1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * User interface for Resource Allocation in Resource Director Technology(RDT)
4 *
5 * Copyright (C) 2016 Intel Corporation
6 *
7 * Author: Fenghua Yu <fenghua.yu@intel.com>
8 *
9 * More information about RDT be found in the Intel (R) x86 Architecture
10 * Software Developer Manual.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29
30 #include <uapi/linux/magic.h>
31
32 #include <asm/resctrl.h>
33 #include "internal.h"
34
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41
42 /* list of entries for the schemata file */
43 LIST_HEAD(resctrl_schema_all);
44
45 /* Kernel fs node for "info" directory under root */
46 static struct kernfs_node *kn_info;
47
48 /* Kernel fs node for "mon_groups" directory under root */
49 static struct kernfs_node *kn_mongrp;
50
51 /* Kernel fs node for "mon_data" directory under root */
52 static struct kernfs_node *kn_mondata;
53
54 static struct seq_buf last_cmd_status;
55 static char last_cmd_status_buf[512];
56
57 struct dentry *debugfs_resctrl;
58
rdt_last_cmd_clear(void)59 void rdt_last_cmd_clear(void)
60 {
61 lockdep_assert_held(&rdtgroup_mutex);
62 seq_buf_clear(&last_cmd_status);
63 }
64
rdt_last_cmd_puts(const char * s)65 void rdt_last_cmd_puts(const char *s)
66 {
67 lockdep_assert_held(&rdtgroup_mutex);
68 seq_buf_puts(&last_cmd_status, s);
69 }
70
rdt_last_cmd_printf(const char * fmt,...)71 void rdt_last_cmd_printf(const char *fmt, ...)
72 {
73 va_list ap;
74
75 va_start(ap, fmt);
76 lockdep_assert_held(&rdtgroup_mutex);
77 seq_buf_vprintf(&last_cmd_status, fmt, ap);
78 va_end(ap);
79 }
80
81 /*
82 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
83 * we can keep a bitmap of free CLOSIDs in a single integer.
84 *
85 * Using a global CLOSID across all resources has some advantages and
86 * some drawbacks:
87 * + We can simply set "current->closid" to assign a task to a resource
88 * group.
89 * + Context switch code can avoid extra memory references deciding which
90 * CLOSID to load into the PQR_ASSOC MSR
91 * - We give up some options in configuring resource groups across multi-socket
92 * systems.
93 * - Our choices on how to configure each resource become progressively more
94 * limited as the number of resources grows.
95 */
96 static int closid_free_map;
97 static int closid_free_map_len;
98
closids_supported(void)99 int closids_supported(void)
100 {
101 return closid_free_map_len;
102 }
103
closid_init(void)104 static void closid_init(void)
105 {
106 struct resctrl_schema *s;
107 u32 rdt_min_closid = 32;
108
109 /* Compute rdt_min_closid across all resources */
110 list_for_each_entry(s, &resctrl_schema_all, list)
111 rdt_min_closid = min(rdt_min_closid, s->num_closid);
112
113 closid_free_map = BIT_MASK(rdt_min_closid) - 1;
114
115 /* CLOSID 0 is always reserved for the default group */
116 closid_free_map &= ~1;
117 closid_free_map_len = rdt_min_closid;
118 }
119
closid_alloc(void)120 static int closid_alloc(void)
121 {
122 u32 closid = ffs(closid_free_map);
123
124 if (closid == 0)
125 return -ENOSPC;
126 closid--;
127 closid_free_map &= ~(1 << closid);
128
129 return closid;
130 }
131
closid_free(int closid)132 void closid_free(int closid)
133 {
134 closid_free_map |= 1 << closid;
135 }
136
137 /**
138 * closid_allocated - test if provided closid is in use
139 * @closid: closid to be tested
140 *
141 * Return: true if @closid is currently associated with a resource group,
142 * false if @closid is free
143 */
closid_allocated(unsigned int closid)144 static bool closid_allocated(unsigned int closid)
145 {
146 return (closid_free_map & (1 << closid)) == 0;
147 }
148
149 /**
150 * rdtgroup_mode_by_closid - Return mode of resource group with closid
151 * @closid: closid if the resource group
152 *
153 * Each resource group is associated with a @closid. Here the mode
154 * of a resource group can be queried by searching for it using its closid.
155 *
156 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
157 */
rdtgroup_mode_by_closid(int closid)158 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
159 {
160 struct rdtgroup *rdtgrp;
161
162 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
163 if (rdtgrp->closid == closid)
164 return rdtgrp->mode;
165 }
166
167 return RDT_NUM_MODES;
168 }
169
170 static const char * const rdt_mode_str[] = {
171 [RDT_MODE_SHAREABLE] = "shareable",
172 [RDT_MODE_EXCLUSIVE] = "exclusive",
173 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup",
174 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked",
175 };
176
177 /**
178 * rdtgroup_mode_str - Return the string representation of mode
179 * @mode: the resource group mode as &enum rdtgroup_mode
180 *
181 * Return: string representation of valid mode, "unknown" otherwise
182 */
rdtgroup_mode_str(enum rdtgrp_mode mode)183 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
184 {
185 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
186 return "unknown";
187
188 return rdt_mode_str[mode];
189 }
190
191 /* set uid and gid of rdtgroup dirs and files to that of the creator */
rdtgroup_kn_set_ugid(struct kernfs_node * kn)192 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
193 {
194 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
195 .ia_uid = current_fsuid(),
196 .ia_gid = current_fsgid(), };
197
198 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
199 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
200 return 0;
201
202 return kernfs_setattr(kn, &iattr);
203 }
204
rdtgroup_add_file(struct kernfs_node * parent_kn,struct rftype * rft)205 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
206 {
207 struct kernfs_node *kn;
208 int ret;
209
210 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
211 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
212 0, rft->kf_ops, rft, NULL, NULL);
213 if (IS_ERR(kn))
214 return PTR_ERR(kn);
215
216 ret = rdtgroup_kn_set_ugid(kn);
217 if (ret) {
218 kernfs_remove(kn);
219 return ret;
220 }
221
222 return 0;
223 }
224
rdtgroup_seqfile_show(struct seq_file * m,void * arg)225 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
226 {
227 struct kernfs_open_file *of = m->private;
228 struct rftype *rft = of->kn->priv;
229
230 if (rft->seq_show)
231 return rft->seq_show(of, m, arg);
232 return 0;
233 }
234
rdtgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)235 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
236 size_t nbytes, loff_t off)
237 {
238 struct rftype *rft = of->kn->priv;
239
240 if (rft->write)
241 return rft->write(of, buf, nbytes, off);
242
243 return -EINVAL;
244 }
245
246 static const struct kernfs_ops rdtgroup_kf_single_ops = {
247 .atomic_write_len = PAGE_SIZE,
248 .write = rdtgroup_file_write,
249 .seq_show = rdtgroup_seqfile_show,
250 };
251
252 static const struct kernfs_ops kf_mondata_ops = {
253 .atomic_write_len = PAGE_SIZE,
254 .seq_show = rdtgroup_mondata_show,
255 };
256
is_cpu_list(struct kernfs_open_file * of)257 static bool is_cpu_list(struct kernfs_open_file *of)
258 {
259 struct rftype *rft = of->kn->priv;
260
261 return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
262 }
263
rdtgroup_cpus_show(struct kernfs_open_file * of,struct seq_file * s,void * v)264 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
265 struct seq_file *s, void *v)
266 {
267 struct rdtgroup *rdtgrp;
268 struct cpumask *mask;
269 int ret = 0;
270
271 rdtgrp = rdtgroup_kn_lock_live(of->kn);
272
273 if (rdtgrp) {
274 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
275 if (!rdtgrp->plr->d) {
276 rdt_last_cmd_clear();
277 rdt_last_cmd_puts("Cache domain offline\n");
278 ret = -ENODEV;
279 } else {
280 mask = &rdtgrp->plr->d->cpu_mask;
281 seq_printf(s, is_cpu_list(of) ?
282 "%*pbl\n" : "%*pb\n",
283 cpumask_pr_args(mask));
284 }
285 } else {
286 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
287 cpumask_pr_args(&rdtgrp->cpu_mask));
288 }
289 } else {
290 ret = -ENOENT;
291 }
292 rdtgroup_kn_unlock(of->kn);
293
294 return ret;
295 }
296
297 /*
298 * This is safe against resctrl_sched_in() called from __switch_to()
299 * because __switch_to() is executed with interrupts disabled. A local call
300 * from update_closid_rmid() is protected against __switch_to() because
301 * preemption is disabled.
302 */
update_cpu_closid_rmid(void * info)303 static void update_cpu_closid_rmid(void *info)
304 {
305 struct rdtgroup *r = info;
306
307 if (r) {
308 this_cpu_write(pqr_state.default_closid, r->closid);
309 this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
310 }
311
312 /*
313 * We cannot unconditionally write the MSR because the current
314 * executing task might have its own closid selected. Just reuse
315 * the context switch code.
316 */
317 resctrl_sched_in();
318 }
319
320 /*
321 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
322 *
323 * Per task closids/rmids must have been set up before calling this function.
324 */
325 static void
update_closid_rmid(const struct cpumask * cpu_mask,struct rdtgroup * r)326 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
327 {
328 int cpu = get_cpu();
329
330 if (cpumask_test_cpu(cpu, cpu_mask))
331 update_cpu_closid_rmid(r);
332 smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
333 put_cpu();
334 }
335
cpus_mon_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask)336 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
337 cpumask_var_t tmpmask)
338 {
339 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
340 struct list_head *head;
341
342 /* Check whether cpus belong to parent ctrl group */
343 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
344 if (!cpumask_empty(tmpmask)) {
345 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
346 return -EINVAL;
347 }
348
349 /* Check whether cpus are dropped from this group */
350 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
351 if (!cpumask_empty(tmpmask)) {
352 /* Give any dropped cpus to parent rdtgroup */
353 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
354 update_closid_rmid(tmpmask, prgrp);
355 }
356
357 /*
358 * If we added cpus, remove them from previous group that owned them
359 * and update per-cpu rmid
360 */
361 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
362 if (!cpumask_empty(tmpmask)) {
363 head = &prgrp->mon.crdtgrp_list;
364 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
365 if (crgrp == rdtgrp)
366 continue;
367 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
368 tmpmask);
369 }
370 update_closid_rmid(tmpmask, rdtgrp);
371 }
372
373 /* Done pushing/pulling - update this group with new mask */
374 cpumask_copy(&rdtgrp->cpu_mask, newmask);
375
376 return 0;
377 }
378
cpumask_rdtgrp_clear(struct rdtgroup * r,struct cpumask * m)379 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
380 {
381 struct rdtgroup *crgrp;
382
383 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
384 /* update the child mon group masks as well*/
385 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
386 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
387 }
388
cpus_ctrl_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask,cpumask_var_t tmpmask1)389 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
390 cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
391 {
392 struct rdtgroup *r, *crgrp;
393 struct list_head *head;
394
395 /* Check whether cpus are dropped from this group */
396 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
397 if (!cpumask_empty(tmpmask)) {
398 /* Can't drop from default group */
399 if (rdtgrp == &rdtgroup_default) {
400 rdt_last_cmd_puts("Can't drop CPUs from default group\n");
401 return -EINVAL;
402 }
403
404 /* Give any dropped cpus to rdtgroup_default */
405 cpumask_or(&rdtgroup_default.cpu_mask,
406 &rdtgroup_default.cpu_mask, tmpmask);
407 update_closid_rmid(tmpmask, &rdtgroup_default);
408 }
409
410 /*
411 * If we added cpus, remove them from previous group and
412 * the prev group's child groups that owned them
413 * and update per-cpu closid/rmid.
414 */
415 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
416 if (!cpumask_empty(tmpmask)) {
417 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
418 if (r == rdtgrp)
419 continue;
420 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
421 if (!cpumask_empty(tmpmask1))
422 cpumask_rdtgrp_clear(r, tmpmask1);
423 }
424 update_closid_rmid(tmpmask, rdtgrp);
425 }
426
427 /* Done pushing/pulling - update this group with new mask */
428 cpumask_copy(&rdtgrp->cpu_mask, newmask);
429
430 /*
431 * Clear child mon group masks since there is a new parent mask
432 * now and update the rmid for the cpus the child lost.
433 */
434 head = &rdtgrp->mon.crdtgrp_list;
435 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
436 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
437 update_closid_rmid(tmpmask, rdtgrp);
438 cpumask_clear(&crgrp->cpu_mask);
439 }
440
441 return 0;
442 }
443
rdtgroup_cpus_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)444 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
445 char *buf, size_t nbytes, loff_t off)
446 {
447 cpumask_var_t tmpmask, newmask, tmpmask1;
448 struct rdtgroup *rdtgrp;
449 int ret;
450
451 if (!buf)
452 return -EINVAL;
453
454 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
455 return -ENOMEM;
456 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
457 free_cpumask_var(tmpmask);
458 return -ENOMEM;
459 }
460 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
461 free_cpumask_var(tmpmask);
462 free_cpumask_var(newmask);
463 return -ENOMEM;
464 }
465
466 rdtgrp = rdtgroup_kn_lock_live(of->kn);
467 if (!rdtgrp) {
468 ret = -ENOENT;
469 goto unlock;
470 }
471
472 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
473 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
474 ret = -EINVAL;
475 rdt_last_cmd_puts("Pseudo-locking in progress\n");
476 goto unlock;
477 }
478
479 if (is_cpu_list(of))
480 ret = cpulist_parse(buf, newmask);
481 else
482 ret = cpumask_parse(buf, newmask);
483
484 if (ret) {
485 rdt_last_cmd_puts("Bad CPU list/mask\n");
486 goto unlock;
487 }
488
489 /* check that user didn't specify any offline cpus */
490 cpumask_andnot(tmpmask, newmask, cpu_online_mask);
491 if (!cpumask_empty(tmpmask)) {
492 ret = -EINVAL;
493 rdt_last_cmd_puts("Can only assign online CPUs\n");
494 goto unlock;
495 }
496
497 if (rdtgrp->type == RDTCTRL_GROUP)
498 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
499 else if (rdtgrp->type == RDTMON_GROUP)
500 ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
501 else
502 ret = -EINVAL;
503
504 unlock:
505 rdtgroup_kn_unlock(of->kn);
506 free_cpumask_var(tmpmask);
507 free_cpumask_var(newmask);
508 free_cpumask_var(tmpmask1);
509
510 return ret ?: nbytes;
511 }
512
513 /**
514 * rdtgroup_remove - the helper to remove resource group safely
515 * @rdtgrp: resource group to remove
516 *
517 * On resource group creation via a mkdir, an extra kernfs_node reference is
518 * taken to ensure that the rdtgroup structure remains accessible for the
519 * rdtgroup_kn_unlock() calls where it is removed.
520 *
521 * Drop the extra reference here, then free the rdtgroup structure.
522 *
523 * Return: void
524 */
rdtgroup_remove(struct rdtgroup * rdtgrp)525 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
526 {
527 kernfs_put(rdtgrp->kn);
528 kfree(rdtgrp);
529 }
530
_update_task_closid_rmid(void * task)531 static void _update_task_closid_rmid(void *task)
532 {
533 /*
534 * If the task is still current on this CPU, update PQR_ASSOC MSR.
535 * Otherwise, the MSR is updated when the task is scheduled in.
536 */
537 if (task == current)
538 resctrl_sched_in();
539 }
540
update_task_closid_rmid(struct task_struct * t)541 static void update_task_closid_rmid(struct task_struct *t)
542 {
543 if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
544 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
545 else
546 _update_task_closid_rmid(t);
547 }
548
__rdtgroup_move_task(struct task_struct * tsk,struct rdtgroup * rdtgrp)549 static int __rdtgroup_move_task(struct task_struct *tsk,
550 struct rdtgroup *rdtgrp)
551 {
552 /* If the task is already in rdtgrp, no need to move the task. */
553 if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid &&
554 tsk->rmid == rdtgrp->mon.rmid) ||
555 (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid &&
556 tsk->closid == rdtgrp->mon.parent->closid))
557 return 0;
558
559 /*
560 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
561 * updated by them.
562 *
563 * For ctrl_mon groups, move both closid and rmid.
564 * For monitor groups, can move the tasks only from
565 * their parent CTRL group.
566 */
567
568 if (rdtgrp->type == RDTCTRL_GROUP) {
569 WRITE_ONCE(tsk->closid, rdtgrp->closid);
570 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
571 } else if (rdtgrp->type == RDTMON_GROUP) {
572 if (rdtgrp->mon.parent->closid == tsk->closid) {
573 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
574 } else {
575 rdt_last_cmd_puts("Can't move task to different control group\n");
576 return -EINVAL;
577 }
578 }
579
580 /*
581 * Ensure the task's closid and rmid are written before determining if
582 * the task is current that will decide if it will be interrupted.
583 * This pairs with the full barrier between the rq->curr update and
584 * resctrl_sched_in() during context switch.
585 */
586 smp_mb();
587
588 /*
589 * By now, the task's closid and rmid are set. If the task is current
590 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
591 * group go into effect. If the task is not current, the MSR will be
592 * updated when the task is scheduled in.
593 */
594 update_task_closid_rmid(tsk);
595
596 return 0;
597 }
598
is_closid_match(struct task_struct * t,struct rdtgroup * r)599 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
600 {
601 return (rdt_alloc_capable &&
602 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
603 }
604
is_rmid_match(struct task_struct * t,struct rdtgroup * r)605 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
606 {
607 return (rdt_mon_capable &&
608 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
609 }
610
611 /**
612 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
613 * @r: Resource group
614 *
615 * Return: 1 if tasks have been assigned to @r, 0 otherwise
616 */
rdtgroup_tasks_assigned(struct rdtgroup * r)617 int rdtgroup_tasks_assigned(struct rdtgroup *r)
618 {
619 struct task_struct *p, *t;
620 int ret = 0;
621
622 lockdep_assert_held(&rdtgroup_mutex);
623
624 rcu_read_lock();
625 for_each_process_thread(p, t) {
626 if (is_closid_match(t, r) || is_rmid_match(t, r)) {
627 ret = 1;
628 break;
629 }
630 }
631 rcu_read_unlock();
632
633 return ret;
634 }
635
rdtgroup_task_write_permission(struct task_struct * task,struct kernfs_open_file * of)636 static int rdtgroup_task_write_permission(struct task_struct *task,
637 struct kernfs_open_file *of)
638 {
639 const struct cred *tcred = get_task_cred(task);
640 const struct cred *cred = current_cred();
641 int ret = 0;
642
643 /*
644 * Even if we're attaching all tasks in the thread group, we only
645 * need to check permissions on one of them.
646 */
647 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
648 !uid_eq(cred->euid, tcred->uid) &&
649 !uid_eq(cred->euid, tcred->suid)) {
650 rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
651 ret = -EPERM;
652 }
653
654 put_cred(tcred);
655 return ret;
656 }
657
rdtgroup_move_task(pid_t pid,struct rdtgroup * rdtgrp,struct kernfs_open_file * of)658 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
659 struct kernfs_open_file *of)
660 {
661 struct task_struct *tsk;
662 int ret;
663
664 rcu_read_lock();
665 if (pid) {
666 tsk = find_task_by_vpid(pid);
667 if (!tsk) {
668 rcu_read_unlock();
669 rdt_last_cmd_printf("No task %d\n", pid);
670 return -ESRCH;
671 }
672 } else {
673 tsk = current;
674 }
675
676 get_task_struct(tsk);
677 rcu_read_unlock();
678
679 ret = rdtgroup_task_write_permission(tsk, of);
680 if (!ret)
681 ret = __rdtgroup_move_task(tsk, rdtgrp);
682
683 put_task_struct(tsk);
684 return ret;
685 }
686
rdtgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)687 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
688 char *buf, size_t nbytes, loff_t off)
689 {
690 struct rdtgroup *rdtgrp;
691 int ret = 0;
692 pid_t pid;
693
694 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
695 return -EINVAL;
696 rdtgrp = rdtgroup_kn_lock_live(of->kn);
697 if (!rdtgrp) {
698 rdtgroup_kn_unlock(of->kn);
699 return -ENOENT;
700 }
701 rdt_last_cmd_clear();
702
703 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
704 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
705 ret = -EINVAL;
706 rdt_last_cmd_puts("Pseudo-locking in progress\n");
707 goto unlock;
708 }
709
710 ret = rdtgroup_move_task(pid, rdtgrp, of);
711
712 unlock:
713 rdtgroup_kn_unlock(of->kn);
714
715 return ret ?: nbytes;
716 }
717
show_rdt_tasks(struct rdtgroup * r,struct seq_file * s)718 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
719 {
720 struct task_struct *p, *t;
721
722 rcu_read_lock();
723 for_each_process_thread(p, t) {
724 if (is_closid_match(t, r) || is_rmid_match(t, r))
725 seq_printf(s, "%d\n", t->pid);
726 }
727 rcu_read_unlock();
728 }
729
rdtgroup_tasks_show(struct kernfs_open_file * of,struct seq_file * s,void * v)730 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
731 struct seq_file *s, void *v)
732 {
733 struct rdtgroup *rdtgrp;
734 int ret = 0;
735
736 rdtgrp = rdtgroup_kn_lock_live(of->kn);
737 if (rdtgrp)
738 show_rdt_tasks(rdtgrp, s);
739 else
740 ret = -ENOENT;
741 rdtgroup_kn_unlock(of->kn);
742
743 return ret;
744 }
745
746 #ifdef CONFIG_PROC_CPU_RESCTRL
747
748 /*
749 * A task can only be part of one resctrl control group and of one monitor
750 * group which is associated to that control group.
751 *
752 * 1) res:
753 * mon:
754 *
755 * resctrl is not available.
756 *
757 * 2) res:/
758 * mon:
759 *
760 * Task is part of the root resctrl control group, and it is not associated
761 * to any monitor group.
762 *
763 * 3) res:/
764 * mon:mon0
765 *
766 * Task is part of the root resctrl control group and monitor group mon0.
767 *
768 * 4) res:group0
769 * mon:
770 *
771 * Task is part of resctrl control group group0, and it is not associated
772 * to any monitor group.
773 *
774 * 5) res:group0
775 * mon:mon1
776 *
777 * Task is part of resctrl control group group0 and monitor group mon1.
778 */
proc_resctrl_show(struct seq_file * s,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)779 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
780 struct pid *pid, struct task_struct *tsk)
781 {
782 struct rdtgroup *rdtg;
783 int ret = 0;
784
785 mutex_lock(&rdtgroup_mutex);
786
787 /* Return empty if resctrl has not been mounted. */
788 if (!static_branch_unlikely(&rdt_enable_key)) {
789 seq_puts(s, "res:\nmon:\n");
790 goto unlock;
791 }
792
793 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
794 struct rdtgroup *crg;
795
796 /*
797 * Task information is only relevant for shareable
798 * and exclusive groups.
799 */
800 if (rdtg->mode != RDT_MODE_SHAREABLE &&
801 rdtg->mode != RDT_MODE_EXCLUSIVE)
802 continue;
803
804 if (rdtg->closid != tsk->closid)
805 continue;
806
807 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
808 rdtg->kn->name);
809 seq_puts(s, "mon:");
810 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
811 mon.crdtgrp_list) {
812 if (tsk->rmid != crg->mon.rmid)
813 continue;
814 seq_printf(s, "%s", crg->kn->name);
815 break;
816 }
817 seq_putc(s, '\n');
818 goto unlock;
819 }
820 /*
821 * The above search should succeed. Otherwise return
822 * with an error.
823 */
824 ret = -ENOENT;
825 unlock:
826 mutex_unlock(&rdtgroup_mutex);
827
828 return ret;
829 }
830 #endif
831
rdt_last_cmd_status_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)832 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
833 struct seq_file *seq, void *v)
834 {
835 int len;
836
837 mutex_lock(&rdtgroup_mutex);
838 len = seq_buf_used(&last_cmd_status);
839 if (len)
840 seq_printf(seq, "%.*s", len, last_cmd_status_buf);
841 else
842 seq_puts(seq, "ok\n");
843 mutex_unlock(&rdtgroup_mutex);
844 return 0;
845 }
846
rdt_num_closids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)847 static int rdt_num_closids_show(struct kernfs_open_file *of,
848 struct seq_file *seq, void *v)
849 {
850 struct resctrl_schema *s = of->kn->parent->priv;
851
852 seq_printf(seq, "%u\n", s->num_closid);
853 return 0;
854 }
855
rdt_default_ctrl_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)856 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
857 struct seq_file *seq, void *v)
858 {
859 struct resctrl_schema *s = of->kn->parent->priv;
860 struct rdt_resource *r = s->res;
861
862 seq_printf(seq, "%x\n", r->default_ctrl);
863 return 0;
864 }
865
rdt_min_cbm_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)866 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
867 struct seq_file *seq, void *v)
868 {
869 struct resctrl_schema *s = of->kn->parent->priv;
870 struct rdt_resource *r = s->res;
871
872 seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
873 return 0;
874 }
875
rdt_shareable_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)876 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
877 struct seq_file *seq, void *v)
878 {
879 struct resctrl_schema *s = of->kn->parent->priv;
880 struct rdt_resource *r = s->res;
881
882 seq_printf(seq, "%x\n", r->cache.shareable_bits);
883 return 0;
884 }
885
886 /**
887 * rdt_bit_usage_show - Display current usage of resources
888 *
889 * A domain is a shared resource that can now be allocated differently. Here
890 * we display the current regions of the domain as an annotated bitmask.
891 * For each domain of this resource its allocation bitmask
892 * is annotated as below to indicate the current usage of the corresponding bit:
893 * 0 - currently unused
894 * X - currently available for sharing and used by software and hardware
895 * H - currently used by hardware only but available for software use
896 * S - currently used and shareable by software only
897 * E - currently used exclusively by one resource group
898 * P - currently pseudo-locked by one resource group
899 */
rdt_bit_usage_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)900 static int rdt_bit_usage_show(struct kernfs_open_file *of,
901 struct seq_file *seq, void *v)
902 {
903 struct resctrl_schema *s = of->kn->parent->priv;
904 /*
905 * Use unsigned long even though only 32 bits are used to ensure
906 * test_bit() is used safely.
907 */
908 unsigned long sw_shareable = 0, hw_shareable = 0;
909 unsigned long exclusive = 0, pseudo_locked = 0;
910 struct rdt_resource *r = s->res;
911 struct rdt_domain *dom;
912 int i, hwb, swb, excl, psl;
913 enum rdtgrp_mode mode;
914 bool sep = false;
915 u32 ctrl_val;
916
917 mutex_lock(&rdtgroup_mutex);
918 hw_shareable = r->cache.shareable_bits;
919 list_for_each_entry(dom, &r->domains, list) {
920 if (sep)
921 seq_putc(seq, ';');
922 sw_shareable = 0;
923 exclusive = 0;
924 seq_printf(seq, "%d=", dom->id);
925 for (i = 0; i < closids_supported(); i++) {
926 if (!closid_allocated(i))
927 continue;
928 ctrl_val = resctrl_arch_get_config(r, dom, i,
929 s->conf_type);
930 mode = rdtgroup_mode_by_closid(i);
931 switch (mode) {
932 case RDT_MODE_SHAREABLE:
933 sw_shareable |= ctrl_val;
934 break;
935 case RDT_MODE_EXCLUSIVE:
936 exclusive |= ctrl_val;
937 break;
938 case RDT_MODE_PSEUDO_LOCKSETUP:
939 /*
940 * RDT_MODE_PSEUDO_LOCKSETUP is possible
941 * here but not included since the CBM
942 * associated with this CLOSID in this mode
943 * is not initialized and no task or cpu can be
944 * assigned this CLOSID.
945 */
946 break;
947 case RDT_MODE_PSEUDO_LOCKED:
948 case RDT_NUM_MODES:
949 WARN(1,
950 "invalid mode for closid %d\n", i);
951 break;
952 }
953 }
954 for (i = r->cache.cbm_len - 1; i >= 0; i--) {
955 pseudo_locked = dom->plr ? dom->plr->cbm : 0;
956 hwb = test_bit(i, &hw_shareable);
957 swb = test_bit(i, &sw_shareable);
958 excl = test_bit(i, &exclusive);
959 psl = test_bit(i, &pseudo_locked);
960 if (hwb && swb)
961 seq_putc(seq, 'X');
962 else if (hwb && !swb)
963 seq_putc(seq, 'H');
964 else if (!hwb && swb)
965 seq_putc(seq, 'S');
966 else if (excl)
967 seq_putc(seq, 'E');
968 else if (psl)
969 seq_putc(seq, 'P');
970 else /* Unused bits remain */
971 seq_putc(seq, '0');
972 }
973 sep = true;
974 }
975 seq_putc(seq, '\n');
976 mutex_unlock(&rdtgroup_mutex);
977 return 0;
978 }
979
rdt_min_bw_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)980 static int rdt_min_bw_show(struct kernfs_open_file *of,
981 struct seq_file *seq, void *v)
982 {
983 struct resctrl_schema *s = of->kn->parent->priv;
984 struct rdt_resource *r = s->res;
985
986 seq_printf(seq, "%u\n", r->membw.min_bw);
987 return 0;
988 }
989
rdt_num_rmids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)990 static int rdt_num_rmids_show(struct kernfs_open_file *of,
991 struct seq_file *seq, void *v)
992 {
993 struct rdt_resource *r = of->kn->parent->priv;
994
995 seq_printf(seq, "%d\n", r->num_rmid);
996
997 return 0;
998 }
999
rdt_mon_features_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1000 static int rdt_mon_features_show(struct kernfs_open_file *of,
1001 struct seq_file *seq, void *v)
1002 {
1003 struct rdt_resource *r = of->kn->parent->priv;
1004 struct mon_evt *mevt;
1005
1006 list_for_each_entry(mevt, &r->evt_list, list)
1007 seq_printf(seq, "%s\n", mevt->name);
1008
1009 return 0;
1010 }
1011
rdt_bw_gran_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1012 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1013 struct seq_file *seq, void *v)
1014 {
1015 struct resctrl_schema *s = of->kn->parent->priv;
1016 struct rdt_resource *r = s->res;
1017
1018 seq_printf(seq, "%u\n", r->membw.bw_gran);
1019 return 0;
1020 }
1021
rdt_delay_linear_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1022 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1023 struct seq_file *seq, void *v)
1024 {
1025 struct resctrl_schema *s = of->kn->parent->priv;
1026 struct rdt_resource *r = s->res;
1027
1028 seq_printf(seq, "%u\n", r->membw.delay_linear);
1029 return 0;
1030 }
1031
max_threshold_occ_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1032 static int max_threshold_occ_show(struct kernfs_open_file *of,
1033 struct seq_file *seq, void *v)
1034 {
1035 seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold);
1036
1037 return 0;
1038 }
1039
rdt_thread_throttle_mode_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1040 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1041 struct seq_file *seq, void *v)
1042 {
1043 struct resctrl_schema *s = of->kn->parent->priv;
1044 struct rdt_resource *r = s->res;
1045
1046 if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1047 seq_puts(seq, "per-thread\n");
1048 else
1049 seq_puts(seq, "max\n");
1050
1051 return 0;
1052 }
1053
max_threshold_occ_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1054 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1055 char *buf, size_t nbytes, loff_t off)
1056 {
1057 unsigned int bytes;
1058 int ret;
1059
1060 ret = kstrtouint(buf, 0, &bytes);
1061 if (ret)
1062 return ret;
1063
1064 if (bytes > resctrl_rmid_realloc_limit)
1065 return -EINVAL;
1066
1067 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes);
1068
1069 return nbytes;
1070 }
1071
1072 /*
1073 * rdtgroup_mode_show - Display mode of this resource group
1074 */
rdtgroup_mode_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1075 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1076 struct seq_file *s, void *v)
1077 {
1078 struct rdtgroup *rdtgrp;
1079
1080 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1081 if (!rdtgrp) {
1082 rdtgroup_kn_unlock(of->kn);
1083 return -ENOENT;
1084 }
1085
1086 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1087
1088 rdtgroup_kn_unlock(of->kn);
1089 return 0;
1090 }
1091
resctrl_peer_type(enum resctrl_conf_type my_type)1092 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1093 {
1094 switch (my_type) {
1095 case CDP_CODE:
1096 return CDP_DATA;
1097 case CDP_DATA:
1098 return CDP_CODE;
1099 default:
1100 case CDP_NONE:
1101 return CDP_NONE;
1102 }
1103 }
1104
1105 /**
1106 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1107 * @r: Resource to which domain instance @d belongs.
1108 * @d: The domain instance for which @closid is being tested.
1109 * @cbm: Capacity bitmask being tested.
1110 * @closid: Intended closid for @cbm.
1111 * @exclusive: Only check if overlaps with exclusive resource groups
1112 *
1113 * Checks if provided @cbm intended to be used for @closid on domain
1114 * @d overlaps with any other closids or other hardware usage associated
1115 * with this domain. If @exclusive is true then only overlaps with
1116 * resource groups in exclusive mode will be considered. If @exclusive
1117 * is false then overlaps with any resource group or hardware entities
1118 * will be considered.
1119 *
1120 * @cbm is unsigned long, even if only 32 bits are used, to make the
1121 * bitmap functions work correctly.
1122 *
1123 * Return: false if CBM does not overlap, true if it does.
1124 */
__rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm,int closid,enum resctrl_conf_type type,bool exclusive)1125 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1126 unsigned long cbm, int closid,
1127 enum resctrl_conf_type type, bool exclusive)
1128 {
1129 enum rdtgrp_mode mode;
1130 unsigned long ctrl_b;
1131 int i;
1132
1133 /* Check for any overlap with regions used by hardware directly */
1134 if (!exclusive) {
1135 ctrl_b = r->cache.shareable_bits;
1136 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1137 return true;
1138 }
1139
1140 /* Check for overlap with other resource groups */
1141 for (i = 0; i < closids_supported(); i++) {
1142 ctrl_b = resctrl_arch_get_config(r, d, i, type);
1143 mode = rdtgroup_mode_by_closid(i);
1144 if (closid_allocated(i) && i != closid &&
1145 mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1146 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1147 if (exclusive) {
1148 if (mode == RDT_MODE_EXCLUSIVE)
1149 return true;
1150 continue;
1151 }
1152 return true;
1153 }
1154 }
1155 }
1156
1157 return false;
1158 }
1159
1160 /**
1161 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1162 * @s: Schema for the resource to which domain instance @d belongs.
1163 * @d: The domain instance for which @closid is being tested.
1164 * @cbm: Capacity bitmask being tested.
1165 * @closid: Intended closid for @cbm.
1166 * @exclusive: Only check if overlaps with exclusive resource groups
1167 *
1168 * Resources that can be allocated using a CBM can use the CBM to control
1169 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1170 * for overlap. Overlap test is not limited to the specific resource for
1171 * which the CBM is intended though - when dealing with CDP resources that
1172 * share the underlying hardware the overlap check should be performed on
1173 * the CDP resource sharing the hardware also.
1174 *
1175 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1176 * overlap test.
1177 *
1178 * Return: true if CBM overlap detected, false if there is no overlap
1179 */
rdtgroup_cbm_overlaps(struct resctrl_schema * s,struct rdt_domain * d,unsigned long cbm,int closid,bool exclusive)1180 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d,
1181 unsigned long cbm, int closid, bool exclusive)
1182 {
1183 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1184 struct rdt_resource *r = s->res;
1185
1186 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1187 exclusive))
1188 return true;
1189
1190 if (!resctrl_arch_get_cdp_enabled(r->rid))
1191 return false;
1192 return __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1193 }
1194
1195 /**
1196 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1197 *
1198 * An exclusive resource group implies that there should be no sharing of
1199 * its allocated resources. At the time this group is considered to be
1200 * exclusive this test can determine if its current schemata supports this
1201 * setting by testing for overlap with all other resource groups.
1202 *
1203 * Return: true if resource group can be exclusive, false if there is overlap
1204 * with allocations of other resource groups and thus this resource group
1205 * cannot be exclusive.
1206 */
rdtgroup_mode_test_exclusive(struct rdtgroup * rdtgrp)1207 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1208 {
1209 int closid = rdtgrp->closid;
1210 struct resctrl_schema *s;
1211 struct rdt_resource *r;
1212 bool has_cache = false;
1213 struct rdt_domain *d;
1214 u32 ctrl;
1215
1216 list_for_each_entry(s, &resctrl_schema_all, list) {
1217 r = s->res;
1218 if (r->rid == RDT_RESOURCE_MBA)
1219 continue;
1220 has_cache = true;
1221 list_for_each_entry(d, &r->domains, list) {
1222 ctrl = resctrl_arch_get_config(r, d, closid,
1223 s->conf_type);
1224 if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1225 rdt_last_cmd_puts("Schemata overlaps\n");
1226 return false;
1227 }
1228 }
1229 }
1230
1231 if (!has_cache) {
1232 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1233 return false;
1234 }
1235
1236 return true;
1237 }
1238
1239 /**
1240 * rdtgroup_mode_write - Modify the resource group's mode
1241 *
1242 */
rdtgroup_mode_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1243 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1244 char *buf, size_t nbytes, loff_t off)
1245 {
1246 struct rdtgroup *rdtgrp;
1247 enum rdtgrp_mode mode;
1248 int ret = 0;
1249
1250 /* Valid input requires a trailing newline */
1251 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1252 return -EINVAL;
1253 buf[nbytes - 1] = '\0';
1254
1255 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1256 if (!rdtgrp) {
1257 rdtgroup_kn_unlock(of->kn);
1258 return -ENOENT;
1259 }
1260
1261 rdt_last_cmd_clear();
1262
1263 mode = rdtgrp->mode;
1264
1265 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1266 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1267 (!strcmp(buf, "pseudo-locksetup") &&
1268 mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1269 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1270 goto out;
1271
1272 if (mode == RDT_MODE_PSEUDO_LOCKED) {
1273 rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1274 ret = -EINVAL;
1275 goto out;
1276 }
1277
1278 if (!strcmp(buf, "shareable")) {
1279 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1280 ret = rdtgroup_locksetup_exit(rdtgrp);
1281 if (ret)
1282 goto out;
1283 }
1284 rdtgrp->mode = RDT_MODE_SHAREABLE;
1285 } else if (!strcmp(buf, "exclusive")) {
1286 if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1287 ret = -EINVAL;
1288 goto out;
1289 }
1290 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1291 ret = rdtgroup_locksetup_exit(rdtgrp);
1292 if (ret)
1293 goto out;
1294 }
1295 rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1296 } else if (!strcmp(buf, "pseudo-locksetup")) {
1297 ret = rdtgroup_locksetup_enter(rdtgrp);
1298 if (ret)
1299 goto out;
1300 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1301 } else {
1302 rdt_last_cmd_puts("Unknown or unsupported mode\n");
1303 ret = -EINVAL;
1304 }
1305
1306 out:
1307 rdtgroup_kn_unlock(of->kn);
1308 return ret ?: nbytes;
1309 }
1310
1311 /**
1312 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1313 * @r: RDT resource to which @d belongs.
1314 * @d: RDT domain instance.
1315 * @cbm: bitmask for which the size should be computed.
1316 *
1317 * The bitmask provided associated with the RDT domain instance @d will be
1318 * translated into how many bytes it represents. The size in bytes is
1319 * computed by first dividing the total cache size by the CBM length to
1320 * determine how many bytes each bit in the bitmask represents. The result
1321 * is multiplied with the number of bits set in the bitmask.
1322 *
1323 * @cbm is unsigned long, even if only 32 bits are used to make the
1324 * bitmap functions work correctly.
1325 */
rdtgroup_cbm_to_size(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm)1326 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1327 struct rdt_domain *d, unsigned long cbm)
1328 {
1329 struct cpu_cacheinfo *ci;
1330 unsigned int size = 0;
1331 int num_b, i;
1332
1333 num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1334 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1335 for (i = 0; i < ci->num_leaves; i++) {
1336 if (ci->info_list[i].level == r->cache_level) {
1337 size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1338 break;
1339 }
1340 }
1341
1342 return size;
1343 }
1344
1345 /**
1346 * rdtgroup_size_show - Display size in bytes of allocated regions
1347 *
1348 * The "size" file mirrors the layout of the "schemata" file, printing the
1349 * size in bytes of each region instead of the capacity bitmask.
1350 *
1351 */
rdtgroup_size_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1352 static int rdtgroup_size_show(struct kernfs_open_file *of,
1353 struct seq_file *s, void *v)
1354 {
1355 struct resctrl_schema *schema;
1356 enum resctrl_conf_type type;
1357 struct rdtgroup *rdtgrp;
1358 struct rdt_resource *r;
1359 struct rdt_domain *d;
1360 unsigned int size;
1361 int ret = 0;
1362 u32 closid;
1363 bool sep;
1364 u32 ctrl;
1365
1366 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1367 if (!rdtgrp) {
1368 rdtgroup_kn_unlock(of->kn);
1369 return -ENOENT;
1370 }
1371
1372 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1373 if (!rdtgrp->plr->d) {
1374 rdt_last_cmd_clear();
1375 rdt_last_cmd_puts("Cache domain offline\n");
1376 ret = -ENODEV;
1377 } else {
1378 seq_printf(s, "%*s:", max_name_width,
1379 rdtgrp->plr->s->name);
1380 size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1381 rdtgrp->plr->d,
1382 rdtgrp->plr->cbm);
1383 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1384 }
1385 goto out;
1386 }
1387
1388 closid = rdtgrp->closid;
1389
1390 list_for_each_entry(schema, &resctrl_schema_all, list) {
1391 r = schema->res;
1392 type = schema->conf_type;
1393 sep = false;
1394 seq_printf(s, "%*s:", max_name_width, schema->name);
1395 list_for_each_entry(d, &r->domains, list) {
1396 if (sep)
1397 seq_putc(s, ';');
1398 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1399 size = 0;
1400 } else {
1401 if (is_mba_sc(r))
1402 ctrl = d->mbps_val[closid];
1403 else
1404 ctrl = resctrl_arch_get_config(r, d,
1405 closid,
1406 type);
1407 if (r->rid == RDT_RESOURCE_MBA)
1408 size = ctrl;
1409 else
1410 size = rdtgroup_cbm_to_size(r, d, ctrl);
1411 }
1412 seq_printf(s, "%d=%u", d->id, size);
1413 sep = true;
1414 }
1415 seq_putc(s, '\n');
1416 }
1417
1418 out:
1419 rdtgroup_kn_unlock(of->kn);
1420
1421 return ret;
1422 }
1423
1424 /* rdtgroup information files for one cache resource. */
1425 static struct rftype res_common_files[] = {
1426 {
1427 .name = "last_cmd_status",
1428 .mode = 0444,
1429 .kf_ops = &rdtgroup_kf_single_ops,
1430 .seq_show = rdt_last_cmd_status_show,
1431 .fflags = RF_TOP_INFO,
1432 },
1433 {
1434 .name = "num_closids",
1435 .mode = 0444,
1436 .kf_ops = &rdtgroup_kf_single_ops,
1437 .seq_show = rdt_num_closids_show,
1438 .fflags = RF_CTRL_INFO,
1439 },
1440 {
1441 .name = "mon_features",
1442 .mode = 0444,
1443 .kf_ops = &rdtgroup_kf_single_ops,
1444 .seq_show = rdt_mon_features_show,
1445 .fflags = RF_MON_INFO,
1446 },
1447 {
1448 .name = "num_rmids",
1449 .mode = 0444,
1450 .kf_ops = &rdtgroup_kf_single_ops,
1451 .seq_show = rdt_num_rmids_show,
1452 .fflags = RF_MON_INFO,
1453 },
1454 {
1455 .name = "cbm_mask",
1456 .mode = 0444,
1457 .kf_ops = &rdtgroup_kf_single_ops,
1458 .seq_show = rdt_default_ctrl_show,
1459 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1460 },
1461 {
1462 .name = "min_cbm_bits",
1463 .mode = 0444,
1464 .kf_ops = &rdtgroup_kf_single_ops,
1465 .seq_show = rdt_min_cbm_bits_show,
1466 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1467 },
1468 {
1469 .name = "shareable_bits",
1470 .mode = 0444,
1471 .kf_ops = &rdtgroup_kf_single_ops,
1472 .seq_show = rdt_shareable_bits_show,
1473 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1474 },
1475 {
1476 .name = "bit_usage",
1477 .mode = 0444,
1478 .kf_ops = &rdtgroup_kf_single_ops,
1479 .seq_show = rdt_bit_usage_show,
1480 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1481 },
1482 {
1483 .name = "min_bandwidth",
1484 .mode = 0444,
1485 .kf_ops = &rdtgroup_kf_single_ops,
1486 .seq_show = rdt_min_bw_show,
1487 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1488 },
1489 {
1490 .name = "bandwidth_gran",
1491 .mode = 0444,
1492 .kf_ops = &rdtgroup_kf_single_ops,
1493 .seq_show = rdt_bw_gran_show,
1494 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1495 },
1496 {
1497 .name = "delay_linear",
1498 .mode = 0444,
1499 .kf_ops = &rdtgroup_kf_single_ops,
1500 .seq_show = rdt_delay_linear_show,
1501 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1502 },
1503 /*
1504 * Platform specific which (if any) capabilities are provided by
1505 * thread_throttle_mode. Defer "fflags" initialization to platform
1506 * discovery.
1507 */
1508 {
1509 .name = "thread_throttle_mode",
1510 .mode = 0444,
1511 .kf_ops = &rdtgroup_kf_single_ops,
1512 .seq_show = rdt_thread_throttle_mode_show,
1513 },
1514 {
1515 .name = "max_threshold_occupancy",
1516 .mode = 0644,
1517 .kf_ops = &rdtgroup_kf_single_ops,
1518 .write = max_threshold_occ_write,
1519 .seq_show = max_threshold_occ_show,
1520 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE,
1521 },
1522 {
1523 .name = "cpus",
1524 .mode = 0644,
1525 .kf_ops = &rdtgroup_kf_single_ops,
1526 .write = rdtgroup_cpus_write,
1527 .seq_show = rdtgroup_cpus_show,
1528 .fflags = RFTYPE_BASE,
1529 },
1530 {
1531 .name = "cpus_list",
1532 .mode = 0644,
1533 .kf_ops = &rdtgroup_kf_single_ops,
1534 .write = rdtgroup_cpus_write,
1535 .seq_show = rdtgroup_cpus_show,
1536 .flags = RFTYPE_FLAGS_CPUS_LIST,
1537 .fflags = RFTYPE_BASE,
1538 },
1539 {
1540 .name = "tasks",
1541 .mode = 0644,
1542 .kf_ops = &rdtgroup_kf_single_ops,
1543 .write = rdtgroup_tasks_write,
1544 .seq_show = rdtgroup_tasks_show,
1545 .fflags = RFTYPE_BASE,
1546 },
1547 {
1548 .name = "schemata",
1549 .mode = 0644,
1550 .kf_ops = &rdtgroup_kf_single_ops,
1551 .write = rdtgroup_schemata_write,
1552 .seq_show = rdtgroup_schemata_show,
1553 .fflags = RF_CTRL_BASE,
1554 },
1555 {
1556 .name = "mode",
1557 .mode = 0644,
1558 .kf_ops = &rdtgroup_kf_single_ops,
1559 .write = rdtgroup_mode_write,
1560 .seq_show = rdtgroup_mode_show,
1561 .fflags = RF_CTRL_BASE,
1562 },
1563 {
1564 .name = "size",
1565 .mode = 0444,
1566 .kf_ops = &rdtgroup_kf_single_ops,
1567 .seq_show = rdtgroup_size_show,
1568 .fflags = RF_CTRL_BASE,
1569 },
1570
1571 };
1572
rdtgroup_add_files(struct kernfs_node * kn,unsigned long fflags)1573 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1574 {
1575 struct rftype *rfts, *rft;
1576 int ret, len;
1577
1578 rfts = res_common_files;
1579 len = ARRAY_SIZE(res_common_files);
1580
1581 lockdep_assert_held(&rdtgroup_mutex);
1582
1583 for (rft = rfts; rft < rfts + len; rft++) {
1584 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1585 ret = rdtgroup_add_file(kn, rft);
1586 if (ret)
1587 goto error;
1588 }
1589 }
1590
1591 return 0;
1592 error:
1593 pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1594 while (--rft >= rfts) {
1595 if ((fflags & rft->fflags) == rft->fflags)
1596 kernfs_remove_by_name(kn, rft->name);
1597 }
1598 return ret;
1599 }
1600
rdtgroup_get_rftype_by_name(const char * name)1601 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
1602 {
1603 struct rftype *rfts, *rft;
1604 int len;
1605
1606 rfts = res_common_files;
1607 len = ARRAY_SIZE(res_common_files);
1608
1609 for (rft = rfts; rft < rfts + len; rft++) {
1610 if (!strcmp(rft->name, name))
1611 return rft;
1612 }
1613
1614 return NULL;
1615 }
1616
thread_throttle_mode_init(void)1617 void __init thread_throttle_mode_init(void)
1618 {
1619 struct rftype *rft;
1620
1621 rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
1622 if (!rft)
1623 return;
1624
1625 rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB;
1626 }
1627
1628 /**
1629 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1630 * @r: The resource group with which the file is associated.
1631 * @name: Name of the file
1632 *
1633 * The permissions of named resctrl file, directory, or link are modified
1634 * to not allow read, write, or execute by any user.
1635 *
1636 * WARNING: This function is intended to communicate to the user that the
1637 * resctrl file has been locked down - that it is not relevant to the
1638 * particular state the system finds itself in. It should not be relied
1639 * on to protect from user access because after the file's permissions
1640 * are restricted the user can still change the permissions using chmod
1641 * from the command line.
1642 *
1643 * Return: 0 on success, <0 on failure.
1644 */
rdtgroup_kn_mode_restrict(struct rdtgroup * r,const char * name)1645 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1646 {
1647 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1648 struct kernfs_node *kn;
1649 int ret = 0;
1650
1651 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1652 if (!kn)
1653 return -ENOENT;
1654
1655 switch (kernfs_type(kn)) {
1656 case KERNFS_DIR:
1657 iattr.ia_mode = S_IFDIR;
1658 break;
1659 case KERNFS_FILE:
1660 iattr.ia_mode = S_IFREG;
1661 break;
1662 case KERNFS_LINK:
1663 iattr.ia_mode = S_IFLNK;
1664 break;
1665 }
1666
1667 ret = kernfs_setattr(kn, &iattr);
1668 kernfs_put(kn);
1669 return ret;
1670 }
1671
1672 /**
1673 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1674 * @r: The resource group with which the file is associated.
1675 * @name: Name of the file
1676 * @mask: Mask of permissions that should be restored
1677 *
1678 * Restore the permissions of the named file. If @name is a directory the
1679 * permissions of its parent will be used.
1680 *
1681 * Return: 0 on success, <0 on failure.
1682 */
rdtgroup_kn_mode_restore(struct rdtgroup * r,const char * name,umode_t mask)1683 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1684 umode_t mask)
1685 {
1686 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1687 struct kernfs_node *kn, *parent;
1688 struct rftype *rfts, *rft;
1689 int ret, len;
1690
1691 rfts = res_common_files;
1692 len = ARRAY_SIZE(res_common_files);
1693
1694 for (rft = rfts; rft < rfts + len; rft++) {
1695 if (!strcmp(rft->name, name))
1696 iattr.ia_mode = rft->mode & mask;
1697 }
1698
1699 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1700 if (!kn)
1701 return -ENOENT;
1702
1703 switch (kernfs_type(kn)) {
1704 case KERNFS_DIR:
1705 parent = kernfs_get_parent(kn);
1706 if (parent) {
1707 iattr.ia_mode |= parent->mode;
1708 kernfs_put(parent);
1709 }
1710 iattr.ia_mode |= S_IFDIR;
1711 break;
1712 case KERNFS_FILE:
1713 iattr.ia_mode |= S_IFREG;
1714 break;
1715 case KERNFS_LINK:
1716 iattr.ia_mode |= S_IFLNK;
1717 break;
1718 }
1719
1720 ret = kernfs_setattr(kn, &iattr);
1721 kernfs_put(kn);
1722 return ret;
1723 }
1724
rdtgroup_mkdir_info_resdir(void * priv,char * name,unsigned long fflags)1725 static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
1726 unsigned long fflags)
1727 {
1728 struct kernfs_node *kn_subdir;
1729 int ret;
1730
1731 kn_subdir = kernfs_create_dir(kn_info, name,
1732 kn_info->mode, priv);
1733 if (IS_ERR(kn_subdir))
1734 return PTR_ERR(kn_subdir);
1735
1736 ret = rdtgroup_kn_set_ugid(kn_subdir);
1737 if (ret)
1738 return ret;
1739
1740 ret = rdtgroup_add_files(kn_subdir, fflags);
1741 if (!ret)
1742 kernfs_activate(kn_subdir);
1743
1744 return ret;
1745 }
1746
rdtgroup_create_info_dir(struct kernfs_node * parent_kn)1747 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1748 {
1749 struct resctrl_schema *s;
1750 struct rdt_resource *r;
1751 unsigned long fflags;
1752 char name[32];
1753 int ret;
1754
1755 /* create the directory */
1756 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1757 if (IS_ERR(kn_info))
1758 return PTR_ERR(kn_info);
1759
1760 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1761 if (ret)
1762 goto out_destroy;
1763
1764 /* loop over enabled controls, these are all alloc_capable */
1765 list_for_each_entry(s, &resctrl_schema_all, list) {
1766 r = s->res;
1767 fflags = r->fflags | RF_CTRL_INFO;
1768 ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
1769 if (ret)
1770 goto out_destroy;
1771 }
1772
1773 for_each_mon_capable_rdt_resource(r) {
1774 fflags = r->fflags | RF_MON_INFO;
1775 sprintf(name, "%s_MON", r->name);
1776 ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1777 if (ret)
1778 goto out_destroy;
1779 }
1780
1781 ret = rdtgroup_kn_set_ugid(kn_info);
1782 if (ret)
1783 goto out_destroy;
1784
1785 kernfs_activate(kn_info);
1786
1787 return 0;
1788
1789 out_destroy:
1790 kernfs_remove(kn_info);
1791 return ret;
1792 }
1793
1794 static int
mongroup_create_dir(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,char * name,struct kernfs_node ** dest_kn)1795 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1796 char *name, struct kernfs_node **dest_kn)
1797 {
1798 struct kernfs_node *kn;
1799 int ret;
1800
1801 /* create the directory */
1802 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1803 if (IS_ERR(kn))
1804 return PTR_ERR(kn);
1805
1806 if (dest_kn)
1807 *dest_kn = kn;
1808
1809 ret = rdtgroup_kn_set_ugid(kn);
1810 if (ret)
1811 goto out_destroy;
1812
1813 kernfs_activate(kn);
1814
1815 return 0;
1816
1817 out_destroy:
1818 kernfs_remove(kn);
1819 return ret;
1820 }
1821
l3_qos_cfg_update(void * arg)1822 static void l3_qos_cfg_update(void *arg)
1823 {
1824 bool *enable = arg;
1825
1826 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1827 }
1828
l2_qos_cfg_update(void * arg)1829 static void l2_qos_cfg_update(void *arg)
1830 {
1831 bool *enable = arg;
1832
1833 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1834 }
1835
is_mba_linear(void)1836 static inline bool is_mba_linear(void)
1837 {
1838 return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear;
1839 }
1840
set_cache_qos_cfg(int level,bool enable)1841 static int set_cache_qos_cfg(int level, bool enable)
1842 {
1843 void (*update)(void *arg);
1844 struct rdt_resource *r_l;
1845 cpumask_var_t cpu_mask;
1846 struct rdt_domain *d;
1847 int cpu;
1848
1849 if (level == RDT_RESOURCE_L3)
1850 update = l3_qos_cfg_update;
1851 else if (level == RDT_RESOURCE_L2)
1852 update = l2_qos_cfg_update;
1853 else
1854 return -EINVAL;
1855
1856 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1857 return -ENOMEM;
1858
1859 r_l = &rdt_resources_all[level].r_resctrl;
1860 list_for_each_entry(d, &r_l->domains, list) {
1861 if (r_l->cache.arch_has_per_cpu_cfg)
1862 /* Pick all the CPUs in the domain instance */
1863 for_each_cpu(cpu, &d->cpu_mask)
1864 cpumask_set_cpu(cpu, cpu_mask);
1865 else
1866 /* Pick one CPU from each domain instance to update MSR */
1867 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1868 }
1869 cpu = get_cpu();
1870 /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1871 if (cpumask_test_cpu(cpu, cpu_mask))
1872 update(&enable);
1873 /* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1874 smp_call_function_many(cpu_mask, update, &enable, 1);
1875 put_cpu();
1876
1877 free_cpumask_var(cpu_mask);
1878
1879 return 0;
1880 }
1881
1882 /* Restore the qos cfg state when a domain comes online */
rdt_domain_reconfigure_cdp(struct rdt_resource * r)1883 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
1884 {
1885 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
1886
1887 if (!r->cdp_capable)
1888 return;
1889
1890 if (r->rid == RDT_RESOURCE_L2)
1891 l2_qos_cfg_update(&hw_res->cdp_enabled);
1892
1893 if (r->rid == RDT_RESOURCE_L3)
1894 l3_qos_cfg_update(&hw_res->cdp_enabled);
1895 }
1896
mba_sc_domain_allocate(struct rdt_resource * r,struct rdt_domain * d)1897 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_domain *d)
1898 {
1899 u32 num_closid = resctrl_arch_get_num_closid(r);
1900 int cpu = cpumask_any(&d->cpu_mask);
1901 int i;
1902
1903 d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
1904 GFP_KERNEL, cpu_to_node(cpu));
1905 if (!d->mbps_val)
1906 return -ENOMEM;
1907
1908 for (i = 0; i < num_closid; i++)
1909 d->mbps_val[i] = MBA_MAX_MBPS;
1910
1911 return 0;
1912 }
1913
mba_sc_domain_destroy(struct rdt_resource * r,struct rdt_domain * d)1914 static void mba_sc_domain_destroy(struct rdt_resource *r,
1915 struct rdt_domain *d)
1916 {
1917 kfree(d->mbps_val);
1918 d->mbps_val = NULL;
1919 }
1920
1921 /*
1922 * MBA software controller is supported only if
1923 * MBM is supported and MBA is in linear scale.
1924 */
supports_mba_mbps(void)1925 static bool supports_mba_mbps(void)
1926 {
1927 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
1928
1929 return (is_mbm_local_enabled() &&
1930 r->alloc_capable && is_mba_linear());
1931 }
1932
1933 /*
1934 * Enable or disable the MBA software controller
1935 * which helps user specify bandwidth in MBps.
1936 */
set_mba_sc(bool mba_sc)1937 static int set_mba_sc(bool mba_sc)
1938 {
1939 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
1940 u32 num_closid = resctrl_arch_get_num_closid(r);
1941 struct rdt_domain *d;
1942 int i;
1943
1944 if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
1945 return -EINVAL;
1946
1947 r->membw.mba_sc = mba_sc;
1948
1949 list_for_each_entry(d, &r->domains, list) {
1950 for (i = 0; i < num_closid; i++)
1951 d->mbps_val[i] = MBA_MAX_MBPS;
1952 }
1953
1954 return 0;
1955 }
1956
cdp_enable(int level)1957 static int cdp_enable(int level)
1958 {
1959 struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl;
1960 int ret;
1961
1962 if (!r_l->alloc_capable)
1963 return -EINVAL;
1964
1965 ret = set_cache_qos_cfg(level, true);
1966 if (!ret)
1967 rdt_resources_all[level].cdp_enabled = true;
1968
1969 return ret;
1970 }
1971
cdp_disable(int level)1972 static void cdp_disable(int level)
1973 {
1974 struct rdt_hw_resource *r_hw = &rdt_resources_all[level];
1975
1976 if (r_hw->cdp_enabled) {
1977 set_cache_qos_cfg(level, false);
1978 r_hw->cdp_enabled = false;
1979 }
1980 }
1981
resctrl_arch_set_cdp_enabled(enum resctrl_res_level l,bool enable)1982 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable)
1983 {
1984 struct rdt_hw_resource *hw_res = &rdt_resources_all[l];
1985
1986 if (!hw_res->r_resctrl.cdp_capable)
1987 return -EINVAL;
1988
1989 if (enable)
1990 return cdp_enable(l);
1991
1992 cdp_disable(l);
1993
1994 return 0;
1995 }
1996
cdp_disable_all(void)1997 static void cdp_disable_all(void)
1998 {
1999 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
2000 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2001 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
2002 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2003 }
2004
2005 /*
2006 * We don't allow rdtgroup directories to be created anywhere
2007 * except the root directory. Thus when looking for the rdtgroup
2008 * structure for a kernfs node we are either looking at a directory,
2009 * in which case the rdtgroup structure is pointed at by the "priv"
2010 * field, otherwise we have a file, and need only look to the parent
2011 * to find the rdtgroup.
2012 */
kernfs_to_rdtgroup(struct kernfs_node * kn)2013 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2014 {
2015 if (kernfs_type(kn) == KERNFS_DIR) {
2016 /*
2017 * All the resource directories use "kn->priv"
2018 * to point to the "struct rdtgroup" for the
2019 * resource. "info" and its subdirectories don't
2020 * have rdtgroup structures, so return NULL here.
2021 */
2022 if (kn == kn_info || kn->parent == kn_info)
2023 return NULL;
2024 else
2025 return kn->priv;
2026 } else {
2027 return kn->parent->priv;
2028 }
2029 }
2030
rdtgroup_kn_lock_live(struct kernfs_node * kn)2031 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2032 {
2033 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2034
2035 if (!rdtgrp)
2036 return NULL;
2037
2038 atomic_inc(&rdtgrp->waitcount);
2039 kernfs_break_active_protection(kn);
2040
2041 mutex_lock(&rdtgroup_mutex);
2042
2043 /* Was this group deleted while we waited? */
2044 if (rdtgrp->flags & RDT_DELETED)
2045 return NULL;
2046
2047 return rdtgrp;
2048 }
2049
rdtgroup_kn_unlock(struct kernfs_node * kn)2050 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2051 {
2052 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2053
2054 if (!rdtgrp)
2055 return;
2056
2057 mutex_unlock(&rdtgroup_mutex);
2058
2059 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2060 (rdtgrp->flags & RDT_DELETED)) {
2061 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2062 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2063 rdtgroup_pseudo_lock_remove(rdtgrp);
2064 kernfs_unbreak_active_protection(kn);
2065 rdtgroup_remove(rdtgrp);
2066 } else {
2067 kernfs_unbreak_active_protection(kn);
2068 }
2069 }
2070
2071 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2072 struct rdtgroup *prgrp,
2073 struct kernfs_node **mon_data_kn);
2074
rdt_enable_ctx(struct rdt_fs_context * ctx)2075 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2076 {
2077 int ret = 0;
2078
2079 if (ctx->enable_cdpl2)
2080 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2081
2082 if (!ret && ctx->enable_cdpl3)
2083 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2084
2085 if (!ret && ctx->enable_mba_mbps)
2086 ret = set_mba_sc(true);
2087
2088 return ret;
2089 }
2090
schemata_list_add(struct rdt_resource * r,enum resctrl_conf_type type)2091 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2092 {
2093 struct resctrl_schema *s;
2094 const char *suffix = "";
2095 int ret, cl;
2096
2097 s = kzalloc(sizeof(*s), GFP_KERNEL);
2098 if (!s)
2099 return -ENOMEM;
2100
2101 s->res = r;
2102 s->num_closid = resctrl_arch_get_num_closid(r);
2103 if (resctrl_arch_get_cdp_enabled(r->rid))
2104 s->num_closid /= 2;
2105
2106 s->conf_type = type;
2107 switch (type) {
2108 case CDP_CODE:
2109 suffix = "CODE";
2110 break;
2111 case CDP_DATA:
2112 suffix = "DATA";
2113 break;
2114 case CDP_NONE:
2115 suffix = "";
2116 break;
2117 }
2118
2119 ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2120 if (ret >= sizeof(s->name)) {
2121 kfree(s);
2122 return -EINVAL;
2123 }
2124
2125 cl = strlen(s->name);
2126
2127 /*
2128 * If CDP is supported by this resource, but not enabled,
2129 * include the suffix. This ensures the tabular format of the
2130 * schemata file does not change between mounts of the filesystem.
2131 */
2132 if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2133 cl += 4;
2134
2135 if (cl > max_name_width)
2136 max_name_width = cl;
2137
2138 INIT_LIST_HEAD(&s->list);
2139 list_add(&s->list, &resctrl_schema_all);
2140
2141 return 0;
2142 }
2143
schemata_list_create(void)2144 static int schemata_list_create(void)
2145 {
2146 struct rdt_resource *r;
2147 int ret = 0;
2148
2149 for_each_alloc_capable_rdt_resource(r) {
2150 if (resctrl_arch_get_cdp_enabled(r->rid)) {
2151 ret = schemata_list_add(r, CDP_CODE);
2152 if (ret)
2153 break;
2154
2155 ret = schemata_list_add(r, CDP_DATA);
2156 } else {
2157 ret = schemata_list_add(r, CDP_NONE);
2158 }
2159
2160 if (ret)
2161 break;
2162 }
2163
2164 return ret;
2165 }
2166
schemata_list_destroy(void)2167 static void schemata_list_destroy(void)
2168 {
2169 struct resctrl_schema *s, *tmp;
2170
2171 list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2172 list_del(&s->list);
2173 kfree(s);
2174 }
2175 }
2176
rdt_get_tree(struct fs_context * fc)2177 static int rdt_get_tree(struct fs_context *fc)
2178 {
2179 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2180 struct rdt_domain *dom;
2181 struct rdt_resource *r;
2182 int ret;
2183
2184 cpus_read_lock();
2185 mutex_lock(&rdtgroup_mutex);
2186 /*
2187 * resctrl file system can only be mounted once.
2188 */
2189 if (static_branch_unlikely(&rdt_enable_key)) {
2190 ret = -EBUSY;
2191 goto out;
2192 }
2193
2194 ret = rdt_enable_ctx(ctx);
2195 if (ret < 0)
2196 goto out_cdp;
2197
2198 ret = schemata_list_create();
2199 if (ret) {
2200 schemata_list_destroy();
2201 goto out_mba;
2202 }
2203
2204 closid_init();
2205
2206 ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2207 if (ret < 0)
2208 goto out_schemata_free;
2209
2210 if (rdt_mon_capable) {
2211 ret = mongroup_create_dir(rdtgroup_default.kn,
2212 &rdtgroup_default, "mon_groups",
2213 &kn_mongrp);
2214 if (ret < 0)
2215 goto out_info;
2216
2217 ret = mkdir_mondata_all(rdtgroup_default.kn,
2218 &rdtgroup_default, &kn_mondata);
2219 if (ret < 0)
2220 goto out_mongrp;
2221 rdtgroup_default.mon.mon_data_kn = kn_mondata;
2222 }
2223
2224 ret = rdt_pseudo_lock_init();
2225 if (ret)
2226 goto out_mondata;
2227
2228 ret = kernfs_get_tree(fc);
2229 if (ret < 0)
2230 goto out_psl;
2231
2232 if (rdt_alloc_capable)
2233 static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2234 if (rdt_mon_capable)
2235 static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2236
2237 if (rdt_alloc_capable || rdt_mon_capable)
2238 static_branch_enable_cpuslocked(&rdt_enable_key);
2239
2240 if (is_mbm_enabled()) {
2241 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2242 list_for_each_entry(dom, &r->domains, list)
2243 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2244 }
2245
2246 goto out;
2247
2248 out_psl:
2249 rdt_pseudo_lock_release();
2250 out_mondata:
2251 if (rdt_mon_capable)
2252 kernfs_remove(kn_mondata);
2253 out_mongrp:
2254 if (rdt_mon_capable)
2255 kernfs_remove(kn_mongrp);
2256 out_info:
2257 kernfs_remove(kn_info);
2258 out_schemata_free:
2259 schemata_list_destroy();
2260 out_mba:
2261 if (ctx->enable_mba_mbps)
2262 set_mba_sc(false);
2263 out_cdp:
2264 cdp_disable_all();
2265 out:
2266 rdt_last_cmd_clear();
2267 mutex_unlock(&rdtgroup_mutex);
2268 cpus_read_unlock();
2269 return ret;
2270 }
2271
2272 enum rdt_param {
2273 Opt_cdp,
2274 Opt_cdpl2,
2275 Opt_mba_mbps,
2276 nr__rdt_params
2277 };
2278
2279 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2280 fsparam_flag("cdp", Opt_cdp),
2281 fsparam_flag("cdpl2", Opt_cdpl2),
2282 fsparam_flag("mba_MBps", Opt_mba_mbps),
2283 {}
2284 };
2285
rdt_parse_param(struct fs_context * fc,struct fs_parameter * param)2286 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2287 {
2288 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2289 struct fs_parse_result result;
2290 int opt;
2291
2292 opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2293 if (opt < 0)
2294 return opt;
2295
2296 switch (opt) {
2297 case Opt_cdp:
2298 ctx->enable_cdpl3 = true;
2299 return 0;
2300 case Opt_cdpl2:
2301 ctx->enable_cdpl2 = true;
2302 return 0;
2303 case Opt_mba_mbps:
2304 if (!supports_mba_mbps())
2305 return -EINVAL;
2306 ctx->enable_mba_mbps = true;
2307 return 0;
2308 }
2309
2310 return -EINVAL;
2311 }
2312
rdt_fs_context_free(struct fs_context * fc)2313 static void rdt_fs_context_free(struct fs_context *fc)
2314 {
2315 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2316
2317 kernfs_free_fs_context(fc);
2318 kfree(ctx);
2319 }
2320
2321 static const struct fs_context_operations rdt_fs_context_ops = {
2322 .free = rdt_fs_context_free,
2323 .parse_param = rdt_parse_param,
2324 .get_tree = rdt_get_tree,
2325 };
2326
rdt_init_fs_context(struct fs_context * fc)2327 static int rdt_init_fs_context(struct fs_context *fc)
2328 {
2329 struct rdt_fs_context *ctx;
2330
2331 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2332 if (!ctx)
2333 return -ENOMEM;
2334
2335 ctx->kfc.root = rdt_root;
2336 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2337 fc->fs_private = &ctx->kfc;
2338 fc->ops = &rdt_fs_context_ops;
2339 put_user_ns(fc->user_ns);
2340 fc->user_ns = get_user_ns(&init_user_ns);
2341 fc->global = true;
2342 return 0;
2343 }
2344
reset_all_ctrls(struct rdt_resource * r)2345 static int reset_all_ctrls(struct rdt_resource *r)
2346 {
2347 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2348 struct rdt_hw_domain *hw_dom;
2349 struct msr_param msr_param;
2350 cpumask_var_t cpu_mask;
2351 struct rdt_domain *d;
2352 int i, cpu;
2353
2354 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2355 return -ENOMEM;
2356
2357 msr_param.res = r;
2358 msr_param.low = 0;
2359 msr_param.high = hw_res->num_closid;
2360
2361 /*
2362 * Disable resource control for this resource by setting all
2363 * CBMs in all domains to the maximum mask value. Pick one CPU
2364 * from each domain to update the MSRs below.
2365 */
2366 list_for_each_entry(d, &r->domains, list) {
2367 hw_dom = resctrl_to_arch_dom(d);
2368 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2369
2370 for (i = 0; i < hw_res->num_closid; i++)
2371 hw_dom->ctrl_val[i] = r->default_ctrl;
2372 }
2373 cpu = get_cpu();
2374 /* Update CBM on this cpu if it's in cpu_mask. */
2375 if (cpumask_test_cpu(cpu, cpu_mask))
2376 rdt_ctrl_update(&msr_param);
2377 /* Update CBM on all other cpus in cpu_mask. */
2378 smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2379 put_cpu();
2380
2381 free_cpumask_var(cpu_mask);
2382
2383 return 0;
2384 }
2385
2386 /*
2387 * Move tasks from one to the other group. If @from is NULL, then all tasks
2388 * in the systems are moved unconditionally (used for teardown).
2389 *
2390 * If @mask is not NULL the cpus on which moved tasks are running are set
2391 * in that mask so the update smp function call is restricted to affected
2392 * cpus.
2393 */
rdt_move_group_tasks(struct rdtgroup * from,struct rdtgroup * to,struct cpumask * mask)2394 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2395 struct cpumask *mask)
2396 {
2397 struct task_struct *p, *t;
2398
2399 read_lock(&tasklist_lock);
2400 for_each_process_thread(p, t) {
2401 if (!from || is_closid_match(t, from) ||
2402 is_rmid_match(t, from)) {
2403 WRITE_ONCE(t->closid, to->closid);
2404 WRITE_ONCE(t->rmid, to->mon.rmid);
2405
2406 /*
2407 * Order the closid/rmid stores above before the loads
2408 * in task_curr(). This pairs with the full barrier
2409 * between the rq->curr update and resctrl_sched_in()
2410 * during context switch.
2411 */
2412 smp_mb();
2413
2414 /*
2415 * If the task is on a CPU, set the CPU in the mask.
2416 * The detection is inaccurate as tasks might move or
2417 * schedule before the smp function call takes place.
2418 * In such a case the function call is pointless, but
2419 * there is no other side effect.
2420 */
2421 if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2422 cpumask_set_cpu(task_cpu(t), mask);
2423 }
2424 }
2425 read_unlock(&tasklist_lock);
2426 }
2427
free_all_child_rdtgrp(struct rdtgroup * rdtgrp)2428 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2429 {
2430 struct rdtgroup *sentry, *stmp;
2431 struct list_head *head;
2432
2433 head = &rdtgrp->mon.crdtgrp_list;
2434 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2435 free_rmid(sentry->mon.rmid);
2436 list_del(&sentry->mon.crdtgrp_list);
2437
2438 if (atomic_read(&sentry->waitcount) != 0)
2439 sentry->flags = RDT_DELETED;
2440 else
2441 rdtgroup_remove(sentry);
2442 }
2443 }
2444
2445 /*
2446 * Forcibly remove all of subdirectories under root.
2447 */
rmdir_all_sub(void)2448 static void rmdir_all_sub(void)
2449 {
2450 struct rdtgroup *rdtgrp, *tmp;
2451
2452 /* Move all tasks to the default resource group */
2453 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2454
2455 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2456 /* Free any child rmids */
2457 free_all_child_rdtgrp(rdtgrp);
2458
2459 /* Remove each rdtgroup other than root */
2460 if (rdtgrp == &rdtgroup_default)
2461 continue;
2462
2463 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2464 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2465 rdtgroup_pseudo_lock_remove(rdtgrp);
2466
2467 /*
2468 * Give any CPUs back to the default group. We cannot copy
2469 * cpu_online_mask because a CPU might have executed the
2470 * offline callback already, but is still marked online.
2471 */
2472 cpumask_or(&rdtgroup_default.cpu_mask,
2473 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2474
2475 free_rmid(rdtgrp->mon.rmid);
2476
2477 kernfs_remove(rdtgrp->kn);
2478 list_del(&rdtgrp->rdtgroup_list);
2479
2480 if (atomic_read(&rdtgrp->waitcount) != 0)
2481 rdtgrp->flags = RDT_DELETED;
2482 else
2483 rdtgroup_remove(rdtgrp);
2484 }
2485 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2486 update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2487
2488 kernfs_remove(kn_info);
2489 kernfs_remove(kn_mongrp);
2490 kernfs_remove(kn_mondata);
2491 }
2492
rdt_kill_sb(struct super_block * sb)2493 static void rdt_kill_sb(struct super_block *sb)
2494 {
2495 struct rdt_resource *r;
2496
2497 cpus_read_lock();
2498 mutex_lock(&rdtgroup_mutex);
2499
2500 set_mba_sc(false);
2501
2502 /*Put everything back to default values. */
2503 for_each_alloc_capable_rdt_resource(r)
2504 reset_all_ctrls(r);
2505 cdp_disable_all();
2506 rmdir_all_sub();
2507 rdt_pseudo_lock_release();
2508 rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2509 schemata_list_destroy();
2510 static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2511 static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2512 static_branch_disable_cpuslocked(&rdt_enable_key);
2513 kernfs_kill_sb(sb);
2514 mutex_unlock(&rdtgroup_mutex);
2515 cpus_read_unlock();
2516 }
2517
2518 static struct file_system_type rdt_fs_type = {
2519 .name = "resctrl",
2520 .init_fs_context = rdt_init_fs_context,
2521 .parameters = rdt_fs_parameters,
2522 .kill_sb = rdt_kill_sb,
2523 };
2524
mon_addfile(struct kernfs_node * parent_kn,const char * name,void * priv)2525 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2526 void *priv)
2527 {
2528 struct kernfs_node *kn;
2529 int ret = 0;
2530
2531 kn = __kernfs_create_file(parent_kn, name, 0444,
2532 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2533 &kf_mondata_ops, priv, NULL, NULL);
2534 if (IS_ERR(kn))
2535 return PTR_ERR(kn);
2536
2537 ret = rdtgroup_kn_set_ugid(kn);
2538 if (ret) {
2539 kernfs_remove(kn);
2540 return ret;
2541 }
2542
2543 return ret;
2544 }
2545
2546 /*
2547 * Remove all subdirectories of mon_data of ctrl_mon groups
2548 * and monitor groups with given domain id.
2549 */
rmdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,unsigned int dom_id)2550 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2551 unsigned int dom_id)
2552 {
2553 struct rdtgroup *prgrp, *crgrp;
2554 char name[32];
2555
2556 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2557 sprintf(name, "mon_%s_%02d", r->name, dom_id);
2558 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2559
2560 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2561 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2562 }
2563 }
2564
mkdir_mondata_subdir(struct kernfs_node * parent_kn,struct rdt_domain * d,struct rdt_resource * r,struct rdtgroup * prgrp)2565 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2566 struct rdt_domain *d,
2567 struct rdt_resource *r, struct rdtgroup *prgrp)
2568 {
2569 union mon_data_bits priv;
2570 struct kernfs_node *kn;
2571 struct mon_evt *mevt;
2572 struct rmid_read rr;
2573 char name[32];
2574 int ret;
2575
2576 sprintf(name, "mon_%s_%02d", r->name, d->id);
2577 /* create the directory */
2578 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2579 if (IS_ERR(kn))
2580 return PTR_ERR(kn);
2581
2582 ret = rdtgroup_kn_set_ugid(kn);
2583 if (ret)
2584 goto out_destroy;
2585
2586 if (WARN_ON(list_empty(&r->evt_list))) {
2587 ret = -EPERM;
2588 goto out_destroy;
2589 }
2590
2591 priv.u.rid = r->rid;
2592 priv.u.domid = d->id;
2593 list_for_each_entry(mevt, &r->evt_list, list) {
2594 priv.u.evtid = mevt->evtid;
2595 ret = mon_addfile(kn, mevt->name, priv.priv);
2596 if (ret)
2597 goto out_destroy;
2598
2599 if (is_mbm_event(mevt->evtid))
2600 mon_event_read(&rr, r, d, prgrp, mevt->evtid, true);
2601 }
2602 kernfs_activate(kn);
2603 return 0;
2604
2605 out_destroy:
2606 kernfs_remove(kn);
2607 return ret;
2608 }
2609
2610 /*
2611 * Add all subdirectories of mon_data for "ctrl_mon" groups
2612 * and "monitor" groups with given domain id.
2613 */
mkdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,struct rdt_domain * d)2614 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2615 struct rdt_domain *d)
2616 {
2617 struct kernfs_node *parent_kn;
2618 struct rdtgroup *prgrp, *crgrp;
2619 struct list_head *head;
2620
2621 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2622 parent_kn = prgrp->mon.mon_data_kn;
2623 mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2624
2625 head = &prgrp->mon.crdtgrp_list;
2626 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2627 parent_kn = crgrp->mon.mon_data_kn;
2628 mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2629 }
2630 }
2631 }
2632
mkdir_mondata_subdir_alldom(struct kernfs_node * parent_kn,struct rdt_resource * r,struct rdtgroup * prgrp)2633 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2634 struct rdt_resource *r,
2635 struct rdtgroup *prgrp)
2636 {
2637 struct rdt_domain *dom;
2638 int ret;
2639
2640 list_for_each_entry(dom, &r->domains, list) {
2641 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2642 if (ret)
2643 return ret;
2644 }
2645
2646 return 0;
2647 }
2648
2649 /*
2650 * This creates a directory mon_data which contains the monitored data.
2651 *
2652 * mon_data has one directory for each domain which are named
2653 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2654 * with L3 domain looks as below:
2655 * ./mon_data:
2656 * mon_L3_00
2657 * mon_L3_01
2658 * mon_L3_02
2659 * ...
2660 *
2661 * Each domain directory has one file per event:
2662 * ./mon_L3_00/:
2663 * llc_occupancy
2664 *
2665 */
mkdir_mondata_all(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,struct kernfs_node ** dest_kn)2666 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2667 struct rdtgroup *prgrp,
2668 struct kernfs_node **dest_kn)
2669 {
2670 struct rdt_resource *r;
2671 struct kernfs_node *kn;
2672 int ret;
2673
2674 /*
2675 * Create the mon_data directory first.
2676 */
2677 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
2678 if (ret)
2679 return ret;
2680
2681 if (dest_kn)
2682 *dest_kn = kn;
2683
2684 /*
2685 * Create the subdirectories for each domain. Note that all events
2686 * in a domain like L3 are grouped into a resource whose domain is L3
2687 */
2688 for_each_mon_capable_rdt_resource(r) {
2689 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2690 if (ret)
2691 goto out_destroy;
2692 }
2693
2694 return 0;
2695
2696 out_destroy:
2697 kernfs_remove(kn);
2698 return ret;
2699 }
2700
2701 /**
2702 * cbm_ensure_valid - Enforce validity on provided CBM
2703 * @_val: Candidate CBM
2704 * @r: RDT resource to which the CBM belongs
2705 *
2706 * The provided CBM represents all cache portions available for use. This
2707 * may be represented by a bitmap that does not consist of contiguous ones
2708 * and thus be an invalid CBM.
2709 * Here the provided CBM is forced to be a valid CBM by only considering
2710 * the first set of contiguous bits as valid and clearing all bits.
2711 * The intention here is to provide a valid default CBM with which a new
2712 * resource group is initialized. The user can follow this with a
2713 * modification to the CBM if the default does not satisfy the
2714 * requirements.
2715 */
cbm_ensure_valid(u32 _val,struct rdt_resource * r)2716 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
2717 {
2718 unsigned int cbm_len = r->cache.cbm_len;
2719 unsigned long first_bit, zero_bit;
2720 unsigned long val = _val;
2721
2722 if (!val)
2723 return 0;
2724
2725 first_bit = find_first_bit(&val, cbm_len);
2726 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2727
2728 /* Clear any remaining bits to ensure contiguous region */
2729 bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2730 return (u32)val;
2731 }
2732
2733 /*
2734 * Initialize cache resources per RDT domain
2735 *
2736 * Set the RDT domain up to start off with all usable allocations. That is,
2737 * all shareable and unused bits. All-zero CBM is invalid.
2738 */
__init_one_rdt_domain(struct rdt_domain * d,struct resctrl_schema * s,u32 closid)2739 static int __init_one_rdt_domain(struct rdt_domain *d, struct resctrl_schema *s,
2740 u32 closid)
2741 {
2742 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
2743 enum resctrl_conf_type t = s->conf_type;
2744 struct resctrl_staged_config *cfg;
2745 struct rdt_resource *r = s->res;
2746 u32 used_b = 0, unused_b = 0;
2747 unsigned long tmp_cbm;
2748 enum rdtgrp_mode mode;
2749 u32 peer_ctl, ctrl_val;
2750 int i;
2751
2752 cfg = &d->staged_config[t];
2753 cfg->have_new_ctrl = false;
2754 cfg->new_ctrl = r->cache.shareable_bits;
2755 used_b = r->cache.shareable_bits;
2756 for (i = 0; i < closids_supported(); i++) {
2757 if (closid_allocated(i) && i != closid) {
2758 mode = rdtgroup_mode_by_closid(i);
2759 if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2760 /*
2761 * ctrl values for locksetup aren't relevant
2762 * until the schemata is written, and the mode
2763 * becomes RDT_MODE_PSEUDO_LOCKED.
2764 */
2765 continue;
2766 /*
2767 * If CDP is active include peer domain's
2768 * usage to ensure there is no overlap
2769 * with an exclusive group.
2770 */
2771 if (resctrl_arch_get_cdp_enabled(r->rid))
2772 peer_ctl = resctrl_arch_get_config(r, d, i,
2773 peer_type);
2774 else
2775 peer_ctl = 0;
2776 ctrl_val = resctrl_arch_get_config(r, d, i,
2777 s->conf_type);
2778 used_b |= ctrl_val | peer_ctl;
2779 if (mode == RDT_MODE_SHAREABLE)
2780 cfg->new_ctrl |= ctrl_val | peer_ctl;
2781 }
2782 }
2783 if (d->plr && d->plr->cbm > 0)
2784 used_b |= d->plr->cbm;
2785 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2786 unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2787 cfg->new_ctrl |= unused_b;
2788 /*
2789 * Force the initial CBM to be valid, user can
2790 * modify the CBM based on system availability.
2791 */
2792 cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
2793 /*
2794 * Assign the u32 CBM to an unsigned long to ensure that
2795 * bitmap_weight() does not access out-of-bound memory.
2796 */
2797 tmp_cbm = cfg->new_ctrl;
2798 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2799 rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->id);
2800 return -ENOSPC;
2801 }
2802 cfg->have_new_ctrl = true;
2803
2804 return 0;
2805 }
2806
2807 /*
2808 * Initialize cache resources with default values.
2809 *
2810 * A new RDT group is being created on an allocation capable (CAT)
2811 * supporting system. Set this group up to start off with all usable
2812 * allocations.
2813 *
2814 * If there are no more shareable bits available on any domain then
2815 * the entire allocation will fail.
2816 */
rdtgroup_init_cat(struct resctrl_schema * s,u32 closid)2817 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
2818 {
2819 struct rdt_domain *d;
2820 int ret;
2821
2822 list_for_each_entry(d, &s->res->domains, list) {
2823 ret = __init_one_rdt_domain(d, s, closid);
2824 if (ret < 0)
2825 return ret;
2826 }
2827
2828 return 0;
2829 }
2830
2831 /* Initialize MBA resource with default values. */
rdtgroup_init_mba(struct rdt_resource * r,u32 closid)2832 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
2833 {
2834 struct resctrl_staged_config *cfg;
2835 struct rdt_domain *d;
2836
2837 list_for_each_entry(d, &r->domains, list) {
2838 if (is_mba_sc(r)) {
2839 d->mbps_val[closid] = MBA_MAX_MBPS;
2840 continue;
2841 }
2842
2843 cfg = &d->staged_config[CDP_NONE];
2844 cfg->new_ctrl = r->default_ctrl;
2845 cfg->have_new_ctrl = true;
2846 }
2847 }
2848
2849 /* Initialize the RDT group's allocations. */
rdtgroup_init_alloc(struct rdtgroup * rdtgrp)2850 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2851 {
2852 struct resctrl_schema *s;
2853 struct rdt_resource *r;
2854 int ret;
2855
2856 list_for_each_entry(s, &resctrl_schema_all, list) {
2857 r = s->res;
2858 if (r->rid == RDT_RESOURCE_MBA) {
2859 rdtgroup_init_mba(r, rdtgrp->closid);
2860 if (is_mba_sc(r))
2861 continue;
2862 } else {
2863 ret = rdtgroup_init_cat(s, rdtgrp->closid);
2864 if (ret < 0)
2865 return ret;
2866 }
2867
2868 ret = resctrl_arch_update_domains(r, rdtgrp->closid);
2869 if (ret < 0) {
2870 rdt_last_cmd_puts("Failed to initialize allocations\n");
2871 return ret;
2872 }
2873
2874 }
2875
2876 rdtgrp->mode = RDT_MODE_SHAREABLE;
2877
2878 return 0;
2879 }
2880
mkdir_rdt_prepare(struct kernfs_node * parent_kn,const char * name,umode_t mode,enum rdt_group_type rtype,struct rdtgroup ** r)2881 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2882 const char *name, umode_t mode,
2883 enum rdt_group_type rtype, struct rdtgroup **r)
2884 {
2885 struct rdtgroup *prdtgrp, *rdtgrp;
2886 struct kernfs_node *kn;
2887 uint files = 0;
2888 int ret;
2889
2890 prdtgrp = rdtgroup_kn_lock_live(parent_kn);
2891 if (!prdtgrp) {
2892 ret = -ENODEV;
2893 goto out_unlock;
2894 }
2895
2896 if (rtype == RDTMON_GROUP &&
2897 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2898 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2899 ret = -EINVAL;
2900 rdt_last_cmd_puts("Pseudo-locking in progress\n");
2901 goto out_unlock;
2902 }
2903
2904 /* allocate the rdtgroup. */
2905 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2906 if (!rdtgrp) {
2907 ret = -ENOSPC;
2908 rdt_last_cmd_puts("Kernel out of memory\n");
2909 goto out_unlock;
2910 }
2911 *r = rdtgrp;
2912 rdtgrp->mon.parent = prdtgrp;
2913 rdtgrp->type = rtype;
2914 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2915
2916 /* kernfs creates the directory for rdtgrp */
2917 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2918 if (IS_ERR(kn)) {
2919 ret = PTR_ERR(kn);
2920 rdt_last_cmd_puts("kernfs create error\n");
2921 goto out_free_rgrp;
2922 }
2923 rdtgrp->kn = kn;
2924
2925 /*
2926 * kernfs_remove() will drop the reference count on "kn" which
2927 * will free it. But we still need it to stick around for the
2928 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
2929 * which will be dropped by kernfs_put() in rdtgroup_remove().
2930 */
2931 kernfs_get(kn);
2932
2933 ret = rdtgroup_kn_set_ugid(kn);
2934 if (ret) {
2935 rdt_last_cmd_puts("kernfs perm error\n");
2936 goto out_destroy;
2937 }
2938
2939 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2940 ret = rdtgroup_add_files(kn, files);
2941 if (ret) {
2942 rdt_last_cmd_puts("kernfs fill error\n");
2943 goto out_destroy;
2944 }
2945
2946 if (rdt_mon_capable) {
2947 ret = alloc_rmid();
2948 if (ret < 0) {
2949 rdt_last_cmd_puts("Out of RMIDs\n");
2950 goto out_destroy;
2951 }
2952 rdtgrp->mon.rmid = ret;
2953
2954 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2955 if (ret) {
2956 rdt_last_cmd_puts("kernfs subdir error\n");
2957 goto out_idfree;
2958 }
2959 }
2960 kernfs_activate(kn);
2961
2962 /*
2963 * The caller unlocks the parent_kn upon success.
2964 */
2965 return 0;
2966
2967 out_idfree:
2968 free_rmid(rdtgrp->mon.rmid);
2969 out_destroy:
2970 kernfs_put(rdtgrp->kn);
2971 kernfs_remove(rdtgrp->kn);
2972 out_free_rgrp:
2973 kfree(rdtgrp);
2974 out_unlock:
2975 rdtgroup_kn_unlock(parent_kn);
2976 return ret;
2977 }
2978
mkdir_rdt_prepare_clean(struct rdtgroup * rgrp)2979 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2980 {
2981 kernfs_remove(rgrp->kn);
2982 free_rmid(rgrp->mon.rmid);
2983 rdtgroup_remove(rgrp);
2984 }
2985
2986 /*
2987 * Create a monitor group under "mon_groups" directory of a control
2988 * and monitor group(ctrl_mon). This is a resource group
2989 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2990 */
rdtgroup_mkdir_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)2991 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2992 const char *name, umode_t mode)
2993 {
2994 struct rdtgroup *rdtgrp, *prgrp;
2995 int ret;
2996
2997 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
2998 if (ret)
2999 return ret;
3000
3001 prgrp = rdtgrp->mon.parent;
3002 rdtgrp->closid = prgrp->closid;
3003
3004 /*
3005 * Add the rdtgrp to the list of rdtgrps the parent
3006 * ctrl_mon group has to track.
3007 */
3008 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
3009
3010 rdtgroup_kn_unlock(parent_kn);
3011 return ret;
3012 }
3013
3014 /*
3015 * These are rdtgroups created under the root directory. Can be used
3016 * to allocate and monitor resources.
3017 */
rdtgroup_mkdir_ctrl_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)3018 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3019 const char *name, umode_t mode)
3020 {
3021 struct rdtgroup *rdtgrp;
3022 struct kernfs_node *kn;
3023 u32 closid;
3024 int ret;
3025
3026 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3027 if (ret)
3028 return ret;
3029
3030 kn = rdtgrp->kn;
3031 ret = closid_alloc();
3032 if (ret < 0) {
3033 rdt_last_cmd_puts("Out of CLOSIDs\n");
3034 goto out_common_fail;
3035 }
3036 closid = ret;
3037 ret = 0;
3038
3039 rdtgrp->closid = closid;
3040 ret = rdtgroup_init_alloc(rdtgrp);
3041 if (ret < 0)
3042 goto out_id_free;
3043
3044 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3045
3046 if (rdt_mon_capable) {
3047 /*
3048 * Create an empty mon_groups directory to hold the subset
3049 * of tasks and cpus to monitor.
3050 */
3051 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3052 if (ret) {
3053 rdt_last_cmd_puts("kernfs subdir error\n");
3054 goto out_del_list;
3055 }
3056 }
3057
3058 goto out_unlock;
3059
3060 out_del_list:
3061 list_del(&rdtgrp->rdtgroup_list);
3062 out_id_free:
3063 closid_free(closid);
3064 out_common_fail:
3065 mkdir_rdt_prepare_clean(rdtgrp);
3066 out_unlock:
3067 rdtgroup_kn_unlock(parent_kn);
3068 return ret;
3069 }
3070
3071 /*
3072 * We allow creating mon groups only with in a directory called "mon_groups"
3073 * which is present in every ctrl_mon group. Check if this is a valid
3074 * "mon_groups" directory.
3075 *
3076 * 1. The directory should be named "mon_groups".
3077 * 2. The mon group itself should "not" be named "mon_groups".
3078 * This makes sure "mon_groups" directory always has a ctrl_mon group
3079 * as parent.
3080 */
is_mon_groups(struct kernfs_node * kn,const char * name)3081 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3082 {
3083 return (!strcmp(kn->name, "mon_groups") &&
3084 strcmp(name, "mon_groups"));
3085 }
3086
rdtgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)3087 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3088 umode_t mode)
3089 {
3090 /* Do not accept '\n' to avoid unparsable situation. */
3091 if (strchr(name, '\n'))
3092 return -EINVAL;
3093
3094 /*
3095 * If the parent directory is the root directory and RDT
3096 * allocation is supported, add a control and monitoring
3097 * subdirectory
3098 */
3099 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
3100 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3101
3102 /*
3103 * If RDT monitoring is supported and the parent directory is a valid
3104 * "mon_groups" directory, add a monitoring subdirectory.
3105 */
3106 if (rdt_mon_capable && is_mon_groups(parent_kn, name))
3107 return rdtgroup_mkdir_mon(parent_kn, name, mode);
3108
3109 return -EPERM;
3110 }
3111
rdtgroup_rmdir_mon(struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3112 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3113 {
3114 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3115 int cpu;
3116
3117 /* Give any tasks back to the parent group */
3118 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3119
3120 /* Update per cpu rmid of the moved CPUs first */
3121 for_each_cpu(cpu, &rdtgrp->cpu_mask)
3122 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3123 /*
3124 * Update the MSR on moved CPUs and CPUs which have moved
3125 * task running on them.
3126 */
3127 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3128 update_closid_rmid(tmpmask, NULL);
3129
3130 rdtgrp->flags = RDT_DELETED;
3131 free_rmid(rdtgrp->mon.rmid);
3132
3133 /*
3134 * Remove the rdtgrp from the parent ctrl_mon group's list
3135 */
3136 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3137 list_del(&rdtgrp->mon.crdtgrp_list);
3138
3139 kernfs_remove(rdtgrp->kn);
3140
3141 return 0;
3142 }
3143
rdtgroup_ctrl_remove(struct rdtgroup * rdtgrp)3144 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3145 {
3146 rdtgrp->flags = RDT_DELETED;
3147 list_del(&rdtgrp->rdtgroup_list);
3148
3149 kernfs_remove(rdtgrp->kn);
3150 return 0;
3151 }
3152
rdtgroup_rmdir_ctrl(struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3153 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3154 {
3155 int cpu;
3156
3157 /* Give any tasks back to the default group */
3158 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3159
3160 /* Give any CPUs back to the default group */
3161 cpumask_or(&rdtgroup_default.cpu_mask,
3162 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3163
3164 /* Update per cpu closid and rmid of the moved CPUs first */
3165 for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3166 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3167 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3168 }
3169
3170 /*
3171 * Update the MSR on moved CPUs and CPUs which have moved
3172 * task running on them.
3173 */
3174 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3175 update_closid_rmid(tmpmask, NULL);
3176
3177 closid_free(rdtgrp->closid);
3178 free_rmid(rdtgrp->mon.rmid);
3179
3180 rdtgroup_ctrl_remove(rdtgrp);
3181
3182 /*
3183 * Free all the child monitor group rmids.
3184 */
3185 free_all_child_rdtgrp(rdtgrp);
3186
3187 return 0;
3188 }
3189
rdtgroup_rmdir(struct kernfs_node * kn)3190 static int rdtgroup_rmdir(struct kernfs_node *kn)
3191 {
3192 struct kernfs_node *parent_kn = kn->parent;
3193 struct rdtgroup *rdtgrp;
3194 cpumask_var_t tmpmask;
3195 int ret = 0;
3196
3197 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3198 return -ENOMEM;
3199
3200 rdtgrp = rdtgroup_kn_lock_live(kn);
3201 if (!rdtgrp) {
3202 ret = -EPERM;
3203 goto out;
3204 }
3205
3206 /*
3207 * If the rdtgroup is a ctrl_mon group and parent directory
3208 * is the root directory, remove the ctrl_mon group.
3209 *
3210 * If the rdtgroup is a mon group and parent directory
3211 * is a valid "mon_groups" directory, remove the mon group.
3212 */
3213 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3214 rdtgrp != &rdtgroup_default) {
3215 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3216 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3217 ret = rdtgroup_ctrl_remove(rdtgrp);
3218 } else {
3219 ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3220 }
3221 } else if (rdtgrp->type == RDTMON_GROUP &&
3222 is_mon_groups(parent_kn, kn->name)) {
3223 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3224 } else {
3225 ret = -EPERM;
3226 }
3227
3228 out:
3229 rdtgroup_kn_unlock(kn);
3230 free_cpumask_var(tmpmask);
3231 return ret;
3232 }
3233
rdtgroup_show_options(struct seq_file * seq,struct kernfs_root * kf)3234 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3235 {
3236 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
3237 seq_puts(seq, ",cdp");
3238
3239 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
3240 seq_puts(seq, ",cdpl2");
3241
3242 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl))
3243 seq_puts(seq, ",mba_MBps");
3244
3245 return 0;
3246 }
3247
3248 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3249 .mkdir = rdtgroup_mkdir,
3250 .rmdir = rdtgroup_rmdir,
3251 .show_options = rdtgroup_show_options,
3252 };
3253
rdtgroup_setup_root(void)3254 static int __init rdtgroup_setup_root(void)
3255 {
3256 int ret;
3257
3258 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3259 KERNFS_ROOT_CREATE_DEACTIVATED |
3260 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3261 &rdtgroup_default);
3262 if (IS_ERR(rdt_root))
3263 return PTR_ERR(rdt_root);
3264
3265 mutex_lock(&rdtgroup_mutex);
3266
3267 rdtgroup_default.closid = 0;
3268 rdtgroup_default.mon.rmid = 0;
3269 rdtgroup_default.type = RDTCTRL_GROUP;
3270 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3271
3272 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3273
3274 ret = rdtgroup_add_files(kernfs_root_to_node(rdt_root), RF_CTRL_BASE);
3275 if (ret) {
3276 kernfs_destroy_root(rdt_root);
3277 goto out;
3278 }
3279
3280 rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
3281 kernfs_activate(rdtgroup_default.kn);
3282
3283 out:
3284 mutex_unlock(&rdtgroup_mutex);
3285
3286 return ret;
3287 }
3288
domain_destroy_mon_state(struct rdt_domain * d)3289 static void domain_destroy_mon_state(struct rdt_domain *d)
3290 {
3291 bitmap_free(d->rmid_busy_llc);
3292 kfree(d->mbm_total);
3293 kfree(d->mbm_local);
3294 }
3295
resctrl_offline_domain(struct rdt_resource * r,struct rdt_domain * d)3296 void resctrl_offline_domain(struct rdt_resource *r, struct rdt_domain *d)
3297 {
3298 lockdep_assert_held(&rdtgroup_mutex);
3299
3300 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3301 mba_sc_domain_destroy(r, d);
3302
3303 if (!r->mon_capable)
3304 return;
3305
3306 /*
3307 * If resctrl is mounted, remove all the
3308 * per domain monitor data directories.
3309 */
3310 if (static_branch_unlikely(&rdt_mon_enable_key))
3311 rmdir_mondata_subdir_allrdtgrp(r, d->id);
3312
3313 if (is_mbm_enabled())
3314 cancel_delayed_work(&d->mbm_over);
3315 if (is_llc_occupancy_enabled() && has_busy_rmid(r, d)) {
3316 /*
3317 * When a package is going down, forcefully
3318 * decrement rmid->ebusy. There is no way to know
3319 * that the L3 was flushed and hence may lead to
3320 * incorrect counts in rare scenarios, but leaving
3321 * the RMID as busy creates RMID leaks if the
3322 * package never comes back.
3323 */
3324 __check_limbo(d, true);
3325 cancel_delayed_work(&d->cqm_limbo);
3326 }
3327
3328 domain_destroy_mon_state(d);
3329 }
3330
domain_setup_mon_state(struct rdt_resource * r,struct rdt_domain * d)3331 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d)
3332 {
3333 size_t tsize;
3334
3335 if (is_llc_occupancy_enabled()) {
3336 d->rmid_busy_llc = bitmap_zalloc(r->num_rmid, GFP_KERNEL);
3337 if (!d->rmid_busy_llc)
3338 return -ENOMEM;
3339 }
3340 if (is_mbm_total_enabled()) {
3341 tsize = sizeof(*d->mbm_total);
3342 d->mbm_total = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
3343 if (!d->mbm_total) {
3344 bitmap_free(d->rmid_busy_llc);
3345 return -ENOMEM;
3346 }
3347 }
3348 if (is_mbm_local_enabled()) {
3349 tsize = sizeof(*d->mbm_local);
3350 d->mbm_local = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
3351 if (!d->mbm_local) {
3352 bitmap_free(d->rmid_busy_llc);
3353 kfree(d->mbm_total);
3354 return -ENOMEM;
3355 }
3356 }
3357
3358 return 0;
3359 }
3360
resctrl_online_domain(struct rdt_resource * r,struct rdt_domain * d)3361 int resctrl_online_domain(struct rdt_resource *r, struct rdt_domain *d)
3362 {
3363 int err;
3364
3365 lockdep_assert_held(&rdtgroup_mutex);
3366
3367 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3368 /* RDT_RESOURCE_MBA is never mon_capable */
3369 return mba_sc_domain_allocate(r, d);
3370
3371 if (!r->mon_capable)
3372 return 0;
3373
3374 err = domain_setup_mon_state(r, d);
3375 if (err)
3376 return err;
3377
3378 if (is_mbm_enabled()) {
3379 INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
3380 mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL);
3381 }
3382
3383 if (is_llc_occupancy_enabled())
3384 INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
3385
3386 /* If resctrl is mounted, add per domain monitor data directories. */
3387 if (static_branch_unlikely(&rdt_mon_enable_key))
3388 mkdir_mondata_subdir_allrdtgrp(r, d);
3389
3390 return 0;
3391 }
3392
3393 /*
3394 * rdtgroup_init - rdtgroup initialization
3395 *
3396 * Setup resctrl file system including set up root, create mount point,
3397 * register rdtgroup filesystem, and initialize files under root directory.
3398 *
3399 * Return: 0 on success or -errno
3400 */
rdtgroup_init(void)3401 int __init rdtgroup_init(void)
3402 {
3403 int ret = 0;
3404
3405 seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3406 sizeof(last_cmd_status_buf));
3407
3408 ret = rdtgroup_setup_root();
3409 if (ret)
3410 return ret;
3411
3412 ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3413 if (ret)
3414 goto cleanup_root;
3415
3416 ret = register_filesystem(&rdt_fs_type);
3417 if (ret)
3418 goto cleanup_mountpoint;
3419
3420 /*
3421 * Adding the resctrl debugfs directory here may not be ideal since
3422 * it would let the resctrl debugfs directory appear on the debugfs
3423 * filesystem before the resctrl filesystem is mounted.
3424 * It may also be ok since that would enable debugging of RDT before
3425 * resctrl is mounted.
3426 * The reason why the debugfs directory is created here and not in
3427 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
3428 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3429 * (the lockdep class of inode->i_rwsem). Other filesystem
3430 * interactions (eg. SyS_getdents) have the lock ordering:
3431 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
3432 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
3433 * is taken, thus creating dependency:
3434 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
3435 * issues considering the other two lock dependencies.
3436 * By creating the debugfs directory here we avoid a dependency
3437 * that may cause deadlock (even though file operations cannot
3438 * occur until the filesystem is mounted, but I do not know how to
3439 * tell lockdep that).
3440 */
3441 debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3442
3443 return 0;
3444
3445 cleanup_mountpoint:
3446 sysfs_remove_mount_point(fs_kobj, "resctrl");
3447 cleanup_root:
3448 kernfs_destroy_root(rdt_root);
3449
3450 return ret;
3451 }
3452
rdtgroup_exit(void)3453 void __exit rdtgroup_exit(void)
3454 {
3455 debugfs_remove_recursive(debugfs_resctrl);
3456 unregister_filesystem(&rdt_fs_type);
3457 sysfs_remove_mount_point(fs_kobj, "resctrl");
3458 kernfs_destroy_root(rdt_root);
3459 }
3460