1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Universal power supply monitor class
4 *
5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru>
6 * Copyright © 2004 Szabolcs Gyurko
7 * Copyright © 2003 Ian Molton <spyro@f2s.com>
8 *
9 * Modified: 2004, Oct Szabolcs Gyurko
10 */
11
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/notifier.h>
19 #include <linux/err.h>
20 #include <linux/of.h>
21 #include <linux/power_supply.h>
22 #include <linux/property.h>
23 #include <linux/thermal.h>
24 #include <linux/fixp-arith.h>
25 #include "power_supply.h"
26 #include "samsung-sdi-battery.h"
27
28 /* exported for the APM Power driver, APM emulation */
29 struct class *power_supply_class;
30 EXPORT_SYMBOL_GPL(power_supply_class);
31
32 ATOMIC_NOTIFIER_HEAD(power_supply_notifier);
33 EXPORT_SYMBOL_GPL(power_supply_notifier);
34
35 static struct device_type power_supply_dev_type;
36
37 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10)
38
__power_supply_is_supplied_by(struct power_supply * supplier,struct power_supply * supply)39 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
40 struct power_supply *supply)
41 {
42 int i;
43
44 if (!supply->supplied_from && !supplier->supplied_to)
45 return false;
46
47 /* Support both supplied_to and supplied_from modes */
48 if (supply->supplied_from) {
49 if (!supplier->desc->name)
50 return false;
51 for (i = 0; i < supply->num_supplies; i++)
52 if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
53 return true;
54 } else {
55 if (!supply->desc->name)
56 return false;
57 for (i = 0; i < supplier->num_supplicants; i++)
58 if (!strcmp(supplier->supplied_to[i], supply->desc->name))
59 return true;
60 }
61
62 return false;
63 }
64
__power_supply_changed_work(struct device * dev,void * data)65 static int __power_supply_changed_work(struct device *dev, void *data)
66 {
67 struct power_supply *psy = data;
68 struct power_supply *pst = dev_get_drvdata(dev);
69
70 if (__power_supply_is_supplied_by(psy, pst)) {
71 if (pst->desc->external_power_changed)
72 pst->desc->external_power_changed(pst);
73 }
74
75 return 0;
76 }
77
power_supply_changed_work(struct work_struct * work)78 static void power_supply_changed_work(struct work_struct *work)
79 {
80 unsigned long flags;
81 struct power_supply *psy = container_of(work, struct power_supply,
82 changed_work);
83
84 dev_dbg(&psy->dev, "%s\n", __func__);
85
86 spin_lock_irqsave(&psy->changed_lock, flags);
87 /*
88 * Check 'changed' here to avoid issues due to race between
89 * power_supply_changed() and this routine. In worst case
90 * power_supply_changed() can be called again just before we take above
91 * lock. During the first call of this routine we will mark 'changed' as
92 * false and it will stay false for the next call as well.
93 */
94 if (likely(psy->changed)) {
95 psy->changed = false;
96 spin_unlock_irqrestore(&psy->changed_lock, flags);
97 class_for_each_device(power_supply_class, NULL, psy,
98 __power_supply_changed_work);
99 power_supply_update_leds(psy);
100 atomic_notifier_call_chain(&power_supply_notifier,
101 PSY_EVENT_PROP_CHANGED, psy);
102 kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
103 spin_lock_irqsave(&psy->changed_lock, flags);
104 }
105
106 /*
107 * Hold the wakeup_source until all events are processed.
108 * power_supply_changed() might have called again and have set 'changed'
109 * to true.
110 */
111 if (likely(!psy->changed))
112 pm_relax(&psy->dev);
113 spin_unlock_irqrestore(&psy->changed_lock, flags);
114 }
115
power_supply_changed(struct power_supply * psy)116 void power_supply_changed(struct power_supply *psy)
117 {
118 unsigned long flags;
119
120 dev_dbg(&psy->dev, "%s\n", __func__);
121
122 spin_lock_irqsave(&psy->changed_lock, flags);
123 psy->changed = true;
124 pm_stay_awake(&psy->dev);
125 spin_unlock_irqrestore(&psy->changed_lock, flags);
126 schedule_work(&psy->changed_work);
127 }
128 EXPORT_SYMBOL_GPL(power_supply_changed);
129
130 /*
131 * Notify that power supply was registered after parent finished the probing.
132 *
133 * Often power supply is registered from driver's probe function. However
134 * calling power_supply_changed() directly from power_supply_register()
135 * would lead to execution of get_property() function provided by the driver
136 * too early - before the probe ends.
137 *
138 * Avoid that by waiting on parent's mutex.
139 */
power_supply_deferred_register_work(struct work_struct * work)140 static void power_supply_deferred_register_work(struct work_struct *work)
141 {
142 struct power_supply *psy = container_of(work, struct power_supply,
143 deferred_register_work.work);
144
145 if (psy->dev.parent) {
146 while (!mutex_trylock(&psy->dev.parent->mutex)) {
147 if (psy->removing)
148 return;
149 msleep(10);
150 }
151 }
152
153 power_supply_changed(psy);
154
155 if (psy->dev.parent)
156 mutex_unlock(&psy->dev.parent->mutex);
157 }
158
159 #ifdef CONFIG_OF
__power_supply_populate_supplied_from(struct device * dev,void * data)160 static int __power_supply_populate_supplied_from(struct device *dev,
161 void *data)
162 {
163 struct power_supply *psy = data;
164 struct power_supply *epsy = dev_get_drvdata(dev);
165 struct device_node *np;
166 int i = 0;
167
168 do {
169 np = of_parse_phandle(psy->of_node, "power-supplies", i++);
170 if (!np)
171 break;
172
173 if (np == epsy->of_node) {
174 dev_dbg(&psy->dev, "%s: Found supply : %s\n",
175 psy->desc->name, epsy->desc->name);
176 psy->supplied_from[i-1] = (char *)epsy->desc->name;
177 psy->num_supplies++;
178 of_node_put(np);
179 break;
180 }
181 of_node_put(np);
182 } while (np);
183
184 return 0;
185 }
186
power_supply_populate_supplied_from(struct power_supply * psy)187 static int power_supply_populate_supplied_from(struct power_supply *psy)
188 {
189 int error;
190
191 error = class_for_each_device(power_supply_class, NULL, psy,
192 __power_supply_populate_supplied_from);
193
194 dev_dbg(&psy->dev, "%s %d\n", __func__, error);
195
196 return error;
197 }
198
__power_supply_find_supply_from_node(struct device * dev,void * data)199 static int __power_supply_find_supply_from_node(struct device *dev,
200 void *data)
201 {
202 struct device_node *np = data;
203 struct power_supply *epsy = dev_get_drvdata(dev);
204
205 /* returning non-zero breaks out of class_for_each_device loop */
206 if (epsy->of_node == np)
207 return 1;
208
209 return 0;
210 }
211
power_supply_find_supply_from_node(struct device_node * supply_node)212 static int power_supply_find_supply_from_node(struct device_node *supply_node)
213 {
214 int error;
215
216 /*
217 * class_for_each_device() either returns its own errors or values
218 * returned by __power_supply_find_supply_from_node().
219 *
220 * __power_supply_find_supply_from_node() will return 0 (no match)
221 * or 1 (match).
222 *
223 * We return 0 if class_for_each_device() returned 1, -EPROBE_DEFER if
224 * it returned 0, or error as returned by it.
225 */
226 error = class_for_each_device(power_supply_class, NULL, supply_node,
227 __power_supply_find_supply_from_node);
228
229 return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
230 }
231
power_supply_check_supplies(struct power_supply * psy)232 static int power_supply_check_supplies(struct power_supply *psy)
233 {
234 struct device_node *np;
235 int cnt = 0;
236
237 /* If there is already a list honor it */
238 if (psy->supplied_from && psy->num_supplies > 0)
239 return 0;
240
241 /* No device node found, nothing to do */
242 if (!psy->of_node)
243 return 0;
244
245 do {
246 int ret;
247
248 np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
249 if (!np)
250 break;
251
252 ret = power_supply_find_supply_from_node(np);
253 of_node_put(np);
254
255 if (ret) {
256 dev_dbg(&psy->dev, "Failed to find supply!\n");
257 return ret;
258 }
259 } while (np);
260
261 /* Missing valid "power-supplies" entries */
262 if (cnt == 1)
263 return 0;
264
265 /* All supplies found, allocate char ** array for filling */
266 psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(psy->supplied_from),
267 GFP_KERNEL);
268 if (!psy->supplied_from)
269 return -ENOMEM;
270
271 *psy->supplied_from = devm_kcalloc(&psy->dev,
272 cnt - 1, sizeof(char *),
273 GFP_KERNEL);
274 if (!*psy->supplied_from)
275 return -ENOMEM;
276
277 return power_supply_populate_supplied_from(psy);
278 }
279 #else
power_supply_check_supplies(struct power_supply * psy)280 static int power_supply_check_supplies(struct power_supply *psy)
281 {
282 int nval, ret;
283
284 if (!psy->dev.parent)
285 return 0;
286
287 nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
288 if (nval <= 0)
289 return 0;
290
291 psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
292 sizeof(char *), GFP_KERNEL);
293 if (!psy->supplied_from)
294 return -ENOMEM;
295
296 ret = device_property_read_string_array(psy->dev.parent,
297 "supplied-from", (const char **)psy->supplied_from, nval);
298 if (ret < 0)
299 return ret;
300
301 psy->num_supplies = nval;
302
303 return 0;
304 }
305 #endif
306
307 struct psy_am_i_supplied_data {
308 struct power_supply *psy;
309 unsigned int count;
310 };
311
__power_supply_am_i_supplied(struct device * dev,void * _data)312 static int __power_supply_am_i_supplied(struct device *dev, void *_data)
313 {
314 union power_supply_propval ret = {0,};
315 struct power_supply *epsy = dev_get_drvdata(dev);
316 struct psy_am_i_supplied_data *data = _data;
317
318 if (__power_supply_is_supplied_by(epsy, data->psy)) {
319 data->count++;
320 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
321 &ret))
322 return ret.intval;
323 }
324
325 return 0;
326 }
327
power_supply_am_i_supplied(struct power_supply * psy)328 int power_supply_am_i_supplied(struct power_supply *psy)
329 {
330 struct psy_am_i_supplied_data data = { psy, 0 };
331 int error;
332
333 error = class_for_each_device(power_supply_class, NULL, &data,
334 __power_supply_am_i_supplied);
335
336 dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
337
338 if (data.count == 0)
339 return -ENODEV;
340
341 return error;
342 }
343 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
344
__power_supply_is_system_supplied(struct device * dev,void * data)345 static int __power_supply_is_system_supplied(struct device *dev, void *data)
346 {
347 union power_supply_propval ret = {0,};
348 struct power_supply *psy = dev_get_drvdata(dev);
349 unsigned int *count = data;
350
351 (*count)++;
352 if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
353 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
354 &ret))
355 return ret.intval;
356
357 return 0;
358 }
359
power_supply_is_system_supplied(void)360 int power_supply_is_system_supplied(void)
361 {
362 int error;
363 unsigned int count = 0;
364
365 error = class_for_each_device(power_supply_class, NULL, &count,
366 __power_supply_is_system_supplied);
367
368 /*
369 * If no power class device was found at all, most probably we are
370 * running on a desktop system, so assume we are on mains power.
371 */
372 if (count == 0)
373 return 1;
374
375 return error;
376 }
377 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
378
379 struct psy_get_supplier_prop_data {
380 struct power_supply *psy;
381 enum power_supply_property psp;
382 union power_supply_propval *val;
383 };
384
__power_supply_get_supplier_property(struct device * dev,void * _data)385 static int __power_supply_get_supplier_property(struct device *dev, void *_data)
386 {
387 struct power_supply *epsy = dev_get_drvdata(dev);
388 struct psy_get_supplier_prop_data *data = _data;
389
390 if (__power_supply_is_supplied_by(epsy, data->psy))
391 if (!epsy->desc->get_property(epsy, data->psp, data->val))
392 return 1; /* Success */
393
394 return 0; /* Continue iterating */
395 }
396
power_supply_get_property_from_supplier(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)397 int power_supply_get_property_from_supplier(struct power_supply *psy,
398 enum power_supply_property psp,
399 union power_supply_propval *val)
400 {
401 struct psy_get_supplier_prop_data data = {
402 .psy = psy,
403 .psp = psp,
404 .val = val,
405 };
406 int ret;
407
408 /*
409 * This function is not intended for use with a supply with multiple
410 * suppliers, we simply pick the first supply to report the psp.
411 */
412 ret = class_for_each_device(power_supply_class, NULL, &data,
413 __power_supply_get_supplier_property);
414 if (ret < 0)
415 return ret;
416 if (ret == 0)
417 return -ENODEV;
418
419 return 0;
420 }
421 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
422
power_supply_set_battery_charged(struct power_supply * psy)423 int power_supply_set_battery_charged(struct power_supply *psy)
424 {
425 if (atomic_read(&psy->use_cnt) >= 0 &&
426 psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
427 psy->desc->set_charged) {
428 psy->desc->set_charged(psy);
429 return 0;
430 }
431
432 return -EINVAL;
433 }
434 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
435
power_supply_match_device_by_name(struct device * dev,const void * data)436 static int power_supply_match_device_by_name(struct device *dev, const void *data)
437 {
438 const char *name = data;
439 struct power_supply *psy = dev_get_drvdata(dev);
440
441 return strcmp(psy->desc->name, name) == 0;
442 }
443
444 /**
445 * power_supply_get_by_name() - Search for a power supply and returns its ref
446 * @name: Power supply name to fetch
447 *
448 * If power supply was found, it increases reference count for the
449 * internal power supply's device. The user should power_supply_put()
450 * after usage.
451 *
452 * Return: On success returns a reference to a power supply with
453 * matching name equals to @name, a NULL otherwise.
454 */
power_supply_get_by_name(const char * name)455 struct power_supply *power_supply_get_by_name(const char *name)
456 {
457 struct power_supply *psy = NULL;
458 struct device *dev = class_find_device(power_supply_class, NULL, name,
459 power_supply_match_device_by_name);
460
461 if (dev) {
462 psy = dev_get_drvdata(dev);
463 atomic_inc(&psy->use_cnt);
464 }
465
466 return psy;
467 }
468 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
469
470 /**
471 * power_supply_put() - Drop reference obtained with power_supply_get_by_name
472 * @psy: Reference to put
473 *
474 * The reference to power supply should be put before unregistering
475 * the power supply.
476 */
power_supply_put(struct power_supply * psy)477 void power_supply_put(struct power_supply *psy)
478 {
479 might_sleep();
480
481 atomic_dec(&psy->use_cnt);
482 put_device(&psy->dev);
483 }
484 EXPORT_SYMBOL_GPL(power_supply_put);
485
486 #ifdef CONFIG_OF
power_supply_match_device_node(struct device * dev,const void * data)487 static int power_supply_match_device_node(struct device *dev, const void *data)
488 {
489 return dev->parent && dev->parent->of_node == data;
490 }
491
492 /**
493 * power_supply_get_by_phandle() - Search for a power supply and returns its ref
494 * @np: Pointer to device node holding phandle property
495 * @property: Name of property holding a power supply name
496 *
497 * If power supply was found, it increases reference count for the
498 * internal power supply's device. The user should power_supply_put()
499 * after usage.
500 *
501 * Return: On success returns a reference to a power supply with
502 * matching name equals to value under @property, NULL or ERR_PTR otherwise.
503 */
power_supply_get_by_phandle(struct device_node * np,const char * property)504 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
505 const char *property)
506 {
507 struct device_node *power_supply_np;
508 struct power_supply *psy = NULL;
509 struct device *dev;
510
511 power_supply_np = of_parse_phandle(np, property, 0);
512 if (!power_supply_np)
513 return ERR_PTR(-ENODEV);
514
515 dev = class_find_device(power_supply_class, NULL, power_supply_np,
516 power_supply_match_device_node);
517
518 of_node_put(power_supply_np);
519
520 if (dev) {
521 psy = dev_get_drvdata(dev);
522 atomic_inc(&psy->use_cnt);
523 }
524
525 return psy;
526 }
527 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
528
devm_power_supply_put(struct device * dev,void * res)529 static void devm_power_supply_put(struct device *dev, void *res)
530 {
531 struct power_supply **psy = res;
532
533 power_supply_put(*psy);
534 }
535
536 /**
537 * devm_power_supply_get_by_phandle() - Resource managed version of
538 * power_supply_get_by_phandle()
539 * @dev: Pointer to device holding phandle property
540 * @property: Name of property holding a power supply phandle
541 *
542 * Return: On success returns a reference to a power supply with
543 * matching name equals to value under @property, NULL or ERR_PTR otherwise.
544 */
devm_power_supply_get_by_phandle(struct device * dev,const char * property)545 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
546 const char *property)
547 {
548 struct power_supply **ptr, *psy;
549
550 if (!dev->of_node)
551 return ERR_PTR(-ENODEV);
552
553 ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
554 if (!ptr)
555 return ERR_PTR(-ENOMEM);
556
557 psy = power_supply_get_by_phandle(dev->of_node, property);
558 if (IS_ERR_OR_NULL(psy)) {
559 devres_free(ptr);
560 } else {
561 *ptr = psy;
562 devres_add(dev, ptr);
563 }
564 return psy;
565 }
566 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
567 #endif /* CONFIG_OF */
568
power_supply_get_battery_info(struct power_supply * psy,struct power_supply_battery_info ** info_out)569 int power_supply_get_battery_info(struct power_supply *psy,
570 struct power_supply_battery_info **info_out)
571 {
572 struct power_supply_resistance_temp_table *resist_table;
573 struct power_supply_battery_info *info;
574 struct device_node *battery_np = NULL;
575 struct fwnode_reference_args args;
576 struct fwnode_handle *fwnode;
577 const char *value;
578 int err, len, index;
579 const __be32 *list;
580 u32 min_max[2];
581
582 if (psy->of_node) {
583 battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
584 if (!battery_np)
585 return -ENODEV;
586
587 fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
588 } else {
589 err = fwnode_property_get_reference_args(
590 dev_fwnode(psy->dev.parent),
591 "monitored-battery", NULL, 0, 0, &args);
592 if (err)
593 return err;
594
595 fwnode = args.fwnode;
596 }
597
598 err = fwnode_property_read_string(fwnode, "compatible", &value);
599 if (err)
600 goto out_put_node;
601
602
603 /* Try static batteries first */
604 err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
605 if (!err)
606 goto out_ret_pointer;
607 else if (err == -ENODEV)
608 /*
609 * Device does not have a static battery.
610 * Proceed to look for a simple battery.
611 */
612 err = 0;
613
614 if (strcmp("simple-battery", value)) {
615 err = -ENODEV;
616 goto out_put_node;
617 }
618
619 info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
620 if (!info) {
621 err = -ENOMEM;
622 goto out_put_node;
623 }
624
625 info->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
626 info->energy_full_design_uwh = -EINVAL;
627 info->charge_full_design_uah = -EINVAL;
628 info->voltage_min_design_uv = -EINVAL;
629 info->voltage_max_design_uv = -EINVAL;
630 info->precharge_current_ua = -EINVAL;
631 info->charge_term_current_ua = -EINVAL;
632 info->constant_charge_current_max_ua = -EINVAL;
633 info->constant_charge_voltage_max_uv = -EINVAL;
634 info->tricklecharge_current_ua = -EINVAL;
635 info->precharge_voltage_max_uv = -EINVAL;
636 info->charge_restart_voltage_uv = -EINVAL;
637 info->overvoltage_limit_uv = -EINVAL;
638 info->maintenance_charge = NULL;
639 info->alert_low_temp_charge_current_ua = -EINVAL;
640 info->alert_low_temp_charge_voltage_uv = -EINVAL;
641 info->alert_high_temp_charge_current_ua = -EINVAL;
642 info->alert_high_temp_charge_voltage_uv = -EINVAL;
643 info->temp_ambient_alert_min = INT_MIN;
644 info->temp_ambient_alert_max = INT_MAX;
645 info->temp_alert_min = INT_MIN;
646 info->temp_alert_max = INT_MAX;
647 info->temp_min = INT_MIN;
648 info->temp_max = INT_MAX;
649 info->factory_internal_resistance_uohm = -EINVAL;
650 info->resist_table = NULL;
651 info->bti_resistance_ohm = -EINVAL;
652 info->bti_resistance_tolerance = -EINVAL;
653
654 for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
655 info->ocv_table[index] = NULL;
656 info->ocv_temp[index] = -EINVAL;
657 info->ocv_table_size[index] = -EINVAL;
658 }
659
660 /* The property and field names below must correspond to elements
661 * in enum power_supply_property. For reasoning, see
662 * Documentation/power/power_supply_class.rst.
663 */
664
665 if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
666 if (!strcmp("nickel-cadmium", value))
667 info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
668 else if (!strcmp("nickel-metal-hydride", value))
669 info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
670 else if (!strcmp("lithium-ion", value))
671 /* Imprecise lithium-ion type */
672 info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
673 else if (!strcmp("lithium-ion-polymer", value))
674 info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
675 else if (!strcmp("lithium-ion-iron-phosphate", value))
676 info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
677 else if (!strcmp("lithium-ion-manganese-oxide", value))
678 info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
679 else
680 dev_warn(&psy->dev, "%s unknown battery type\n", value);
681 }
682
683 fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
684 &info->energy_full_design_uwh);
685 fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
686 &info->charge_full_design_uah);
687 fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
688 &info->voltage_min_design_uv);
689 fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
690 &info->voltage_max_design_uv);
691 fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
692 &info->tricklecharge_current_ua);
693 fwnode_property_read_u32(fwnode, "precharge-current-microamp",
694 &info->precharge_current_ua);
695 fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
696 &info->precharge_voltage_max_uv);
697 fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
698 &info->charge_term_current_ua);
699 fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
700 &info->charge_restart_voltage_uv);
701 fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
702 &info->overvoltage_limit_uv);
703 fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
704 &info->constant_charge_current_max_ua);
705 fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
706 &info->constant_charge_voltage_max_uv);
707 fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
708 &info->factory_internal_resistance_uohm);
709
710 if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
711 min_max, ARRAY_SIZE(min_max))) {
712 info->temp_ambient_alert_min = min_max[0];
713 info->temp_ambient_alert_max = min_max[1];
714 }
715 if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
716 min_max, ARRAY_SIZE(min_max))) {
717 info->temp_alert_min = min_max[0];
718 info->temp_alert_max = min_max[1];
719 }
720 if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
721 min_max, ARRAY_SIZE(min_max))) {
722 info->temp_min = min_max[0];
723 info->temp_max = min_max[1];
724 }
725
726 /*
727 * The below code uses raw of-data parsing to parse
728 * /schemas/types.yaml#/definitions/uint32-matrix
729 * data, so for now this is only support with of.
730 */
731 if (!battery_np)
732 goto out_ret_pointer;
733
734 len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
735 if (len < 0 && len != -EINVAL) {
736 err = len;
737 goto out_put_node;
738 } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
739 dev_err(&psy->dev, "Too many temperature values\n");
740 err = -EINVAL;
741 goto out_put_node;
742 } else if (len > 0) {
743 of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
744 info->ocv_temp, len);
745 }
746
747 for (index = 0; index < len; index++) {
748 struct power_supply_battery_ocv_table *table;
749 char *propname;
750 int i, tab_len, size;
751
752 propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index);
753 list = of_get_property(battery_np, propname, &size);
754 if (!list || !size) {
755 dev_err(&psy->dev, "failed to get %s\n", propname);
756 kfree(propname);
757 power_supply_put_battery_info(psy, info);
758 err = -EINVAL;
759 goto out_put_node;
760 }
761
762 kfree(propname);
763 tab_len = size / (2 * sizeof(__be32));
764 info->ocv_table_size[index] = tab_len;
765
766 table = info->ocv_table[index] =
767 devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
768 if (!info->ocv_table[index]) {
769 power_supply_put_battery_info(psy, info);
770 err = -ENOMEM;
771 goto out_put_node;
772 }
773
774 for (i = 0; i < tab_len; i++) {
775 table[i].ocv = be32_to_cpu(*list);
776 list++;
777 table[i].capacity = be32_to_cpu(*list);
778 list++;
779 }
780 }
781
782 list = of_get_property(battery_np, "resistance-temp-table", &len);
783 if (!list || !len)
784 goto out_ret_pointer;
785
786 info->resist_table_size = len / (2 * sizeof(__be32));
787 resist_table = info->resist_table = devm_kcalloc(&psy->dev,
788 info->resist_table_size,
789 sizeof(*resist_table),
790 GFP_KERNEL);
791 if (!info->resist_table) {
792 power_supply_put_battery_info(psy, info);
793 err = -ENOMEM;
794 goto out_put_node;
795 }
796
797 for (index = 0; index < info->resist_table_size; index++) {
798 resist_table[index].temp = be32_to_cpu(*list++);
799 resist_table[index].resistance = be32_to_cpu(*list++);
800 }
801
802 out_ret_pointer:
803 /* Finally return the whole thing */
804 *info_out = info;
805
806 out_put_node:
807 fwnode_handle_put(fwnode);
808 of_node_put(battery_np);
809 return err;
810 }
811 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
812
power_supply_put_battery_info(struct power_supply * psy,struct power_supply_battery_info * info)813 void power_supply_put_battery_info(struct power_supply *psy,
814 struct power_supply_battery_info *info)
815 {
816 int i;
817
818 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
819 if (info->ocv_table[i])
820 devm_kfree(&psy->dev, info->ocv_table[i]);
821 }
822
823 if (info->resist_table)
824 devm_kfree(&psy->dev, info->resist_table);
825
826 devm_kfree(&psy->dev, info);
827 }
828 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
829
830 /**
831 * power_supply_temp2resist_simple() - find the battery internal resistance
832 * percent from temperature
833 * @table: Pointer to battery resistance temperature table
834 * @table_len: The table length
835 * @temp: Current temperature
836 *
837 * This helper function is used to look up battery internal resistance percent
838 * according to current temperature value from the resistance temperature table,
839 * and the table must be ordered descending. Then the actual battery internal
840 * resistance = the ideal battery internal resistance * percent / 100.
841 *
842 * Return: the battery internal resistance percent
843 */
power_supply_temp2resist_simple(struct power_supply_resistance_temp_table * table,int table_len,int temp)844 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
845 int table_len, int temp)
846 {
847 int i, high, low;
848
849 for (i = 0; i < table_len; i++)
850 if (temp > table[i].temp)
851 break;
852
853 /* The library function will deal with high == low */
854 if (i == 0)
855 high = low = i;
856 else if (i == table_len)
857 high = low = i - 1;
858 else
859 high = (low = i) - 1;
860
861 return fixp_linear_interpolate(table[low].temp,
862 table[low].resistance,
863 table[high].temp,
864 table[high].resistance,
865 temp);
866 }
867 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
868
869 /**
870 * power_supply_vbat2ri() - find the battery internal resistance
871 * from the battery voltage
872 * @info: The battery information container
873 * @table: Pointer to battery resistance temperature table
874 * @vbat_uv: The battery voltage in microvolt
875 * @charging: If we are charging (true) or not (false)
876 *
877 * This helper function is used to look up battery internal resistance
878 * according to current battery voltage. Depending on whether the battery
879 * is currently charging or not, different resistance will be returned.
880 *
881 * Returns the internal resistance in microohm or negative error code.
882 */
power_supply_vbat2ri(struct power_supply_battery_info * info,int vbat_uv,bool charging)883 int power_supply_vbat2ri(struct power_supply_battery_info *info,
884 int vbat_uv, bool charging)
885 {
886 struct power_supply_vbat_ri_table *vbat2ri;
887 int table_len;
888 int i, high, low;
889
890 /*
891 * If we are charging, and the battery supplies a separate table
892 * for this state, we use that in order to compensate for the
893 * charging voltage. Otherwise we use the main table.
894 */
895 if (charging && info->vbat2ri_charging) {
896 vbat2ri = info->vbat2ri_charging;
897 table_len = info->vbat2ri_charging_size;
898 } else {
899 vbat2ri = info->vbat2ri_discharging;
900 table_len = info->vbat2ri_discharging_size;
901 }
902
903 /*
904 * If no tables are specified, or if we are above the highest voltage in
905 * the voltage table, just return the factory specified internal resistance.
906 */
907 if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
908 if (charging && (info->factory_internal_resistance_charging_uohm > 0))
909 return info->factory_internal_resistance_charging_uohm;
910 else
911 return info->factory_internal_resistance_uohm;
912 }
913
914 /* Break loop at table_len - 1 because that is the highest index */
915 for (i = 0; i < table_len - 1; i++)
916 if (vbat_uv > vbat2ri[i].vbat_uv)
917 break;
918
919 /* The library function will deal with high == low */
920 if ((i == 0) || (i == (table_len - 1)))
921 high = i;
922 else
923 high = i - 1;
924 low = i;
925
926 return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
927 vbat2ri[low].ri_uohm,
928 vbat2ri[high].vbat_uv,
929 vbat2ri[high].ri_uohm,
930 vbat_uv);
931 }
932 EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
933
934 struct power_supply_maintenance_charge_table *
power_supply_get_maintenance_charging_setting(struct power_supply_battery_info * info,int index)935 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
936 int index)
937 {
938 if (index >= info->maintenance_charge_size)
939 return NULL;
940 return &info->maintenance_charge[index];
941 }
942 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
943
944 /**
945 * power_supply_ocv2cap_simple() - find the battery capacity
946 * @table: Pointer to battery OCV lookup table
947 * @table_len: OCV table length
948 * @ocv: Current OCV value
949 *
950 * This helper function is used to look up battery capacity according to
951 * current OCV value from one OCV table, and the OCV table must be ordered
952 * descending.
953 *
954 * Return: the battery capacity.
955 */
power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table * table,int table_len,int ocv)956 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
957 int table_len, int ocv)
958 {
959 int i, high, low;
960
961 for (i = 0; i < table_len; i++)
962 if (ocv > table[i].ocv)
963 break;
964
965 /* The library function will deal with high == low */
966 if (i == 0)
967 high = low = i;
968 else if (i == table_len)
969 high = low = i - 1;
970 else
971 high = (low = i) - 1;
972
973 return fixp_linear_interpolate(table[low].ocv,
974 table[low].capacity,
975 table[high].ocv,
976 table[high].capacity,
977 ocv);
978 }
979 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
980
981 struct power_supply_battery_ocv_table *
power_supply_find_ocv2cap_table(struct power_supply_battery_info * info,int temp,int * table_len)982 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
983 int temp, int *table_len)
984 {
985 int best_temp_diff = INT_MAX, temp_diff;
986 u8 i, best_index = 0;
987
988 if (!info->ocv_table[0])
989 return NULL;
990
991 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
992 /* Out of capacity tables */
993 if (!info->ocv_table[i])
994 break;
995
996 temp_diff = abs(info->ocv_temp[i] - temp);
997
998 if (temp_diff < best_temp_diff) {
999 best_temp_diff = temp_diff;
1000 best_index = i;
1001 }
1002 }
1003
1004 *table_len = info->ocv_table_size[best_index];
1005 return info->ocv_table[best_index];
1006 }
1007 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1008
power_supply_batinfo_ocv2cap(struct power_supply_battery_info * info,int ocv,int temp)1009 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1010 int ocv, int temp)
1011 {
1012 struct power_supply_battery_ocv_table *table;
1013 int table_len;
1014
1015 table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1016 if (!table)
1017 return -EINVAL;
1018
1019 return power_supply_ocv2cap_simple(table, table_len, ocv);
1020 }
1021 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1022
power_supply_battery_bti_in_range(struct power_supply_battery_info * info,int resistance)1023 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1024 int resistance)
1025 {
1026 int low, high;
1027
1028 /* Nothing like this can be checked */
1029 if (info->bti_resistance_ohm <= 0)
1030 return false;
1031
1032 /* This will be extremely strict and unlikely to work */
1033 if (info->bti_resistance_tolerance <= 0)
1034 return (info->bti_resistance_ohm == resistance);
1035
1036 low = info->bti_resistance_ohm -
1037 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1038 high = info->bti_resistance_ohm +
1039 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1040
1041 return ((resistance >= low) && (resistance <= high));
1042 }
1043 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1044
power_supply_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)1045 int power_supply_get_property(struct power_supply *psy,
1046 enum power_supply_property psp,
1047 union power_supply_propval *val)
1048 {
1049 if (atomic_read(&psy->use_cnt) <= 0) {
1050 if (!psy->initialized)
1051 return -EAGAIN;
1052 return -ENODEV;
1053 }
1054
1055 return psy->desc->get_property(psy, psp, val);
1056 }
1057 EXPORT_SYMBOL_GPL(power_supply_get_property);
1058
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)1059 int power_supply_set_property(struct power_supply *psy,
1060 enum power_supply_property psp,
1061 const union power_supply_propval *val)
1062 {
1063 if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property)
1064 return -ENODEV;
1065
1066 return psy->desc->set_property(psy, psp, val);
1067 }
1068 EXPORT_SYMBOL_GPL(power_supply_set_property);
1069
power_supply_property_is_writeable(struct power_supply * psy,enum power_supply_property psp)1070 int power_supply_property_is_writeable(struct power_supply *psy,
1071 enum power_supply_property psp)
1072 {
1073 if (atomic_read(&psy->use_cnt) <= 0 ||
1074 !psy->desc->property_is_writeable)
1075 return -ENODEV;
1076
1077 return psy->desc->property_is_writeable(psy, psp);
1078 }
1079 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable);
1080
power_supply_external_power_changed(struct power_supply * psy)1081 void power_supply_external_power_changed(struct power_supply *psy)
1082 {
1083 if (atomic_read(&psy->use_cnt) <= 0 ||
1084 !psy->desc->external_power_changed)
1085 return;
1086
1087 psy->desc->external_power_changed(psy);
1088 }
1089 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1090
power_supply_powers(struct power_supply * psy,struct device * dev)1091 int power_supply_powers(struct power_supply *psy, struct device *dev)
1092 {
1093 return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1094 }
1095 EXPORT_SYMBOL_GPL(power_supply_powers);
1096
power_supply_dev_release(struct device * dev)1097 static void power_supply_dev_release(struct device *dev)
1098 {
1099 struct power_supply *psy = to_power_supply(dev);
1100 dev_dbg(dev, "%s\n", __func__);
1101 kfree(psy);
1102 }
1103
power_supply_reg_notifier(struct notifier_block * nb)1104 int power_supply_reg_notifier(struct notifier_block *nb)
1105 {
1106 return atomic_notifier_chain_register(&power_supply_notifier, nb);
1107 }
1108 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1109
power_supply_unreg_notifier(struct notifier_block * nb)1110 void power_supply_unreg_notifier(struct notifier_block *nb)
1111 {
1112 atomic_notifier_chain_unregister(&power_supply_notifier, nb);
1113 }
1114 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1115
psy_has_property(const struct power_supply_desc * psy_desc,enum power_supply_property psp)1116 static bool psy_has_property(const struct power_supply_desc *psy_desc,
1117 enum power_supply_property psp)
1118 {
1119 bool found = false;
1120 int i;
1121
1122 for (i = 0; i < psy_desc->num_properties; i++) {
1123 if (psy_desc->properties[i] == psp) {
1124 found = true;
1125 break;
1126 }
1127 }
1128
1129 return found;
1130 }
1131
1132 #ifdef CONFIG_THERMAL
power_supply_read_temp(struct thermal_zone_device * tzd,int * temp)1133 static int power_supply_read_temp(struct thermal_zone_device *tzd,
1134 int *temp)
1135 {
1136 struct power_supply *psy;
1137 union power_supply_propval val;
1138 int ret;
1139
1140 WARN_ON(tzd == NULL);
1141 psy = tzd->devdata;
1142 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1143 if (ret)
1144 return ret;
1145
1146 /* Convert tenths of degree Celsius to milli degree Celsius. */
1147 *temp = val.intval * 100;
1148
1149 return ret;
1150 }
1151
1152 static struct thermal_zone_device_ops psy_tzd_ops = {
1153 .get_temp = power_supply_read_temp,
1154 };
1155
psy_register_thermal(struct power_supply * psy)1156 static int psy_register_thermal(struct power_supply *psy)
1157 {
1158 int ret;
1159
1160 if (psy->desc->no_thermal)
1161 return 0;
1162
1163 /* Register battery zone device psy reports temperature */
1164 if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
1165 psy->tzd = thermal_zone_device_register(psy->desc->name,
1166 0, 0, psy, &psy_tzd_ops, NULL, 0, 0);
1167 if (IS_ERR(psy->tzd))
1168 return PTR_ERR(psy->tzd);
1169 ret = thermal_zone_device_enable(psy->tzd);
1170 if (ret)
1171 thermal_zone_device_unregister(psy->tzd);
1172 return ret;
1173 }
1174
1175 return 0;
1176 }
1177
psy_unregister_thermal(struct power_supply * psy)1178 static void psy_unregister_thermal(struct power_supply *psy)
1179 {
1180 if (IS_ERR_OR_NULL(psy->tzd))
1181 return;
1182 thermal_zone_device_unregister(psy->tzd);
1183 }
1184
1185 /* thermal cooling device callbacks */
ps_get_max_charge_cntl_limit(struct thermal_cooling_device * tcd,unsigned long * state)1186 static int ps_get_max_charge_cntl_limit(struct thermal_cooling_device *tcd,
1187 unsigned long *state)
1188 {
1189 struct power_supply *psy;
1190 union power_supply_propval val;
1191 int ret;
1192
1193 psy = tcd->devdata;
1194 ret = power_supply_get_property(psy,
1195 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, &val);
1196 if (ret)
1197 return ret;
1198
1199 *state = val.intval;
1200
1201 return ret;
1202 }
1203
ps_get_cur_charge_cntl_limit(struct thermal_cooling_device * tcd,unsigned long * state)1204 static int ps_get_cur_charge_cntl_limit(struct thermal_cooling_device *tcd,
1205 unsigned long *state)
1206 {
1207 struct power_supply *psy;
1208 union power_supply_propval val;
1209 int ret;
1210
1211 psy = tcd->devdata;
1212 ret = power_supply_get_property(psy,
1213 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, &val);
1214 if (ret)
1215 return ret;
1216
1217 *state = val.intval;
1218
1219 return ret;
1220 }
1221
ps_set_cur_charge_cntl_limit(struct thermal_cooling_device * tcd,unsigned long state)1222 static int ps_set_cur_charge_cntl_limit(struct thermal_cooling_device *tcd,
1223 unsigned long state)
1224 {
1225 struct power_supply *psy;
1226 union power_supply_propval val;
1227 int ret;
1228
1229 psy = tcd->devdata;
1230 val.intval = state;
1231 ret = psy->desc->set_property(psy,
1232 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, &val);
1233
1234 return ret;
1235 }
1236
1237 static const struct thermal_cooling_device_ops psy_tcd_ops = {
1238 .get_max_state = ps_get_max_charge_cntl_limit,
1239 .get_cur_state = ps_get_cur_charge_cntl_limit,
1240 .set_cur_state = ps_set_cur_charge_cntl_limit,
1241 };
1242
psy_register_cooler(struct power_supply * psy)1243 static int psy_register_cooler(struct power_supply *psy)
1244 {
1245 /* Register for cooling device if psy can control charging */
1246 if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT)) {
1247 psy->tcd = thermal_cooling_device_register(
1248 (char *)psy->desc->name,
1249 psy, &psy_tcd_ops);
1250 return PTR_ERR_OR_ZERO(psy->tcd);
1251 }
1252
1253 return 0;
1254 }
1255
psy_unregister_cooler(struct power_supply * psy)1256 static void psy_unregister_cooler(struct power_supply *psy)
1257 {
1258 if (IS_ERR_OR_NULL(psy->tcd))
1259 return;
1260 thermal_cooling_device_unregister(psy->tcd);
1261 }
1262 #else
psy_register_thermal(struct power_supply * psy)1263 static int psy_register_thermal(struct power_supply *psy)
1264 {
1265 return 0;
1266 }
1267
psy_unregister_thermal(struct power_supply * psy)1268 static void psy_unregister_thermal(struct power_supply *psy)
1269 {
1270 }
1271
psy_register_cooler(struct power_supply * psy)1272 static int psy_register_cooler(struct power_supply *psy)
1273 {
1274 return 0;
1275 }
1276
psy_unregister_cooler(struct power_supply * psy)1277 static void psy_unregister_cooler(struct power_supply *psy)
1278 {
1279 }
1280 #endif
1281
1282 static struct power_supply *__must_check
__power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg,bool ws)1283 __power_supply_register(struct device *parent,
1284 const struct power_supply_desc *desc,
1285 const struct power_supply_config *cfg,
1286 bool ws)
1287 {
1288 struct device *dev;
1289 struct power_supply *psy;
1290 int rc;
1291
1292 if (!parent)
1293 pr_warn("%s: Expected proper parent device for '%s'\n",
1294 __func__, desc->name);
1295
1296 if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1297 return ERR_PTR(-EINVAL);
1298
1299 if (psy_has_property(desc, POWER_SUPPLY_PROP_USB_TYPE) &&
1300 (!desc->usb_types || !desc->num_usb_types))
1301 return ERR_PTR(-EINVAL);
1302
1303 psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1304 if (!psy)
1305 return ERR_PTR(-ENOMEM);
1306
1307 dev = &psy->dev;
1308
1309 device_initialize(dev);
1310
1311 dev->class = power_supply_class;
1312 dev->type = &power_supply_dev_type;
1313 dev->parent = parent;
1314 dev->release = power_supply_dev_release;
1315 dev_set_drvdata(dev, psy);
1316 psy->desc = desc;
1317 if (cfg) {
1318 dev->groups = cfg->attr_grp;
1319 psy->drv_data = cfg->drv_data;
1320 psy->of_node =
1321 cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1322 psy->supplied_to = cfg->supplied_to;
1323 psy->num_supplicants = cfg->num_supplicants;
1324 }
1325
1326 rc = dev_set_name(dev, "%s", desc->name);
1327 if (rc)
1328 goto dev_set_name_failed;
1329
1330 INIT_WORK(&psy->changed_work, power_supply_changed_work);
1331 INIT_DELAYED_WORK(&psy->deferred_register_work,
1332 power_supply_deferred_register_work);
1333
1334 rc = power_supply_check_supplies(psy);
1335 if (rc) {
1336 dev_dbg(dev, "Not all required supplies found, defer probe\n");
1337 goto check_supplies_failed;
1338 }
1339
1340 spin_lock_init(&psy->changed_lock);
1341 rc = device_add(dev);
1342 if (rc)
1343 goto device_add_failed;
1344
1345 rc = device_init_wakeup(dev, ws);
1346 if (rc)
1347 goto wakeup_init_failed;
1348
1349 rc = psy_register_thermal(psy);
1350 if (rc)
1351 goto register_thermal_failed;
1352
1353 rc = psy_register_cooler(psy);
1354 if (rc)
1355 goto register_cooler_failed;
1356
1357 rc = power_supply_create_triggers(psy);
1358 if (rc)
1359 goto create_triggers_failed;
1360
1361 rc = power_supply_add_hwmon_sysfs(psy);
1362 if (rc)
1363 goto add_hwmon_sysfs_failed;
1364
1365 /*
1366 * Update use_cnt after any uevents (most notably from device_add()).
1367 * We are here still during driver's probe but
1368 * the power_supply_uevent() calls back driver's get_property
1369 * method so:
1370 * 1. Driver did not assigned the returned struct power_supply,
1371 * 2. Driver could not finish initialization (anything in its probe
1372 * after calling power_supply_register()).
1373 */
1374 atomic_inc(&psy->use_cnt);
1375 psy->initialized = true;
1376
1377 queue_delayed_work(system_power_efficient_wq,
1378 &psy->deferred_register_work,
1379 POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1380
1381 return psy;
1382
1383 add_hwmon_sysfs_failed:
1384 power_supply_remove_triggers(psy);
1385 create_triggers_failed:
1386 psy_unregister_cooler(psy);
1387 register_cooler_failed:
1388 psy_unregister_thermal(psy);
1389 register_thermal_failed:
1390 device_del(dev);
1391 wakeup_init_failed:
1392 device_add_failed:
1393 check_supplies_failed:
1394 dev_set_name_failed:
1395 put_device(dev);
1396 return ERR_PTR(rc);
1397 }
1398
1399 /**
1400 * power_supply_register() - Register new power supply
1401 * @parent: Device to be a parent of power supply's device, usually
1402 * the device which probe function calls this
1403 * @desc: Description of power supply, must be valid through whole
1404 * lifetime of this power supply
1405 * @cfg: Run-time specific configuration accessed during registering,
1406 * may be NULL
1407 *
1408 * Return: A pointer to newly allocated power_supply on success
1409 * or ERR_PTR otherwise.
1410 * Use power_supply_unregister() on returned power_supply pointer to release
1411 * resources.
1412 */
power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1413 struct power_supply *__must_check power_supply_register(struct device *parent,
1414 const struct power_supply_desc *desc,
1415 const struct power_supply_config *cfg)
1416 {
1417 return __power_supply_register(parent, desc, cfg, true);
1418 }
1419 EXPORT_SYMBOL_GPL(power_supply_register);
1420
1421 /**
1422 * power_supply_register_no_ws() - Register new non-waking-source power supply
1423 * @parent: Device to be a parent of power supply's device, usually
1424 * the device which probe function calls this
1425 * @desc: Description of power supply, must be valid through whole
1426 * lifetime of this power supply
1427 * @cfg: Run-time specific configuration accessed during registering,
1428 * may be NULL
1429 *
1430 * Return: A pointer to newly allocated power_supply on success
1431 * or ERR_PTR otherwise.
1432 * Use power_supply_unregister() on returned power_supply pointer to release
1433 * resources.
1434 */
1435 struct power_supply *__must_check
power_supply_register_no_ws(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1436 power_supply_register_no_ws(struct device *parent,
1437 const struct power_supply_desc *desc,
1438 const struct power_supply_config *cfg)
1439 {
1440 return __power_supply_register(parent, desc, cfg, false);
1441 }
1442 EXPORT_SYMBOL_GPL(power_supply_register_no_ws);
1443
devm_power_supply_release(struct device * dev,void * res)1444 static void devm_power_supply_release(struct device *dev, void *res)
1445 {
1446 struct power_supply **psy = res;
1447
1448 power_supply_unregister(*psy);
1449 }
1450
1451 /**
1452 * devm_power_supply_register() - Register managed power supply
1453 * @parent: Device to be a parent of power supply's device, usually
1454 * the device which probe function calls this
1455 * @desc: Description of power supply, must be valid through whole
1456 * lifetime of this power supply
1457 * @cfg: Run-time specific configuration accessed during registering,
1458 * may be NULL
1459 *
1460 * Return: A pointer to newly allocated power_supply on success
1461 * or ERR_PTR otherwise.
1462 * The returned power_supply pointer will be automatically unregistered
1463 * on driver detach.
1464 */
1465 struct power_supply *__must_check
devm_power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1466 devm_power_supply_register(struct device *parent,
1467 const struct power_supply_desc *desc,
1468 const struct power_supply_config *cfg)
1469 {
1470 struct power_supply **ptr, *psy;
1471
1472 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1473
1474 if (!ptr)
1475 return ERR_PTR(-ENOMEM);
1476 psy = __power_supply_register(parent, desc, cfg, true);
1477 if (IS_ERR(psy)) {
1478 devres_free(ptr);
1479 } else {
1480 *ptr = psy;
1481 devres_add(parent, ptr);
1482 }
1483 return psy;
1484 }
1485 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1486
1487 /**
1488 * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply
1489 * @parent: Device to be a parent of power supply's device, usually
1490 * the device which probe function calls this
1491 * @desc: Description of power supply, must be valid through whole
1492 * lifetime of this power supply
1493 * @cfg: Run-time specific configuration accessed during registering,
1494 * may be NULL
1495 *
1496 * Return: A pointer to newly allocated power_supply on success
1497 * or ERR_PTR otherwise.
1498 * The returned power_supply pointer will be automatically unregistered
1499 * on driver detach.
1500 */
1501 struct power_supply *__must_check
devm_power_supply_register_no_ws(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1502 devm_power_supply_register_no_ws(struct device *parent,
1503 const struct power_supply_desc *desc,
1504 const struct power_supply_config *cfg)
1505 {
1506 struct power_supply **ptr, *psy;
1507
1508 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1509
1510 if (!ptr)
1511 return ERR_PTR(-ENOMEM);
1512 psy = __power_supply_register(parent, desc, cfg, false);
1513 if (IS_ERR(psy)) {
1514 devres_free(ptr);
1515 } else {
1516 *ptr = psy;
1517 devres_add(parent, ptr);
1518 }
1519 return psy;
1520 }
1521 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws);
1522
1523 /**
1524 * power_supply_unregister() - Remove this power supply from system
1525 * @psy: Pointer to power supply to unregister
1526 *
1527 * Remove this power supply from the system. The resources of power supply
1528 * will be freed here or on last power_supply_put() call.
1529 */
power_supply_unregister(struct power_supply * psy)1530 void power_supply_unregister(struct power_supply *psy)
1531 {
1532 WARN_ON(atomic_dec_return(&psy->use_cnt));
1533 psy->removing = true;
1534 cancel_work_sync(&psy->changed_work);
1535 cancel_delayed_work_sync(&psy->deferred_register_work);
1536 sysfs_remove_link(&psy->dev.kobj, "powers");
1537 power_supply_remove_hwmon_sysfs(psy);
1538 power_supply_remove_triggers(psy);
1539 psy_unregister_cooler(psy);
1540 psy_unregister_thermal(psy);
1541 device_init_wakeup(&psy->dev, false);
1542 device_unregister(&psy->dev);
1543 }
1544 EXPORT_SYMBOL_GPL(power_supply_unregister);
1545
power_supply_get_drvdata(struct power_supply * psy)1546 void *power_supply_get_drvdata(struct power_supply *psy)
1547 {
1548 return psy->drv_data;
1549 }
1550 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1551
power_supply_class_init(void)1552 static int __init power_supply_class_init(void)
1553 {
1554 power_supply_class = class_create(THIS_MODULE, "power_supply");
1555
1556 if (IS_ERR(power_supply_class))
1557 return PTR_ERR(power_supply_class);
1558
1559 power_supply_class->dev_uevent = power_supply_uevent;
1560 power_supply_init_attrs(&power_supply_dev_type);
1561
1562 return 0;
1563 }
1564
power_supply_class_exit(void)1565 static void __exit power_supply_class_exit(void)
1566 {
1567 class_destroy(power_supply_class);
1568 }
1569
1570 subsys_initcall(power_supply_class_init);
1571 module_exit(power_supply_class_exit);
1572
1573 MODULE_DESCRIPTION("Universal power supply monitor class");
1574 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>, "
1575 "Szabolcs Gyurko, "
1576 "Anton Vorontsov <cbou@mail.ru>");
1577 MODULE_LICENSE("GPL");
1578