;
383 unsigned long lpar_addr;
384 unsigned long bus_addr;
385 unsigned long len;
386 struct list_head link;
387 unsigned int usage_count;
388 };
389
390 #define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__)
_dma_dump_chunk(const struct dma_chunk * c,const char * func,int line)391 static void _dma_dump_chunk (const struct dma_chunk* c, const char* func,
392 int line)
393 {
394 DBG("%s:%d: r.dev %llu:%llu\n", func, line,
395 c->region->dev->bus_id, c->region->dev->dev_id);
396 DBG("%s:%d: r.bus_addr %lxh\n", func, line, c->region->bus_addr);
397 DBG("%s:%d: r.page_size %u\n", func, line, c->region->page_size);
398 DBG("%s:%d: r.len %lxh\n", func, line, c->region->len);
399 DBG("%s:%d: r.offset %lxh\n", func, line, c->region->offset);
400 DBG("%s:%d: c.lpar_addr %lxh\n", func, line, c->lpar_addr);
401 DBG("%s:%d: c.bus_addr %lxh\n", func, line, c->bus_addr);
402 DBG("%s:%d: c.len %lxh\n", func, line, c->len);
403 }
404
dma_find_chunk(struct ps3_dma_region * r,unsigned long bus_addr,unsigned long len)405 static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r,
406 unsigned long bus_addr, unsigned long len)
407 {
408 struct dma_chunk *c;
409 unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 1 << r->page_size);
410 unsigned long aligned_len = _ALIGN_UP(len+bus_addr-aligned_bus,
411 1 << r->page_size);
412
413 list_for_each_entry(c, &r->chunk_list.head, link) {
414 /* intersection */
415 if (aligned_bus >= c->bus_addr &&
416 aligned_bus + aligned_len <= c->bus_addr + c->len)
417 return c;
418
419 /* below */
420 if (aligned_bus + aligned_len <= c->bus_addr)
421 continue;
422
423 /* above */
424 if (aligned_bus >= c->bus_addr + c->len)
425 continue;
426
427 /* we don't handle the multi-chunk case for now */
428 dma_dump_chunk(c);
429 BUG();
430 }
431 return NULL;
432 }
433
dma_find_chunk_lpar(struct ps3_dma_region * r,unsigned long lpar_addr,unsigned long len)434 static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r,
435 unsigned long lpar_addr, unsigned long len)
436 {
437 struct dma_chunk *c;
438 unsigned long aligned_lpar = _ALIGN_DOWN(lpar_addr, 1 << r->page_size);
439 unsigned long aligned_len = _ALIGN_UP(len + lpar_addr - aligned_lpar,
440 1 << r->page_size);
441
442 list_for_each_entry(c, &r->chunk_list.head, link) {
443 /* intersection */
444 if (c->lpar_addr <= aligned_lpar &&
445 aligned_lpar < c->lpar_addr + c->len) {
446 if (aligned_lpar + aligned_len <= c->lpar_addr + c->len)
447 return c;
448 else {
449 dma_dump_chunk(c);
450 BUG();
451 }
452 }
453 /* below */
454 if (aligned_lpar + aligned_len <= c->lpar_addr) {
455 continue;
456 }
457 /* above */
458 if (c->lpar_addr + c->len <= aligned_lpar) {
459 continue;
460 }
461 }
462 return NULL;
463 }
464
dma_sb_free_chunk(struct dma_chunk * c)465 static int dma_sb_free_chunk(struct dma_chunk *c)
466 {
467 int result = 0;
468
469 if (c->bus_addr) {
470 result = lv1_unmap_device_dma_region(c->region->dev->bus_id,
471 c->region->dev->dev_id, c->bus_addr, c->len);
472 BUG_ON(result);
473 }
474
475 kfree(c);
476 return result;
477 }
478
dma_ioc0_free_chunk(struct dma_chunk * c)479 static int dma_ioc0_free_chunk(struct dma_chunk *c)
480 {
481 int result = 0;
482 int iopage;
483 unsigned long offset;
484 struct ps3_dma_region *r = c->region;
485
486 DBG("%s:start\n", __func__);
487 for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) {
488 offset = (1 << r->page_size) * iopage;
489 /* put INVALID entry */
490 result = lv1_put_iopte(0,
491 c->bus_addr + offset,
492 c->lpar_addr + offset,
493 r->ioid,
494 0);
495 DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__,
496 c->bus_addr + offset,
497 c->lpar_addr + offset,
498 r->ioid);
499
500 if (result) {
501 DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__,
502 __LINE__, ps3_result(result));
503 }
504 }
505 kfree(c);
506 DBG("%s:end\n", __func__);
507 return result;
508 }
509
510 /**
511 * dma_sb_map_pages - Maps dma pages into the io controller bus address space.
512 * @r: Pointer to a struct ps3_dma_region.
513 * @phys_addr: Starting physical address of the area to map.
514 * @len: Length in bytes of the area to map.
515 * c_out: A pointer to receive an allocated struct dma_chunk for this area.
516 *
517 * This is the lowest level dma mapping routine, and is the one that will
518 * make the HV call to add the pages into the io controller address space.
519 */
520
dma_sb_map_pages(struct ps3_dma_region * r,unsigned long phys_addr,unsigned long len,struct dma_chunk ** c_out,u64 iopte_flag)521 static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
522 unsigned long len, struct dma_chunk **c_out, u64 iopte_flag)
523 {
524 int result;
525 struct dma_chunk *c;
526
527 c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC);
528
529 if (!c) {
530 result = -ENOMEM;
531 goto fail_alloc;
532 }
533
534 c->region = r;
535 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
536 c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr);
537 c->len = len;
538
539 BUG_ON(iopte_flag != 0xf800000000000000UL);
540 result = lv1_map_device_dma_region(c->region->dev->bus_id,
541 c->region->dev->dev_id, c->lpar_addr,
542 c->bus_addr, c->len, iopte_flag);
543 if (result) {
544 DBG("%s:%d: lv1_map_device_dma_region failed: %s\n",
545 __func__, __LINE__, ps3_result(result));
546 goto fail_map;
547 }
548
549 list_add(&c->link, &r->chunk_list.head);
550
551 *c_out = c;
552 return 0;
553
554 fail_map:
555 kfree(c);
556 fail_alloc:
557 *c_out = NULL;
558 DBG(" <- %s:%d\n", __func__, __LINE__);
559 return result;
560 }
561
dma_ioc0_map_pages(struct ps3_dma_region * r,unsigned long phys_addr,unsigned long len,struct dma_chunk ** c_out,u64 iopte_flag)562 static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
563 unsigned long len, struct dma_chunk **c_out,
564 u64 iopte_flag)
565 {
566 int result;
567 struct dma_chunk *c, *last;
568 int iopage, pages;
569 unsigned long offset;
570
571 DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__,
572 phys_addr, ps3_mm_phys_to_lpar(phys_addr), len);
573 c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC);
574
575 if (!c) {
576 result = -ENOMEM;
577 goto fail_alloc;
578 }
579
580 c->region = r;
581 c->len = len;
582 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
583 /* allocate IO address */
584 if (list_empty(&r->chunk_list.head)) {
585 /* first one */
586 c->bus_addr = r->bus_addr;
587 } else {
588 /* derive from last bus addr*/
589 last = list_entry(r->chunk_list.head.next,
590 struct dma_chunk, link);
591 c->bus_addr = last->bus_addr + last->len;
592 DBG("%s: last bus=%#lx, len=%#lx\n", __func__,
593 last->bus_addr, last->len);
594 }
595
596 /* FIXME: check whether length exceeds region size */
597
598 /* build ioptes for the area */
599 pages = len >> r->page_size;
600 DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__,
601 r->page_size, r->len, pages, iopte_flag);
602 for (iopage = 0; iopage < pages; iopage++) {
603 offset = (1 << r->page_size) * iopage;
604 result = lv1_put_iopte(0,
605 c->bus_addr + offset,
606 c->lpar_addr + offset,
607 r->ioid,
608 iopte_flag);
609 if (result) {
610 pr_warning("%s:%d: lv1_put_iopte failed: %s\n",
611 __func__, __LINE__, ps3_result(result));
612 goto fail_map;
613 }
614 DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__,
615 iopage, c->bus_addr + offset, c->lpar_addr + offset,
616 r->ioid);
617 }
618
619 /* be sure that last allocated one is inserted at head */
620 list_add(&c->link, &r->chunk_list.head);
621
622 *c_out = c;
623 DBG("%s: end\n", __func__);
624 return 0;
625
626 fail_map:
627 for (iopage--; 0 <= iopage; iopage--) {
628 lv1_put_iopte(0,
629 c->bus_addr + offset,
630 c->lpar_addr + offset,
631 r->ioid,
632 0);
633 }
634 kfree(c);
635 fail_alloc:
636 *c_out = NULL;
637 return result;
638 }
639
640 /**
641 * dma_sb_region_create - Create a device dma region.
642 * @r: Pointer to a struct ps3_dma_region.
643 *
644 * This is the lowest level dma region create routine, and is the one that
645 * will make the HV call to create the region.
646 */
647
dma_sb_region_create(struct ps3_dma_region * r)648 static int dma_sb_region_create(struct ps3_dma_region *r)
649 {
650 int result;
651 u64 bus_addr;
652
653 DBG(" -> %s:%d:\n", __func__, __LINE__);
654
655 BUG_ON(!r);
656
657 if (!r->dev->bus_id) {
658 pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
659 r->dev->bus_id, r->dev->dev_id);
660 return 0;
661 }
662
663 DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__,
664 __LINE__, r->len, r->page_size, r->offset);
665
666 BUG_ON(!r->len);
667 BUG_ON(!r->page_size);
668 BUG_ON(!r->region_ops);
669
670 INIT_LIST_HEAD(&r->chunk_list.head);
671 spin_lock_init(&r->chunk_list.lock);
672
673 result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id,
674 roundup_pow_of_two(r->len), r->page_size, r->region_type,
675 &bus_addr);
676 r->bus_addr = bus_addr;
677
678 if (result) {
679 DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n",
680 __func__, __LINE__, ps3_result(result));
681 r->len = r->bus_addr = 0;
682 }
683
684 return result;
685 }
686
dma_ioc0_region_create(struct ps3_dma_region * r)687 static int dma_ioc0_region_create(struct ps3_dma_region *r)
688 {
689 int result;
690 u64 bus_addr;
691
692 INIT_LIST_HEAD(&r->chunk_list.head);
693 spin_lock_init(&r->chunk_list.lock);
694
695 result = lv1_allocate_io_segment(0,
696 r->len,
697 r->page_size,
698 &bus_addr);
699 r->bus_addr = bus_addr;
700 if (result) {
701 DBG("%s:%d: lv1_allocate_io_segment failed: %s\n",
702 __func__, __LINE__, ps3_result(result));
703 r->len = r->bus_addr = 0;
704 }
705 DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__,
706 r->len, r->page_size, r->bus_addr);
707 return result;
708 }
709
710 /**
711 * dma_region_free - Free a device dma region.
712 * @r: Pointer to a struct ps3_dma_region.
713 *
714 * This is the lowest level dma region free routine, and is the one that
715 * will make the HV call to free the region.
716 */
717
dma_sb_region_free(struct ps3_dma_region * r)718 static int dma_sb_region_free(struct ps3_dma_region *r)
719 {
720 int result;
721 struct dma_chunk *c;
722 struct dma_chunk *tmp;
723
724 BUG_ON(!r);
725
726 if (!r->dev->bus_id) {
727 pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
728 r->dev->bus_id, r->dev->dev_id);
729 return 0;
730 }
731
732 list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) {
733 list_del(&c->link);
734 dma_sb_free_chunk(c);
735 }
736
737 result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id,
738 r->bus_addr);
739
740 if (result)
741 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
742 __func__, __LINE__, ps3_result(result));
743
744 r->bus_addr = 0;
745
746 return result;
747 }
748
dma_ioc0_region_free(struct ps3_dma_region * r)749 static int dma_ioc0_region_free(struct ps3_dma_region *r)
750 {
751 int result;
752 struct dma_chunk *c, *n;
753
754 DBG("%s: start\n", __func__);
755 list_for_each_entry_safe(c, n, &r->chunk_list.head, link) {
756 list_del(&c->link);
757 dma_ioc0_free_chunk(c);
758 }
759
760 result = lv1_release_io_segment(0, r->bus_addr);
761
762 if (result)
763 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
764 __func__, __LINE__, ps3_result(result));
765
766 r->bus_addr = 0;
767 DBG("%s: end\n", __func__);
768
769 return result;
770 }
771
772 /**
773 * dma_sb_map_area - Map an area of memory into a device dma region.
774 * @r: Pointer to a struct ps3_dma_region.
775 * @virt_addr: Starting virtual address of the area to map.
776 * @len: Length in bytes of the area to map.
777 * @bus_addr: A pointer to return the starting ioc bus address of the area to
778 * map.
779 *
780 * This is the common dma mapping routine.
781 */
782
dma_sb_map_area(struct ps3_dma_region * r,unsigned long virt_addr,unsigned long len,dma_addr_t * bus_addr,u64 iopte_flag)783 static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
784 unsigned long len, dma_addr_t *bus_addr,
785 u64 iopte_flag)
786 {
787 int result;
788 unsigned long flags;
789 struct dma_chunk *c;
790 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
791 : virt_addr;
792 unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size);
793 unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys,
794 1 << r->page_size);
795 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
796
797 if (!USE_DYNAMIC_DMA) {
798 unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
799 DBG(" -> %s:%d\n", __func__, __LINE__);
800 DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__,
801 virt_addr);
802 DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__,
803 phys_addr);
804 DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__,
805 lpar_addr);
806 DBG("%s:%d len %lxh\n", __func__, __LINE__, len);
807 DBG("%s:%d bus_addr %llxh (%lxh)\n", __func__, __LINE__,
808 *bus_addr, len);
809 }
810
811 spin_lock_irqsave(&r->chunk_list.lock, flags);
812 c = dma_find_chunk(r, *bus_addr, len);
813
814 if (c) {
815 DBG("%s:%d: reusing mapped chunk", __func__, __LINE__);
816 dma_dump_chunk(c);
817 c->usage_count++;
818 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
819 return 0;
820 }
821
822 result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag);
823
824 if (result) {
825 *bus_addr = 0;
826 DBG("%s:%d: dma_sb_map_pages failed (%d)\n",
827 __func__, __LINE__, result);
828 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
829 return result;
830 }
831
832 c->usage_count = 1;
833
834 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
835 return result;
836 }
837
dma_ioc0_map_area(struct ps3_dma_region * r,unsigned long virt_addr,unsigned long len,dma_addr_t * bus_addr,u64 iopte_flag)838 static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
839 unsigned long len, dma_addr_t *bus_addr,
840 u64 iopte_flag)
841 {
842 int result;
843 unsigned long flags;
844 struct dma_chunk *c;
845 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
846 : virt_addr;
847 unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size);
848 unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys,
849 1 << r->page_size);
850
851 DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__,
852 virt_addr, len);
853 DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__,
854 phys_addr, aligned_phys, aligned_len);
855
856 spin_lock_irqsave(&r->chunk_list.lock, flags);
857 c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len);
858
859 if (c) {
860 /* FIXME */
861 BUG();
862 *bus_addr = c->bus_addr + phys_addr - aligned_phys;
863 c->usage_count++;
864 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
865 return 0;
866 }
867
868 result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c,
869 iopte_flag);
870
871 if (result) {
872 *bus_addr = 0;
873 DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n",
874 __func__, __LINE__, result);
875 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
876 return result;
877 }
878 *bus_addr = c->bus_addr + phys_addr - aligned_phys;
879 DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__,
880 virt_addr, phys_addr, aligned_phys, *bus_addr);
881 c->usage_count = 1;
882
883 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
884 return result;
885 }
886
887 /**
888 * dma_sb_unmap_area - Unmap an area of memory from a device dma region.
889 * @r: Pointer to a struct ps3_dma_region.
890 * @bus_addr: The starting ioc bus address of the area to unmap.
891 * @len: Length in bytes of the area to unmap.
892 *
893 * This is the common dma unmap routine.
894 */
895
dma_sb_unmap_area(struct ps3_dma_region * r,dma_addr_t bus_addr,unsigned long len)896 static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr,
897 unsigned long len)
898 {
899 unsigned long flags;
900 struct dma_chunk *c;
901
902 spin_lock_irqsave(&r->chunk_list.lock, flags);
903 c = dma_find_chunk(r, bus_addr, len);
904
905 if (!c) {
906 unsigned long aligned_bus = _ALIGN_DOWN(bus_addr,
907 1 << r->page_size);
908 unsigned long aligned_len = _ALIGN_UP(len + bus_addr
909 - aligned_bus, 1 << r->page_size);
910 DBG("%s:%d: not found: bus_addr %llxh\n",
911 __func__, __LINE__, bus_addr);
912 DBG("%s:%d: not found: len %lxh\n",
913 __func__, __LINE__, len);
914 DBG("%s:%d: not found: aligned_bus %lxh\n",
915 __func__, __LINE__, aligned_bus);
916 DBG("%s:%d: not found: aligned_len %lxh\n",
917 __func__, __LINE__, aligned_len);
918 BUG();
919 }
920
921 c->usage_count--;
922
923 if (!c->usage_count) {
924 list_del(&c->link);
925 dma_sb_free_chunk(c);
926 }
927
928 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
929 return 0;
930 }
931
dma_ioc0_unmap_area(struct ps3_dma_region * r,dma_addr_t bus_addr,unsigned long len)932 static int dma_ioc0_unmap_area(struct ps3_dma_region *r,
933 dma_addr_t bus_addr, unsigned long len)
934 {
935 unsigned long flags;
936 struct dma_chunk *c;
937
938 DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len);
939 spin_lock_irqsave(&r->chunk_list.lock, flags);
940 c = dma_find_chunk(r, bus_addr, len);
941
942 if (!c) {
943 unsigned long aligned_bus = _ALIGN_DOWN(bus_addr,
944 1 << r->page_size);
945 unsigned long aligned_len = _ALIGN_UP(len + bus_addr
946 - aligned_bus,
947 1 << r->page_size);
948 DBG("%s:%d: not found: bus_addr %llxh\n",
949 __func__, __LINE__, bus_addr);
950 DBG("%s:%d: not found: len %lxh\n",
951 __func__, __LINE__, len);
952 DBG("%s:%d: not found: aligned_bus %lxh\n",
953 __func__, __LINE__, aligned_bus);
954 DBG("%s:%d: not found: aligned_len %lxh\n",
955 __func__, __LINE__, aligned_len);
956 BUG();
957 }
958
959 c->usage_count--;
960
961 if (!c->usage_count) {
962 list_del(&c->link);
963 dma_ioc0_free_chunk(c);
964 }
965
966 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
967 DBG("%s: end\n", __func__);
968 return 0;
969 }
970
971 /**
972 * dma_sb_region_create_linear - Setup a linear dma mapping for a device.
973 * @r: Pointer to a struct ps3_dma_region.
974 *
975 * This routine creates an HV dma region for the device and maps all available
976 * ram into the io controller bus address space.
977 */
978
dma_sb_region_create_linear(struct ps3_dma_region * r)979 static int dma_sb_region_create_linear(struct ps3_dma_region *r)
980 {
981 int result;
982 unsigned long virt_addr, len;
983 dma_addr_t tmp;
984
985 if (r->len > 16*1024*1024) { /* FIXME: need proper fix */
986 /* force 16M dma pages for linear mapping */
987 if (r->page_size != PS3_DMA_16M) {
988 pr_info("%s:%d: forcing 16M pages for linear map\n",
989 __func__, __LINE__);
990 r->page_size = PS3_DMA_16M;
991 r->len = _ALIGN_UP(r->len, 1 << r->page_size);
992 }
993 }
994
995 result = dma_sb_region_create(r);
996 BUG_ON(result);
997
998 if (r->offset < map.rm.size) {
999 /* Map (part of) 1st RAM chunk */
1000 virt_addr = map.rm.base + r->offset;
1001 len = map.rm.size - r->offset;
1002 if (len > r->len)
1003 len = r->len;
1004 result = dma_sb_map_area(r, virt_addr, len, &tmp,
1005 CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
1006 CBE_IOPTE_M);
1007 BUG_ON(result);
1008 }
1009
1010 if (r->offset + r->len > map.rm.size) {
1011 /* Map (part of) 2nd RAM chunk */
1012 virt_addr = map.rm.size;
1013 len = r->len;
1014 if (r->offset >= map.rm.size)
1015 virt_addr += r->offset - map.rm.size;
1016 else
1017 len -= map.rm.size - r->offset;
1018 result = dma_sb_map_area(r, virt_addr, len, &tmp,
1019 CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
1020 CBE_IOPTE_M);
1021 BUG_ON(result);
1022 }
1023
1024 return result;
1025 }
1026
1027 /**
1028 * dma_sb_region_free_linear - Free a linear dma mapping for a device.
1029 * @r: Pointer to a struct ps3_dma_region.
1030 *
1031 * This routine will unmap all mapped areas and free the HV dma region.
1032 */
1033
dma_sb_region_free_linear(struct ps3_dma_region * r)1034 static int dma_sb_region_free_linear(struct ps3_dma_region *r)
1035 {
1036 int result;
1037 dma_addr_t bus_addr;
1038 unsigned long len, lpar_addr;
1039
1040 if (r->offset < map.rm.size) {
1041 /* Unmap (part of) 1st RAM chunk */
1042 lpar_addr = map.rm.base + r->offset;
1043 len = map.rm.size - r->offset;
1044 if (len > r->len)
1045 len = r->len;
1046 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1047 result = dma_sb_unmap_area(r, bus_addr, len);
1048 BUG_ON(result);
1049 }
1050
1051 if (r->offset + r->len > map.rm.size) {
1052 /* Unmap (part of) 2nd RAM chunk */
1053 lpar_addr = map.r1.base;
1054 len = r->len;
1055 if (r->offset >= map.rm.size)
1056 lpar_addr += r->offset - map.rm.size;
1057 else
1058 len -= map.rm.size - r->offset;
1059 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1060 result = dma_sb_unmap_area(r, bus_addr, len);
1061 BUG_ON(result);
1062 }
1063
1064 result = dma_sb_region_free(r);
1065 BUG_ON(result);
1066
1067 return result;
1068 }
1069
1070 /**
1071 * dma_sb_map_area_linear - Map an area of memory into a device dma region.
1072 * @r: Pointer to a struct ps3_dma_region.
1073 * @virt_addr: Starting virtual address of the area to map.
1074 * @len: Length in bytes of the area to map.
1075 * @bus_addr: A pointer to return the starting ioc bus address of the area to
1076 * map.
1077 *
1078 * This routine just returns the corresponding bus address. Actual mapping
1079 * occurs in dma_region_create_linear().
1080 */
1081
dma_sb_map_area_linear(struct ps3_dma_region * r,unsigned long virt_addr,unsigned long len,dma_addr_t * bus_addr,u64 iopte_flag)1082 static int dma_sb_map_area_linear(struct ps3_dma_region *r,
1083 unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr,
1084 u64 iopte_flag)
1085 {
1086 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
1087 : virt_addr;
1088 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
1089 return 0;
1090 }
1091
1092 /**
1093 * dma_unmap_area_linear - Unmap an area of memory from a device dma region.
1094 * @r: Pointer to a struct ps3_dma_region.
1095 * @bus_addr: The starting ioc bus address of the area to unmap.
1096 * @len: Length in bytes of the area to unmap.
1097 *
1098 * This routine does nothing. Unmapping occurs in dma_sb_region_free_linear().
1099 */
1100
dma_sb_unmap_area_linear(struct ps3_dma_region * r,dma_addr_t bus_addr,unsigned long len)1101 static int dma_sb_unmap_area_linear(struct ps3_dma_region *r,
1102 dma_addr_t bus_addr, unsigned long len)
1103 {
1104 return 0;
1105 };
1106
1107 static const struct ps3_dma_region_ops ps3_dma_sb_region_ops = {
1108 .create = dma_sb_region_create,
1109 .free = dma_sb_region_free,
1110 .map = dma_sb_map_area,
1111 .unmap = dma_sb_unmap_area
1112 };
1113
1114 static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = {
1115 .create = dma_sb_region_create_linear,
1116 .free = dma_sb_region_free_linear,
1117 .map = dma_sb_map_area_linear,
1118 .unmap = dma_sb_unmap_area_linear
1119 };
1120
1121 static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = {
1122 .create = dma_ioc0_region_create,
1123 .free = dma_ioc0_region_free,
1124 .map = dma_ioc0_map_area,
1125 .unmap = dma_ioc0_unmap_area
1126 };
1127
ps3_dma_region_init(struct ps3_system_bus_device * dev,struct ps3_dma_region * r,enum ps3_dma_page_size page_size,enum ps3_dma_region_type region_type,void * addr,unsigned long len)1128 int ps3_dma_region_init(struct ps3_system_bus_device *dev,
1129 struct ps3_dma_region *r, enum ps3_dma_page_size page_size,
1130 enum ps3_dma_region_type region_type, void *addr, unsigned long len)
1131 {
1132 unsigned long lpar_addr;
1133
1134 lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0;
1135
1136 r->dev = dev;
1137 r->page_size = page_size;
1138 r->region_type = region_type;
1139 r->offset = lpar_addr;
1140 if (r->offset >= map.rm.size)
1141 r->offset -= map.r1.offset;
1142 r->len = len ? len : _ALIGN_UP(map.total, 1 << r->page_size);
1143
1144 switch (dev->dev_type) {
1145 case PS3_DEVICE_TYPE_SB:
1146 r->region_ops = (USE_DYNAMIC_DMA)
1147 ? &ps3_dma_sb_region_ops
1148 : &ps3_dma_sb_region_linear_ops;
1149 break;
1150 case PS3_DEVICE_TYPE_IOC0:
1151 r->region_ops = &ps3_dma_ioc0_region_ops;
1152 break;
1153 default:
1154 BUG();
1155 return -EINVAL;
1156 }
1157 return 0;
1158 }
1159 EXPORT_SYMBOL(ps3_dma_region_init);
1160
ps3_dma_region_create(struct ps3_dma_region * r)1161 int ps3_dma_region_create(struct ps3_dma_region *r)
1162 {
1163 BUG_ON(!r);
1164 BUG_ON(!r->region_ops);
1165 BUG_ON(!r->region_ops->create);
1166 return r->region_ops->create(r);
1167 }
1168 EXPORT_SYMBOL(ps3_dma_region_create);
1169
ps3_dma_region_free(struct ps3_dma_region * r)1170 int ps3_dma_region_free(struct ps3_dma_region *r)
1171 {
1172 BUG_ON(!r);
1173 BUG_ON(!r->region_ops);
1174 BUG_ON(!r->region_ops->free);
1175 return r->region_ops->free(r);
1176 }
1177 EXPORT_SYMBOL(ps3_dma_region_free);
1178
ps3_dma_map(struct ps3_dma_region * r,unsigned long virt_addr,unsigned long len,dma_addr_t * bus_addr,u64 iopte_flag)1179 int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr,
1180 unsigned long len, dma_addr_t *bus_addr,
1181 u64 iopte_flag)
1182 {
1183 return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag);
1184 }
1185
ps3_dma_unmap(struct ps3_dma_region * r,dma_addr_t bus_addr,unsigned long len)1186 int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr,
1187 unsigned long len)
1188 {
1189 return r->region_ops->unmap(r, bus_addr, len);
1190 }
1191
1192 /*============================================================================*/
1193 /* system startup routines */
1194 /*============================================================================*/
1195
1196 /**
1197 * ps3_mm_init - initialize the address space state variables
1198 */
1199
ps3_mm_init(void)1200 void __init ps3_mm_init(void)
1201 {
1202 int result;
1203
1204 DBG(" -> %s:%d\n", __func__, __LINE__);
1205
1206 result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size,
1207 &map.total);
1208
1209 if (result)
1210 panic("ps3_repository_read_mm_info() failed");
1211
1212 map.rm.offset = map.rm.base;
1213 map.vas_id = map.htab_size = 0;
1214
1215 /* this implementation assumes map.rm.base is zero */
1216
1217 BUG_ON(map.rm.base);
1218 BUG_ON(!map.rm.size);
1219
1220
1221 /* arrange to do this in ps3_mm_add_memory */
1222 ps3_mm_region_create(&map.r1, map.total - map.rm.size);
1223
1224 /* correct map.total for the real total amount of memory we use */
1225 map.total = map.rm.size + map.r1.size;
1226
1227 DBG(" <- %s:%d\n", __func__, __LINE__);
1228 }
1229
1230 /**
1231 * ps3_mm_shutdown - final cleanup of address space
1232 */
1233
ps3_mm_shutdown(void)1234 void ps3_mm_shutdown(void)
1235 {
1236 ps3_mm_region_destroy(&map.r1);
1237 }
1238