1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5 
6 #ifdef CONFIG_RT_GROUP_SCHED
7 
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9 
rt_task_of(struct sched_rt_entity * rt_se)10 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11 {
12 #ifdef CONFIG_SCHED_DEBUG
13 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14 #endif
15 	return container_of(rt_se, struct task_struct, rt);
16 }
17 
rq_of_rt_rq(struct rt_rq * rt_rq)18 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19 {
20 	return rt_rq->rq;
21 }
22 
rt_rq_of_se(struct sched_rt_entity * rt_se)23 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24 {
25 	return rt_se->rt_rq;
26 }
27 
28 #else /* CONFIG_RT_GROUP_SCHED */
29 
30 #define rt_entity_is_task(rt_se) (1)
31 
rt_task_of(struct sched_rt_entity * rt_se)32 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33 {
34 	return container_of(rt_se, struct task_struct, rt);
35 }
36 
rq_of_rt_rq(struct rt_rq * rt_rq)37 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38 {
39 	return container_of(rt_rq, struct rq, rt);
40 }
41 
rt_rq_of_se(struct sched_rt_entity * rt_se)42 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43 {
44 	struct task_struct *p = rt_task_of(rt_se);
45 	struct rq *rq = task_rq(p);
46 
47 	return &rq->rt;
48 }
49 
50 #endif /* CONFIG_RT_GROUP_SCHED */
51 
52 #ifdef CONFIG_SMP
53 
rt_overloaded(struct rq * rq)54 static inline int rt_overloaded(struct rq *rq)
55 {
56 	return atomic_read(&rq->rd->rto_count);
57 }
58 
rt_set_overload(struct rq * rq)59 static inline void rt_set_overload(struct rq *rq)
60 {
61 	if (!rq->online)
62 		return;
63 
64 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
65 	/*
66 	 * Make sure the mask is visible before we set
67 	 * the overload count. That is checked to determine
68 	 * if we should look at the mask. It would be a shame
69 	 * if we looked at the mask, but the mask was not
70 	 * updated yet.
71 	 */
72 	wmb();
73 	atomic_inc(&rq->rd->rto_count);
74 }
75 
rt_clear_overload(struct rq * rq)76 static inline void rt_clear_overload(struct rq *rq)
77 {
78 	if (!rq->online)
79 		return;
80 
81 	/* the order here really doesn't matter */
82 	atomic_dec(&rq->rd->rto_count);
83 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
84 }
85 
update_rt_migration(struct rt_rq * rt_rq)86 static void update_rt_migration(struct rt_rq *rt_rq)
87 {
88 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 		if (!rt_rq->overloaded) {
90 			rt_set_overload(rq_of_rt_rq(rt_rq));
91 			rt_rq->overloaded = 1;
92 		}
93 	} else if (rt_rq->overloaded) {
94 		rt_clear_overload(rq_of_rt_rq(rt_rq));
95 		rt_rq->overloaded = 0;
96 	}
97 }
98 
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)99 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100 {
101 	if (!rt_entity_is_task(rt_se))
102 		return;
103 
104 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105 
106 	rt_rq->rt_nr_total++;
107 	if (rt_se->nr_cpus_allowed > 1)
108 		rt_rq->rt_nr_migratory++;
109 
110 	update_rt_migration(rt_rq);
111 }
112 
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)113 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114 {
115 	if (!rt_entity_is_task(rt_se))
116 		return;
117 
118 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119 
120 	rt_rq->rt_nr_total--;
121 	if (rt_se->nr_cpus_allowed > 1)
122 		rt_rq->rt_nr_migratory--;
123 
124 	update_rt_migration(rt_rq);
125 }
126 
enqueue_pushable_task(struct rq * rq,struct task_struct * p)127 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
128 {
129 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
130 	plist_node_init(&p->pushable_tasks, p->prio);
131 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
132 }
133 
dequeue_pushable_task(struct rq * rq,struct task_struct * p)134 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
135 {
136 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
137 }
138 
has_pushable_tasks(struct rq * rq)139 static inline int has_pushable_tasks(struct rq *rq)
140 {
141 	return !plist_head_empty(&rq->rt.pushable_tasks);
142 }
143 
144 #else
145 
enqueue_pushable_task(struct rq * rq,struct task_struct * p)146 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
147 {
148 }
149 
dequeue_pushable_task(struct rq * rq,struct task_struct * p)150 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
151 {
152 }
153 
154 static inline
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)155 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
156 {
157 }
158 
159 static inline
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)160 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
161 {
162 }
163 
164 #endif /* CONFIG_SMP */
165 
on_rt_rq(struct sched_rt_entity * rt_se)166 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
167 {
168 	return !list_empty(&rt_se->run_list);
169 }
170 
171 #ifdef CONFIG_RT_GROUP_SCHED
172 
sched_rt_runtime(struct rt_rq * rt_rq)173 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
174 {
175 	if (!rt_rq->tg)
176 		return RUNTIME_INF;
177 
178 	return rt_rq->rt_runtime;
179 }
180 
sched_rt_period(struct rt_rq * rt_rq)181 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
182 {
183 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
184 }
185 
list_add_leaf_rt_rq(struct rt_rq * rt_rq)186 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
187 {
188 	list_add_rcu(&rt_rq->leaf_rt_rq_list,
189 			&rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
190 }
191 
list_del_leaf_rt_rq(struct rt_rq * rt_rq)192 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
193 {
194 	list_del_rcu(&rt_rq->leaf_rt_rq_list);
195 }
196 
197 #define for_each_leaf_rt_rq(rt_rq, rq) \
198 	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
199 
200 #define for_each_sched_rt_entity(rt_se) \
201 	for (; rt_se; rt_se = rt_se->parent)
202 
group_rt_rq(struct sched_rt_entity * rt_se)203 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
204 {
205 	return rt_se->my_q;
206 }
207 
208 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
209 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
210 
sched_rt_rq_enqueue(struct rt_rq * rt_rq)211 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
212 {
213 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
214 	struct sched_rt_entity *rt_se;
215 
216 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
217 
218 	rt_se = rt_rq->tg->rt_se[cpu];
219 
220 	if (rt_rq->rt_nr_running) {
221 		if (rt_se && !on_rt_rq(rt_se))
222 			enqueue_rt_entity(rt_se, false);
223 		if (rt_rq->highest_prio.curr < curr->prio)
224 			resched_task(curr);
225 	}
226 }
227 
sched_rt_rq_dequeue(struct rt_rq * rt_rq)228 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
229 {
230 	struct sched_rt_entity *rt_se;
231 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
232 
233 	rt_se = rt_rq->tg->rt_se[cpu];
234 
235 	if (rt_se && on_rt_rq(rt_se))
236 		dequeue_rt_entity(rt_se);
237 }
238 
rt_rq_throttled(struct rt_rq * rt_rq)239 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
240 {
241 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
242 }
243 
rt_se_boosted(struct sched_rt_entity * rt_se)244 static int rt_se_boosted(struct sched_rt_entity *rt_se)
245 {
246 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
247 	struct task_struct *p;
248 
249 	if (rt_rq)
250 		return !!rt_rq->rt_nr_boosted;
251 
252 	p = rt_task_of(rt_se);
253 	return p->prio != p->normal_prio;
254 }
255 
256 #ifdef CONFIG_SMP
sched_rt_period_mask(void)257 static inline const struct cpumask *sched_rt_period_mask(void)
258 {
259 	return cpu_rq(smp_processor_id())->rd->span;
260 }
261 #else
sched_rt_period_mask(void)262 static inline const struct cpumask *sched_rt_period_mask(void)
263 {
264 	return cpu_online_mask;
265 }
266 #endif
267 
268 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)269 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
270 {
271 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
272 }
273 
sched_rt_bandwidth(struct rt_rq * rt_rq)274 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
275 {
276 	return &rt_rq->tg->rt_bandwidth;
277 }
278 
279 #else /* !CONFIG_RT_GROUP_SCHED */
280 
sched_rt_runtime(struct rt_rq * rt_rq)281 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
282 {
283 	return rt_rq->rt_runtime;
284 }
285 
sched_rt_period(struct rt_rq * rt_rq)286 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
287 {
288 	return ktime_to_ns(def_rt_bandwidth.rt_period);
289 }
290 
list_add_leaf_rt_rq(struct rt_rq * rt_rq)291 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
292 {
293 }
294 
list_del_leaf_rt_rq(struct rt_rq * rt_rq)295 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
296 {
297 }
298 
299 #define for_each_leaf_rt_rq(rt_rq, rq) \
300 	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
301 
302 #define for_each_sched_rt_entity(rt_se) \
303 	for (; rt_se; rt_se = NULL)
304 
group_rt_rq(struct sched_rt_entity * rt_se)305 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
306 {
307 	return NULL;
308 }
309 
sched_rt_rq_enqueue(struct rt_rq * rt_rq)310 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
311 {
312 	if (rt_rq->rt_nr_running)
313 		resched_task(rq_of_rt_rq(rt_rq)->curr);
314 }
315 
sched_rt_rq_dequeue(struct rt_rq * rt_rq)316 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
317 {
318 }
319 
rt_rq_throttled(struct rt_rq * rt_rq)320 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
321 {
322 	return rt_rq->rt_throttled;
323 }
324 
sched_rt_period_mask(void)325 static inline const struct cpumask *sched_rt_period_mask(void)
326 {
327 	return cpu_online_mask;
328 }
329 
330 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)331 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
332 {
333 	return &cpu_rq(cpu)->rt;
334 }
335 
sched_rt_bandwidth(struct rt_rq * rt_rq)336 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
337 {
338 	return &def_rt_bandwidth;
339 }
340 
341 #endif /* CONFIG_RT_GROUP_SCHED */
342 
343 #ifdef CONFIG_SMP
344 /*
345  * We ran out of runtime, see if we can borrow some from our neighbours.
346  */
do_balance_runtime(struct rt_rq * rt_rq)347 static int do_balance_runtime(struct rt_rq *rt_rq)
348 {
349 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
350 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
351 	int i, weight, more = 0;
352 	u64 rt_period;
353 
354 	weight = cpumask_weight(rd->span);
355 
356 	raw_spin_lock(&rt_b->rt_runtime_lock);
357 	rt_period = ktime_to_ns(rt_b->rt_period);
358 	for_each_cpu(i, rd->span) {
359 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
360 		s64 diff;
361 
362 		if (iter == rt_rq)
363 			continue;
364 
365 		raw_spin_lock(&iter->rt_runtime_lock);
366 		/*
367 		 * Either all rqs have inf runtime and there's nothing to steal
368 		 * or __disable_runtime() below sets a specific rq to inf to
369 		 * indicate its been disabled and disalow stealing.
370 		 */
371 		if (iter->rt_runtime == RUNTIME_INF)
372 			goto next;
373 
374 		/*
375 		 * From runqueues with spare time, take 1/n part of their
376 		 * spare time, but no more than our period.
377 		 */
378 		diff = iter->rt_runtime - iter->rt_time;
379 		if (diff > 0) {
380 			diff = div_u64((u64)diff, weight);
381 			if (rt_rq->rt_runtime + diff > rt_period)
382 				diff = rt_period - rt_rq->rt_runtime;
383 			iter->rt_runtime -= diff;
384 			rt_rq->rt_runtime += diff;
385 			more = 1;
386 			if (rt_rq->rt_runtime == rt_period) {
387 				raw_spin_unlock(&iter->rt_runtime_lock);
388 				break;
389 			}
390 		}
391 next:
392 		raw_spin_unlock(&iter->rt_runtime_lock);
393 	}
394 	raw_spin_unlock(&rt_b->rt_runtime_lock);
395 
396 	return more;
397 }
398 
399 /*
400  * Ensure this RQ takes back all the runtime it lend to its neighbours.
401  */
__disable_runtime(struct rq * rq)402 static void __disable_runtime(struct rq *rq)
403 {
404 	struct root_domain *rd = rq->rd;
405 	struct rt_rq *rt_rq;
406 
407 	if (unlikely(!scheduler_running))
408 		return;
409 
410 	for_each_leaf_rt_rq(rt_rq, rq) {
411 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
412 		s64 want;
413 		int i;
414 
415 		raw_spin_lock(&rt_b->rt_runtime_lock);
416 		raw_spin_lock(&rt_rq->rt_runtime_lock);
417 		/*
418 		 * Either we're all inf and nobody needs to borrow, or we're
419 		 * already disabled and thus have nothing to do, or we have
420 		 * exactly the right amount of runtime to take out.
421 		 */
422 		if (rt_rq->rt_runtime == RUNTIME_INF ||
423 				rt_rq->rt_runtime == rt_b->rt_runtime)
424 			goto balanced;
425 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
426 
427 		/*
428 		 * Calculate the difference between what we started out with
429 		 * and what we current have, that's the amount of runtime
430 		 * we lend and now have to reclaim.
431 		 */
432 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
433 
434 		/*
435 		 * Greedy reclaim, take back as much as we can.
436 		 */
437 		for_each_cpu(i, rd->span) {
438 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
439 			s64 diff;
440 
441 			/*
442 			 * Can't reclaim from ourselves or disabled runqueues.
443 			 */
444 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
445 				continue;
446 
447 			raw_spin_lock(&iter->rt_runtime_lock);
448 			if (want > 0) {
449 				diff = min_t(s64, iter->rt_runtime, want);
450 				iter->rt_runtime -= diff;
451 				want -= diff;
452 			} else {
453 				iter->rt_runtime -= want;
454 				want -= want;
455 			}
456 			raw_spin_unlock(&iter->rt_runtime_lock);
457 
458 			if (!want)
459 				break;
460 		}
461 
462 		raw_spin_lock(&rt_rq->rt_runtime_lock);
463 		/*
464 		 * We cannot be left wanting - that would mean some runtime
465 		 * leaked out of the system.
466 		 */
467 		BUG_ON(want);
468 balanced:
469 		/*
470 		 * Disable all the borrow logic by pretending we have inf
471 		 * runtime - in which case borrowing doesn't make sense.
472 		 */
473 		rt_rq->rt_runtime = RUNTIME_INF;
474 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
475 		raw_spin_unlock(&rt_b->rt_runtime_lock);
476 	}
477 }
478 
disable_runtime(struct rq * rq)479 static void disable_runtime(struct rq *rq)
480 {
481 	unsigned long flags;
482 
483 	raw_spin_lock_irqsave(&rq->lock, flags);
484 	__disable_runtime(rq);
485 	raw_spin_unlock_irqrestore(&rq->lock, flags);
486 }
487 
__enable_runtime(struct rq * rq)488 static void __enable_runtime(struct rq *rq)
489 {
490 	struct rt_rq *rt_rq;
491 
492 	if (unlikely(!scheduler_running))
493 		return;
494 
495 	/*
496 	 * Reset each runqueue's bandwidth settings
497 	 */
498 	for_each_leaf_rt_rq(rt_rq, rq) {
499 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
500 
501 		raw_spin_lock(&rt_b->rt_runtime_lock);
502 		raw_spin_lock(&rt_rq->rt_runtime_lock);
503 		rt_rq->rt_runtime = rt_b->rt_runtime;
504 		rt_rq->rt_time = 0;
505 		rt_rq->rt_throttled = 0;
506 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
507 		raw_spin_unlock(&rt_b->rt_runtime_lock);
508 	}
509 }
510 
enable_runtime(struct rq * rq)511 static void enable_runtime(struct rq *rq)
512 {
513 	unsigned long flags;
514 
515 	raw_spin_lock_irqsave(&rq->lock, flags);
516 	__enable_runtime(rq);
517 	raw_spin_unlock_irqrestore(&rq->lock, flags);
518 }
519 
balance_runtime(struct rt_rq * rt_rq)520 static int balance_runtime(struct rt_rq *rt_rq)
521 {
522 	int more = 0;
523 
524 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
525 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
526 		more = do_balance_runtime(rt_rq);
527 		raw_spin_lock(&rt_rq->rt_runtime_lock);
528 	}
529 
530 	return more;
531 }
532 #else /* !CONFIG_SMP */
balance_runtime(struct rt_rq * rt_rq)533 static inline int balance_runtime(struct rt_rq *rt_rq)
534 {
535 	return 0;
536 }
537 #endif /* CONFIG_SMP */
538 
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)539 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
540 {
541 	int i, idle = 1;
542 	const struct cpumask *span;
543 
544 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
545 		return 1;
546 
547 	span = sched_rt_period_mask();
548 	for_each_cpu(i, span) {
549 		int enqueue = 0;
550 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
551 		struct rq *rq = rq_of_rt_rq(rt_rq);
552 
553 		raw_spin_lock(&rq->lock);
554 		if (rt_rq->rt_time) {
555 			u64 runtime;
556 
557 			raw_spin_lock(&rt_rq->rt_runtime_lock);
558 			if (rt_rq->rt_throttled)
559 				balance_runtime(rt_rq);
560 			runtime = rt_rq->rt_runtime;
561 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
562 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
563 				rt_rq->rt_throttled = 0;
564 				enqueue = 1;
565 			}
566 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
567 				idle = 0;
568 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
569 		} else if (rt_rq->rt_nr_running) {
570 			idle = 0;
571 			if (!rt_rq_throttled(rt_rq))
572 				enqueue = 1;
573 		}
574 
575 		if (enqueue)
576 			sched_rt_rq_enqueue(rt_rq);
577 		raw_spin_unlock(&rq->lock);
578 	}
579 
580 	return idle;
581 }
582 
rt_se_prio(struct sched_rt_entity * rt_se)583 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
584 {
585 #ifdef CONFIG_RT_GROUP_SCHED
586 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
587 
588 	if (rt_rq)
589 		return rt_rq->highest_prio.curr;
590 #endif
591 
592 	return rt_task_of(rt_se)->prio;
593 }
594 
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)595 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
596 {
597 	u64 runtime = sched_rt_runtime(rt_rq);
598 
599 	if (rt_rq->rt_throttled)
600 		return rt_rq_throttled(rt_rq);
601 
602 	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
603 		return 0;
604 
605 	balance_runtime(rt_rq);
606 	runtime = sched_rt_runtime(rt_rq);
607 	if (runtime == RUNTIME_INF)
608 		return 0;
609 
610 	if (rt_rq->rt_time > runtime) {
611 		rt_rq->rt_throttled = 1;
612 		if (rt_rq_throttled(rt_rq)) {
613 			sched_rt_rq_dequeue(rt_rq);
614 			return 1;
615 		}
616 	}
617 
618 	return 0;
619 }
620 
621 /*
622  * Update the current task's runtime statistics. Skip current tasks that
623  * are not in our scheduling class.
624  */
update_curr_rt(struct rq * rq)625 static void update_curr_rt(struct rq *rq)
626 {
627 	struct task_struct *curr = rq->curr;
628 	struct sched_rt_entity *rt_se = &curr->rt;
629 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
630 	u64 delta_exec;
631 
632 	if (curr->sched_class != &rt_sched_class)
633 		return;
634 
635 	delta_exec = rq->clock_task - curr->se.exec_start;
636 	if (unlikely((s64)delta_exec < 0))
637 		delta_exec = 0;
638 
639 	schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
640 
641 	curr->se.sum_exec_runtime += delta_exec;
642 	account_group_exec_runtime(curr, delta_exec);
643 
644 	curr->se.exec_start = rq->clock_task;
645 	cpuacct_charge(curr, delta_exec);
646 
647 	sched_rt_avg_update(rq, delta_exec);
648 
649 	if (!rt_bandwidth_enabled())
650 		return;
651 
652 	for_each_sched_rt_entity(rt_se) {
653 		rt_rq = rt_rq_of_se(rt_se);
654 
655 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
656 			raw_spin_lock(&rt_rq->rt_runtime_lock);
657 			rt_rq->rt_time += delta_exec;
658 			if (sched_rt_runtime_exceeded(rt_rq))
659 				resched_task(curr);
660 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
661 		}
662 	}
663 }
664 
665 #if defined CONFIG_SMP
666 
667 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
668 
next_prio(struct rq * rq)669 static inline int next_prio(struct rq *rq)
670 {
671 	struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
672 
673 	if (next && rt_prio(next->prio))
674 		return next->prio;
675 	else
676 		return MAX_RT_PRIO;
677 }
678 
679 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)680 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
681 {
682 	struct rq *rq = rq_of_rt_rq(rt_rq);
683 
684 	if (prio < prev_prio) {
685 
686 		/*
687 		 * If the new task is higher in priority than anything on the
688 		 * run-queue, we know that the previous high becomes our
689 		 * next-highest.
690 		 */
691 		rt_rq->highest_prio.next = prev_prio;
692 
693 		if (rq->online)
694 			cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
695 
696 	} else if (prio == rt_rq->highest_prio.curr)
697 		/*
698 		 * If the next task is equal in priority to the highest on
699 		 * the run-queue, then we implicitly know that the next highest
700 		 * task cannot be any lower than current
701 		 */
702 		rt_rq->highest_prio.next = prio;
703 	else if (prio < rt_rq->highest_prio.next)
704 		/*
705 		 * Otherwise, we need to recompute next-highest
706 		 */
707 		rt_rq->highest_prio.next = next_prio(rq);
708 }
709 
710 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)711 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
712 {
713 	struct rq *rq = rq_of_rt_rq(rt_rq);
714 
715 	if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
716 		rt_rq->highest_prio.next = next_prio(rq);
717 
718 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
719 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
720 }
721 
722 #else /* CONFIG_SMP */
723 
724 static inline
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)725 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
726 static inline
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)727 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
728 
729 #endif /* CONFIG_SMP */
730 
731 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
732 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)733 inc_rt_prio(struct rt_rq *rt_rq, int prio)
734 {
735 	int prev_prio = rt_rq->highest_prio.curr;
736 
737 	if (prio < prev_prio)
738 		rt_rq->highest_prio.curr = prio;
739 
740 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
741 }
742 
743 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)744 dec_rt_prio(struct rt_rq *rt_rq, int prio)
745 {
746 	int prev_prio = rt_rq->highest_prio.curr;
747 
748 	if (rt_rq->rt_nr_running) {
749 
750 		WARN_ON(prio < prev_prio);
751 
752 		/*
753 		 * This may have been our highest task, and therefore
754 		 * we may have some recomputation to do
755 		 */
756 		if (prio == prev_prio) {
757 			struct rt_prio_array *array = &rt_rq->active;
758 
759 			rt_rq->highest_prio.curr =
760 				sched_find_first_bit(array->bitmap);
761 		}
762 
763 	} else
764 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
765 
766 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
767 }
768 
769 #else
770 
inc_rt_prio(struct rt_rq * rt_rq,int prio)771 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
dec_rt_prio(struct rt_rq * rt_rq,int prio)772 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
773 
774 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
775 
776 #ifdef CONFIG_RT_GROUP_SCHED
777 
778 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)779 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
780 {
781 	if (rt_se_boosted(rt_se))
782 		rt_rq->rt_nr_boosted++;
783 
784 	if (rt_rq->tg)
785 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
786 }
787 
788 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)789 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
790 {
791 	if (rt_se_boosted(rt_se))
792 		rt_rq->rt_nr_boosted--;
793 
794 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
795 }
796 
797 #else /* CONFIG_RT_GROUP_SCHED */
798 
799 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)800 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
801 {
802 	start_rt_bandwidth(&def_rt_bandwidth);
803 }
804 
805 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)806 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
807 
808 #endif /* CONFIG_RT_GROUP_SCHED */
809 
810 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)811 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
812 {
813 	int prio = rt_se_prio(rt_se);
814 
815 	WARN_ON(!rt_prio(prio));
816 	rt_rq->rt_nr_running++;
817 
818 	inc_rt_prio(rt_rq, prio);
819 	inc_rt_migration(rt_se, rt_rq);
820 	inc_rt_group(rt_se, rt_rq);
821 }
822 
823 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)824 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
825 {
826 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
827 	WARN_ON(!rt_rq->rt_nr_running);
828 	rt_rq->rt_nr_running--;
829 
830 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
831 	dec_rt_migration(rt_se, rt_rq);
832 	dec_rt_group(rt_se, rt_rq);
833 }
834 
__enqueue_rt_entity(struct sched_rt_entity * rt_se,bool head)835 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
836 {
837 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
838 	struct rt_prio_array *array = &rt_rq->active;
839 	struct rt_rq *group_rq = group_rt_rq(rt_se);
840 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
841 
842 	/*
843 	 * Don't enqueue the group if its throttled, or when empty.
844 	 * The latter is a consequence of the former when a child group
845 	 * get throttled and the current group doesn't have any other
846 	 * active members.
847 	 */
848 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
849 		return;
850 
851 	if (!rt_rq->rt_nr_running)
852 		list_add_leaf_rt_rq(rt_rq);
853 
854 	if (head)
855 		list_add(&rt_se->run_list, queue);
856 	else
857 		list_add_tail(&rt_se->run_list, queue);
858 	__set_bit(rt_se_prio(rt_se), array->bitmap);
859 
860 	inc_rt_tasks(rt_se, rt_rq);
861 }
862 
__dequeue_rt_entity(struct sched_rt_entity * rt_se)863 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
864 {
865 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
866 	struct rt_prio_array *array = &rt_rq->active;
867 
868 	list_del_init(&rt_se->run_list);
869 	if (list_empty(array->queue + rt_se_prio(rt_se)))
870 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
871 
872 	dec_rt_tasks(rt_se, rt_rq);
873 	if (!rt_rq->rt_nr_running)
874 		list_del_leaf_rt_rq(rt_rq);
875 }
876 
877 /*
878  * Because the prio of an upper entry depends on the lower
879  * entries, we must remove entries top - down.
880  */
dequeue_rt_stack(struct sched_rt_entity * rt_se)881 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
882 {
883 	struct sched_rt_entity *back = NULL;
884 
885 	for_each_sched_rt_entity(rt_se) {
886 		rt_se->back = back;
887 		back = rt_se;
888 	}
889 
890 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
891 		if (on_rt_rq(rt_se))
892 			__dequeue_rt_entity(rt_se);
893 	}
894 }
895 
enqueue_rt_entity(struct sched_rt_entity * rt_se,bool head)896 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
897 {
898 	dequeue_rt_stack(rt_se);
899 	for_each_sched_rt_entity(rt_se)
900 		__enqueue_rt_entity(rt_se, head);
901 }
902 
dequeue_rt_entity(struct sched_rt_entity * rt_se)903 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
904 {
905 	dequeue_rt_stack(rt_se);
906 
907 	for_each_sched_rt_entity(rt_se) {
908 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
909 
910 		if (rt_rq && rt_rq->rt_nr_running)
911 			__enqueue_rt_entity(rt_se, false);
912 	}
913 }
914 
915 /*
916  * Adding/removing a task to/from a priority array:
917  */
918 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)919 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
920 {
921 	struct sched_rt_entity *rt_se = &p->rt;
922 
923 	if (flags & ENQUEUE_WAKEUP)
924 		rt_se->timeout = 0;
925 
926 	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
927 
928 	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
929 		enqueue_pushable_task(rq, p);
930 }
931 
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)932 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
933 {
934 	struct sched_rt_entity *rt_se = &p->rt;
935 
936 	update_curr_rt(rq);
937 	dequeue_rt_entity(rt_se);
938 
939 	dequeue_pushable_task(rq, p);
940 }
941 
942 /*
943  * Put task to the end of the run list without the overhead of dequeue
944  * followed by enqueue.
945  */
946 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)947 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
948 {
949 	if (on_rt_rq(rt_se)) {
950 		struct rt_prio_array *array = &rt_rq->active;
951 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
952 
953 		if (head)
954 			list_move(&rt_se->run_list, queue);
955 		else
956 			list_move_tail(&rt_se->run_list, queue);
957 	}
958 }
959 
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)960 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
961 {
962 	struct sched_rt_entity *rt_se = &p->rt;
963 	struct rt_rq *rt_rq;
964 
965 	for_each_sched_rt_entity(rt_se) {
966 		rt_rq = rt_rq_of_se(rt_se);
967 		requeue_rt_entity(rt_rq, rt_se, head);
968 	}
969 }
970 
yield_task_rt(struct rq * rq)971 static void yield_task_rt(struct rq *rq)
972 {
973 	requeue_task_rt(rq, rq->curr, 0);
974 }
975 
976 #ifdef CONFIG_SMP
977 static int find_lowest_rq(struct task_struct *task);
978 
979 static int
select_task_rq_rt(struct rq * rq,struct task_struct * p,int sd_flag,int flags)980 select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags)
981 {
982 	if (sd_flag != SD_BALANCE_WAKE)
983 		return smp_processor_id();
984 
985 	/*
986 	 * If the current task is an RT task, then
987 	 * try to see if we can wake this RT task up on another
988 	 * runqueue. Otherwise simply start this RT task
989 	 * on its current runqueue.
990 	 *
991 	 * We want to avoid overloading runqueues. If the woken
992 	 * task is a higher priority, then it will stay on this CPU
993 	 * and the lower prio task should be moved to another CPU.
994 	 * Even though this will probably make the lower prio task
995 	 * lose its cache, we do not want to bounce a higher task
996 	 * around just because it gave up its CPU, perhaps for a
997 	 * lock?
998 	 *
999 	 * For equal prio tasks, we just let the scheduler sort it out.
1000 	 */
1001 	if (unlikely(rt_task(rq->curr)) &&
1002 	    (rq->curr->rt.nr_cpus_allowed < 2 ||
1003 	     rq->curr->prio < p->prio) &&
1004 	    (p->rt.nr_cpus_allowed > 1)) {
1005 		int cpu = find_lowest_rq(p);
1006 
1007 		return (cpu == -1) ? task_cpu(p) : cpu;
1008 	}
1009 
1010 	/*
1011 	 * Otherwise, just let it ride on the affined RQ and the
1012 	 * post-schedule router will push the preempted task away
1013 	 */
1014 	return task_cpu(p);
1015 }
1016 
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1017 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1018 {
1019 	if (rq->curr->rt.nr_cpus_allowed == 1)
1020 		return;
1021 
1022 	if (p->rt.nr_cpus_allowed != 1
1023 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1024 		return;
1025 
1026 	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1027 		return;
1028 
1029 	/*
1030 	 * There appears to be other cpus that can accept
1031 	 * current and none to run 'p', so lets reschedule
1032 	 * to try and push current away:
1033 	 */
1034 	requeue_task_rt(rq, p, 1);
1035 	resched_task(rq->curr);
1036 }
1037 
1038 #endif /* CONFIG_SMP */
1039 
1040 /*
1041  * Preempt the current task with a newly woken task if needed:
1042  */
check_preempt_curr_rt(struct rq * rq,struct task_struct * p,int flags)1043 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1044 {
1045 	if (p->prio < rq->curr->prio) {
1046 		resched_task(rq->curr);
1047 		return;
1048 	}
1049 
1050 #ifdef CONFIG_SMP
1051 	/*
1052 	 * If:
1053 	 *
1054 	 * - the newly woken task is of equal priority to the current task
1055 	 * - the newly woken task is non-migratable while current is migratable
1056 	 * - current will be preempted on the next reschedule
1057 	 *
1058 	 * we should check to see if current can readily move to a different
1059 	 * cpu.  If so, we will reschedule to allow the push logic to try
1060 	 * to move current somewhere else, making room for our non-migratable
1061 	 * task.
1062 	 */
1063 	if (p->prio == rq->curr->prio && !need_resched())
1064 		check_preempt_equal_prio(rq, p);
1065 #endif
1066 }
1067 
pick_next_rt_entity(struct rq * rq,struct rt_rq * rt_rq)1068 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1069 						   struct rt_rq *rt_rq)
1070 {
1071 	struct rt_prio_array *array = &rt_rq->active;
1072 	struct sched_rt_entity *next = NULL;
1073 	struct list_head *queue;
1074 	int idx;
1075 
1076 	idx = sched_find_first_bit(array->bitmap);
1077 	BUG_ON(idx >= MAX_RT_PRIO);
1078 
1079 	queue = array->queue + idx;
1080 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1081 
1082 	return next;
1083 }
1084 
_pick_next_task_rt(struct rq * rq)1085 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1086 {
1087 	struct sched_rt_entity *rt_se;
1088 	struct task_struct *p;
1089 	struct rt_rq *rt_rq;
1090 
1091 	rt_rq = &rq->rt;
1092 
1093 	if (unlikely(!rt_rq->rt_nr_running))
1094 		return NULL;
1095 
1096 	if (rt_rq_throttled(rt_rq))
1097 		return NULL;
1098 
1099 	do {
1100 		rt_se = pick_next_rt_entity(rq, rt_rq);
1101 		BUG_ON(!rt_se);
1102 		rt_rq = group_rt_rq(rt_se);
1103 	} while (rt_rq);
1104 
1105 	p = rt_task_of(rt_se);
1106 	p->se.exec_start = rq->clock_task;
1107 
1108 	return p;
1109 }
1110 
pick_next_task_rt(struct rq * rq)1111 static struct task_struct *pick_next_task_rt(struct rq *rq)
1112 {
1113 	struct task_struct *p = _pick_next_task_rt(rq);
1114 
1115 	/* The running task is never eligible for pushing */
1116 	if (p)
1117 		dequeue_pushable_task(rq, p);
1118 
1119 #ifdef CONFIG_SMP
1120 	/*
1121 	 * We detect this state here so that we can avoid taking the RQ
1122 	 * lock again later if there is no need to push
1123 	 */
1124 	rq->post_schedule = has_pushable_tasks(rq);
1125 #endif
1126 
1127 	return p;
1128 }
1129 
put_prev_task_rt(struct rq * rq,struct task_struct * p)1130 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1131 {
1132 	update_curr_rt(rq);
1133 	p->se.exec_start = 0;
1134 
1135 	/*
1136 	 * The previous task needs to be made eligible for pushing
1137 	 * if it is still active
1138 	 */
1139 	if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
1140 		enqueue_pushable_task(rq, p);
1141 }
1142 
1143 #ifdef CONFIG_SMP
1144 
1145 /* Only try algorithms three times */
1146 #define RT_MAX_TRIES 3
1147 
1148 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1149 
pick_rt_task(struct rq * rq,struct task_struct * p,int cpu)1150 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1151 {
1152 	if (!task_running(rq, p) &&
1153 	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1154 	    (p->rt.nr_cpus_allowed > 1))
1155 		return 1;
1156 	return 0;
1157 }
1158 
1159 /* Return the second highest RT task, NULL otherwise */
pick_next_highest_task_rt(struct rq * rq,int cpu)1160 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1161 {
1162 	struct task_struct *next = NULL;
1163 	struct sched_rt_entity *rt_se;
1164 	struct rt_prio_array *array;
1165 	struct rt_rq *rt_rq;
1166 	int idx;
1167 
1168 	for_each_leaf_rt_rq(rt_rq, rq) {
1169 		array = &rt_rq->active;
1170 		idx = sched_find_first_bit(array->bitmap);
1171 next_idx:
1172 		if (idx >= MAX_RT_PRIO)
1173 			continue;
1174 		if (next && next->prio < idx)
1175 			continue;
1176 		list_for_each_entry(rt_se, array->queue + idx, run_list) {
1177 			struct task_struct *p;
1178 
1179 			if (!rt_entity_is_task(rt_se))
1180 				continue;
1181 
1182 			p = rt_task_of(rt_se);
1183 			if (pick_rt_task(rq, p, cpu)) {
1184 				next = p;
1185 				break;
1186 			}
1187 		}
1188 		if (!next) {
1189 			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1190 			goto next_idx;
1191 		}
1192 	}
1193 
1194 	return next;
1195 }
1196 
1197 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1198 
find_lowest_rq(struct task_struct * task)1199 static int find_lowest_rq(struct task_struct *task)
1200 {
1201 	struct sched_domain *sd;
1202 	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1203 	int this_cpu = smp_processor_id();
1204 	int cpu      = task_cpu(task);
1205 
1206 	if (task->rt.nr_cpus_allowed == 1)
1207 		return -1; /* No other targets possible */
1208 
1209 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1210 		return -1; /* No targets found */
1211 
1212 	/*
1213 	 * At this point we have built a mask of cpus representing the
1214 	 * lowest priority tasks in the system.  Now we want to elect
1215 	 * the best one based on our affinity and topology.
1216 	 *
1217 	 * We prioritize the last cpu that the task executed on since
1218 	 * it is most likely cache-hot in that location.
1219 	 */
1220 	if (cpumask_test_cpu(cpu, lowest_mask))
1221 		return cpu;
1222 
1223 	/*
1224 	 * Otherwise, we consult the sched_domains span maps to figure
1225 	 * out which cpu is logically closest to our hot cache data.
1226 	 */
1227 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1228 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1229 
1230 	for_each_domain(cpu, sd) {
1231 		if (sd->flags & SD_WAKE_AFFINE) {
1232 			int best_cpu;
1233 
1234 			/*
1235 			 * "this_cpu" is cheaper to preempt than a
1236 			 * remote processor.
1237 			 */
1238 			if (this_cpu != -1 &&
1239 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd)))
1240 				return this_cpu;
1241 
1242 			best_cpu = cpumask_first_and(lowest_mask,
1243 						     sched_domain_span(sd));
1244 			if (best_cpu < nr_cpu_ids)
1245 				return best_cpu;
1246 		}
1247 	}
1248 
1249 	/*
1250 	 * And finally, if there were no matches within the domains
1251 	 * just give the caller *something* to work with from the compatible
1252 	 * locations.
1253 	 */
1254 	if (this_cpu != -1)
1255 		return this_cpu;
1256 
1257 	cpu = cpumask_any(lowest_mask);
1258 	if (cpu < nr_cpu_ids)
1259 		return cpu;
1260 	return -1;
1261 }
1262 
1263 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)1264 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1265 {
1266 	struct rq *lowest_rq = NULL;
1267 	int tries;
1268 	int cpu;
1269 
1270 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1271 		cpu = find_lowest_rq(task);
1272 
1273 		if ((cpu == -1) || (cpu == rq->cpu))
1274 			break;
1275 
1276 		lowest_rq = cpu_rq(cpu);
1277 
1278 		/* if the prio of this runqueue changed, try again */
1279 		if (double_lock_balance(rq, lowest_rq)) {
1280 			/*
1281 			 * We had to unlock the run queue. In
1282 			 * the mean time, task could have
1283 			 * migrated already or had its affinity changed.
1284 			 * Also make sure that it wasn't scheduled on its rq.
1285 			 */
1286 			if (unlikely(task_rq(task) != rq ||
1287 				     !cpumask_test_cpu(lowest_rq->cpu,
1288 						       &task->cpus_allowed) ||
1289 				     task_running(rq, task) ||
1290 				     !task->se.on_rq)) {
1291 
1292 				raw_spin_unlock(&lowest_rq->lock);
1293 				lowest_rq = NULL;
1294 				break;
1295 			}
1296 		}
1297 
1298 		/* If this rq is still suitable use it. */
1299 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1300 			break;
1301 
1302 		/* try again */
1303 		double_unlock_balance(rq, lowest_rq);
1304 		lowest_rq = NULL;
1305 	}
1306 
1307 	return lowest_rq;
1308 }
1309 
pick_next_pushable_task(struct rq * rq)1310 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1311 {
1312 	struct task_struct *p;
1313 
1314 	if (!has_pushable_tasks(rq))
1315 		return NULL;
1316 
1317 	p = plist_first_entry(&rq->rt.pushable_tasks,
1318 			      struct task_struct, pushable_tasks);
1319 
1320 	BUG_ON(rq->cpu != task_cpu(p));
1321 	BUG_ON(task_current(rq, p));
1322 	BUG_ON(p->rt.nr_cpus_allowed <= 1);
1323 
1324 	BUG_ON(!p->se.on_rq);
1325 	BUG_ON(!rt_task(p));
1326 
1327 	return p;
1328 }
1329 
1330 /*
1331  * If the current CPU has more than one RT task, see if the non
1332  * running task can migrate over to a CPU that is running a task
1333  * of lesser priority.
1334  */
push_rt_task(struct rq * rq)1335 static int push_rt_task(struct rq *rq)
1336 {
1337 	struct task_struct *next_task;
1338 	struct rq *lowest_rq;
1339 
1340 	if (!rq->rt.overloaded)
1341 		return 0;
1342 
1343 	next_task = pick_next_pushable_task(rq);
1344 	if (!next_task)
1345 		return 0;
1346 
1347 retry:
1348 	if (unlikely(next_task == rq->curr)) {
1349 		WARN_ON(1);
1350 		return 0;
1351 	}
1352 
1353 	/*
1354 	 * It's possible that the next_task slipped in of
1355 	 * higher priority than current. If that's the case
1356 	 * just reschedule current.
1357 	 */
1358 	if (unlikely(next_task->prio < rq->curr->prio)) {
1359 		resched_task(rq->curr);
1360 		return 0;
1361 	}
1362 
1363 	/* We might release rq lock */
1364 	get_task_struct(next_task);
1365 
1366 	/* find_lock_lowest_rq locks the rq if found */
1367 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1368 	if (!lowest_rq) {
1369 		struct task_struct *task;
1370 		/*
1371 		 * find lock_lowest_rq releases rq->lock
1372 		 * so it is possible that next_task has migrated.
1373 		 *
1374 		 * We need to make sure that the task is still on the same
1375 		 * run-queue and is also still the next task eligible for
1376 		 * pushing.
1377 		 */
1378 		task = pick_next_pushable_task(rq);
1379 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1380 			/*
1381 			 * If we get here, the task hasn't moved at all, but
1382 			 * it has failed to push.  We will not try again,
1383 			 * since the other cpus will pull from us when they
1384 			 * are ready.
1385 			 */
1386 			dequeue_pushable_task(rq, next_task);
1387 			goto out;
1388 		}
1389 
1390 		if (!task)
1391 			/* No more tasks, just exit */
1392 			goto out;
1393 
1394 		/*
1395 		 * Something has shifted, try again.
1396 		 */
1397 		put_task_struct(next_task);
1398 		next_task = task;
1399 		goto retry;
1400 	}
1401 
1402 	deactivate_task(rq, next_task, 0);
1403 	set_task_cpu(next_task, lowest_rq->cpu);
1404 	activate_task(lowest_rq, next_task, 0);
1405 
1406 	resched_task(lowest_rq->curr);
1407 
1408 	double_unlock_balance(rq, lowest_rq);
1409 
1410 out:
1411 	put_task_struct(next_task);
1412 
1413 	return 1;
1414 }
1415 
push_rt_tasks(struct rq * rq)1416 static void push_rt_tasks(struct rq *rq)
1417 {
1418 	/* push_rt_task will return true if it moved an RT */
1419 	while (push_rt_task(rq))
1420 		;
1421 }
1422 
pull_rt_task(struct rq * this_rq)1423 static int pull_rt_task(struct rq *this_rq)
1424 {
1425 	int this_cpu = this_rq->cpu, ret = 0, cpu;
1426 	struct task_struct *p;
1427 	struct rq *src_rq;
1428 
1429 	if (likely(!rt_overloaded(this_rq)))
1430 		return 0;
1431 
1432 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1433 		if (this_cpu == cpu)
1434 			continue;
1435 
1436 		src_rq = cpu_rq(cpu);
1437 
1438 		/*
1439 		 * Don't bother taking the src_rq->lock if the next highest
1440 		 * task is known to be lower-priority than our current task.
1441 		 * This may look racy, but if this value is about to go
1442 		 * logically higher, the src_rq will push this task away.
1443 		 * And if its going logically lower, we do not care
1444 		 */
1445 		if (src_rq->rt.highest_prio.next >=
1446 		    this_rq->rt.highest_prio.curr)
1447 			continue;
1448 
1449 		/*
1450 		 * We can potentially drop this_rq's lock in
1451 		 * double_lock_balance, and another CPU could
1452 		 * alter this_rq
1453 		 */
1454 		double_lock_balance(this_rq, src_rq);
1455 
1456 		/*
1457 		 * Are there still pullable RT tasks?
1458 		 */
1459 		if (src_rq->rt.rt_nr_running <= 1)
1460 			goto skip;
1461 
1462 		p = pick_next_highest_task_rt(src_rq, this_cpu);
1463 
1464 		/*
1465 		 * Do we have an RT task that preempts
1466 		 * the to-be-scheduled task?
1467 		 */
1468 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1469 			WARN_ON(p == src_rq->curr);
1470 			WARN_ON(!p->se.on_rq);
1471 
1472 			/*
1473 			 * There's a chance that p is higher in priority
1474 			 * than what's currently running on its cpu.
1475 			 * This is just that p is wakeing up and hasn't
1476 			 * had a chance to schedule. We only pull
1477 			 * p if it is lower in priority than the
1478 			 * current task on the run queue
1479 			 */
1480 			if (p->prio < src_rq->curr->prio)
1481 				goto skip;
1482 
1483 			ret = 1;
1484 
1485 			deactivate_task(src_rq, p, 0);
1486 			set_task_cpu(p, this_cpu);
1487 			activate_task(this_rq, p, 0);
1488 			/*
1489 			 * We continue with the search, just in
1490 			 * case there's an even higher prio task
1491 			 * in another runqueue. (low likelihood
1492 			 * but possible)
1493 			 */
1494 		}
1495 skip:
1496 		double_unlock_balance(this_rq, src_rq);
1497 	}
1498 
1499 	return ret;
1500 }
1501 
pre_schedule_rt(struct rq * rq,struct task_struct * prev)1502 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1503 {
1504 	/* Try to pull RT tasks here if we lower this rq's prio */
1505 	if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1506 		pull_rt_task(rq);
1507 }
1508 
post_schedule_rt(struct rq * rq)1509 static void post_schedule_rt(struct rq *rq)
1510 {
1511 	push_rt_tasks(rq);
1512 }
1513 
1514 /*
1515  * If we are not running and we are not going to reschedule soon, we should
1516  * try to push tasks away now
1517  */
task_woken_rt(struct rq * rq,struct task_struct * p)1518 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1519 {
1520 	if (!task_running(rq, p) &&
1521 	    !test_tsk_need_resched(rq->curr) &&
1522 	    has_pushable_tasks(rq) &&
1523 	    p->rt.nr_cpus_allowed > 1 &&
1524 	    rt_task(rq->curr) &&
1525 	    (rq->curr->rt.nr_cpus_allowed < 2 ||
1526 	     rq->curr->prio < p->prio))
1527 		push_rt_tasks(rq);
1528 }
1529 
set_cpus_allowed_rt(struct task_struct * p,const struct cpumask * new_mask)1530 static void set_cpus_allowed_rt(struct task_struct *p,
1531 				const struct cpumask *new_mask)
1532 {
1533 	int weight = cpumask_weight(new_mask);
1534 
1535 	BUG_ON(!rt_task(p));
1536 
1537 	/*
1538 	 * Update the migration status of the RQ if we have an RT task
1539 	 * which is running AND changing its weight value.
1540 	 */
1541 	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1542 		struct rq *rq = task_rq(p);
1543 
1544 		if (!task_current(rq, p)) {
1545 			/*
1546 			 * Make sure we dequeue this task from the pushable list
1547 			 * before going further.  It will either remain off of
1548 			 * the list because we are no longer pushable, or it
1549 			 * will be requeued.
1550 			 */
1551 			if (p->rt.nr_cpus_allowed > 1)
1552 				dequeue_pushable_task(rq, p);
1553 
1554 			/*
1555 			 * Requeue if our weight is changing and still > 1
1556 			 */
1557 			if (weight > 1)
1558 				enqueue_pushable_task(rq, p);
1559 
1560 		}
1561 
1562 		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1563 			rq->rt.rt_nr_migratory++;
1564 		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1565 			BUG_ON(!rq->rt.rt_nr_migratory);
1566 			rq->rt.rt_nr_migratory--;
1567 		}
1568 
1569 		update_rt_migration(&rq->rt);
1570 	}
1571 
1572 	cpumask_copy(&p->cpus_allowed, new_mask);
1573 	p->rt.nr_cpus_allowed = weight;
1574 }
1575 
1576 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)1577 static void rq_online_rt(struct rq *rq)
1578 {
1579 	if (rq->rt.overloaded)
1580 		rt_set_overload(rq);
1581 
1582 	__enable_runtime(rq);
1583 
1584 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1585 }
1586 
1587 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)1588 static void rq_offline_rt(struct rq *rq)
1589 {
1590 	if (rq->rt.overloaded)
1591 		rt_clear_overload(rq);
1592 
1593 	__disable_runtime(rq);
1594 
1595 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1596 }
1597 
1598 /*
1599  * When switch from the rt queue, we bring ourselves to a position
1600  * that we might want to pull RT tasks from other runqueues.
1601  */
switched_from_rt(struct rq * rq,struct task_struct * p)1602 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1603 {
1604 	/*
1605 	 * If there are other RT tasks then we will reschedule
1606 	 * and the scheduling of the other RT tasks will handle
1607 	 * the balancing. But if we are the last RT task
1608 	 * we may need to handle the pulling of RT tasks
1609 	 * now.
1610 	 */
1611 	if (p->se.on_rq && !rq->rt.rt_nr_running)
1612 		pull_rt_task(rq);
1613 }
1614 
init_sched_rt_class(void)1615 static inline void init_sched_rt_class(void)
1616 {
1617 	unsigned int i;
1618 
1619 	for_each_possible_cpu(i)
1620 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1621 					GFP_KERNEL, cpu_to_node(i));
1622 }
1623 #endif /* CONFIG_SMP */
1624 
1625 /*
1626  * When switching a task to RT, we may overload the runqueue
1627  * with RT tasks. In this case we try to push them off to
1628  * other runqueues.
1629  */
switched_to_rt(struct rq * rq,struct task_struct * p)1630 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1631 {
1632 	int check_resched = 1;
1633 
1634 	/*
1635 	 * If we are already running, then there's nothing
1636 	 * that needs to be done. But if we are not running
1637 	 * we may need to preempt the current running task.
1638 	 * If that current running task is also an RT task
1639 	 * then see if we can move to another run queue.
1640 	 */
1641 	if (p->se.on_rq && rq->curr != p) {
1642 #ifdef CONFIG_SMP
1643 		if (rq->rt.overloaded && push_rt_task(rq) &&
1644 		    /* Don't resched if we changed runqueues */
1645 		    rq != task_rq(p))
1646 			check_resched = 0;
1647 #endif /* CONFIG_SMP */
1648 		if (check_resched && p->prio < rq->curr->prio)
1649 			resched_task(rq->curr);
1650 	}
1651 }
1652 
1653 /*
1654  * Priority of the task has changed. This may cause
1655  * us to initiate a push or pull.
1656  */
1657 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio)1658 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1659 {
1660 	if (!p->se.on_rq)
1661 		return;
1662 
1663 	if (rq->curr == p) {
1664 #ifdef CONFIG_SMP
1665 		/*
1666 		 * If our priority decreases while running, we
1667 		 * may need to pull tasks to this runqueue.
1668 		 */
1669 		if (oldprio < p->prio)
1670 			pull_rt_task(rq);
1671 		/*
1672 		 * If there's a higher priority task waiting to run
1673 		 * then reschedule. Note, the above pull_rt_task
1674 		 * can release the rq lock and p could migrate.
1675 		 * Only reschedule if p is still on the same runqueue.
1676 		 */
1677 		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1678 			resched_task(p);
1679 #else
1680 		/* For UP simply resched on drop of prio */
1681 		if (oldprio < p->prio)
1682 			resched_task(p);
1683 #endif /* CONFIG_SMP */
1684 	} else {
1685 		/*
1686 		 * This task is not running, but if it is
1687 		 * greater than the current running task
1688 		 * then reschedule.
1689 		 */
1690 		if (p->prio < rq->curr->prio)
1691 			resched_task(rq->curr);
1692 	}
1693 }
1694 
watchdog(struct rq * rq,struct task_struct * p)1695 static void watchdog(struct rq *rq, struct task_struct *p)
1696 {
1697 	unsigned long soft, hard;
1698 
1699 	/* max may change after cur was read, this will be fixed next tick */
1700 	soft = task_rlimit(p, RLIMIT_RTTIME);
1701 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1702 
1703 	if (soft != RLIM_INFINITY) {
1704 		unsigned long next;
1705 
1706 		p->rt.timeout++;
1707 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1708 		if (p->rt.timeout > next)
1709 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1710 	}
1711 }
1712 
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)1713 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1714 {
1715 	update_curr_rt(rq);
1716 
1717 	watchdog(rq, p);
1718 
1719 	/*
1720 	 * RR tasks need a special form of timeslice management.
1721 	 * FIFO tasks have no timeslices.
1722 	 */
1723 	if (p->policy != SCHED_RR)
1724 		return;
1725 
1726 	if (--p->rt.time_slice)
1727 		return;
1728 
1729 	p->rt.time_slice = DEF_TIMESLICE;
1730 
1731 	/*
1732 	 * Requeue to the end of queue if we are not the only element
1733 	 * on the queue:
1734 	 */
1735 	if (p->rt.run_list.prev != p->rt.run_list.next) {
1736 		requeue_task_rt(rq, p, 0);
1737 		set_tsk_need_resched(p);
1738 	}
1739 }
1740 
set_curr_task_rt(struct rq * rq)1741 static void set_curr_task_rt(struct rq *rq)
1742 {
1743 	struct task_struct *p = rq->curr;
1744 
1745 	p->se.exec_start = rq->clock_task;
1746 
1747 	/* The running task is never eligible for pushing */
1748 	dequeue_pushable_task(rq, p);
1749 }
1750 
get_rr_interval_rt(struct rq * rq,struct task_struct * task)1751 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1752 {
1753 	/*
1754 	 * Time slice is 0 for SCHED_FIFO tasks
1755 	 */
1756 	if (task->policy == SCHED_RR)
1757 		return DEF_TIMESLICE;
1758 	else
1759 		return 0;
1760 }
1761 
1762 static const struct sched_class rt_sched_class = {
1763 	.next			= &fair_sched_class,
1764 	.enqueue_task		= enqueue_task_rt,
1765 	.dequeue_task		= dequeue_task_rt,
1766 	.yield_task		= yield_task_rt,
1767 
1768 	.check_preempt_curr	= check_preempt_curr_rt,
1769 
1770 	.pick_next_task		= pick_next_task_rt,
1771 	.put_prev_task		= put_prev_task_rt,
1772 
1773 #ifdef CONFIG_SMP
1774 	.select_task_rq		= select_task_rq_rt,
1775 
1776 	.set_cpus_allowed       = set_cpus_allowed_rt,
1777 	.rq_online              = rq_online_rt,
1778 	.rq_offline             = rq_offline_rt,
1779 	.pre_schedule		= pre_schedule_rt,
1780 	.post_schedule		= post_schedule_rt,
1781 	.task_woken		= task_woken_rt,
1782 	.switched_from		= switched_from_rt,
1783 #endif
1784 
1785 	.set_curr_task          = set_curr_task_rt,
1786 	.task_tick		= task_tick_rt,
1787 
1788 	.get_rr_interval	= get_rr_interval_rt,
1789 
1790 	.prio_changed		= prio_changed_rt,
1791 	.switched_to		= switched_to_rt,
1792 };
1793 
1794 #ifdef CONFIG_SCHED_DEBUG
1795 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1796 
print_rt_stats(struct seq_file * m,int cpu)1797 static void print_rt_stats(struct seq_file *m, int cpu)
1798 {
1799 	struct rt_rq *rt_rq;
1800 
1801 	rcu_read_lock();
1802 	for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1803 		print_rt_rq(m, cpu, rt_rq);
1804 	rcu_read_unlock();
1805 }
1806 #endif /* CONFIG_SCHED_DEBUG */
1807 
1808