1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * PS3 address space management.
4 *
5 * Copyright (C) 2006 Sony Computer Entertainment Inc.
6 * Copyright 2006 Sony Corp.
7 */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/export.h>
12 #include <linux/memblock.h>
13 #include <linux/slab.h>
14
15 #include <asm/cell-regs.h>
16 #include <asm/firmware.h>
17 #include <asm/udbg.h>
18 #include <asm/lv1call.h>
19 #include <asm/setup.h>
20
21 #include "platform.h"
22
23 #if defined(DEBUG)
24 #define DBG udbg_printf
25 #else
26 #define DBG pr_devel
27 #endif
28
29 enum {
30 #if defined(CONFIG_PS3_DYNAMIC_DMA)
31 USE_DYNAMIC_DMA = 1,
32 #else
33 USE_DYNAMIC_DMA = 0,
34 #endif
35 };
36
37 enum {
38 PAGE_SHIFT_4K = 12U,
39 PAGE_SHIFT_64K = 16U,
40 PAGE_SHIFT_16M = 24U,
41 };
42
make_page_sizes(unsigned long a,unsigned long b)43 static unsigned long __init make_page_sizes(unsigned long a, unsigned long b)
44 {
45 return (a << 56) | (b << 48);
46 }
47
48 enum {
49 ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04,
50 ALLOCATE_MEMORY_ADDR_ZERO = 0X08,
51 };
52
53 /* valid htab sizes are {18,19,20} = 256K, 512K, 1M */
54
55 enum {
56 HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */
57 HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */
58 };
59
60 /*============================================================================*/
61 /* virtual address space routines */
62 /*============================================================================*/
63
64 /**
65 * struct mem_region - memory region structure
66 * @base: base address
67 * @size: size in bytes
68 * @offset: difference between base and rm.size
69 * @destroy: flag if region should be destroyed upon shutdown
70 */
71
72 struct mem_region {
73 u64 base;
74 u64 size;
75 unsigned long offset;
76 int destroy;
77 };
78
79 /**
80 * struct map - address space state variables holder
81 * @total: total memory available as reported by HV
82 * @vas_id - HV virtual address space id
83 * @htab_size: htab size in bytes
84 *
85 * The HV virtual address space (vas) allows for hotplug memory regions.
86 * Memory regions can be created and destroyed in the vas at runtime.
87 * @rm: real mode (bootmem) region
88 * @r1: highmem region(s)
89 *
90 * ps3 addresses
91 * virt_addr: a cpu 'translated' effective address
92 * phys_addr: an address in what Linux thinks is the physical address space
93 * lpar_addr: an address in the HV virtual address space
94 * bus_addr: an io controller 'translated' address on a device bus
95 */
96
97 struct map {
98 u64 total;
99 u64 vas_id;
100 u64 htab_size;
101 struct mem_region rm;
102 struct mem_region r1;
103 };
104
105 #define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__)
_debug_dump_map(const struct map * m,const char * func,int line)106 static void __maybe_unused _debug_dump_map(const struct map *m,
107 const char *func, int line)
108 {
109 DBG("%s:%d: map.total = %llxh\n", func, line, m->total);
110 DBG("%s:%d: map.rm.size = %llxh\n", func, line, m->rm.size);
111 DBG("%s:%d: map.vas_id = %llu\n", func, line, m->vas_id);
112 DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size);
113 DBG("%s:%d: map.r1.base = %llxh\n", func, line, m->r1.base);
114 DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset);
115 DBG("%s:%d: map.r1.size = %llxh\n", func, line, m->r1.size);
116 }
117
118 static struct map map;
119
120 /**
121 * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address
122 * @phys_addr: linux physical address
123 */
124
ps3_mm_phys_to_lpar(unsigned long phys_addr)125 unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr)
126 {
127 BUG_ON(is_kernel_addr(phys_addr));
128 return (phys_addr < map.rm.size || phys_addr >= map.total)
129 ? phys_addr : phys_addr + map.r1.offset;
130 }
131
132 EXPORT_SYMBOL(ps3_mm_phys_to_lpar);
133
134 /**
135 * ps3_mm_vas_create - create the virtual address space
136 */
137
ps3_mm_vas_create(unsigned long * htab_size)138 void __init ps3_mm_vas_create(unsigned long* htab_size)
139 {
140 int result;
141 u64 start_address;
142 u64 size;
143 u64 access_right;
144 u64 max_page_size;
145 u64 flags;
146
147 result = lv1_query_logical_partition_address_region_info(0,
148 &start_address, &size, &access_right, &max_page_size,
149 &flags);
150
151 if (result) {
152 DBG("%s:%d: lv1_query_logical_partition_address_region_info "
153 "failed: %s\n", __func__, __LINE__,
154 ps3_result(result));
155 goto fail;
156 }
157
158 if (max_page_size < PAGE_SHIFT_16M) {
159 DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__,
160 max_page_size);
161 goto fail;
162 }
163
164 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX);
165 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN);
166
167 result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE,
168 2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K),
169 &map.vas_id, &map.htab_size);
170
171 if (result) {
172 DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n",
173 __func__, __LINE__, ps3_result(result));
174 goto fail;
175 }
176
177 result = lv1_select_virtual_address_space(map.vas_id);
178
179 if (result) {
180 DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n",
181 __func__, __LINE__, ps3_result(result));
182 goto fail;
183 }
184
185 *htab_size = map.htab_size;
186
187 debug_dump_map(&map);
188
189 return;
190
191 fail:
192 panic("ps3_mm_vas_create failed");
193 }
194
195 /**
196 * ps3_mm_vas_destroy -
197 *
198 * called during kexec sequence with MMU off.
199 */
200
ps3_mm_vas_destroy(void)201 notrace void ps3_mm_vas_destroy(void)
202 {
203 int result;
204
205 if (map.vas_id) {
206 result = lv1_select_virtual_address_space(0);
207 result += lv1_destruct_virtual_address_space(map.vas_id);
208
209 if (result) {
210 lv1_panic(0);
211 }
212
213 map.vas_id = 0;
214 }
215 }
216
ps3_mm_get_repository_highmem(struct mem_region * r)217 static int __init ps3_mm_get_repository_highmem(struct mem_region *r)
218 {
219 int result;
220
221 /* Assume a single highmem region. */
222
223 result = ps3_repository_read_highmem_info(0, &r->base, &r->size);
224
225 if (result)
226 goto zero_region;
227
228 if (!r->base || !r->size) {
229 result = -1;
230 goto zero_region;
231 }
232
233 r->offset = r->base - map.rm.size;
234
235 DBG("%s:%d: Found high region in repository: %llxh %llxh\n",
236 __func__, __LINE__, r->base, r->size);
237
238 return 0;
239
240 zero_region:
241 DBG("%s:%d: No high region in repository.\n", __func__, __LINE__);
242
243 r->size = r->base = r->offset = 0;
244 return result;
245 }
246
ps3_mm_set_repository_highmem(const struct mem_region * r)247 static int ps3_mm_set_repository_highmem(const struct mem_region *r)
248 {
249 /* Assume a single highmem region. */
250
251 return r ? ps3_repository_write_highmem_info(0, r->base, r->size) :
252 ps3_repository_write_highmem_info(0, 0, 0);
253 }
254
255 /**
256 * ps3_mm_region_create - create a memory region in the vas
257 * @r: pointer to a struct mem_region to accept initialized values
258 * @size: requested region size
259 *
260 * This implementation creates the region with the vas large page size.
261 * @size is rounded down to a multiple of the vas large page size.
262 */
263
ps3_mm_region_create(struct mem_region * r,unsigned long size)264 static int ps3_mm_region_create(struct mem_region *r, unsigned long size)
265 {
266 int result;
267 u64 muid;
268
269 r->size = ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M);
270
271 DBG("%s:%d requested %lxh\n", __func__, __LINE__, size);
272 DBG("%s:%d actual %llxh\n", __func__, __LINE__, r->size);
273 DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__,
274 size - r->size, (size - r->size) / 1024 / 1024);
275
276 if (r->size == 0) {
277 DBG("%s:%d: size == 0\n", __func__, __LINE__);
278 result = -1;
279 goto zero_region;
280 }
281
282 result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0,
283 ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid);
284
285 if (result || r->base < map.rm.size) {
286 DBG("%s:%d: lv1_allocate_memory failed: %s\n",
287 __func__, __LINE__, ps3_result(result));
288 goto zero_region;
289 }
290
291 r->destroy = 1;
292 r->offset = r->base - map.rm.size;
293 return result;
294
295 zero_region:
296 r->size = r->base = r->offset = 0;
297 return result;
298 }
299
300 /**
301 * ps3_mm_region_destroy - destroy a memory region
302 * @r: pointer to struct mem_region
303 */
304
ps3_mm_region_destroy(struct mem_region * r)305 static void ps3_mm_region_destroy(struct mem_region *r)
306 {
307 int result;
308
309 if (!r->destroy) {
310 return;
311 }
312
313 if (r->base) {
314 result = lv1_release_memory(r->base);
315
316 if (result) {
317 lv1_panic(0);
318 }
319
320 r->size = r->base = r->offset = 0;
321 map.total = map.rm.size;
322 }
323
324 ps3_mm_set_repository_highmem(NULL);
325 }
326
327 /*============================================================================*/
328 /* dma routines */
329 /*============================================================================*/
330
331 /**
332 * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address.
333 * @r: pointer to dma region structure
334 * @lpar_addr: HV lpar address
335 */
336
dma_sb_lpar_to_bus(struct ps3_dma_region * r,unsigned long lpar_addr)337 static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r,
338 unsigned long lpar_addr)
339 {
340 if (lpar_addr >= map.rm.size)
341 lpar_addr -= map.r1.offset;
342 BUG_ON(lpar_addr < r->offset);
343 BUG_ON(lpar_addr >= r->offset + r->len);
344 return r->bus_addr + lpar_addr - r->offset;
345 }
346
347 #define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__)
_dma_dump_region(const struct ps3_dma_region * r,const char * func,int line)348 static void __maybe_unused _dma_dump_region(const struct ps3_dma_region *r,
349 const char *func, int line)
350 {
351 DBG("%s:%d: dev %llu:%llu\n", func, line, r->dev->bus_id,
352 r->dev->dev_id);
353 DBG("%s:%d: page_size %u\n", func, line, r->page_size);
354 DBG("%s:%d: bus_addr %lxh\n", func, line, r->bus_addr);
355 DBG("%s:%d: len %lxh\n", func, line, r->len);
356 DBG("%s:%d: offset %lxh\n", func, line, r->offset);
357 }
358
359 /**
360 * dma_chunk - A chunk of dma pages mapped by the io controller.
361 * @region - The dma region that owns this chunk.
362 * @lpar_addr: Starting lpar address of the area to map.
363 * @bus_addr: Starting ioc bus address of the area to map.
364 * @len: Length in bytes of the area to map.
365 * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the
366 * list of all chunks owned by the region.
367 *
368 * This implementation uses a very simple dma page manager
369 * based on the dma_chunk structure. This scheme assumes
370 * that all drivers use very well behaved dma ops.
371 */
372
373 struct dma_chunk {
374 struct ps3_dma_region *region;
375 unsigned long lpar_addr;
376 unsigned long bus_addr;
377 unsigned long len;
378 struct list_head link;
379 unsigned int usage_count;
380 };
381
382 #define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__)
_dma_dump_chunk(const struct dma_chunk * c,const char * func,int line)383 static void _dma_dump_chunk (const struct dma_chunk* c, const char* func,
384 int line)
385 {
386 DBG("%s:%d: r.dev %llu:%llu\n", func, line,
387 c->region->dev->bus_id, c->region->dev->dev_id);
388 DBG("%s:%d: r.bus_addr %lxh\n", func, line, c->region->bus_addr);
389 DBG("%s:%d: r.page_size %u\n", func, line, c->region->page_size);
390 DBG("%s:%d: r.len %lxh\n", func, line, c->region->len);
391 DBG("%s:%d: r.offset %lxh\n", func, line, c->region->offset);
392 DBG("%s:%d: c.lpar_addr %lxh\n", func, line, c->lpar_addr);
393 DBG("%s:%d: c.bus_addr %lxh\n", func, line, c->bus_addr);
394 DBG("%s:%d: c.len %lxh\n", func, line, c->len);
395 }
396
dma_find_chunk(struct ps3_dma_region * r,unsigned long bus_addr,unsigned long len)397 static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r,
398 unsigned long bus_addr, unsigned long len)
399 {
400 struct dma_chunk *c;
401 unsigned long aligned_bus = ALIGN_DOWN(bus_addr, 1 << r->page_size);
402 unsigned long aligned_len = ALIGN(len+bus_addr-aligned_bus,
403 1 << r->page_size);
404
405 list_for_each_entry(c, &r->chunk_list.head, link) {
406 /* intersection */
407 if (aligned_bus >= c->bus_addr &&
408 aligned_bus + aligned_len <= c->bus_addr + c->len)
409 return c;
410
411 /* below */
412 if (aligned_bus + aligned_len <= c->bus_addr)
413 continue;
414
415 /* above */
416 if (aligned_bus >= c->bus_addr + c->len)
417 continue;
418
419 /* we don't handle the multi-chunk case for now */
420 dma_dump_chunk(c);
421 BUG();
422 }
423 return NULL;
424 }
425
dma_find_chunk_lpar(struct ps3_dma_region * r,unsigned long lpar_addr,unsigned long len)426 static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r,
427 unsigned long lpar_addr, unsigned long len)
428 {
429 struct dma_chunk *c;
430 unsigned long aligned_lpar = ALIGN_DOWN(lpar_addr, 1 << r->page_size);
431 unsigned long aligned_len = ALIGN(len + lpar_addr - aligned_lpar,
432 1 << r->page_size);
433
434 list_for_each_entry(c, &r->chunk_list.head, link) {
435 /* intersection */
436 if (c->lpar_addr <= aligned_lpar &&
437 aligned_lpar < c->lpar_addr + c->len) {
438 if (aligned_lpar + aligned_len <= c->lpar_addr + c->len)
439 return c;
440 else {
441 dma_dump_chunk(c);
442 BUG();
443 }
444 }
445 /* below */
446 if (aligned_lpar + aligned_len <= c->lpar_addr) {
447 continue;
448 }
449 /* above */
450 if (c->lpar_addr + c->len <= aligned_lpar) {
451 continue;
452 }
453 }
454 return NULL;
455 }
456
dma_sb_free_chunk(struct dma_chunk * c)457 static int dma_sb_free_chunk(struct dma_chunk *c)
458 {
459 int result = 0;
460
461 if (c->bus_addr) {
462 result = lv1_unmap_device_dma_region(c->region->dev->bus_id,
463 c->region->dev->dev_id, c->bus_addr, c->len);
464 BUG_ON(result);
465 }
466
467 kfree(c);
468 return result;
469 }
470
dma_ioc0_free_chunk(struct dma_chunk * c)471 static int dma_ioc0_free_chunk(struct dma_chunk *c)
472 {
473 int result = 0;
474 int iopage;
475 unsigned long offset;
476 struct ps3_dma_region *r = c->region;
477
478 DBG("%s:start\n", __func__);
479 for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) {
480 offset = (1 << r->page_size) * iopage;
481 /* put INVALID entry */
482 result = lv1_put_iopte(0,
483 c->bus_addr + offset,
484 c->lpar_addr + offset,
485 r->ioid,
486 0);
487 DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__,
488 c->bus_addr + offset,
489 c->lpar_addr + offset,
490 r->ioid);
491
492 if (result) {
493 DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__,
494 __LINE__, ps3_result(result));
495 }
496 }
497 kfree(c);
498 DBG("%s:end\n", __func__);
499 return result;
500 }
501
502 /**
503 * dma_sb_map_pages - Maps dma pages into the io controller bus address space.
504 * @r: Pointer to a struct ps3_dma_region.
505 * @phys_addr: Starting physical address of the area to map.
506 * @len: Length in bytes of the area to map.
507 * c_out: A pointer to receive an allocated struct dma_chunk for this area.
508 *
509 * This is the lowest level dma mapping routine, and is the one that will
510 * make the HV call to add the pages into the io controller address space.
511 */
512
dma_sb_map_pages(struct ps3_dma_region * r,unsigned long phys_addr,unsigned long len,struct dma_chunk ** c_out,u64 iopte_flag)513 static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
514 unsigned long len, struct dma_chunk **c_out, u64 iopte_flag)
515 {
516 int result;
517 struct dma_chunk *c;
518
519 c = kzalloc(sizeof(*c), GFP_ATOMIC);
520 if (!c) {
521 result = -ENOMEM;
522 goto fail_alloc;
523 }
524
525 c->region = r;
526 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
527 c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr);
528 c->len = len;
529
530 BUG_ON(iopte_flag != 0xf800000000000000UL);
531 result = lv1_map_device_dma_region(c->region->dev->bus_id,
532 c->region->dev->dev_id, c->lpar_addr,
533 c->bus_addr, c->len, iopte_flag);
534 if (result) {
535 DBG("%s:%d: lv1_map_device_dma_region failed: %s\n",
536 __func__, __LINE__, ps3_result(result));
537 goto fail_map;
538 }
539
540 list_add(&c->link, &r->chunk_list.head);
541
542 *c_out = c;
543 return 0;
544
545 fail_map:
546 kfree(c);
547 fail_alloc:
548 *c_out = NULL;
549 DBG(" <- %s:%d\n", __func__, __LINE__);
550 return result;
551 }
552
dma_ioc0_map_pages(struct ps3_dma_region * r,unsigned long phys_addr,unsigned long len,struct dma_chunk ** c_out,u64 iopte_flag)553 static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
554 unsigned long len, struct dma_chunk **c_out,
555 u64 iopte_flag)
556 {
557 int result;
558 struct dma_chunk *c, *last;
559 int iopage, pages;
560 unsigned long offset;
561
562 DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__,
563 phys_addr, ps3_mm_phys_to_lpar(phys_addr), len);
564 c = kzalloc(sizeof(*c), GFP_ATOMIC);
565 if (!c) {
566 result = -ENOMEM;
567 goto fail_alloc;
568 }
569
570 c->region = r;
571 c->len = len;
572 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
573 /* allocate IO address */
574 if (list_empty(&r->chunk_list.head)) {
575 /* first one */
576 c->bus_addr = r->bus_addr;
577 } else {
578 /* derive from last bus addr*/
579 last = list_entry(r->chunk_list.head.next,
580 struct dma_chunk, link);
581 c->bus_addr = last->bus_addr + last->len;
582 DBG("%s: last bus=%#lx, len=%#lx\n", __func__,
583 last->bus_addr, last->len);
584 }
585
586 /* FIXME: check whether length exceeds region size */
587
588 /* build ioptes for the area */
589 pages = len >> r->page_size;
590 DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__,
591 r->page_size, r->len, pages, iopte_flag);
592 for (iopage = 0; iopage < pages; iopage++) {
593 offset = (1 << r->page_size) * iopage;
594 result = lv1_put_iopte(0,
595 c->bus_addr + offset,
596 c->lpar_addr + offset,
597 r->ioid,
598 iopte_flag);
599 if (result) {
600 pr_warn("%s:%d: lv1_put_iopte failed: %s\n",
601 __func__, __LINE__, ps3_result(result));
602 goto fail_map;
603 }
604 DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__,
605 iopage, c->bus_addr + offset, c->lpar_addr + offset,
606 r->ioid);
607 }
608
609 /* be sure that last allocated one is inserted at head */
610 list_add(&c->link, &r->chunk_list.head);
611
612 *c_out = c;
613 DBG("%s: end\n", __func__);
614 return 0;
615
616 fail_map:
617 for (iopage--; 0 <= iopage; iopage--) {
618 lv1_put_iopte(0,
619 c->bus_addr + offset,
620 c->lpar_addr + offset,
621 r->ioid,
622 0);
623 }
624 kfree(c);
625 fail_alloc:
626 *c_out = NULL;
627 return result;
628 }
629
630 /**
631 * dma_sb_region_create - Create a device dma region.
632 * @r: Pointer to a struct ps3_dma_region.
633 *
634 * This is the lowest level dma region create routine, and is the one that
635 * will make the HV call to create the region.
636 */
637
dma_sb_region_create(struct ps3_dma_region * r)638 static int dma_sb_region_create(struct ps3_dma_region *r)
639 {
640 int result;
641 u64 bus_addr;
642
643 DBG(" -> %s:%d:\n", __func__, __LINE__);
644
645 BUG_ON(!r);
646
647 if (!r->dev->bus_id) {
648 pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
649 r->dev->bus_id, r->dev->dev_id);
650 return 0;
651 }
652
653 DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__,
654 __LINE__, r->len, r->page_size, r->offset);
655
656 BUG_ON(!r->len);
657 BUG_ON(!r->page_size);
658 BUG_ON(!r->region_ops);
659
660 INIT_LIST_HEAD(&r->chunk_list.head);
661 spin_lock_init(&r->chunk_list.lock);
662
663 result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id,
664 roundup_pow_of_two(r->len), r->page_size, r->region_type,
665 &bus_addr);
666 r->bus_addr = bus_addr;
667
668 if (result) {
669 DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n",
670 __func__, __LINE__, ps3_result(result));
671 r->len = r->bus_addr = 0;
672 }
673
674 return result;
675 }
676
dma_ioc0_region_create(struct ps3_dma_region * r)677 static int dma_ioc0_region_create(struct ps3_dma_region *r)
678 {
679 int result;
680 u64 bus_addr;
681
682 INIT_LIST_HEAD(&r->chunk_list.head);
683 spin_lock_init(&r->chunk_list.lock);
684
685 result = lv1_allocate_io_segment(0,
686 r->len,
687 r->page_size,
688 &bus_addr);
689 r->bus_addr = bus_addr;
690 if (result) {
691 DBG("%s:%d: lv1_allocate_io_segment failed: %s\n",
692 __func__, __LINE__, ps3_result(result));
693 r->len = r->bus_addr = 0;
694 }
695 DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__,
696 r->len, r->page_size, r->bus_addr);
697 return result;
698 }
699
700 /**
701 * dma_region_free - Free a device dma region.
702 * @r: Pointer to a struct ps3_dma_region.
703 *
704 * This is the lowest level dma region free routine, and is the one that
705 * will make the HV call to free the region.
706 */
707
dma_sb_region_free(struct ps3_dma_region * r)708 static int dma_sb_region_free(struct ps3_dma_region *r)
709 {
710 int result;
711 struct dma_chunk *c;
712 struct dma_chunk *tmp;
713
714 BUG_ON(!r);
715
716 if (!r->dev->bus_id) {
717 pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
718 r->dev->bus_id, r->dev->dev_id);
719 return 0;
720 }
721
722 list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) {
723 list_del(&c->link);
724 dma_sb_free_chunk(c);
725 }
726
727 result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id,
728 r->bus_addr);
729
730 if (result)
731 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
732 __func__, __LINE__, ps3_result(result));
733
734 r->bus_addr = 0;
735
736 return result;
737 }
738
dma_ioc0_region_free(struct ps3_dma_region * r)739 static int dma_ioc0_region_free(struct ps3_dma_region *r)
740 {
741 int result;
742 struct dma_chunk *c, *n;
743
744 DBG("%s: start\n", __func__);
745 list_for_each_entry_safe(c, n, &r->chunk_list.head, link) {
746 list_del(&c->link);
747 dma_ioc0_free_chunk(c);
748 }
749
750 result = lv1_release_io_segment(0, r->bus_addr);
751
752 if (result)
753 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
754 __func__, __LINE__, ps3_result(result));
755
756 r->bus_addr = 0;
757 DBG("%s: end\n", __func__);
758
759 return result;
760 }
761
762 /**
763 * dma_sb_map_area - Map an area of memory into a device dma region.
764 * @r: Pointer to a struct ps3_dma_region.
765 * @virt_addr: Starting virtual address of the area to map.
766 * @len: Length in bytes of the area to map.
767 * @bus_addr: A pointer to return the starting ioc bus address of the area to
768 * map.
769 *
770 * This is the common dma mapping routine.
771 */
772
dma_sb_map_area(struct ps3_dma_region * r,unsigned long virt_addr,unsigned long len,dma_addr_t * bus_addr,u64 iopte_flag)773 static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
774 unsigned long len, dma_addr_t *bus_addr,
775 u64 iopte_flag)
776 {
777 int result;
778 unsigned long flags;
779 struct dma_chunk *c;
780 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
781 : virt_addr;
782 unsigned long aligned_phys = ALIGN_DOWN(phys_addr, 1 << r->page_size);
783 unsigned long aligned_len = ALIGN(len + phys_addr - aligned_phys,
784 1 << r->page_size);
785 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
786
787 if (!USE_DYNAMIC_DMA) {
788 unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
789 DBG(" -> %s:%d\n", __func__, __LINE__);
790 DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__,
791 virt_addr);
792 DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__,
793 phys_addr);
794 DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__,
795 lpar_addr);
796 DBG("%s:%d len %lxh\n", __func__, __LINE__, len);
797 DBG("%s:%d bus_addr %llxh (%lxh)\n", __func__, __LINE__,
798 *bus_addr, len);
799 }
800
801 spin_lock_irqsave(&r->chunk_list.lock, flags);
802 c = dma_find_chunk(r, *bus_addr, len);
803
804 if (c) {
805 DBG("%s:%d: reusing mapped chunk", __func__, __LINE__);
806 dma_dump_chunk(c);
807 c->usage_count++;
808 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
809 return 0;
810 }
811
812 result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag);
813
814 if (result) {
815 *bus_addr = 0;
816 DBG("%s:%d: dma_sb_map_pages failed (%d)\n",
817 __func__, __LINE__, result);
818 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
819 return result;
820 }
821
822 c->usage_count = 1;
823
824 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
825 return result;
826 }
827
dma_ioc0_map_area(struct ps3_dma_region * r,unsigned long virt_addr,unsigned long len,dma_addr_t * bus_addr,u64 iopte_flag)828 static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
829 unsigned long len, dma_addr_t *bus_addr,
830 u64 iopte_flag)
831 {
832 int result;
833 unsigned long flags;
834 struct dma_chunk *c;
835 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
836 : virt_addr;
837 unsigned long aligned_phys = ALIGN_DOWN(phys_addr, 1 << r->page_size);
838 unsigned long aligned_len = ALIGN(len + phys_addr - aligned_phys,
839 1 << r->page_size);
840
841 DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__,
842 virt_addr, len);
843 DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__,
844 phys_addr, aligned_phys, aligned_len);
845
846 spin_lock_irqsave(&r->chunk_list.lock, flags);
847 c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len);
848
849 if (c) {
850 /* FIXME */
851 BUG();
852 *bus_addr = c->bus_addr + phys_addr - aligned_phys;
853 c->usage_count++;
854 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
855 return 0;
856 }
857
858 result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c,
859 iopte_flag);
860
861 if (result) {
862 *bus_addr = 0;
863 DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n",
864 __func__, __LINE__, result);
865 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
866 return result;
867 }
868 *bus_addr = c->bus_addr + phys_addr - aligned_phys;
869 DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__,
870 virt_addr, phys_addr, aligned_phys, *bus_addr);
871 c->usage_count = 1;
872
873 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
874 return result;
875 }
876
877 /**
878 * dma_sb_unmap_area - Unmap an area of memory from a device dma region.
879 * @r: Pointer to a struct ps3_dma_region.
880 * @bus_addr: The starting ioc bus address of the area to unmap.
881 * @len: Length in bytes of the area to unmap.
882 *
883 * This is the common dma unmap routine.
884 */
885
dma_sb_unmap_area(struct ps3_dma_region * r,dma_addr_t bus_addr,unsigned long len)886 static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr,
887 unsigned long len)
888 {
889 unsigned long flags;
890 struct dma_chunk *c;
891
892 spin_lock_irqsave(&r->chunk_list.lock, flags);
893 c = dma_find_chunk(r, bus_addr, len);
894
895 if (!c) {
896 unsigned long aligned_bus = ALIGN_DOWN(bus_addr,
897 1 << r->page_size);
898 unsigned long aligned_len = ALIGN(len + bus_addr
899 - aligned_bus, 1 << r->page_size);
900 DBG("%s:%d: not found: bus_addr %llxh\n",
901 __func__, __LINE__, bus_addr);
902 DBG("%s:%d: not found: len %lxh\n",
903 __func__, __LINE__, len);
904 DBG("%s:%d: not found: aligned_bus %lxh\n",
905 __func__, __LINE__, aligned_bus);
906 DBG("%s:%d: not found: aligned_len %lxh\n",
907 __func__, __LINE__, aligned_len);
908 BUG();
909 }
910
911 c->usage_count--;
912
913 if (!c->usage_count) {
914 list_del(&c->link);
915 dma_sb_free_chunk(c);
916 }
917
918 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
919 return 0;
920 }
921
dma_ioc0_unmap_area(struct ps3_dma_region * r,dma_addr_t bus_addr,unsigned long len)922 static int dma_ioc0_unmap_area(struct ps3_dma_region *r,
923 dma_addr_t bus_addr, unsigned long len)
924 {
925 unsigned long flags;
926 struct dma_chunk *c;
927
928 DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len);
929 spin_lock_irqsave(&r->chunk_list.lock, flags);
930 c = dma_find_chunk(r, bus_addr, len);
931
932 if (!c) {
933 unsigned long aligned_bus = ALIGN_DOWN(bus_addr,
934 1 << r->page_size);
935 unsigned long aligned_len = ALIGN(len + bus_addr
936 - aligned_bus,
937 1 << r->page_size);
938 DBG("%s:%d: not found: bus_addr %llxh\n",
939 __func__, __LINE__, bus_addr);
940 DBG("%s:%d: not found: len %lxh\n",
941 __func__, __LINE__, len);
942 DBG("%s:%d: not found: aligned_bus %lxh\n",
943 __func__, __LINE__, aligned_bus);
944 DBG("%s:%d: not found: aligned_len %lxh\n",
945 __func__, __LINE__, aligned_len);
946 BUG();
947 }
948
949 c->usage_count--;
950
951 if (!c->usage_count) {
952 list_del(&c->link);
953 dma_ioc0_free_chunk(c);
954 }
955
956 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
957 DBG("%s: end\n", __func__);
958 return 0;
959 }
960
961 /**
962 * dma_sb_region_create_linear - Setup a linear dma mapping for a device.
963 * @r: Pointer to a struct ps3_dma_region.
964 *
965 * This routine creates an HV dma region for the device and maps all available
966 * ram into the io controller bus address space.
967 */
968
dma_sb_region_create_linear(struct ps3_dma_region * r)969 static int dma_sb_region_create_linear(struct ps3_dma_region *r)
970 {
971 int result;
972 unsigned long virt_addr, len;
973 dma_addr_t tmp;
974
975 if (r->len > 16*1024*1024) { /* FIXME: need proper fix */
976 /* force 16M dma pages for linear mapping */
977 if (r->page_size != PS3_DMA_16M) {
978 pr_info("%s:%d: forcing 16M pages for linear map\n",
979 __func__, __LINE__);
980 r->page_size = PS3_DMA_16M;
981 r->len = ALIGN(r->len, 1 << r->page_size);
982 }
983 }
984
985 result = dma_sb_region_create(r);
986 BUG_ON(result);
987
988 if (r->offset < map.rm.size) {
989 /* Map (part of) 1st RAM chunk */
990 virt_addr = map.rm.base + r->offset;
991 len = map.rm.size - r->offset;
992 if (len > r->len)
993 len = r->len;
994 result = dma_sb_map_area(r, virt_addr, len, &tmp,
995 CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
996 CBE_IOPTE_M);
997 BUG_ON(result);
998 }
999
1000 if (r->offset + r->len > map.rm.size) {
1001 /* Map (part of) 2nd RAM chunk */
1002 virt_addr = map.rm.size;
1003 len = r->len;
1004 if (r->offset >= map.rm.size)
1005 virt_addr += r->offset - map.rm.size;
1006 else
1007 len -= map.rm.size - r->offset;
1008 result = dma_sb_map_area(r, virt_addr, len, &tmp,
1009 CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
1010 CBE_IOPTE_M);
1011 BUG_ON(result);
1012 }
1013
1014 return result;
1015 }
1016
1017 /**
1018 * dma_sb_region_free_linear - Free a linear dma mapping for a device.
1019 * @r: Pointer to a struct ps3_dma_region.
1020 *
1021 * This routine will unmap all mapped areas and free the HV dma region.
1022 */
1023
dma_sb_region_free_linear(struct ps3_dma_region * r)1024 static int dma_sb_region_free_linear(struct ps3_dma_region *r)
1025 {
1026 int result;
1027 dma_addr_t bus_addr;
1028 unsigned long len, lpar_addr;
1029
1030 if (r->offset < map.rm.size) {
1031 /* Unmap (part of) 1st RAM chunk */
1032 lpar_addr = map.rm.base + r->offset;
1033 len = map.rm.size - r->offset;
1034 if (len > r->len)
1035 len = r->len;
1036 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1037 result = dma_sb_unmap_area(r, bus_addr, len);
1038 BUG_ON(result);
1039 }
1040
1041 if (r->offset + r->len > map.rm.size) {
1042 /* Unmap (part of) 2nd RAM chunk */
1043 lpar_addr = map.r1.base;
1044 len = r->len;
1045 if (r->offset >= map.rm.size)
1046 lpar_addr += r->offset - map.rm.size;
1047 else
1048 len -= map.rm.size - r->offset;
1049 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1050 result = dma_sb_unmap_area(r, bus_addr, len);
1051 BUG_ON(result);
1052 }
1053
1054 result = dma_sb_region_free(r);
1055 BUG_ON(result);
1056
1057 return result;
1058 }
1059
1060 /**
1061 * dma_sb_map_area_linear - Map an area of memory into a device dma region.
1062 * @r: Pointer to a struct ps3_dma_region.
1063 * @virt_addr: Starting virtual address of the area to map.
1064 * @len: Length in bytes of the area to map.
1065 * @bus_addr: A pointer to return the starting ioc bus address of the area to
1066 * map.
1067 *
1068 * This routine just returns the corresponding bus address. Actual mapping
1069 * occurs in dma_region_create_linear().
1070 */
1071
dma_sb_map_area_linear(struct ps3_dma_region * r,unsigned long virt_addr,unsigned long len,dma_addr_t * bus_addr,u64 iopte_flag)1072 static int dma_sb_map_area_linear(struct ps3_dma_region *r,
1073 unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr,
1074 u64 iopte_flag)
1075 {
1076 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
1077 : virt_addr;
1078 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
1079 return 0;
1080 }
1081
1082 /**
1083 * dma_unmap_area_linear - Unmap an area of memory from a device dma region.
1084 * @r: Pointer to a struct ps3_dma_region.
1085 * @bus_addr: The starting ioc bus address of the area to unmap.
1086 * @len: Length in bytes of the area to unmap.
1087 *
1088 * This routine does nothing. Unmapping occurs in dma_sb_region_free_linear().
1089 */
1090
dma_sb_unmap_area_linear(struct ps3_dma_region * r,dma_addr_t bus_addr,unsigned long len)1091 static int dma_sb_unmap_area_linear(struct ps3_dma_region *r,
1092 dma_addr_t bus_addr, unsigned long len)
1093 {
1094 return 0;
1095 };
1096
1097 static const struct ps3_dma_region_ops ps3_dma_sb_region_ops = {
1098 .create = dma_sb_region_create,
1099 .free = dma_sb_region_free,
1100 .map = dma_sb_map_area,
1101 .unmap = dma_sb_unmap_area
1102 };
1103
1104 static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = {
1105 .create = dma_sb_region_create_linear,
1106 .free = dma_sb_region_free_linear,
1107 .map = dma_sb_map_area_linear,
1108 .unmap = dma_sb_unmap_area_linear
1109 };
1110
1111 static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = {
1112 .create = dma_ioc0_region_create,
1113 .free = dma_ioc0_region_free,
1114 .map = dma_ioc0_map_area,
1115 .unmap = dma_ioc0_unmap_area
1116 };
1117
ps3_dma_region_init(struct ps3_system_bus_device * dev,struct ps3_dma_region * r,enum ps3_dma_page_size page_size,enum ps3_dma_region_type region_type,void * addr,unsigned long len)1118 int ps3_dma_region_init(struct ps3_system_bus_device *dev,
1119 struct ps3_dma_region *r, enum ps3_dma_page_size page_size,
1120 enum ps3_dma_region_type region_type, void *addr, unsigned long len)
1121 {
1122 unsigned long lpar_addr;
1123 int result;
1124
1125 lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0;
1126
1127 r->dev = dev;
1128 r->page_size = page_size;
1129 r->region_type = region_type;
1130 r->offset = lpar_addr;
1131 if (r->offset >= map.rm.size)
1132 r->offset -= map.r1.offset;
1133 r->len = len ? len : ALIGN(map.total, 1 << r->page_size);
1134
1135 dev->core.dma_mask = &r->dma_mask;
1136
1137 result = dma_set_mask_and_coherent(&dev->core, DMA_BIT_MASK(32));
1138
1139 if (result < 0) {
1140 dev_err(&dev->core, "%s:%d: dma_set_mask_and_coherent failed: %d\n",
1141 __func__, __LINE__, result);
1142 return result;
1143 }
1144
1145 switch (dev->dev_type) {
1146 case PS3_DEVICE_TYPE_SB:
1147 r->region_ops = (USE_DYNAMIC_DMA)
1148 ? &ps3_dma_sb_region_ops
1149 : &ps3_dma_sb_region_linear_ops;
1150 break;
1151 case PS3_DEVICE_TYPE_IOC0:
1152 r->region_ops = &ps3_dma_ioc0_region_ops;
1153 break;
1154 default:
1155 BUG();
1156 return -EINVAL;
1157 }
1158 return 0;
1159 }
1160 EXPORT_SYMBOL(ps3_dma_region_init);
1161
ps3_dma_region_create(struct ps3_dma_region * r)1162 int ps3_dma_region_create(struct ps3_dma_region *r)
1163 {
1164 BUG_ON(!r);
1165 BUG_ON(!r->region_ops);
1166 BUG_ON(!r->region_ops->create);
1167 return r->region_ops->create(r);
1168 }
1169 EXPORT_SYMBOL(ps3_dma_region_create);
1170
ps3_dma_region_free(struct ps3_dma_region * r)1171 int ps3_dma_region_free(struct ps3_dma_region *r)
1172 {
1173 BUG_ON(!r);
1174 BUG_ON(!r->region_ops);
1175 BUG_ON(!r->region_ops->free);
1176 return r->region_ops->free(r);
1177 }
1178 EXPORT_SYMBOL(ps3_dma_region_free);
1179
ps3_dma_map(struct ps3_dma_region * r,unsigned long virt_addr,unsigned long len,dma_addr_t * bus_addr,u64 iopte_flag)1180 int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr,
1181 unsigned long len, dma_addr_t *bus_addr,
1182 u64 iopte_flag)
1183 {
1184 return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag);
1185 }
1186
ps3_dma_unmap(struct ps3_dma_region * r,dma_addr_t bus_addr,unsigned long len)1187 int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr,
1188 unsigned long len)
1189 {
1190 return r->region_ops->unmap(r, bus_addr, len);
1191 }
1192
1193 /*============================================================================*/
1194 /* system startup routines */
1195 /*============================================================================*/
1196
1197 /**
1198 * ps3_mm_init - initialize the address space state variables
1199 */
1200
ps3_mm_init(void)1201 void __init ps3_mm_init(void)
1202 {
1203 int result;
1204
1205 DBG(" -> %s:%d\n", __func__, __LINE__);
1206
1207 result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size,
1208 &map.total);
1209
1210 if (result)
1211 panic("ps3_repository_read_mm_info() failed");
1212
1213 map.rm.offset = map.rm.base;
1214 map.vas_id = map.htab_size = 0;
1215
1216 /* this implementation assumes map.rm.base is zero */
1217
1218 BUG_ON(map.rm.base);
1219 BUG_ON(!map.rm.size);
1220
1221 /* Check if we got the highmem region from an earlier boot step */
1222
1223 if (ps3_mm_get_repository_highmem(&map.r1)) {
1224 result = ps3_mm_region_create(&map.r1, map.total - map.rm.size);
1225
1226 if (!result)
1227 ps3_mm_set_repository_highmem(&map.r1);
1228 }
1229
1230 /* correct map.total for the real total amount of memory we use */
1231 map.total = map.rm.size + map.r1.size;
1232
1233 if (!map.r1.size) {
1234 DBG("%s:%d: No highmem region found\n", __func__, __LINE__);
1235 } else {
1236 DBG("%s:%d: Adding highmem region: %llxh %llxh\n",
1237 __func__, __LINE__, map.rm.size,
1238 map.total - map.rm.size);
1239 memblock_add(map.rm.size, map.total - map.rm.size);
1240 }
1241
1242 DBG(" <- %s:%d\n", __func__, __LINE__);
1243 }
1244
1245 /**
1246 * ps3_mm_shutdown - final cleanup of address space
1247 *
1248 * called during kexec sequence with MMU off.
1249 */
1250
ps3_mm_shutdown(void)1251 notrace void ps3_mm_shutdown(void)
1252 {
1253 ps3_mm_region_destroy(&map.r1);
1254 }
1255