1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/sched/debug.c
4  *
5  * Print the CFS rbtree and other debugging details
6  *
7  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8  */
9 
10 /*
11  * This allows printing both to /proc/sched_debug and
12  * to the console
13  */
14 #define SEQ_printf(m, x...)			\
15  do {						\
16 	if (m)					\
17 		seq_printf(m, x);		\
18 	else					\
19 		pr_cont(x);			\
20  } while (0)
21 
22 /*
23  * Ease the printing of nsec fields:
24  */
nsec_high(unsigned long long nsec)25 static long long nsec_high(unsigned long long nsec)
26 {
27 	if ((long long)nsec < 0) {
28 		nsec = -nsec;
29 		do_div(nsec, 1000000);
30 		return -nsec;
31 	}
32 	do_div(nsec, 1000000);
33 
34 	return nsec;
35 }
36 
nsec_low(unsigned long long nsec)37 static unsigned long nsec_low(unsigned long long nsec)
38 {
39 	if ((long long)nsec < 0)
40 		nsec = -nsec;
41 
42 	return do_div(nsec, 1000000);
43 }
44 
45 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
46 
47 #define SCHED_FEAT(name, enabled)	\
48 	#name ,
49 
50 static const char * const sched_feat_names[] = {
51 #include "features.h"
52 };
53 
54 #undef SCHED_FEAT
55 
sched_feat_show(struct seq_file * m,void * v)56 static int sched_feat_show(struct seq_file *m, void *v)
57 {
58 	int i;
59 
60 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
61 		if (!(sysctl_sched_features & (1UL << i)))
62 			seq_puts(m, "NO_");
63 		seq_printf(m, "%s ", sched_feat_names[i]);
64 	}
65 	seq_puts(m, "\n");
66 
67 	return 0;
68 }
69 
70 #ifdef CONFIG_JUMP_LABEL
71 
72 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
73 #define jump_label_key__false STATIC_KEY_INIT_FALSE
74 
75 #define SCHED_FEAT(name, enabled)	\
76 	jump_label_key__##enabled ,
77 
78 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
79 #include "features.h"
80 };
81 
82 #undef SCHED_FEAT
83 
sched_feat_disable(int i)84 static void sched_feat_disable(int i)
85 {
86 	static_key_disable_cpuslocked(&sched_feat_keys[i]);
87 }
88 
sched_feat_enable(int i)89 static void sched_feat_enable(int i)
90 {
91 	static_key_enable_cpuslocked(&sched_feat_keys[i]);
92 }
93 #else
sched_feat_disable(int i)94 static void sched_feat_disable(int i) { };
sched_feat_enable(int i)95 static void sched_feat_enable(int i) { };
96 #endif /* CONFIG_JUMP_LABEL */
97 
sched_feat_set(char * cmp)98 static int sched_feat_set(char *cmp)
99 {
100 	int i;
101 	int neg = 0;
102 
103 	if (strncmp(cmp, "NO_", 3) == 0) {
104 		neg = 1;
105 		cmp += 3;
106 	}
107 
108 	i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
109 	if (i < 0)
110 		return i;
111 
112 	if (neg) {
113 		sysctl_sched_features &= ~(1UL << i);
114 		sched_feat_disable(i);
115 	} else {
116 		sysctl_sched_features |= (1UL << i);
117 		sched_feat_enable(i);
118 	}
119 
120 	return 0;
121 }
122 
123 static ssize_t
sched_feat_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)124 sched_feat_write(struct file *filp, const char __user *ubuf,
125 		size_t cnt, loff_t *ppos)
126 {
127 	char buf[64];
128 	char *cmp;
129 	int ret;
130 	struct inode *inode;
131 
132 	if (cnt > 63)
133 		cnt = 63;
134 
135 	if (copy_from_user(&buf, ubuf, cnt))
136 		return -EFAULT;
137 
138 	buf[cnt] = 0;
139 	cmp = strstrip(buf);
140 
141 	/* Ensure the static_key remains in a consistent state */
142 	inode = file_inode(filp);
143 	cpus_read_lock();
144 	inode_lock(inode);
145 	ret = sched_feat_set(cmp);
146 	inode_unlock(inode);
147 	cpus_read_unlock();
148 	if (ret < 0)
149 		return ret;
150 
151 	*ppos += cnt;
152 
153 	return cnt;
154 }
155 
sched_feat_open(struct inode * inode,struct file * filp)156 static int sched_feat_open(struct inode *inode, struct file *filp)
157 {
158 	return single_open(filp, sched_feat_show, NULL);
159 }
160 
161 static const struct file_operations sched_feat_fops = {
162 	.open		= sched_feat_open,
163 	.write		= sched_feat_write,
164 	.read		= seq_read,
165 	.llseek		= seq_lseek,
166 	.release	= single_release,
167 };
168 
169 #ifdef CONFIG_SMP
170 
sched_scaling_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)171 static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
172 				   size_t cnt, loff_t *ppos)
173 {
174 	char buf[16];
175 	unsigned int scaling;
176 
177 	if (cnt > 15)
178 		cnt = 15;
179 
180 	if (copy_from_user(&buf, ubuf, cnt))
181 		return -EFAULT;
182 	buf[cnt] = '\0';
183 
184 	if (kstrtouint(buf, 10, &scaling))
185 		return -EINVAL;
186 
187 	if (scaling >= SCHED_TUNABLESCALING_END)
188 		return -EINVAL;
189 
190 	sysctl_sched_tunable_scaling = scaling;
191 	if (sched_update_scaling())
192 		return -EINVAL;
193 
194 	*ppos += cnt;
195 	return cnt;
196 }
197 
sched_scaling_show(struct seq_file * m,void * v)198 static int sched_scaling_show(struct seq_file *m, void *v)
199 {
200 	seq_printf(m, "%d\n", sysctl_sched_tunable_scaling);
201 	return 0;
202 }
203 
sched_scaling_open(struct inode * inode,struct file * filp)204 static int sched_scaling_open(struct inode *inode, struct file *filp)
205 {
206 	return single_open(filp, sched_scaling_show, NULL);
207 }
208 
209 static const struct file_operations sched_scaling_fops = {
210 	.open		= sched_scaling_open,
211 	.write		= sched_scaling_write,
212 	.read		= seq_read,
213 	.llseek		= seq_lseek,
214 	.release	= single_release,
215 };
216 
217 #endif /* SMP */
218 
219 #ifdef CONFIG_PREEMPT_DYNAMIC
220 
sched_dynamic_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)221 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
222 				   size_t cnt, loff_t *ppos)
223 {
224 	char buf[16];
225 	int mode;
226 
227 	if (cnt > 15)
228 		cnt = 15;
229 
230 	if (copy_from_user(&buf, ubuf, cnt))
231 		return -EFAULT;
232 
233 	buf[cnt] = 0;
234 	mode = sched_dynamic_mode(strstrip(buf));
235 	if (mode < 0)
236 		return mode;
237 
238 	sched_dynamic_update(mode);
239 
240 	*ppos += cnt;
241 
242 	return cnt;
243 }
244 
sched_dynamic_show(struct seq_file * m,void * v)245 static int sched_dynamic_show(struct seq_file *m, void *v)
246 {
247 	static const char * preempt_modes[] = {
248 		"none", "voluntary", "full"
249 	};
250 	int i;
251 
252 	for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
253 		if (preempt_dynamic_mode == i)
254 			seq_puts(m, "(");
255 		seq_puts(m, preempt_modes[i]);
256 		if (preempt_dynamic_mode == i)
257 			seq_puts(m, ")");
258 
259 		seq_puts(m, " ");
260 	}
261 
262 	seq_puts(m, "\n");
263 	return 0;
264 }
265 
sched_dynamic_open(struct inode * inode,struct file * filp)266 static int sched_dynamic_open(struct inode *inode, struct file *filp)
267 {
268 	return single_open(filp, sched_dynamic_show, NULL);
269 }
270 
271 static const struct file_operations sched_dynamic_fops = {
272 	.open		= sched_dynamic_open,
273 	.write		= sched_dynamic_write,
274 	.read		= seq_read,
275 	.llseek		= seq_lseek,
276 	.release	= single_release,
277 };
278 
279 #endif /* CONFIG_PREEMPT_DYNAMIC */
280 
281 __read_mostly bool sched_debug_verbose;
282 
283 static const struct seq_operations sched_debug_sops;
284 
sched_debug_open(struct inode * inode,struct file * filp)285 static int sched_debug_open(struct inode *inode, struct file *filp)
286 {
287 	return seq_open(filp, &sched_debug_sops);
288 }
289 
290 static const struct file_operations sched_debug_fops = {
291 	.open		= sched_debug_open,
292 	.read		= seq_read,
293 	.llseek		= seq_lseek,
294 	.release	= seq_release,
295 };
296 
297 static struct dentry *debugfs_sched;
298 
sched_init_debug(void)299 static __init int sched_init_debug(void)
300 {
301 	struct dentry __maybe_unused *numa;
302 
303 	debugfs_sched = debugfs_create_dir("sched", NULL);
304 
305 	debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
306 	debugfs_create_bool("verbose", 0644, debugfs_sched, &sched_debug_verbose);
307 #ifdef CONFIG_PREEMPT_DYNAMIC
308 	debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
309 #endif
310 
311 	debugfs_create_u32("latency_ns", 0644, debugfs_sched, &sysctl_sched_latency);
312 	debugfs_create_u32("min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_min_granularity);
313 	debugfs_create_u32("idle_min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_idle_min_granularity);
314 	debugfs_create_u32("wakeup_granularity_ns", 0644, debugfs_sched, &sysctl_sched_wakeup_granularity);
315 
316 	debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
317 	debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
318 
319 #ifdef CONFIG_SMP
320 	debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
321 	debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
322 	debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
323 
324 	mutex_lock(&sched_domains_mutex);
325 	update_sched_domain_debugfs();
326 	mutex_unlock(&sched_domains_mutex);
327 #endif
328 
329 #ifdef CONFIG_NUMA_BALANCING
330 	numa = debugfs_create_dir("numa_balancing", debugfs_sched);
331 
332 	debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay);
333 	debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min);
334 	debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
335 	debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
336 #endif
337 
338 	debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
339 
340 	return 0;
341 }
342 late_initcall(sched_init_debug);
343 
344 #ifdef CONFIG_SMP
345 
346 static cpumask_var_t		sd_sysctl_cpus;
347 static struct dentry		*sd_dentry;
348 
sd_flags_show(struct seq_file * m,void * v)349 static int sd_flags_show(struct seq_file *m, void *v)
350 {
351 	unsigned long flags = *(unsigned int *)m->private;
352 	int idx;
353 
354 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
355 		seq_puts(m, sd_flag_debug[idx].name);
356 		seq_puts(m, " ");
357 	}
358 	seq_puts(m, "\n");
359 
360 	return 0;
361 }
362 
sd_flags_open(struct inode * inode,struct file * file)363 static int sd_flags_open(struct inode *inode, struct file *file)
364 {
365 	return single_open(file, sd_flags_show, inode->i_private);
366 }
367 
368 static const struct file_operations sd_flags_fops = {
369 	.open		= sd_flags_open,
370 	.read		= seq_read,
371 	.llseek		= seq_lseek,
372 	.release	= single_release,
373 };
374 
register_sd(struct sched_domain * sd,struct dentry * parent)375 static void register_sd(struct sched_domain *sd, struct dentry *parent)
376 {
377 #define SDM(type, mode, member)	\
378 	debugfs_create_##type(#member, mode, parent, &sd->member)
379 
380 	SDM(ulong, 0644, min_interval);
381 	SDM(ulong, 0644, max_interval);
382 	SDM(u64,   0644, max_newidle_lb_cost);
383 	SDM(u32,   0644, busy_factor);
384 	SDM(u32,   0644, imbalance_pct);
385 	SDM(u32,   0644, cache_nice_tries);
386 	SDM(str,   0444, name);
387 
388 #undef SDM
389 
390 	debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
391 }
392 
update_sched_domain_debugfs(void)393 void update_sched_domain_debugfs(void)
394 {
395 	int cpu, i;
396 
397 	/*
398 	 * This can unfortunately be invoked before sched_debug_init() creates
399 	 * the debug directory. Don't touch sd_sysctl_cpus until then.
400 	 */
401 	if (!debugfs_sched)
402 		return;
403 
404 	if (!cpumask_available(sd_sysctl_cpus)) {
405 		if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
406 			return;
407 		cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
408 	}
409 
410 	if (!sd_dentry)
411 		sd_dentry = debugfs_create_dir("domains", debugfs_sched);
412 
413 	for_each_cpu(cpu, sd_sysctl_cpus) {
414 		struct sched_domain *sd;
415 		struct dentry *d_cpu;
416 		char buf[32];
417 
418 		snprintf(buf, sizeof(buf), "cpu%d", cpu);
419 		debugfs_lookup_and_remove(buf, sd_dentry);
420 		d_cpu = debugfs_create_dir(buf, sd_dentry);
421 
422 		i = 0;
423 		for_each_domain(cpu, sd) {
424 			struct dentry *d_sd;
425 
426 			snprintf(buf, sizeof(buf), "domain%d", i);
427 			d_sd = debugfs_create_dir(buf, d_cpu);
428 
429 			register_sd(sd, d_sd);
430 			i++;
431 		}
432 
433 		__cpumask_clear_cpu(cpu, sd_sysctl_cpus);
434 	}
435 }
436 
dirty_sched_domain_sysctl(int cpu)437 void dirty_sched_domain_sysctl(int cpu)
438 {
439 	if (cpumask_available(sd_sysctl_cpus))
440 		__cpumask_set_cpu(cpu, sd_sysctl_cpus);
441 }
442 
443 #endif /* CONFIG_SMP */
444 
445 #ifdef CONFIG_FAIR_GROUP_SCHED
print_cfs_group_stats(struct seq_file * m,int cpu,struct task_group * tg)446 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
447 {
448 	struct sched_entity *se = tg->se[cpu];
449 
450 #define P(F)		SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)F)
451 #define P_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld\n",	\
452 		#F, (long long)schedstat_val(stats->F))
453 #define PN(F)		SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
454 #define PN_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", \
455 		#F, SPLIT_NS((long long)schedstat_val(stats->F)))
456 
457 	if (!se)
458 		return;
459 
460 	PN(se->exec_start);
461 	PN(se->vruntime);
462 	PN(se->sum_exec_runtime);
463 
464 	if (schedstat_enabled()) {
465 		struct sched_statistics *stats;
466 		stats = __schedstats_from_se(se);
467 
468 		PN_SCHEDSTAT(wait_start);
469 		PN_SCHEDSTAT(sleep_start);
470 		PN_SCHEDSTAT(block_start);
471 		PN_SCHEDSTAT(sleep_max);
472 		PN_SCHEDSTAT(block_max);
473 		PN_SCHEDSTAT(exec_max);
474 		PN_SCHEDSTAT(slice_max);
475 		PN_SCHEDSTAT(wait_max);
476 		PN_SCHEDSTAT(wait_sum);
477 		P_SCHEDSTAT(wait_count);
478 	}
479 
480 	P(se->load.weight);
481 #ifdef CONFIG_SMP
482 	P(se->avg.load_avg);
483 	P(se->avg.util_avg);
484 	P(se->avg.runnable_avg);
485 #endif
486 
487 #undef PN_SCHEDSTAT
488 #undef PN
489 #undef P_SCHEDSTAT
490 #undef P
491 }
492 #endif
493 
494 #ifdef CONFIG_CGROUP_SCHED
495 static DEFINE_SPINLOCK(sched_debug_lock);
496 static char group_path[PATH_MAX];
497 
task_group_path(struct task_group * tg,char * path,int plen)498 static void task_group_path(struct task_group *tg, char *path, int plen)
499 {
500 	if (autogroup_path(tg, path, plen))
501 		return;
502 
503 	cgroup_path(tg->css.cgroup, path, plen);
504 }
505 
506 /*
507  * Only 1 SEQ_printf_task_group_path() caller can use the full length
508  * group_path[] for cgroup path. Other simultaneous callers will have
509  * to use a shorter stack buffer. A "..." suffix is appended at the end
510  * of the stack buffer so that it will show up in case the output length
511  * matches the given buffer size to indicate possible path name truncation.
512  */
513 #define SEQ_printf_task_group_path(m, tg, fmt...)			\
514 {									\
515 	if (spin_trylock(&sched_debug_lock)) {				\
516 		task_group_path(tg, group_path, sizeof(group_path));	\
517 		SEQ_printf(m, fmt, group_path);				\
518 		spin_unlock(&sched_debug_lock);				\
519 	} else {							\
520 		char buf[128];						\
521 		char *bufend = buf + sizeof(buf) - 3;			\
522 		task_group_path(tg, buf, bufend - buf);			\
523 		strcpy(bufend - 1, "...");				\
524 		SEQ_printf(m, fmt, buf);				\
525 	}								\
526 }
527 #endif
528 
529 static void
print_task(struct seq_file * m,struct rq * rq,struct task_struct * p)530 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
531 {
532 	if (task_current(rq, p))
533 		SEQ_printf(m, ">R");
534 	else
535 		SEQ_printf(m, " %c", task_state_to_char(p));
536 
537 	SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ",
538 		p->comm, task_pid_nr(p),
539 		SPLIT_NS(p->se.vruntime),
540 		(long long)(p->nvcsw + p->nivcsw),
541 		p->prio);
542 
543 	SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld",
544 		SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)),
545 		SPLIT_NS(p->se.sum_exec_runtime),
546 		SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)),
547 		SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime)));
548 
549 #ifdef CONFIG_NUMA_BALANCING
550 	SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
551 #endif
552 #ifdef CONFIG_CGROUP_SCHED
553 	SEQ_printf_task_group_path(m, task_group(p), " %s")
554 #endif
555 
556 	SEQ_printf(m, "\n");
557 }
558 
print_rq(struct seq_file * m,struct rq * rq,int rq_cpu)559 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
560 {
561 	struct task_struct *g, *p;
562 
563 	SEQ_printf(m, "\n");
564 	SEQ_printf(m, "runnable tasks:\n");
565 	SEQ_printf(m, " S            task   PID         tree-key  switches  prio"
566 		   "     wait-time             sum-exec        sum-sleep\n");
567 	SEQ_printf(m, "-------------------------------------------------------"
568 		   "------------------------------------------------------\n");
569 
570 	rcu_read_lock();
571 	for_each_process_thread(g, p) {
572 		if (task_cpu(p) != rq_cpu)
573 			continue;
574 
575 		print_task(m, rq, p);
576 	}
577 	rcu_read_unlock();
578 }
579 
print_cfs_rq(struct seq_file * m,int cpu,struct cfs_rq * cfs_rq)580 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
581 {
582 	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
583 		spread, rq0_min_vruntime, spread0;
584 	struct rq *rq = cpu_rq(cpu);
585 	struct sched_entity *last;
586 	unsigned long flags;
587 
588 #ifdef CONFIG_FAIR_GROUP_SCHED
589 	SEQ_printf(m, "\n");
590 	SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
591 #else
592 	SEQ_printf(m, "\n");
593 	SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
594 #endif
595 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
596 			SPLIT_NS(cfs_rq->exec_clock));
597 
598 	raw_spin_rq_lock_irqsave(rq, flags);
599 	if (rb_first_cached(&cfs_rq->tasks_timeline))
600 		MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
601 	last = __pick_last_entity(cfs_rq);
602 	if (last)
603 		max_vruntime = last->vruntime;
604 	min_vruntime = cfs_rq->min_vruntime;
605 	rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
606 	raw_spin_rq_unlock_irqrestore(rq, flags);
607 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
608 			SPLIT_NS(MIN_vruntime));
609 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
610 			SPLIT_NS(min_vruntime));
611 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
612 			SPLIT_NS(max_vruntime));
613 	spread = max_vruntime - MIN_vruntime;
614 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
615 			SPLIT_NS(spread));
616 	spread0 = min_vruntime - rq0_min_vruntime;
617 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
618 			SPLIT_NS(spread0));
619 	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
620 			cfs_rq->nr_spread_over);
621 	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
622 	SEQ_printf(m, "  .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running);
623 	SEQ_printf(m, "  .%-30s: %d\n", "idle_nr_running",
624 			cfs_rq->idle_nr_running);
625 	SEQ_printf(m, "  .%-30s: %d\n", "idle_h_nr_running",
626 			cfs_rq->idle_h_nr_running);
627 	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
628 #ifdef CONFIG_SMP
629 	SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
630 			cfs_rq->avg.load_avg);
631 	SEQ_printf(m, "  .%-30s: %lu\n", "runnable_avg",
632 			cfs_rq->avg.runnable_avg);
633 	SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
634 			cfs_rq->avg.util_avg);
635 	SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
636 			cfs_rq->avg.util_est.enqueued);
637 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
638 			cfs_rq->removed.load_avg);
639 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
640 			cfs_rq->removed.util_avg);
641 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_avg",
642 			cfs_rq->removed.runnable_avg);
643 #ifdef CONFIG_FAIR_GROUP_SCHED
644 	SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
645 			cfs_rq->tg_load_avg_contrib);
646 	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
647 			atomic_long_read(&cfs_rq->tg->load_avg));
648 #endif
649 #endif
650 #ifdef CONFIG_CFS_BANDWIDTH
651 	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
652 			cfs_rq->throttled);
653 	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
654 			cfs_rq->throttle_count);
655 #endif
656 
657 #ifdef CONFIG_FAIR_GROUP_SCHED
658 	print_cfs_group_stats(m, cpu, cfs_rq->tg);
659 #endif
660 }
661 
print_rt_rq(struct seq_file * m,int cpu,struct rt_rq * rt_rq)662 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
663 {
664 #ifdef CONFIG_RT_GROUP_SCHED
665 	SEQ_printf(m, "\n");
666 	SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
667 #else
668 	SEQ_printf(m, "\n");
669 	SEQ_printf(m, "rt_rq[%d]:\n", cpu);
670 #endif
671 
672 #define P(x) \
673 	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
674 #define PU(x) \
675 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
676 #define PN(x) \
677 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
678 
679 	PU(rt_nr_running);
680 #ifdef CONFIG_SMP
681 	PU(rt_nr_migratory);
682 #endif
683 	P(rt_throttled);
684 	PN(rt_time);
685 	PN(rt_runtime);
686 
687 #undef PN
688 #undef PU
689 #undef P
690 }
691 
print_dl_rq(struct seq_file * m,int cpu,struct dl_rq * dl_rq)692 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
693 {
694 	struct dl_bw *dl_bw;
695 
696 	SEQ_printf(m, "\n");
697 	SEQ_printf(m, "dl_rq[%d]:\n", cpu);
698 
699 #define PU(x) \
700 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
701 
702 	PU(dl_nr_running);
703 #ifdef CONFIG_SMP
704 	PU(dl_nr_migratory);
705 	dl_bw = &cpu_rq(cpu)->rd->dl_bw;
706 #else
707 	dl_bw = &dl_rq->dl_bw;
708 #endif
709 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
710 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
711 
712 #undef PU
713 }
714 
print_cpu(struct seq_file * m,int cpu)715 static void print_cpu(struct seq_file *m, int cpu)
716 {
717 	struct rq *rq = cpu_rq(cpu);
718 
719 #ifdef CONFIG_X86
720 	{
721 		unsigned int freq = cpu_khz ? : 1;
722 
723 		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
724 			   cpu, freq / 1000, (freq % 1000));
725 	}
726 #else
727 	SEQ_printf(m, "cpu#%d\n", cpu);
728 #endif
729 
730 #define P(x)								\
731 do {									\
732 	if (sizeof(rq->x) == 4)						\
733 		SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));	\
734 	else								\
735 		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
736 } while (0)
737 
738 #define PN(x) \
739 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
740 
741 	P(nr_running);
742 	P(nr_switches);
743 	P(nr_uninterruptible);
744 	PN(next_balance);
745 	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
746 	PN(clock);
747 	PN(clock_task);
748 #undef P
749 #undef PN
750 
751 #ifdef CONFIG_SMP
752 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
753 	P64(avg_idle);
754 	P64(max_idle_balance_cost);
755 #undef P64
756 #endif
757 
758 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
759 	if (schedstat_enabled()) {
760 		P(yld_count);
761 		P(sched_count);
762 		P(sched_goidle);
763 		P(ttwu_count);
764 		P(ttwu_local);
765 	}
766 #undef P
767 
768 	print_cfs_stats(m, cpu);
769 	print_rt_stats(m, cpu);
770 	print_dl_stats(m, cpu);
771 
772 	print_rq(m, rq, cpu);
773 	SEQ_printf(m, "\n");
774 }
775 
776 static const char *sched_tunable_scaling_names[] = {
777 	"none",
778 	"logarithmic",
779 	"linear"
780 };
781 
sched_debug_header(struct seq_file * m)782 static void sched_debug_header(struct seq_file *m)
783 {
784 	u64 ktime, sched_clk, cpu_clk;
785 	unsigned long flags;
786 
787 	local_irq_save(flags);
788 	ktime = ktime_to_ns(ktime_get());
789 	sched_clk = sched_clock();
790 	cpu_clk = local_clock();
791 	local_irq_restore(flags);
792 
793 	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
794 		init_utsname()->release,
795 		(int)strcspn(init_utsname()->version, " "),
796 		init_utsname()->version);
797 
798 #define P(x) \
799 	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
800 #define PN(x) \
801 	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
802 	PN(ktime);
803 	PN(sched_clk);
804 	PN(cpu_clk);
805 	P(jiffies);
806 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
807 	P(sched_clock_stable());
808 #endif
809 #undef PN
810 #undef P
811 
812 	SEQ_printf(m, "\n");
813 	SEQ_printf(m, "sysctl_sched\n");
814 
815 #define P(x) \
816 	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
817 #define PN(x) \
818 	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
819 	PN(sysctl_sched_latency);
820 	PN(sysctl_sched_min_granularity);
821 	PN(sysctl_sched_idle_min_granularity);
822 	PN(sysctl_sched_wakeup_granularity);
823 	P(sysctl_sched_child_runs_first);
824 	P(sysctl_sched_features);
825 #undef PN
826 #undef P
827 
828 	SEQ_printf(m, "  .%-40s: %d (%s)\n",
829 		"sysctl_sched_tunable_scaling",
830 		sysctl_sched_tunable_scaling,
831 		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
832 	SEQ_printf(m, "\n");
833 }
834 
sched_debug_show(struct seq_file * m,void * v)835 static int sched_debug_show(struct seq_file *m, void *v)
836 {
837 	int cpu = (unsigned long)(v - 2);
838 
839 	if (cpu != -1)
840 		print_cpu(m, cpu);
841 	else
842 		sched_debug_header(m);
843 
844 	return 0;
845 }
846 
sysrq_sched_debug_show(void)847 void sysrq_sched_debug_show(void)
848 {
849 	int cpu;
850 
851 	sched_debug_header(NULL);
852 	for_each_online_cpu(cpu) {
853 		/*
854 		 * Need to reset softlockup watchdogs on all CPUs, because
855 		 * another CPU might be blocked waiting for us to process
856 		 * an IPI or stop_machine.
857 		 */
858 		touch_nmi_watchdog();
859 		touch_all_softlockup_watchdogs();
860 		print_cpu(NULL, cpu);
861 	}
862 }
863 
864 /*
865  * This iterator needs some explanation.
866  * It returns 1 for the header position.
867  * This means 2 is CPU 0.
868  * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
869  * to use cpumask_* to iterate over the CPUs.
870  */
sched_debug_start(struct seq_file * file,loff_t * offset)871 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
872 {
873 	unsigned long n = *offset;
874 
875 	if (n == 0)
876 		return (void *) 1;
877 
878 	n--;
879 
880 	if (n > 0)
881 		n = cpumask_next(n - 1, cpu_online_mask);
882 	else
883 		n = cpumask_first(cpu_online_mask);
884 
885 	*offset = n + 1;
886 
887 	if (n < nr_cpu_ids)
888 		return (void *)(unsigned long)(n + 2);
889 
890 	return NULL;
891 }
892 
sched_debug_next(struct seq_file * file,void * data,loff_t * offset)893 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
894 {
895 	(*offset)++;
896 	return sched_debug_start(file, offset);
897 }
898 
sched_debug_stop(struct seq_file * file,void * data)899 static void sched_debug_stop(struct seq_file *file, void *data)
900 {
901 }
902 
903 static const struct seq_operations sched_debug_sops = {
904 	.start		= sched_debug_start,
905 	.next		= sched_debug_next,
906 	.stop		= sched_debug_stop,
907 	.show		= sched_debug_show,
908 };
909 
910 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
911 #define __P(F) __PS(#F, F)
912 #define   P(F) __PS(#F, p->F)
913 #define   PM(F, M) __PS(#F, p->F & (M))
914 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
915 #define __PN(F) __PSN(#F, F)
916 #define   PN(F) __PSN(#F, p->F)
917 
918 
919 #ifdef CONFIG_NUMA_BALANCING
print_numa_stats(struct seq_file * m,int node,unsigned long tsf,unsigned long tpf,unsigned long gsf,unsigned long gpf)920 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
921 		unsigned long tpf, unsigned long gsf, unsigned long gpf)
922 {
923 	SEQ_printf(m, "numa_faults node=%d ", node);
924 	SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
925 	SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
926 }
927 #endif
928 
929 
sched_show_numa(struct task_struct * p,struct seq_file * m)930 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
931 {
932 #ifdef CONFIG_NUMA_BALANCING
933 	if (p->mm)
934 		P(mm->numa_scan_seq);
935 
936 	P(numa_pages_migrated);
937 	P(numa_preferred_nid);
938 	P(total_numa_faults);
939 	SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
940 			task_node(p), task_numa_group_id(p));
941 	show_numa_stats(p, m);
942 #endif
943 }
944 
proc_sched_show_task(struct task_struct * p,struct pid_namespace * ns,struct seq_file * m)945 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
946 						  struct seq_file *m)
947 {
948 	unsigned long nr_switches;
949 
950 	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
951 						get_nr_threads(p));
952 	SEQ_printf(m,
953 		"---------------------------------------------------------"
954 		"----------\n");
955 
956 #define P_SCHEDSTAT(F)  __PS(#F, schedstat_val(p->stats.F))
957 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F))
958 
959 	PN(se.exec_start);
960 	PN(se.vruntime);
961 	PN(se.sum_exec_runtime);
962 
963 	nr_switches = p->nvcsw + p->nivcsw;
964 
965 	P(se.nr_migrations);
966 
967 	if (schedstat_enabled()) {
968 		u64 avg_atom, avg_per_cpu;
969 
970 		PN_SCHEDSTAT(sum_sleep_runtime);
971 		PN_SCHEDSTAT(sum_block_runtime);
972 		PN_SCHEDSTAT(wait_start);
973 		PN_SCHEDSTAT(sleep_start);
974 		PN_SCHEDSTAT(block_start);
975 		PN_SCHEDSTAT(sleep_max);
976 		PN_SCHEDSTAT(block_max);
977 		PN_SCHEDSTAT(exec_max);
978 		PN_SCHEDSTAT(slice_max);
979 		PN_SCHEDSTAT(wait_max);
980 		PN_SCHEDSTAT(wait_sum);
981 		P_SCHEDSTAT(wait_count);
982 		PN_SCHEDSTAT(iowait_sum);
983 		P_SCHEDSTAT(iowait_count);
984 		P_SCHEDSTAT(nr_migrations_cold);
985 		P_SCHEDSTAT(nr_failed_migrations_affine);
986 		P_SCHEDSTAT(nr_failed_migrations_running);
987 		P_SCHEDSTAT(nr_failed_migrations_hot);
988 		P_SCHEDSTAT(nr_forced_migrations);
989 		P_SCHEDSTAT(nr_wakeups);
990 		P_SCHEDSTAT(nr_wakeups_sync);
991 		P_SCHEDSTAT(nr_wakeups_migrate);
992 		P_SCHEDSTAT(nr_wakeups_local);
993 		P_SCHEDSTAT(nr_wakeups_remote);
994 		P_SCHEDSTAT(nr_wakeups_affine);
995 		P_SCHEDSTAT(nr_wakeups_affine_attempts);
996 		P_SCHEDSTAT(nr_wakeups_passive);
997 		P_SCHEDSTAT(nr_wakeups_idle);
998 
999 		avg_atom = p->se.sum_exec_runtime;
1000 		if (nr_switches)
1001 			avg_atom = div64_ul(avg_atom, nr_switches);
1002 		else
1003 			avg_atom = -1LL;
1004 
1005 		avg_per_cpu = p->se.sum_exec_runtime;
1006 		if (p->se.nr_migrations) {
1007 			avg_per_cpu = div64_u64(avg_per_cpu,
1008 						p->se.nr_migrations);
1009 		} else {
1010 			avg_per_cpu = -1LL;
1011 		}
1012 
1013 		__PN(avg_atom);
1014 		__PN(avg_per_cpu);
1015 
1016 #ifdef CONFIG_SCHED_CORE
1017 		PN_SCHEDSTAT(core_forceidle_sum);
1018 #endif
1019 	}
1020 
1021 	__P(nr_switches);
1022 	__PS("nr_voluntary_switches", p->nvcsw);
1023 	__PS("nr_involuntary_switches", p->nivcsw);
1024 
1025 	P(se.load.weight);
1026 #ifdef CONFIG_SMP
1027 	P(se.avg.load_sum);
1028 	P(se.avg.runnable_sum);
1029 	P(se.avg.util_sum);
1030 	P(se.avg.load_avg);
1031 	P(se.avg.runnable_avg);
1032 	P(se.avg.util_avg);
1033 	P(se.avg.last_update_time);
1034 	P(se.avg.util_est.ewma);
1035 	PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED);
1036 #endif
1037 #ifdef CONFIG_UCLAMP_TASK
1038 	__PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1039 	__PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1040 	__PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1041 	__PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1042 #endif
1043 	P(policy);
1044 	P(prio);
1045 	if (task_has_dl_policy(p)) {
1046 		P(dl.runtime);
1047 		P(dl.deadline);
1048 	}
1049 #undef PN_SCHEDSTAT
1050 #undef P_SCHEDSTAT
1051 
1052 	{
1053 		unsigned int this_cpu = raw_smp_processor_id();
1054 		u64 t0, t1;
1055 
1056 		t0 = cpu_clock(this_cpu);
1057 		t1 = cpu_clock(this_cpu);
1058 		__PS("clock-delta", t1-t0);
1059 	}
1060 
1061 	sched_show_numa(p, m);
1062 }
1063 
proc_sched_set_task(struct task_struct * p)1064 void proc_sched_set_task(struct task_struct *p)
1065 {
1066 #ifdef CONFIG_SCHEDSTATS
1067 	memset(&p->stats, 0, sizeof(p->stats));
1068 #endif
1069 }
1070 
resched_latency_warn(int cpu,u64 latency)1071 void resched_latency_warn(int cpu, u64 latency)
1072 {
1073 	static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
1074 
1075 	WARN(__ratelimit(&latency_check_ratelimit),
1076 	     "sched: CPU %d need_resched set for > %llu ns (%d ticks) "
1077 	     "without schedule\n",
1078 	     cpu, latency, cpu_rq(cpu)->ticks_without_resched);
1079 }
1080