1 /*
2  * Copyright (C) 2008 Scientific-Atlanta, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  */
18 /*
19  * The file comes from kernel/csrc-r4k.c
20  */
21 #include <linux/clocksource.h>
22 #include <linux/init.h>
23 
24 #include <asm/time.h>			/* Not included in linux/time.h */
25 
26 #include <asm/mach-powertv/asic_regs.h>
27 #include "powertv-clock.h"
28 
29 /* MIPS PLL Register Definitions */
30 #define PLL_GET_M(x)		(((x) >> 8) & 0x000000FF)
31 #define PLL_GET_N(x)		(((x) >> 16) & 0x000000FF)
32 #define PLL_GET_P(x)		(((x) >> 24) & 0x00000007)
33 
34 /*
35  * returns:  Clock frequency in kHz
36  */
mips_get_pll_freq(void)37 unsigned int __init mips_get_pll_freq(void)
38 {
39 	unsigned int pll_reg, m, n, p;
40 	unsigned int fin = 54000; /* Base frequency in kHz */
41 	unsigned int fout;
42 
43 	/* Read PLL register setting */
44 	pll_reg = asic_read(mips_pll_setup);
45 	m = PLL_GET_M(pll_reg);
46 	n = PLL_GET_N(pll_reg);
47 	p = PLL_GET_P(pll_reg);
48 	pr_info("MIPS PLL Register:0x%x  M=%d  N=%d  P=%d\n", pll_reg, m, n, p);
49 
50 	/* Calculate clock frequency = (2 * N * 54MHz) / (M * (2**P)) */
51 	fout = ((2 * n * fin) / (m * (0x01 << p)));
52 
53 	pr_info("MIPS Clock Freq=%d kHz\n", fout);
54 
55 	return fout;
56 }
57 
c0_hpt_read(struct clocksource * cs)58 static cycle_t c0_hpt_read(struct clocksource *cs)
59 {
60 	return read_c0_count();
61 }
62 
63 static struct clocksource clocksource_mips = {
64 	.name		= "powertv-counter",
65 	.read		= c0_hpt_read,
66 	.mask		= CLOCKSOURCE_MASK(32),
67 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
68 };
69 
powertv_c0_hpt_clocksource_init(void)70 static void __init powertv_c0_hpt_clocksource_init(void)
71 {
72 	unsigned int pll_freq = mips_get_pll_freq();
73 
74 	pr_info("CPU frequency %d.%02d MHz\n", pll_freq / 1000,
75 		(pll_freq % 1000) * 100 / 1000);
76 
77 	mips_hpt_frequency = pll_freq / 2 * 1000;
78 
79 	clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
80 
81 	clocksource_set_clock(&clocksource_mips, mips_hpt_frequency);
82 
83 	clocksource_register(&clocksource_mips);
84 }
85 
86 /**
87  * struct tim_c - free running counter
88  * @hi:	High 16 bits of the counter
89  * @lo:	Low 32 bits of the counter
90  *
91  * Lays out the structure of the free running counter in memory. This counter
92  * increments at a rate of 27 MHz/8 on all platforms.
93  */
94 struct tim_c {
95 	unsigned int hi;
96 	unsigned int lo;
97 };
98 
99 static struct tim_c *tim_c;
100 
tim_c_read(struct clocksource * cs)101 static cycle_t tim_c_read(struct clocksource *cs)
102 {
103 	unsigned int hi;
104 	unsigned int next_hi;
105 	unsigned int lo;
106 
107 	hi = readl(&tim_c->hi);
108 
109 	for (;;) {
110 		lo = readl(&tim_c->lo);
111 		next_hi = readl(&tim_c->hi);
112 		if (next_hi == hi)
113 			break;
114 		hi = next_hi;
115 	}
116 
117 pr_crit("%s: read %llx\n", __func__, ((u64) hi << 32) | lo);
118 	return ((u64) hi << 32) | lo;
119 }
120 
121 #define TIM_C_SIZE		48		/* # bits in the timer */
122 
123 static struct clocksource clocksource_tim_c = {
124 	.name		= "powertv-tim_c",
125 	.read		= tim_c_read,
126 	.mask		= CLOCKSOURCE_MASK(TIM_C_SIZE),
127 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
128 };
129 
130 /**
131  * powertv_tim_c_clocksource_init - set up a clock source for the TIM_C clock
132  *
133  * The hard part here is coming up with a constant k and shift s such that
134  * the 48-bit TIM_C value multiplied by k doesn't overflow and that value,
135  * when shifted right by s, yields the corresponding number of nanoseconds.
136  * We know that TIM_C counts at 27 MHz/8, so each cycle corresponds to
137  * 1 / (27,000,000/8) seconds. Multiply that by a billion and you get the
138  * number of nanoseconds. Since the TIM_C value has 48 bits and the math is
139  * done in 64 bits, avoiding an overflow means that k must be less than
140  * 64 - 48 = 16 bits.
141  */
powertv_tim_c_clocksource_init(void)142 static void __init powertv_tim_c_clocksource_init(void)
143 {
144 	int			prescale;
145 	unsigned long		dividend;
146 	unsigned long		k;
147 	int			s;
148 	const int		max_k_bits = (64 - 48) - 1;
149 	const unsigned long	billion = 1000000000;
150 	const unsigned long	counts_per_second = 27000000 / 8;
151 
152 	prescale = BITS_PER_LONG - ilog2(billion) - 1;
153 	dividend = billion << prescale;
154 	k = dividend / counts_per_second;
155 	s = ilog2(k) - max_k_bits;
156 
157 	if (s < 0)
158 		s = prescale;
159 
160 	else {
161 		k >>= s;
162 		s += prescale;
163 	}
164 
165 	clocksource_tim_c.mult = k;
166 	clocksource_tim_c.shift = s;
167 	clocksource_tim_c.rating = 200;
168 
169 	clocksource_register(&clocksource_tim_c);
170 	tim_c = (struct tim_c *) asic_reg_addr(tim_ch);
171 }
172 
173 /**
174  powertv_clocksource_init - initialize all clocksources
175  */
powertv_clocksource_init(void)176 void __init powertv_clocksource_init(void)
177 {
178 	powertv_c0_hpt_clocksource_init();
179 	powertv_tim_c_clocksource_init();
180 }
181