1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
83 
84 #define MAX_STAT_DEPTH 32
85 
86 #define KEYLENGTH (8*sizeof(t_key))
87 
88 typedef unsigned int t_key;
89 
90 #define T_TNODE 0
91 #define T_LEAF  1
92 #define NODE_TYPE_MASK	0x1UL
93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94 
95 #define IS_TNODE(n) (!(n->parent & T_LEAF))
96 #define IS_LEAF(n) (n->parent & T_LEAF)
97 
98 struct rt_trie_node {
99 	unsigned long parent;
100 	t_key key;
101 };
102 
103 struct leaf {
104 	unsigned long parent;
105 	t_key key;
106 	struct hlist_head list;
107 	struct rcu_head rcu;
108 };
109 
110 struct leaf_info {
111 	struct hlist_node hlist;
112 	int plen;
113 	u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
114 	struct list_head falh;
115 	struct rcu_head rcu;
116 };
117 
118 struct tnode {
119 	unsigned long parent;
120 	t_key key;
121 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
122 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
123 	unsigned int full_children;	/* KEYLENGTH bits needed */
124 	unsigned int empty_children;	/* KEYLENGTH bits needed */
125 	union {
126 		struct rcu_head rcu;
127 		struct work_struct work;
128 		struct tnode *tnode_free;
129 	};
130 	struct rt_trie_node __rcu *child[0];
131 };
132 
133 #ifdef CONFIG_IP_FIB_TRIE_STATS
134 struct trie_use_stats {
135 	unsigned int gets;
136 	unsigned int backtrack;
137 	unsigned int semantic_match_passed;
138 	unsigned int semantic_match_miss;
139 	unsigned int null_node_hit;
140 	unsigned int resize_node_skipped;
141 };
142 #endif
143 
144 struct trie_stat {
145 	unsigned int totdepth;
146 	unsigned int maxdepth;
147 	unsigned int tnodes;
148 	unsigned int leaves;
149 	unsigned int nullpointers;
150 	unsigned int prefixes;
151 	unsigned int nodesizes[MAX_STAT_DEPTH];
152 };
153 
154 struct trie {
155 	struct rt_trie_node __rcu *trie;
156 #ifdef CONFIG_IP_FIB_TRIE_STATS
157 	struct trie_use_stats stats;
158 #endif
159 };
160 
161 static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
162 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
163 				  int wasfull);
164 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
165 static struct tnode *inflate(struct trie *t, struct tnode *tn);
166 static struct tnode *halve(struct trie *t, struct tnode *tn);
167 /* tnodes to free after resize(); protected by RTNL */
168 static struct tnode *tnode_free_head;
169 static size_t tnode_free_size;
170 
171 /*
172  * synchronize_rcu after call_rcu for that many pages; it should be especially
173  * useful before resizing the root node with PREEMPT_NONE configs; the value was
174  * obtained experimentally, aiming to avoid visible slowdown.
175  */
176 static const int sync_pages = 128;
177 
178 static struct kmem_cache *fn_alias_kmem __read_mostly;
179 static struct kmem_cache *trie_leaf_kmem __read_mostly;
180 
181 /*
182  * caller must hold RTNL
183  */
node_parent(const struct rt_trie_node * node)184 static inline struct tnode *node_parent(const struct rt_trie_node *node)
185 {
186 	unsigned long parent;
187 
188 	parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
189 
190 	return (struct tnode *)(parent & ~NODE_TYPE_MASK);
191 }
192 
193 /*
194  * caller must hold RCU read lock or RTNL
195  */
node_parent_rcu(const struct rt_trie_node * node)196 static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
197 {
198 	unsigned long parent;
199 
200 	parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
201 							   lockdep_rtnl_is_held());
202 
203 	return (struct tnode *)(parent & ~NODE_TYPE_MASK);
204 }
205 
206 /* Same as rcu_assign_pointer
207  * but that macro() assumes that value is a pointer.
208  */
node_set_parent(struct rt_trie_node * node,struct tnode * ptr)209 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
210 {
211 	smp_wmb();
212 	node->parent = (unsigned long)ptr | NODE_TYPE(node);
213 }
214 
215 /*
216  * caller must hold RTNL
217  */
tnode_get_child(const struct tnode * tn,unsigned int i)218 static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
219 {
220 	BUG_ON(i >= 1U << tn->bits);
221 
222 	return rtnl_dereference(tn->child[i]);
223 }
224 
225 /*
226  * caller must hold RCU read lock or RTNL
227  */
tnode_get_child_rcu(const struct tnode * tn,unsigned int i)228 static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
229 {
230 	BUG_ON(i >= 1U << tn->bits);
231 
232 	return rcu_dereference_rtnl(tn->child[i]);
233 }
234 
tnode_child_length(const struct tnode * tn)235 static inline int tnode_child_length(const struct tnode *tn)
236 {
237 	return 1 << tn->bits;
238 }
239 
mask_pfx(t_key k,unsigned int l)240 static inline t_key mask_pfx(t_key k, unsigned int l)
241 {
242 	return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
243 }
244 
tkey_extract_bits(t_key a,unsigned int offset,unsigned int bits)245 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
246 {
247 	if (offset < KEYLENGTH)
248 		return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
249 	else
250 		return 0;
251 }
252 
tkey_equals(t_key a,t_key b)253 static inline int tkey_equals(t_key a, t_key b)
254 {
255 	return a == b;
256 }
257 
tkey_sub_equals(t_key a,int offset,int bits,t_key b)258 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
259 {
260 	if (bits == 0 || offset >= KEYLENGTH)
261 		return 1;
262 	bits = bits > KEYLENGTH ? KEYLENGTH : bits;
263 	return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
264 }
265 
tkey_mismatch(t_key a,int offset,t_key b)266 static inline int tkey_mismatch(t_key a, int offset, t_key b)
267 {
268 	t_key diff = a ^ b;
269 	int i = offset;
270 
271 	if (!diff)
272 		return 0;
273 	while ((diff << i) >> (KEYLENGTH-1) == 0)
274 		i++;
275 	return i;
276 }
277 
278 /*
279   To understand this stuff, an understanding of keys and all their bits is
280   necessary. Every node in the trie has a key associated with it, but not
281   all of the bits in that key are significant.
282 
283   Consider a node 'n' and its parent 'tp'.
284 
285   If n is a leaf, every bit in its key is significant. Its presence is
286   necessitated by path compression, since during a tree traversal (when
287   searching for a leaf - unless we are doing an insertion) we will completely
288   ignore all skipped bits we encounter. Thus we need to verify, at the end of
289   a potentially successful search, that we have indeed been walking the
290   correct key path.
291 
292   Note that we can never "miss" the correct key in the tree if present by
293   following the wrong path. Path compression ensures that segments of the key
294   that are the same for all keys with a given prefix are skipped, but the
295   skipped part *is* identical for each node in the subtrie below the skipped
296   bit! trie_insert() in this implementation takes care of that - note the
297   call to tkey_sub_equals() in trie_insert().
298 
299   if n is an internal node - a 'tnode' here, the various parts of its key
300   have many different meanings.
301 
302   Example:
303   _________________________________________________________________
304   | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
305   -----------------------------------------------------------------
306     0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
307 
308   _________________________________________________________________
309   | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
310   -----------------------------------------------------------------
311    16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31
312 
313   tp->pos = 7
314   tp->bits = 3
315   n->pos = 15
316   n->bits = 4
317 
318   First, let's just ignore the bits that come before the parent tp, that is
319   the bits from 0 to (tp->pos-1). They are *known* but at this point we do
320   not use them for anything.
321 
322   The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
323   index into the parent's child array. That is, they will be used to find
324   'n' among tp's children.
325 
326   The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
327   for the node n.
328 
329   All the bits we have seen so far are significant to the node n. The rest
330   of the bits are really not needed or indeed known in n->key.
331 
332   The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
333   n's child array, and will of course be different for each child.
334 
335 
336   The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
337   at this point.
338 
339 */
340 
check_tnode(const struct tnode * tn)341 static inline void check_tnode(const struct tnode *tn)
342 {
343 	WARN_ON(tn && tn->pos+tn->bits > 32);
344 }
345 
346 static const int halve_threshold = 25;
347 static const int inflate_threshold = 50;
348 static const int halve_threshold_root = 15;
349 static const int inflate_threshold_root = 30;
350 
__alias_free_mem(struct rcu_head * head)351 static void __alias_free_mem(struct rcu_head *head)
352 {
353 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
354 	kmem_cache_free(fn_alias_kmem, fa);
355 }
356 
alias_free_mem_rcu(struct fib_alias * fa)357 static inline void alias_free_mem_rcu(struct fib_alias *fa)
358 {
359 	call_rcu(&fa->rcu, __alias_free_mem);
360 }
361 
__leaf_free_rcu(struct rcu_head * head)362 static void __leaf_free_rcu(struct rcu_head *head)
363 {
364 	struct leaf *l = container_of(head, struct leaf, rcu);
365 	kmem_cache_free(trie_leaf_kmem, l);
366 }
367 
free_leaf(struct leaf * l)368 static inline void free_leaf(struct leaf *l)
369 {
370 	call_rcu_bh(&l->rcu, __leaf_free_rcu);
371 }
372 
free_leaf_info(struct leaf_info * leaf)373 static inline void free_leaf_info(struct leaf_info *leaf)
374 {
375 	kfree_rcu(leaf, rcu);
376 }
377 
tnode_alloc(size_t size)378 static struct tnode *tnode_alloc(size_t size)
379 {
380 	if (size <= PAGE_SIZE)
381 		return kzalloc(size, GFP_KERNEL);
382 	else
383 		return vzalloc(size);
384 }
385 
__tnode_vfree(struct work_struct * arg)386 static void __tnode_vfree(struct work_struct *arg)
387 {
388 	struct tnode *tn = container_of(arg, struct tnode, work);
389 	vfree(tn);
390 }
391 
__tnode_free_rcu(struct rcu_head * head)392 static void __tnode_free_rcu(struct rcu_head *head)
393 {
394 	struct tnode *tn = container_of(head, struct tnode, rcu);
395 	size_t size = sizeof(struct tnode) +
396 		      (sizeof(struct rt_trie_node *) << tn->bits);
397 
398 	if (size <= PAGE_SIZE)
399 		kfree(tn);
400 	else {
401 		INIT_WORK(&tn->work, __tnode_vfree);
402 		schedule_work(&tn->work);
403 	}
404 }
405 
tnode_free(struct tnode * tn)406 static inline void tnode_free(struct tnode *tn)
407 {
408 	if (IS_LEAF(tn))
409 		free_leaf((struct leaf *) tn);
410 	else
411 		call_rcu(&tn->rcu, __tnode_free_rcu);
412 }
413 
tnode_free_safe(struct tnode * tn)414 static void tnode_free_safe(struct tnode *tn)
415 {
416 	BUG_ON(IS_LEAF(tn));
417 	tn->tnode_free = tnode_free_head;
418 	tnode_free_head = tn;
419 	tnode_free_size += sizeof(struct tnode) +
420 			   (sizeof(struct rt_trie_node *) << tn->bits);
421 }
422 
tnode_free_flush(void)423 static void tnode_free_flush(void)
424 {
425 	struct tnode *tn;
426 
427 	while ((tn = tnode_free_head)) {
428 		tnode_free_head = tn->tnode_free;
429 		tn->tnode_free = NULL;
430 		tnode_free(tn);
431 	}
432 
433 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
434 		tnode_free_size = 0;
435 		synchronize_rcu();
436 	}
437 }
438 
leaf_new(void)439 static struct leaf *leaf_new(void)
440 {
441 	struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
442 	if (l) {
443 		l->parent = T_LEAF;
444 		INIT_HLIST_HEAD(&l->list);
445 	}
446 	return l;
447 }
448 
leaf_info_new(int plen)449 static struct leaf_info *leaf_info_new(int plen)
450 {
451 	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
452 	if (li) {
453 		li->plen = plen;
454 		li->mask_plen = ntohl(inet_make_mask(plen));
455 		INIT_LIST_HEAD(&li->falh);
456 	}
457 	return li;
458 }
459 
tnode_new(t_key key,int pos,int bits)460 static struct tnode *tnode_new(t_key key, int pos, int bits)
461 {
462 	size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
463 	struct tnode *tn = tnode_alloc(sz);
464 
465 	if (tn) {
466 		tn->parent = T_TNODE;
467 		tn->pos = pos;
468 		tn->bits = bits;
469 		tn->key = key;
470 		tn->full_children = 0;
471 		tn->empty_children = 1<<bits;
472 	}
473 
474 	pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
475 		 sizeof(struct rt_trie_node) << bits);
476 	return tn;
477 }
478 
479 /*
480  * Check whether a tnode 'n' is "full", i.e. it is an internal node
481  * and no bits are skipped. See discussion in dyntree paper p. 6
482  */
483 
tnode_full(const struct tnode * tn,const struct rt_trie_node * n)484 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
485 {
486 	if (n == NULL || IS_LEAF(n))
487 		return 0;
488 
489 	return ((struct tnode *) n)->pos == tn->pos + tn->bits;
490 }
491 
put_child(struct trie * t,struct tnode * tn,int i,struct rt_trie_node * n)492 static inline void put_child(struct trie *t, struct tnode *tn, int i,
493 			     struct rt_trie_node *n)
494 {
495 	tnode_put_child_reorg(tn, i, n, -1);
496 }
497 
498  /*
499   * Add a child at position i overwriting the old value.
500   * Update the value of full_children and empty_children.
501   */
502 
tnode_put_child_reorg(struct tnode * tn,int i,struct rt_trie_node * n,int wasfull)503 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
504 				  int wasfull)
505 {
506 	struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
507 	int isfull;
508 
509 	BUG_ON(i >= 1<<tn->bits);
510 
511 	/* update emptyChildren */
512 	if (n == NULL && chi != NULL)
513 		tn->empty_children++;
514 	else if (n != NULL && chi == NULL)
515 		tn->empty_children--;
516 
517 	/* update fullChildren */
518 	if (wasfull == -1)
519 		wasfull = tnode_full(tn, chi);
520 
521 	isfull = tnode_full(tn, n);
522 	if (wasfull && !isfull)
523 		tn->full_children--;
524 	else if (!wasfull && isfull)
525 		tn->full_children++;
526 
527 	if (n)
528 		node_set_parent(n, tn);
529 
530 	rcu_assign_pointer(tn->child[i], n);
531 }
532 
533 #define MAX_WORK 10
resize(struct trie * t,struct tnode * tn)534 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
535 {
536 	int i;
537 	struct tnode *old_tn;
538 	int inflate_threshold_use;
539 	int halve_threshold_use;
540 	int max_work;
541 
542 	if (!tn)
543 		return NULL;
544 
545 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
546 		 tn, inflate_threshold, halve_threshold);
547 
548 	/* No children */
549 	if (tn->empty_children == tnode_child_length(tn)) {
550 		tnode_free_safe(tn);
551 		return NULL;
552 	}
553 	/* One child */
554 	if (tn->empty_children == tnode_child_length(tn) - 1)
555 		goto one_child;
556 	/*
557 	 * Double as long as the resulting node has a number of
558 	 * nonempty nodes that are above the threshold.
559 	 */
560 
561 	/*
562 	 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
563 	 * the Helsinki University of Technology and Matti Tikkanen of Nokia
564 	 * Telecommunications, page 6:
565 	 * "A node is doubled if the ratio of non-empty children to all
566 	 * children in the *doubled* node is at least 'high'."
567 	 *
568 	 * 'high' in this instance is the variable 'inflate_threshold'. It
569 	 * is expressed as a percentage, so we multiply it with
570 	 * tnode_child_length() and instead of multiplying by 2 (since the
571 	 * child array will be doubled by inflate()) and multiplying
572 	 * the left-hand side by 100 (to handle the percentage thing) we
573 	 * multiply the left-hand side by 50.
574 	 *
575 	 * The left-hand side may look a bit weird: tnode_child_length(tn)
576 	 * - tn->empty_children is of course the number of non-null children
577 	 * in the current node. tn->full_children is the number of "full"
578 	 * children, that is non-null tnodes with a skip value of 0.
579 	 * All of those will be doubled in the resulting inflated tnode, so
580 	 * we just count them one extra time here.
581 	 *
582 	 * A clearer way to write this would be:
583 	 *
584 	 * to_be_doubled = tn->full_children;
585 	 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
586 	 *     tn->full_children;
587 	 *
588 	 * new_child_length = tnode_child_length(tn) * 2;
589 	 *
590 	 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
591 	 *      new_child_length;
592 	 * if (new_fill_factor >= inflate_threshold)
593 	 *
594 	 * ...and so on, tho it would mess up the while () loop.
595 	 *
596 	 * anyway,
597 	 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
598 	 *      inflate_threshold
599 	 *
600 	 * avoid a division:
601 	 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
602 	 *      inflate_threshold * new_child_length
603 	 *
604 	 * expand not_to_be_doubled and to_be_doubled, and shorten:
605 	 * 100 * (tnode_child_length(tn) - tn->empty_children +
606 	 *    tn->full_children) >= inflate_threshold * new_child_length
607 	 *
608 	 * expand new_child_length:
609 	 * 100 * (tnode_child_length(tn) - tn->empty_children +
610 	 *    tn->full_children) >=
611 	 *      inflate_threshold * tnode_child_length(tn) * 2
612 	 *
613 	 * shorten again:
614 	 * 50 * (tn->full_children + tnode_child_length(tn) -
615 	 *    tn->empty_children) >= inflate_threshold *
616 	 *    tnode_child_length(tn)
617 	 *
618 	 */
619 
620 	check_tnode(tn);
621 
622 	/* Keep root node larger  */
623 
624 	if (!node_parent((struct rt_trie_node *)tn)) {
625 		inflate_threshold_use = inflate_threshold_root;
626 		halve_threshold_use = halve_threshold_root;
627 	} else {
628 		inflate_threshold_use = inflate_threshold;
629 		halve_threshold_use = halve_threshold;
630 	}
631 
632 	max_work = MAX_WORK;
633 	while ((tn->full_children > 0 &&  max_work-- &&
634 		50 * (tn->full_children + tnode_child_length(tn)
635 		      - tn->empty_children)
636 		>= inflate_threshold_use * tnode_child_length(tn))) {
637 
638 		old_tn = tn;
639 		tn = inflate(t, tn);
640 
641 		if (IS_ERR(tn)) {
642 			tn = old_tn;
643 #ifdef CONFIG_IP_FIB_TRIE_STATS
644 			t->stats.resize_node_skipped++;
645 #endif
646 			break;
647 		}
648 	}
649 
650 	check_tnode(tn);
651 
652 	/* Return if at least one inflate is run */
653 	if (max_work != MAX_WORK)
654 		return (struct rt_trie_node *) tn;
655 
656 	/*
657 	 * Halve as long as the number of empty children in this
658 	 * node is above threshold.
659 	 */
660 
661 	max_work = MAX_WORK;
662 	while (tn->bits > 1 &&  max_work-- &&
663 	       100 * (tnode_child_length(tn) - tn->empty_children) <
664 	       halve_threshold_use * tnode_child_length(tn)) {
665 
666 		old_tn = tn;
667 		tn = halve(t, tn);
668 		if (IS_ERR(tn)) {
669 			tn = old_tn;
670 #ifdef CONFIG_IP_FIB_TRIE_STATS
671 			t->stats.resize_node_skipped++;
672 #endif
673 			break;
674 		}
675 	}
676 
677 
678 	/* Only one child remains */
679 	if (tn->empty_children == tnode_child_length(tn) - 1) {
680 one_child:
681 		for (i = 0; i < tnode_child_length(tn); i++) {
682 			struct rt_trie_node *n;
683 
684 			n = rtnl_dereference(tn->child[i]);
685 			if (!n)
686 				continue;
687 
688 			/* compress one level */
689 
690 			node_set_parent(n, NULL);
691 			tnode_free_safe(tn);
692 			return n;
693 		}
694 	}
695 	return (struct rt_trie_node *) tn;
696 }
697 
698 
tnode_clean_free(struct tnode * tn)699 static void tnode_clean_free(struct tnode *tn)
700 {
701 	int i;
702 	struct tnode *tofree;
703 
704 	for (i = 0; i < tnode_child_length(tn); i++) {
705 		tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
706 		if (tofree)
707 			tnode_free(tofree);
708 	}
709 	tnode_free(tn);
710 }
711 
inflate(struct trie * t,struct tnode * tn)712 static struct tnode *inflate(struct trie *t, struct tnode *tn)
713 {
714 	struct tnode *oldtnode = tn;
715 	int olen = tnode_child_length(tn);
716 	int i;
717 
718 	pr_debug("In inflate\n");
719 
720 	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
721 
722 	if (!tn)
723 		return ERR_PTR(-ENOMEM);
724 
725 	/*
726 	 * Preallocate and store tnodes before the actual work so we
727 	 * don't get into an inconsistent state if memory allocation
728 	 * fails. In case of failure we return the oldnode and  inflate
729 	 * of tnode is ignored.
730 	 */
731 
732 	for (i = 0; i < olen; i++) {
733 		struct tnode *inode;
734 
735 		inode = (struct tnode *) tnode_get_child(oldtnode, i);
736 		if (inode &&
737 		    IS_TNODE(inode) &&
738 		    inode->pos == oldtnode->pos + oldtnode->bits &&
739 		    inode->bits > 1) {
740 			struct tnode *left, *right;
741 			t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
742 
743 			left = tnode_new(inode->key&(~m), inode->pos + 1,
744 					 inode->bits - 1);
745 			if (!left)
746 				goto nomem;
747 
748 			right = tnode_new(inode->key|m, inode->pos + 1,
749 					  inode->bits - 1);
750 
751 			if (!right) {
752 				tnode_free(left);
753 				goto nomem;
754 			}
755 
756 			put_child(t, tn, 2*i, (struct rt_trie_node *) left);
757 			put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
758 		}
759 	}
760 
761 	for (i = 0; i < olen; i++) {
762 		struct tnode *inode;
763 		struct rt_trie_node *node = tnode_get_child(oldtnode, i);
764 		struct tnode *left, *right;
765 		int size, j;
766 
767 		/* An empty child */
768 		if (node == NULL)
769 			continue;
770 
771 		/* A leaf or an internal node with skipped bits */
772 
773 		if (IS_LEAF(node) || ((struct tnode *) node)->pos >
774 		   tn->pos + tn->bits - 1) {
775 			if (tkey_extract_bits(node->key,
776 					      oldtnode->pos + oldtnode->bits,
777 					      1) == 0)
778 				put_child(t, tn, 2*i, node);
779 			else
780 				put_child(t, tn, 2*i+1, node);
781 			continue;
782 		}
783 
784 		/* An internal node with two children */
785 		inode = (struct tnode *) node;
786 
787 		if (inode->bits == 1) {
788 			put_child(t, tn, 2*i, rtnl_dereference(inode->child[0]));
789 			put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1]));
790 
791 			tnode_free_safe(inode);
792 			continue;
793 		}
794 
795 		/* An internal node with more than two children */
796 
797 		/* We will replace this node 'inode' with two new
798 		 * ones, 'left' and 'right', each with half of the
799 		 * original children. The two new nodes will have
800 		 * a position one bit further down the key and this
801 		 * means that the "significant" part of their keys
802 		 * (see the discussion near the top of this file)
803 		 * will differ by one bit, which will be "0" in
804 		 * left's key and "1" in right's key. Since we are
805 		 * moving the key position by one step, the bit that
806 		 * we are moving away from - the bit at position
807 		 * (inode->pos) - is the one that will differ between
808 		 * left and right. So... we synthesize that bit in the
809 		 * two  new keys.
810 		 * The mask 'm' below will be a single "one" bit at
811 		 * the position (inode->pos)
812 		 */
813 
814 		/* Use the old key, but set the new significant
815 		 *   bit to zero.
816 		 */
817 
818 		left = (struct tnode *) tnode_get_child(tn, 2*i);
819 		put_child(t, tn, 2*i, NULL);
820 
821 		BUG_ON(!left);
822 
823 		right = (struct tnode *) tnode_get_child(tn, 2*i+1);
824 		put_child(t, tn, 2*i+1, NULL);
825 
826 		BUG_ON(!right);
827 
828 		size = tnode_child_length(left);
829 		for (j = 0; j < size; j++) {
830 			put_child(t, left, j, rtnl_dereference(inode->child[j]));
831 			put_child(t, right, j, rtnl_dereference(inode->child[j + size]));
832 		}
833 		put_child(t, tn, 2*i, resize(t, left));
834 		put_child(t, tn, 2*i+1, resize(t, right));
835 
836 		tnode_free_safe(inode);
837 	}
838 	tnode_free_safe(oldtnode);
839 	return tn;
840 nomem:
841 	tnode_clean_free(tn);
842 	return ERR_PTR(-ENOMEM);
843 }
844 
halve(struct trie * t,struct tnode * tn)845 static struct tnode *halve(struct trie *t, struct tnode *tn)
846 {
847 	struct tnode *oldtnode = tn;
848 	struct rt_trie_node *left, *right;
849 	int i;
850 	int olen = tnode_child_length(tn);
851 
852 	pr_debug("In halve\n");
853 
854 	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
855 
856 	if (!tn)
857 		return ERR_PTR(-ENOMEM);
858 
859 	/*
860 	 * Preallocate and store tnodes before the actual work so we
861 	 * don't get into an inconsistent state if memory allocation
862 	 * fails. In case of failure we return the oldnode and halve
863 	 * of tnode is ignored.
864 	 */
865 
866 	for (i = 0; i < olen; i += 2) {
867 		left = tnode_get_child(oldtnode, i);
868 		right = tnode_get_child(oldtnode, i+1);
869 
870 		/* Two nonempty children */
871 		if (left && right) {
872 			struct tnode *newn;
873 
874 			newn = tnode_new(left->key, tn->pos + tn->bits, 1);
875 
876 			if (!newn)
877 				goto nomem;
878 
879 			put_child(t, tn, i/2, (struct rt_trie_node *)newn);
880 		}
881 
882 	}
883 
884 	for (i = 0; i < olen; i += 2) {
885 		struct tnode *newBinNode;
886 
887 		left = tnode_get_child(oldtnode, i);
888 		right = tnode_get_child(oldtnode, i+1);
889 
890 		/* At least one of the children is empty */
891 		if (left == NULL) {
892 			if (right == NULL)    /* Both are empty */
893 				continue;
894 			put_child(t, tn, i/2, right);
895 			continue;
896 		}
897 
898 		if (right == NULL) {
899 			put_child(t, tn, i/2, left);
900 			continue;
901 		}
902 
903 		/* Two nonempty children */
904 		newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
905 		put_child(t, tn, i/2, NULL);
906 		put_child(t, newBinNode, 0, left);
907 		put_child(t, newBinNode, 1, right);
908 		put_child(t, tn, i/2, resize(t, newBinNode));
909 	}
910 	tnode_free_safe(oldtnode);
911 	return tn;
912 nomem:
913 	tnode_clean_free(tn);
914 	return ERR_PTR(-ENOMEM);
915 }
916 
917 /* readside must use rcu_read_lock currently dump routines
918  via get_fa_head and dump */
919 
find_leaf_info(struct leaf * l,int plen)920 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
921 {
922 	struct hlist_head *head = &l->list;
923 	struct hlist_node *node;
924 	struct leaf_info *li;
925 
926 	hlist_for_each_entry_rcu(li, node, head, hlist)
927 		if (li->plen == plen)
928 			return li;
929 
930 	return NULL;
931 }
932 
get_fa_head(struct leaf * l,int plen)933 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
934 {
935 	struct leaf_info *li = find_leaf_info(l, plen);
936 
937 	if (!li)
938 		return NULL;
939 
940 	return &li->falh;
941 }
942 
insert_leaf_info(struct hlist_head * head,struct leaf_info * new)943 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
944 {
945 	struct leaf_info *li = NULL, *last = NULL;
946 	struct hlist_node *node;
947 
948 	if (hlist_empty(head)) {
949 		hlist_add_head_rcu(&new->hlist, head);
950 	} else {
951 		hlist_for_each_entry(li, node, head, hlist) {
952 			if (new->plen > li->plen)
953 				break;
954 
955 			last = li;
956 		}
957 		if (last)
958 			hlist_add_after_rcu(&last->hlist, &new->hlist);
959 		else
960 			hlist_add_before_rcu(&new->hlist, &li->hlist);
961 	}
962 }
963 
964 /* rcu_read_lock needs to be hold by caller from readside */
965 
966 static struct leaf *
fib_find_node(struct trie * t,u32 key)967 fib_find_node(struct trie *t, u32 key)
968 {
969 	int pos;
970 	struct tnode *tn;
971 	struct rt_trie_node *n;
972 
973 	pos = 0;
974 	n = rcu_dereference_rtnl(t->trie);
975 
976 	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
977 		tn = (struct tnode *) n;
978 
979 		check_tnode(tn);
980 
981 		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
982 			pos = tn->pos + tn->bits;
983 			n = tnode_get_child_rcu(tn,
984 						tkey_extract_bits(key,
985 								  tn->pos,
986 								  tn->bits));
987 		} else
988 			break;
989 	}
990 	/* Case we have found a leaf. Compare prefixes */
991 
992 	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
993 		return (struct leaf *)n;
994 
995 	return NULL;
996 }
997 
trie_rebalance(struct trie * t,struct tnode * tn)998 static void trie_rebalance(struct trie *t, struct tnode *tn)
999 {
1000 	int wasfull;
1001 	t_key cindex, key;
1002 	struct tnode *tp;
1003 
1004 	key = tn->key;
1005 
1006 	while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
1007 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1008 		wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
1009 		tn = (struct tnode *) resize(t, (struct tnode *)tn);
1010 
1011 		tnode_put_child_reorg((struct tnode *)tp, cindex,
1012 				      (struct rt_trie_node *)tn, wasfull);
1013 
1014 		tp = node_parent((struct rt_trie_node *) tn);
1015 		if (!tp)
1016 			rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1017 
1018 		tnode_free_flush();
1019 		if (!tp)
1020 			break;
1021 		tn = tp;
1022 	}
1023 
1024 	/* Handle last (top) tnode */
1025 	if (IS_TNODE(tn))
1026 		tn = (struct tnode *)resize(t, (struct tnode *)tn);
1027 
1028 	rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1029 	tnode_free_flush();
1030 }
1031 
1032 /* only used from updater-side */
1033 
fib_insert_node(struct trie * t,u32 key,int plen)1034 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1035 {
1036 	int pos, newpos;
1037 	struct tnode *tp = NULL, *tn = NULL;
1038 	struct rt_trie_node *n;
1039 	struct leaf *l;
1040 	int missbit;
1041 	struct list_head *fa_head = NULL;
1042 	struct leaf_info *li;
1043 	t_key cindex;
1044 
1045 	pos = 0;
1046 	n = rtnl_dereference(t->trie);
1047 
1048 	/* If we point to NULL, stop. Either the tree is empty and we should
1049 	 * just put a new leaf in if, or we have reached an empty child slot,
1050 	 * and we should just put our new leaf in that.
1051 	 * If we point to a T_TNODE, check if it matches our key. Note that
1052 	 * a T_TNODE might be skipping any number of bits - its 'pos' need
1053 	 * not be the parent's 'pos'+'bits'!
1054 	 *
1055 	 * If it does match the current key, get pos/bits from it, extract
1056 	 * the index from our key, push the T_TNODE and walk the tree.
1057 	 *
1058 	 * If it doesn't, we have to replace it with a new T_TNODE.
1059 	 *
1060 	 * If we point to a T_LEAF, it might or might not have the same key
1061 	 * as we do. If it does, just change the value, update the T_LEAF's
1062 	 * value, and return it.
1063 	 * If it doesn't, we need to replace it with a T_TNODE.
1064 	 */
1065 
1066 	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
1067 		tn = (struct tnode *) n;
1068 
1069 		check_tnode(tn);
1070 
1071 		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1072 			tp = tn;
1073 			pos = tn->pos + tn->bits;
1074 			n = tnode_get_child(tn,
1075 					    tkey_extract_bits(key,
1076 							      tn->pos,
1077 							      tn->bits));
1078 
1079 			BUG_ON(n && node_parent(n) != tn);
1080 		} else
1081 			break;
1082 	}
1083 
1084 	/*
1085 	 * n  ----> NULL, LEAF or TNODE
1086 	 *
1087 	 * tp is n's (parent) ----> NULL or TNODE
1088 	 */
1089 
1090 	BUG_ON(tp && IS_LEAF(tp));
1091 
1092 	/* Case 1: n is a leaf. Compare prefixes */
1093 
1094 	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1095 		l = (struct leaf *) n;
1096 		li = leaf_info_new(plen);
1097 
1098 		if (!li)
1099 			return NULL;
1100 
1101 		fa_head = &li->falh;
1102 		insert_leaf_info(&l->list, li);
1103 		goto done;
1104 	}
1105 	l = leaf_new();
1106 
1107 	if (!l)
1108 		return NULL;
1109 
1110 	l->key = key;
1111 	li = leaf_info_new(plen);
1112 
1113 	if (!li) {
1114 		free_leaf(l);
1115 		return NULL;
1116 	}
1117 
1118 	fa_head = &li->falh;
1119 	insert_leaf_info(&l->list, li);
1120 
1121 	if (t->trie && n == NULL) {
1122 		/* Case 2: n is NULL, and will just insert a new leaf */
1123 
1124 		node_set_parent((struct rt_trie_node *)l, tp);
1125 
1126 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1127 		put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
1128 	} else {
1129 		/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1130 		/*
1131 		 *  Add a new tnode here
1132 		 *  first tnode need some special handling
1133 		 */
1134 
1135 		if (tp)
1136 			pos = tp->pos+tp->bits;
1137 		else
1138 			pos = 0;
1139 
1140 		if (n) {
1141 			newpos = tkey_mismatch(key, pos, n->key);
1142 			tn = tnode_new(n->key, newpos, 1);
1143 		} else {
1144 			newpos = 0;
1145 			tn = tnode_new(key, newpos, 1); /* First tnode */
1146 		}
1147 
1148 		if (!tn) {
1149 			free_leaf_info(li);
1150 			free_leaf(l);
1151 			return NULL;
1152 		}
1153 
1154 		node_set_parent((struct rt_trie_node *)tn, tp);
1155 
1156 		missbit = tkey_extract_bits(key, newpos, 1);
1157 		put_child(t, tn, missbit, (struct rt_trie_node *)l);
1158 		put_child(t, tn, 1-missbit, n);
1159 
1160 		if (tp) {
1161 			cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1162 			put_child(t, (struct tnode *)tp, cindex,
1163 				  (struct rt_trie_node *)tn);
1164 		} else {
1165 			rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1166 			tp = tn;
1167 		}
1168 	}
1169 
1170 	if (tp && tp->pos + tp->bits > 32)
1171 		pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1172 			tp, tp->pos, tp->bits, key, plen);
1173 
1174 	/* Rebalance the trie */
1175 
1176 	trie_rebalance(t, tp);
1177 done:
1178 	return fa_head;
1179 }
1180 
1181 /*
1182  * Caller must hold RTNL.
1183  */
fib_table_insert(struct fib_table * tb,struct fib_config * cfg)1184 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1185 {
1186 	struct trie *t = (struct trie *) tb->tb_data;
1187 	struct fib_alias *fa, *new_fa;
1188 	struct list_head *fa_head = NULL;
1189 	struct fib_info *fi;
1190 	int plen = cfg->fc_dst_len;
1191 	u8 tos = cfg->fc_tos;
1192 	u32 key, mask;
1193 	int err;
1194 	struct leaf *l;
1195 
1196 	if (plen > 32)
1197 		return -EINVAL;
1198 
1199 	key = ntohl(cfg->fc_dst);
1200 
1201 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1202 
1203 	mask = ntohl(inet_make_mask(plen));
1204 
1205 	if (key & ~mask)
1206 		return -EINVAL;
1207 
1208 	key = key & mask;
1209 
1210 	fi = fib_create_info(cfg);
1211 	if (IS_ERR(fi)) {
1212 		err = PTR_ERR(fi);
1213 		goto err;
1214 	}
1215 
1216 	l = fib_find_node(t, key);
1217 	fa = NULL;
1218 
1219 	if (l) {
1220 		fa_head = get_fa_head(l, plen);
1221 		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1222 	}
1223 
1224 	/* Now fa, if non-NULL, points to the first fib alias
1225 	 * with the same keys [prefix,tos,priority], if such key already
1226 	 * exists or to the node before which we will insert new one.
1227 	 *
1228 	 * If fa is NULL, we will need to allocate a new one and
1229 	 * insert to the head of f.
1230 	 *
1231 	 * If f is NULL, no fib node matched the destination key
1232 	 * and we need to allocate a new one of those as well.
1233 	 */
1234 
1235 	if (fa && fa->fa_tos == tos &&
1236 	    fa->fa_info->fib_priority == fi->fib_priority) {
1237 		struct fib_alias *fa_first, *fa_match;
1238 
1239 		err = -EEXIST;
1240 		if (cfg->fc_nlflags & NLM_F_EXCL)
1241 			goto out;
1242 
1243 		/* We have 2 goals:
1244 		 * 1. Find exact match for type, scope, fib_info to avoid
1245 		 * duplicate routes
1246 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1247 		 */
1248 		fa_match = NULL;
1249 		fa_first = fa;
1250 		fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1251 		list_for_each_entry_continue(fa, fa_head, fa_list) {
1252 			if (fa->fa_tos != tos)
1253 				break;
1254 			if (fa->fa_info->fib_priority != fi->fib_priority)
1255 				break;
1256 			if (fa->fa_type == cfg->fc_type &&
1257 			    fa->fa_info == fi) {
1258 				fa_match = fa;
1259 				break;
1260 			}
1261 		}
1262 
1263 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1264 			struct fib_info *fi_drop;
1265 			u8 state;
1266 
1267 			fa = fa_first;
1268 			if (fa_match) {
1269 				if (fa == fa_match)
1270 					err = 0;
1271 				goto out;
1272 			}
1273 			err = -ENOBUFS;
1274 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1275 			if (new_fa == NULL)
1276 				goto out;
1277 
1278 			fi_drop = fa->fa_info;
1279 			new_fa->fa_tos = fa->fa_tos;
1280 			new_fa->fa_info = fi;
1281 			new_fa->fa_type = cfg->fc_type;
1282 			state = fa->fa_state;
1283 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1284 
1285 			list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1286 			alias_free_mem_rcu(fa);
1287 
1288 			fib_release_info(fi_drop);
1289 			if (state & FA_S_ACCESSED)
1290 				rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1291 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1292 				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1293 
1294 			goto succeeded;
1295 		}
1296 		/* Error if we find a perfect match which
1297 		 * uses the same scope, type, and nexthop
1298 		 * information.
1299 		 */
1300 		if (fa_match)
1301 			goto out;
1302 
1303 		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1304 			fa = fa_first;
1305 	}
1306 	err = -ENOENT;
1307 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1308 		goto out;
1309 
1310 	err = -ENOBUFS;
1311 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1312 	if (new_fa == NULL)
1313 		goto out;
1314 
1315 	new_fa->fa_info = fi;
1316 	new_fa->fa_tos = tos;
1317 	new_fa->fa_type = cfg->fc_type;
1318 	new_fa->fa_state = 0;
1319 	/*
1320 	 * Insert new entry to the list.
1321 	 */
1322 
1323 	if (!fa_head) {
1324 		fa_head = fib_insert_node(t, key, plen);
1325 		if (unlikely(!fa_head)) {
1326 			err = -ENOMEM;
1327 			goto out_free_new_fa;
1328 		}
1329 	}
1330 
1331 	if (!plen)
1332 		tb->tb_num_default++;
1333 
1334 	list_add_tail_rcu(&new_fa->fa_list,
1335 			  (fa ? &fa->fa_list : fa_head));
1336 
1337 	rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1338 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1339 		  &cfg->fc_nlinfo, 0);
1340 succeeded:
1341 	return 0;
1342 
1343 out_free_new_fa:
1344 	kmem_cache_free(fn_alias_kmem, new_fa);
1345 out:
1346 	fib_release_info(fi);
1347 err:
1348 	return err;
1349 }
1350 
1351 /* should be called with rcu_read_lock */
check_leaf(struct fib_table * tb,struct trie * t,struct leaf * l,t_key key,const struct flowi4 * flp,struct fib_result * res,int fib_flags)1352 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1353 		      t_key key,  const struct flowi4 *flp,
1354 		      struct fib_result *res, int fib_flags)
1355 {
1356 	struct leaf_info *li;
1357 	struct hlist_head *hhead = &l->list;
1358 	struct hlist_node *node;
1359 
1360 	hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1361 		struct fib_alias *fa;
1362 
1363 		if (l->key != (key & li->mask_plen))
1364 			continue;
1365 
1366 		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1367 			struct fib_info *fi = fa->fa_info;
1368 			int nhsel, err;
1369 
1370 			if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1371 				continue;
1372 			if (fi->fib_dead)
1373 				continue;
1374 			if (fa->fa_info->fib_scope < flp->flowi4_scope)
1375 				continue;
1376 			fib_alias_accessed(fa);
1377 			err = fib_props[fa->fa_type].error;
1378 			if (err) {
1379 #ifdef CONFIG_IP_FIB_TRIE_STATS
1380 				t->stats.semantic_match_passed++;
1381 #endif
1382 				return err;
1383 			}
1384 			if (fi->fib_flags & RTNH_F_DEAD)
1385 				continue;
1386 			for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1387 				const struct fib_nh *nh = &fi->fib_nh[nhsel];
1388 
1389 				if (nh->nh_flags & RTNH_F_DEAD)
1390 					continue;
1391 				if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1392 					continue;
1393 
1394 #ifdef CONFIG_IP_FIB_TRIE_STATS
1395 				t->stats.semantic_match_passed++;
1396 #endif
1397 				res->prefixlen = li->plen;
1398 				res->nh_sel = nhsel;
1399 				res->type = fa->fa_type;
1400 				res->scope = fa->fa_info->fib_scope;
1401 				res->fi = fi;
1402 				res->table = tb;
1403 				res->fa_head = &li->falh;
1404 				if (!(fib_flags & FIB_LOOKUP_NOREF))
1405 					atomic_inc(&fi->fib_clntref);
1406 				return 0;
1407 			}
1408 		}
1409 
1410 #ifdef CONFIG_IP_FIB_TRIE_STATS
1411 		t->stats.semantic_match_miss++;
1412 #endif
1413 	}
1414 
1415 	return 1;
1416 }
1417 
fib_table_lookup(struct fib_table * tb,const struct flowi4 * flp,struct fib_result * res,int fib_flags)1418 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1419 		     struct fib_result *res, int fib_flags)
1420 {
1421 	struct trie *t = (struct trie *) tb->tb_data;
1422 	int ret;
1423 	struct rt_trie_node *n;
1424 	struct tnode *pn;
1425 	unsigned int pos, bits;
1426 	t_key key = ntohl(flp->daddr);
1427 	unsigned int chopped_off;
1428 	t_key cindex = 0;
1429 	unsigned int current_prefix_length = KEYLENGTH;
1430 	struct tnode *cn;
1431 	t_key pref_mismatch;
1432 
1433 	rcu_read_lock();
1434 
1435 	n = rcu_dereference(t->trie);
1436 	if (!n)
1437 		goto failed;
1438 
1439 #ifdef CONFIG_IP_FIB_TRIE_STATS
1440 	t->stats.gets++;
1441 #endif
1442 
1443 	/* Just a leaf? */
1444 	if (IS_LEAF(n)) {
1445 		ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1446 		goto found;
1447 	}
1448 
1449 	pn = (struct tnode *) n;
1450 	chopped_off = 0;
1451 
1452 	while (pn) {
1453 		pos = pn->pos;
1454 		bits = pn->bits;
1455 
1456 		if (!chopped_off)
1457 			cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1458 						   pos, bits);
1459 
1460 		n = tnode_get_child_rcu(pn, cindex);
1461 
1462 		if (n == NULL) {
1463 #ifdef CONFIG_IP_FIB_TRIE_STATS
1464 			t->stats.null_node_hit++;
1465 #endif
1466 			goto backtrace;
1467 		}
1468 
1469 		if (IS_LEAF(n)) {
1470 			ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1471 			if (ret > 0)
1472 				goto backtrace;
1473 			goto found;
1474 		}
1475 
1476 		cn = (struct tnode *)n;
1477 
1478 		/*
1479 		 * It's a tnode, and we can do some extra checks here if we
1480 		 * like, to avoid descending into a dead-end branch.
1481 		 * This tnode is in the parent's child array at index
1482 		 * key[p_pos..p_pos+p_bits] but potentially with some bits
1483 		 * chopped off, so in reality the index may be just a
1484 		 * subprefix, padded with zero at the end.
1485 		 * We can also take a look at any skipped bits in this
1486 		 * tnode - everything up to p_pos is supposed to be ok,
1487 		 * and the non-chopped bits of the index (se previous
1488 		 * paragraph) are also guaranteed ok, but the rest is
1489 		 * considered unknown.
1490 		 *
1491 		 * The skipped bits are key[pos+bits..cn->pos].
1492 		 */
1493 
1494 		/* If current_prefix_length < pos+bits, we are already doing
1495 		 * actual prefix  matching, which means everything from
1496 		 * pos+(bits-chopped_off) onward must be zero along some
1497 		 * branch of this subtree - otherwise there is *no* valid
1498 		 * prefix present. Here we can only check the skipped
1499 		 * bits. Remember, since we have already indexed into the
1500 		 * parent's child array, we know that the bits we chopped of
1501 		 * *are* zero.
1502 		 */
1503 
1504 		/* NOTA BENE: Checking only skipped bits
1505 		   for the new node here */
1506 
1507 		if (current_prefix_length < pos+bits) {
1508 			if (tkey_extract_bits(cn->key, current_prefix_length,
1509 						cn->pos - current_prefix_length)
1510 			    || !(cn->child[0]))
1511 				goto backtrace;
1512 		}
1513 
1514 		/*
1515 		 * If chopped_off=0, the index is fully validated and we
1516 		 * only need to look at the skipped bits for this, the new,
1517 		 * tnode. What we actually want to do is to find out if
1518 		 * these skipped bits match our key perfectly, or if we will
1519 		 * have to count on finding a matching prefix further down,
1520 		 * because if we do, we would like to have some way of
1521 		 * verifying the existence of such a prefix at this point.
1522 		 */
1523 
1524 		/* The only thing we can do at this point is to verify that
1525 		 * any such matching prefix can indeed be a prefix to our
1526 		 * key, and if the bits in the node we are inspecting that
1527 		 * do not match our key are not ZERO, this cannot be true.
1528 		 * Thus, find out where there is a mismatch (before cn->pos)
1529 		 * and verify that all the mismatching bits are zero in the
1530 		 * new tnode's key.
1531 		 */
1532 
1533 		/*
1534 		 * Note: We aren't very concerned about the piece of
1535 		 * the key that precede pn->pos+pn->bits, since these
1536 		 * have already been checked. The bits after cn->pos
1537 		 * aren't checked since these are by definition
1538 		 * "unknown" at this point. Thus, what we want to see
1539 		 * is if we are about to enter the "prefix matching"
1540 		 * state, and in that case verify that the skipped
1541 		 * bits that will prevail throughout this subtree are
1542 		 * zero, as they have to be if we are to find a
1543 		 * matching prefix.
1544 		 */
1545 
1546 		pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1547 
1548 		/*
1549 		 * In short: If skipped bits in this node do not match
1550 		 * the search key, enter the "prefix matching"
1551 		 * state.directly.
1552 		 */
1553 		if (pref_mismatch) {
1554 			int mp = KEYLENGTH - fls(pref_mismatch);
1555 
1556 			if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1557 				goto backtrace;
1558 
1559 			if (current_prefix_length >= cn->pos)
1560 				current_prefix_length = mp;
1561 		}
1562 
1563 		pn = (struct tnode *)n; /* Descend */
1564 		chopped_off = 0;
1565 		continue;
1566 
1567 backtrace:
1568 		chopped_off++;
1569 
1570 		/* As zero don't change the child key (cindex) */
1571 		while ((chopped_off <= pn->bits)
1572 		       && !(cindex & (1<<(chopped_off-1))))
1573 			chopped_off++;
1574 
1575 		/* Decrease current_... with bits chopped off */
1576 		if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1577 			current_prefix_length = pn->pos + pn->bits
1578 				- chopped_off;
1579 
1580 		/*
1581 		 * Either we do the actual chop off according or if we have
1582 		 * chopped off all bits in this tnode walk up to our parent.
1583 		 */
1584 
1585 		if (chopped_off <= pn->bits) {
1586 			cindex &= ~(1 << (chopped_off-1));
1587 		} else {
1588 			struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1589 			if (!parent)
1590 				goto failed;
1591 
1592 			/* Get Child's index */
1593 			cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1594 			pn = parent;
1595 			chopped_off = 0;
1596 
1597 #ifdef CONFIG_IP_FIB_TRIE_STATS
1598 			t->stats.backtrack++;
1599 #endif
1600 			goto backtrace;
1601 		}
1602 	}
1603 failed:
1604 	ret = 1;
1605 found:
1606 	rcu_read_unlock();
1607 	return ret;
1608 }
1609 EXPORT_SYMBOL_GPL(fib_table_lookup);
1610 
1611 /*
1612  * Remove the leaf and return parent.
1613  */
trie_leaf_remove(struct trie * t,struct leaf * l)1614 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1615 {
1616 	struct tnode *tp = node_parent((struct rt_trie_node *) l);
1617 
1618 	pr_debug("entering trie_leaf_remove(%p)\n", l);
1619 
1620 	if (tp) {
1621 		t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1622 		put_child(t, (struct tnode *)tp, cindex, NULL);
1623 		trie_rebalance(t, tp);
1624 	} else
1625 		RCU_INIT_POINTER(t->trie, NULL);
1626 
1627 	free_leaf(l);
1628 }
1629 
1630 /*
1631  * Caller must hold RTNL.
1632  */
fib_table_delete(struct fib_table * tb,struct fib_config * cfg)1633 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1634 {
1635 	struct trie *t = (struct trie *) tb->tb_data;
1636 	u32 key, mask;
1637 	int plen = cfg->fc_dst_len;
1638 	u8 tos = cfg->fc_tos;
1639 	struct fib_alias *fa, *fa_to_delete;
1640 	struct list_head *fa_head;
1641 	struct leaf *l;
1642 	struct leaf_info *li;
1643 
1644 	if (plen > 32)
1645 		return -EINVAL;
1646 
1647 	key = ntohl(cfg->fc_dst);
1648 	mask = ntohl(inet_make_mask(plen));
1649 
1650 	if (key & ~mask)
1651 		return -EINVAL;
1652 
1653 	key = key & mask;
1654 	l = fib_find_node(t, key);
1655 
1656 	if (!l)
1657 		return -ESRCH;
1658 
1659 	fa_head = get_fa_head(l, plen);
1660 	fa = fib_find_alias(fa_head, tos, 0);
1661 
1662 	if (!fa)
1663 		return -ESRCH;
1664 
1665 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1666 
1667 	fa_to_delete = NULL;
1668 	fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1669 	list_for_each_entry_continue(fa, fa_head, fa_list) {
1670 		struct fib_info *fi = fa->fa_info;
1671 
1672 		if (fa->fa_tos != tos)
1673 			break;
1674 
1675 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1676 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1677 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1678 		    (!cfg->fc_prefsrc ||
1679 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1680 		    (!cfg->fc_protocol ||
1681 		     fi->fib_protocol == cfg->fc_protocol) &&
1682 		    fib_nh_match(cfg, fi) == 0) {
1683 			fa_to_delete = fa;
1684 			break;
1685 		}
1686 	}
1687 
1688 	if (!fa_to_delete)
1689 		return -ESRCH;
1690 
1691 	fa = fa_to_delete;
1692 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1693 		  &cfg->fc_nlinfo, 0);
1694 
1695 	l = fib_find_node(t, key);
1696 	li = find_leaf_info(l, plen);
1697 
1698 	list_del_rcu(&fa->fa_list);
1699 
1700 	if (!plen)
1701 		tb->tb_num_default--;
1702 
1703 	if (list_empty(fa_head)) {
1704 		hlist_del_rcu(&li->hlist);
1705 		free_leaf_info(li);
1706 	}
1707 
1708 	if (hlist_empty(&l->list))
1709 		trie_leaf_remove(t, l);
1710 
1711 	if (fa->fa_state & FA_S_ACCESSED)
1712 		rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1713 
1714 	fib_release_info(fa->fa_info);
1715 	alias_free_mem_rcu(fa);
1716 	return 0;
1717 }
1718 
trie_flush_list(struct list_head * head)1719 static int trie_flush_list(struct list_head *head)
1720 {
1721 	struct fib_alias *fa, *fa_node;
1722 	int found = 0;
1723 
1724 	list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1725 		struct fib_info *fi = fa->fa_info;
1726 
1727 		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1728 			list_del_rcu(&fa->fa_list);
1729 			fib_release_info(fa->fa_info);
1730 			alias_free_mem_rcu(fa);
1731 			found++;
1732 		}
1733 	}
1734 	return found;
1735 }
1736 
trie_flush_leaf(struct leaf * l)1737 static int trie_flush_leaf(struct leaf *l)
1738 {
1739 	int found = 0;
1740 	struct hlist_head *lih = &l->list;
1741 	struct hlist_node *node, *tmp;
1742 	struct leaf_info *li = NULL;
1743 
1744 	hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1745 		found += trie_flush_list(&li->falh);
1746 
1747 		if (list_empty(&li->falh)) {
1748 			hlist_del_rcu(&li->hlist);
1749 			free_leaf_info(li);
1750 		}
1751 	}
1752 	return found;
1753 }
1754 
1755 /*
1756  * Scan for the next right leaf starting at node p->child[idx]
1757  * Since we have back pointer, no recursion necessary.
1758  */
leaf_walk_rcu(struct tnode * p,struct rt_trie_node * c)1759 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1760 {
1761 	do {
1762 		t_key idx;
1763 
1764 		if (c)
1765 			idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1766 		else
1767 			idx = 0;
1768 
1769 		while (idx < 1u << p->bits) {
1770 			c = tnode_get_child_rcu(p, idx++);
1771 			if (!c)
1772 				continue;
1773 
1774 			if (IS_LEAF(c))
1775 				return (struct leaf *) c;
1776 
1777 			/* Rescan start scanning in new node */
1778 			p = (struct tnode *) c;
1779 			idx = 0;
1780 		}
1781 
1782 		/* Node empty, walk back up to parent */
1783 		c = (struct rt_trie_node *) p;
1784 	} while ((p = node_parent_rcu(c)) != NULL);
1785 
1786 	return NULL; /* Root of trie */
1787 }
1788 
trie_firstleaf(struct trie * t)1789 static struct leaf *trie_firstleaf(struct trie *t)
1790 {
1791 	struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1792 
1793 	if (!n)
1794 		return NULL;
1795 
1796 	if (IS_LEAF(n))          /* trie is just a leaf */
1797 		return (struct leaf *) n;
1798 
1799 	return leaf_walk_rcu(n, NULL);
1800 }
1801 
trie_nextleaf(struct leaf * l)1802 static struct leaf *trie_nextleaf(struct leaf *l)
1803 {
1804 	struct rt_trie_node *c = (struct rt_trie_node *) l;
1805 	struct tnode *p = node_parent_rcu(c);
1806 
1807 	if (!p)
1808 		return NULL;	/* trie with just one leaf */
1809 
1810 	return leaf_walk_rcu(p, c);
1811 }
1812 
trie_leafindex(struct trie * t,int index)1813 static struct leaf *trie_leafindex(struct trie *t, int index)
1814 {
1815 	struct leaf *l = trie_firstleaf(t);
1816 
1817 	while (l && index-- > 0)
1818 		l = trie_nextleaf(l);
1819 
1820 	return l;
1821 }
1822 
1823 
1824 /*
1825  * Caller must hold RTNL.
1826  */
fib_table_flush(struct fib_table * tb)1827 int fib_table_flush(struct fib_table *tb)
1828 {
1829 	struct trie *t = (struct trie *) tb->tb_data;
1830 	struct leaf *l, *ll = NULL;
1831 	int found = 0;
1832 
1833 	for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1834 		found += trie_flush_leaf(l);
1835 
1836 		if (ll && hlist_empty(&ll->list))
1837 			trie_leaf_remove(t, ll);
1838 		ll = l;
1839 	}
1840 
1841 	if (ll && hlist_empty(&ll->list))
1842 		trie_leaf_remove(t, ll);
1843 
1844 	pr_debug("trie_flush found=%d\n", found);
1845 	return found;
1846 }
1847 
fib_free_table(struct fib_table * tb)1848 void fib_free_table(struct fib_table *tb)
1849 {
1850 	kfree(tb);
1851 }
1852 
fn_trie_dump_fa(t_key key,int plen,struct list_head * fah,struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb)1853 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1854 			   struct fib_table *tb,
1855 			   struct sk_buff *skb, struct netlink_callback *cb)
1856 {
1857 	int i, s_i;
1858 	struct fib_alias *fa;
1859 	__be32 xkey = htonl(key);
1860 
1861 	s_i = cb->args[5];
1862 	i = 0;
1863 
1864 	/* rcu_read_lock is hold by caller */
1865 
1866 	list_for_each_entry_rcu(fa, fah, fa_list) {
1867 		if (i < s_i) {
1868 			i++;
1869 			continue;
1870 		}
1871 
1872 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1873 				  cb->nlh->nlmsg_seq,
1874 				  RTM_NEWROUTE,
1875 				  tb->tb_id,
1876 				  fa->fa_type,
1877 				  xkey,
1878 				  plen,
1879 				  fa->fa_tos,
1880 				  fa->fa_info, NLM_F_MULTI) < 0) {
1881 			cb->args[5] = i;
1882 			return -1;
1883 		}
1884 		i++;
1885 	}
1886 	cb->args[5] = i;
1887 	return skb->len;
1888 }
1889 
fn_trie_dump_leaf(struct leaf * l,struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb)1890 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1891 			struct sk_buff *skb, struct netlink_callback *cb)
1892 {
1893 	struct leaf_info *li;
1894 	struct hlist_node *node;
1895 	int i, s_i;
1896 
1897 	s_i = cb->args[4];
1898 	i = 0;
1899 
1900 	/* rcu_read_lock is hold by caller */
1901 	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1902 		if (i < s_i) {
1903 			i++;
1904 			continue;
1905 		}
1906 
1907 		if (i > s_i)
1908 			cb->args[5] = 0;
1909 
1910 		if (list_empty(&li->falh))
1911 			continue;
1912 
1913 		if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1914 			cb->args[4] = i;
1915 			return -1;
1916 		}
1917 		i++;
1918 	}
1919 
1920 	cb->args[4] = i;
1921 	return skb->len;
1922 }
1923 
fib_table_dump(struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb)1924 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1925 		   struct netlink_callback *cb)
1926 {
1927 	struct leaf *l;
1928 	struct trie *t = (struct trie *) tb->tb_data;
1929 	t_key key = cb->args[2];
1930 	int count = cb->args[3];
1931 
1932 	rcu_read_lock();
1933 	/* Dump starting at last key.
1934 	 * Note: 0.0.0.0/0 (ie default) is first key.
1935 	 */
1936 	if (count == 0)
1937 		l = trie_firstleaf(t);
1938 	else {
1939 		/* Normally, continue from last key, but if that is missing
1940 		 * fallback to using slow rescan
1941 		 */
1942 		l = fib_find_node(t, key);
1943 		if (!l)
1944 			l = trie_leafindex(t, count);
1945 	}
1946 
1947 	while (l) {
1948 		cb->args[2] = l->key;
1949 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1950 			cb->args[3] = count;
1951 			rcu_read_unlock();
1952 			return -1;
1953 		}
1954 
1955 		++count;
1956 		l = trie_nextleaf(l);
1957 		memset(&cb->args[4], 0,
1958 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1959 	}
1960 	cb->args[3] = count;
1961 	rcu_read_unlock();
1962 
1963 	return skb->len;
1964 }
1965 
fib_trie_init(void)1966 void __init fib_trie_init(void)
1967 {
1968 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1969 					  sizeof(struct fib_alias),
1970 					  0, SLAB_PANIC, NULL);
1971 
1972 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1973 					   max(sizeof(struct leaf),
1974 					       sizeof(struct leaf_info)),
1975 					   0, SLAB_PANIC, NULL);
1976 }
1977 
1978 
fib_trie_table(u32 id)1979 struct fib_table *fib_trie_table(u32 id)
1980 {
1981 	struct fib_table *tb;
1982 	struct trie *t;
1983 
1984 	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1985 		     GFP_KERNEL);
1986 	if (tb == NULL)
1987 		return NULL;
1988 
1989 	tb->tb_id = id;
1990 	tb->tb_default = -1;
1991 	tb->tb_num_default = 0;
1992 
1993 	t = (struct trie *) tb->tb_data;
1994 	memset(t, 0, sizeof(*t));
1995 
1996 	return tb;
1997 }
1998 
1999 #ifdef CONFIG_PROC_FS
2000 /* Depth first Trie walk iterator */
2001 struct fib_trie_iter {
2002 	struct seq_net_private p;
2003 	struct fib_table *tb;
2004 	struct tnode *tnode;
2005 	unsigned int index;
2006 	unsigned int depth;
2007 };
2008 
fib_trie_get_next(struct fib_trie_iter * iter)2009 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
2010 {
2011 	struct tnode *tn = iter->tnode;
2012 	unsigned int cindex = iter->index;
2013 	struct tnode *p;
2014 
2015 	/* A single entry routing table */
2016 	if (!tn)
2017 		return NULL;
2018 
2019 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2020 		 iter->tnode, iter->index, iter->depth);
2021 rescan:
2022 	while (cindex < (1<<tn->bits)) {
2023 		struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2024 
2025 		if (n) {
2026 			if (IS_LEAF(n)) {
2027 				iter->tnode = tn;
2028 				iter->index = cindex + 1;
2029 			} else {
2030 				/* push down one level */
2031 				iter->tnode = (struct tnode *) n;
2032 				iter->index = 0;
2033 				++iter->depth;
2034 			}
2035 			return n;
2036 		}
2037 
2038 		++cindex;
2039 	}
2040 
2041 	/* Current node exhausted, pop back up */
2042 	p = node_parent_rcu((struct rt_trie_node *)tn);
2043 	if (p) {
2044 		cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2045 		tn = p;
2046 		--iter->depth;
2047 		goto rescan;
2048 	}
2049 
2050 	/* got root? */
2051 	return NULL;
2052 }
2053 
fib_trie_get_first(struct fib_trie_iter * iter,struct trie * t)2054 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2055 				       struct trie *t)
2056 {
2057 	struct rt_trie_node *n;
2058 
2059 	if (!t)
2060 		return NULL;
2061 
2062 	n = rcu_dereference(t->trie);
2063 	if (!n)
2064 		return NULL;
2065 
2066 	if (IS_TNODE(n)) {
2067 		iter->tnode = (struct tnode *) n;
2068 		iter->index = 0;
2069 		iter->depth = 1;
2070 	} else {
2071 		iter->tnode = NULL;
2072 		iter->index = 0;
2073 		iter->depth = 0;
2074 	}
2075 
2076 	return n;
2077 }
2078 
trie_collect_stats(struct trie * t,struct trie_stat * s)2079 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2080 {
2081 	struct rt_trie_node *n;
2082 	struct fib_trie_iter iter;
2083 
2084 	memset(s, 0, sizeof(*s));
2085 
2086 	rcu_read_lock();
2087 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2088 		if (IS_LEAF(n)) {
2089 			struct leaf *l = (struct leaf *)n;
2090 			struct leaf_info *li;
2091 			struct hlist_node *tmp;
2092 
2093 			s->leaves++;
2094 			s->totdepth += iter.depth;
2095 			if (iter.depth > s->maxdepth)
2096 				s->maxdepth = iter.depth;
2097 
2098 			hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2099 				++s->prefixes;
2100 		} else {
2101 			const struct tnode *tn = (const struct tnode *) n;
2102 			int i;
2103 
2104 			s->tnodes++;
2105 			if (tn->bits < MAX_STAT_DEPTH)
2106 				s->nodesizes[tn->bits]++;
2107 
2108 			for (i = 0; i < (1<<tn->bits); i++)
2109 				if (!tn->child[i])
2110 					s->nullpointers++;
2111 		}
2112 	}
2113 	rcu_read_unlock();
2114 }
2115 
2116 /*
2117  *	This outputs /proc/net/fib_triestats
2118  */
trie_show_stats(struct seq_file * seq,struct trie_stat * stat)2119 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2120 {
2121 	unsigned int i, max, pointers, bytes, avdepth;
2122 
2123 	if (stat->leaves)
2124 		avdepth = stat->totdepth*100 / stat->leaves;
2125 	else
2126 		avdepth = 0;
2127 
2128 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2129 		   avdepth / 100, avdepth % 100);
2130 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2131 
2132 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2133 	bytes = sizeof(struct leaf) * stat->leaves;
2134 
2135 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2136 	bytes += sizeof(struct leaf_info) * stat->prefixes;
2137 
2138 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2139 	bytes += sizeof(struct tnode) * stat->tnodes;
2140 
2141 	max = MAX_STAT_DEPTH;
2142 	while (max > 0 && stat->nodesizes[max-1] == 0)
2143 		max--;
2144 
2145 	pointers = 0;
2146 	for (i = 1; i <= max; i++)
2147 		if (stat->nodesizes[i] != 0) {
2148 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2149 			pointers += (1<<i) * stat->nodesizes[i];
2150 		}
2151 	seq_putc(seq, '\n');
2152 	seq_printf(seq, "\tPointers: %u\n", pointers);
2153 
2154 	bytes += sizeof(struct rt_trie_node *) * pointers;
2155 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2156 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2157 }
2158 
2159 #ifdef CONFIG_IP_FIB_TRIE_STATS
trie_show_usage(struct seq_file * seq,const struct trie_use_stats * stats)2160 static void trie_show_usage(struct seq_file *seq,
2161 			    const struct trie_use_stats *stats)
2162 {
2163 	seq_printf(seq, "\nCounters:\n---------\n");
2164 	seq_printf(seq, "gets = %u\n", stats->gets);
2165 	seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2166 	seq_printf(seq, "semantic match passed = %u\n",
2167 		   stats->semantic_match_passed);
2168 	seq_printf(seq, "semantic match miss = %u\n",
2169 		   stats->semantic_match_miss);
2170 	seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2171 	seq_printf(seq, "skipped node resize = %u\n\n",
2172 		   stats->resize_node_skipped);
2173 }
2174 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2175 
fib_table_print(struct seq_file * seq,struct fib_table * tb)2176 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2177 {
2178 	if (tb->tb_id == RT_TABLE_LOCAL)
2179 		seq_puts(seq, "Local:\n");
2180 	else if (tb->tb_id == RT_TABLE_MAIN)
2181 		seq_puts(seq, "Main:\n");
2182 	else
2183 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2184 }
2185 
2186 
fib_triestat_seq_show(struct seq_file * seq,void * v)2187 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2188 {
2189 	struct net *net = (struct net *)seq->private;
2190 	unsigned int h;
2191 
2192 	seq_printf(seq,
2193 		   "Basic info: size of leaf:"
2194 		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2195 		   sizeof(struct leaf), sizeof(struct tnode));
2196 
2197 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2198 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2199 		struct hlist_node *node;
2200 		struct fib_table *tb;
2201 
2202 		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2203 			struct trie *t = (struct trie *) tb->tb_data;
2204 			struct trie_stat stat;
2205 
2206 			if (!t)
2207 				continue;
2208 
2209 			fib_table_print(seq, tb);
2210 
2211 			trie_collect_stats(t, &stat);
2212 			trie_show_stats(seq, &stat);
2213 #ifdef CONFIG_IP_FIB_TRIE_STATS
2214 			trie_show_usage(seq, &t->stats);
2215 #endif
2216 		}
2217 	}
2218 
2219 	return 0;
2220 }
2221 
fib_triestat_seq_open(struct inode * inode,struct file * file)2222 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2223 {
2224 	return single_open_net(inode, file, fib_triestat_seq_show);
2225 }
2226 
2227 static const struct file_operations fib_triestat_fops = {
2228 	.owner	= THIS_MODULE,
2229 	.open	= fib_triestat_seq_open,
2230 	.read	= seq_read,
2231 	.llseek	= seq_lseek,
2232 	.release = single_release_net,
2233 };
2234 
fib_trie_get_idx(struct seq_file * seq,loff_t pos)2235 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2236 {
2237 	struct fib_trie_iter *iter = seq->private;
2238 	struct net *net = seq_file_net(seq);
2239 	loff_t idx = 0;
2240 	unsigned int h;
2241 
2242 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2243 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2244 		struct hlist_node *node;
2245 		struct fib_table *tb;
2246 
2247 		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2248 			struct rt_trie_node *n;
2249 
2250 			for (n = fib_trie_get_first(iter,
2251 						    (struct trie *) tb->tb_data);
2252 			     n; n = fib_trie_get_next(iter))
2253 				if (pos == idx++) {
2254 					iter->tb = tb;
2255 					return n;
2256 				}
2257 		}
2258 	}
2259 
2260 	return NULL;
2261 }
2262 
fib_trie_seq_start(struct seq_file * seq,loff_t * pos)2263 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2264 	__acquires(RCU)
2265 {
2266 	rcu_read_lock();
2267 	return fib_trie_get_idx(seq, *pos);
2268 }
2269 
fib_trie_seq_next(struct seq_file * seq,void * v,loff_t * pos)2270 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2271 {
2272 	struct fib_trie_iter *iter = seq->private;
2273 	struct net *net = seq_file_net(seq);
2274 	struct fib_table *tb = iter->tb;
2275 	struct hlist_node *tb_node;
2276 	unsigned int h;
2277 	struct rt_trie_node *n;
2278 
2279 	++*pos;
2280 	/* next node in same table */
2281 	n = fib_trie_get_next(iter);
2282 	if (n)
2283 		return n;
2284 
2285 	/* walk rest of this hash chain */
2286 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2287 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2288 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2289 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2290 		if (n)
2291 			goto found;
2292 	}
2293 
2294 	/* new hash chain */
2295 	while (++h < FIB_TABLE_HASHSZ) {
2296 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2297 		hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2298 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2299 			if (n)
2300 				goto found;
2301 		}
2302 	}
2303 	return NULL;
2304 
2305 found:
2306 	iter->tb = tb;
2307 	return n;
2308 }
2309 
fib_trie_seq_stop(struct seq_file * seq,void * v)2310 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2311 	__releases(RCU)
2312 {
2313 	rcu_read_unlock();
2314 }
2315 
seq_indent(struct seq_file * seq,int n)2316 static void seq_indent(struct seq_file *seq, int n)
2317 {
2318 	while (n-- > 0)
2319 		seq_puts(seq, "   ");
2320 }
2321 
rtn_scope(char * buf,size_t len,enum rt_scope_t s)2322 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2323 {
2324 	switch (s) {
2325 	case RT_SCOPE_UNIVERSE: return "universe";
2326 	case RT_SCOPE_SITE:	return "site";
2327 	case RT_SCOPE_LINK:	return "link";
2328 	case RT_SCOPE_HOST:	return "host";
2329 	case RT_SCOPE_NOWHERE:	return "nowhere";
2330 	default:
2331 		snprintf(buf, len, "scope=%d", s);
2332 		return buf;
2333 	}
2334 }
2335 
2336 static const char *const rtn_type_names[__RTN_MAX] = {
2337 	[RTN_UNSPEC] = "UNSPEC",
2338 	[RTN_UNICAST] = "UNICAST",
2339 	[RTN_LOCAL] = "LOCAL",
2340 	[RTN_BROADCAST] = "BROADCAST",
2341 	[RTN_ANYCAST] = "ANYCAST",
2342 	[RTN_MULTICAST] = "MULTICAST",
2343 	[RTN_BLACKHOLE] = "BLACKHOLE",
2344 	[RTN_UNREACHABLE] = "UNREACHABLE",
2345 	[RTN_PROHIBIT] = "PROHIBIT",
2346 	[RTN_THROW] = "THROW",
2347 	[RTN_NAT] = "NAT",
2348 	[RTN_XRESOLVE] = "XRESOLVE",
2349 };
2350 
rtn_type(char * buf,size_t len,unsigned int t)2351 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2352 {
2353 	if (t < __RTN_MAX && rtn_type_names[t])
2354 		return rtn_type_names[t];
2355 	snprintf(buf, len, "type %u", t);
2356 	return buf;
2357 }
2358 
2359 /* Pretty print the trie */
fib_trie_seq_show(struct seq_file * seq,void * v)2360 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2361 {
2362 	const struct fib_trie_iter *iter = seq->private;
2363 	struct rt_trie_node *n = v;
2364 
2365 	if (!node_parent_rcu(n))
2366 		fib_table_print(seq, iter->tb);
2367 
2368 	if (IS_TNODE(n)) {
2369 		struct tnode *tn = (struct tnode *) n;
2370 		__be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2371 
2372 		seq_indent(seq, iter->depth-1);
2373 		seq_printf(seq, "  +-- %pI4/%d %d %d %d\n",
2374 			   &prf, tn->pos, tn->bits, tn->full_children,
2375 			   tn->empty_children);
2376 
2377 	} else {
2378 		struct leaf *l = (struct leaf *) n;
2379 		struct leaf_info *li;
2380 		struct hlist_node *node;
2381 		__be32 val = htonl(l->key);
2382 
2383 		seq_indent(seq, iter->depth);
2384 		seq_printf(seq, "  |-- %pI4\n", &val);
2385 
2386 		hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2387 			struct fib_alias *fa;
2388 
2389 			list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2390 				char buf1[32], buf2[32];
2391 
2392 				seq_indent(seq, iter->depth+1);
2393 				seq_printf(seq, "  /%d %s %s", li->plen,
2394 					   rtn_scope(buf1, sizeof(buf1),
2395 						     fa->fa_info->fib_scope),
2396 					   rtn_type(buf2, sizeof(buf2),
2397 						    fa->fa_type));
2398 				if (fa->fa_tos)
2399 					seq_printf(seq, " tos=%d", fa->fa_tos);
2400 				seq_putc(seq, '\n');
2401 			}
2402 		}
2403 	}
2404 
2405 	return 0;
2406 }
2407 
2408 static const struct seq_operations fib_trie_seq_ops = {
2409 	.start  = fib_trie_seq_start,
2410 	.next   = fib_trie_seq_next,
2411 	.stop   = fib_trie_seq_stop,
2412 	.show   = fib_trie_seq_show,
2413 };
2414 
fib_trie_seq_open(struct inode * inode,struct file * file)2415 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2416 {
2417 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2418 			    sizeof(struct fib_trie_iter));
2419 }
2420 
2421 static const struct file_operations fib_trie_fops = {
2422 	.owner  = THIS_MODULE,
2423 	.open   = fib_trie_seq_open,
2424 	.read   = seq_read,
2425 	.llseek = seq_lseek,
2426 	.release = seq_release_net,
2427 };
2428 
2429 struct fib_route_iter {
2430 	struct seq_net_private p;
2431 	struct trie *main_trie;
2432 	loff_t	pos;
2433 	t_key	key;
2434 };
2435 
fib_route_get_idx(struct fib_route_iter * iter,loff_t pos)2436 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2437 {
2438 	struct leaf *l = NULL;
2439 	struct trie *t = iter->main_trie;
2440 
2441 	/* use cache location of last found key */
2442 	if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2443 		pos -= iter->pos;
2444 	else {
2445 		iter->pos = 0;
2446 		l = trie_firstleaf(t);
2447 	}
2448 
2449 	while (l && pos-- > 0) {
2450 		iter->pos++;
2451 		l = trie_nextleaf(l);
2452 	}
2453 
2454 	if (l)
2455 		iter->key = pos;	/* remember it */
2456 	else
2457 		iter->pos = 0;		/* forget it */
2458 
2459 	return l;
2460 }
2461 
fib_route_seq_start(struct seq_file * seq,loff_t * pos)2462 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2463 	__acquires(RCU)
2464 {
2465 	struct fib_route_iter *iter = seq->private;
2466 	struct fib_table *tb;
2467 
2468 	rcu_read_lock();
2469 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2470 	if (!tb)
2471 		return NULL;
2472 
2473 	iter->main_trie = (struct trie *) tb->tb_data;
2474 	if (*pos == 0)
2475 		return SEQ_START_TOKEN;
2476 	else
2477 		return fib_route_get_idx(iter, *pos - 1);
2478 }
2479 
fib_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2480 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2481 {
2482 	struct fib_route_iter *iter = seq->private;
2483 	struct leaf *l = v;
2484 
2485 	++*pos;
2486 	if (v == SEQ_START_TOKEN) {
2487 		iter->pos = 0;
2488 		l = trie_firstleaf(iter->main_trie);
2489 	} else {
2490 		iter->pos++;
2491 		l = trie_nextleaf(l);
2492 	}
2493 
2494 	if (l)
2495 		iter->key = l->key;
2496 	else
2497 		iter->pos = 0;
2498 	return l;
2499 }
2500 
fib_route_seq_stop(struct seq_file * seq,void * v)2501 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2502 	__releases(RCU)
2503 {
2504 	rcu_read_unlock();
2505 }
2506 
fib_flag_trans(int type,__be32 mask,const struct fib_info * fi)2507 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2508 {
2509 	unsigned int flags = 0;
2510 
2511 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2512 		flags = RTF_REJECT;
2513 	if (fi && fi->fib_nh->nh_gw)
2514 		flags |= RTF_GATEWAY;
2515 	if (mask == htonl(0xFFFFFFFF))
2516 		flags |= RTF_HOST;
2517 	flags |= RTF_UP;
2518 	return flags;
2519 }
2520 
2521 /*
2522  *	This outputs /proc/net/route.
2523  *	The format of the file is not supposed to be changed
2524  *	and needs to be same as fib_hash output to avoid breaking
2525  *	legacy utilities
2526  */
fib_route_seq_show(struct seq_file * seq,void * v)2527 static int fib_route_seq_show(struct seq_file *seq, void *v)
2528 {
2529 	struct leaf *l = v;
2530 	struct leaf_info *li;
2531 	struct hlist_node *node;
2532 
2533 	if (v == SEQ_START_TOKEN) {
2534 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2535 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2536 			   "\tWindow\tIRTT");
2537 		return 0;
2538 	}
2539 
2540 	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2541 		struct fib_alias *fa;
2542 		__be32 mask, prefix;
2543 
2544 		mask = inet_make_mask(li->plen);
2545 		prefix = htonl(l->key);
2546 
2547 		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2548 			const struct fib_info *fi = fa->fa_info;
2549 			unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2550 			int len;
2551 
2552 			if (fa->fa_type == RTN_BROADCAST
2553 			    || fa->fa_type == RTN_MULTICAST)
2554 				continue;
2555 
2556 			if (fi)
2557 				seq_printf(seq,
2558 					 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2559 					 "%d\t%08X\t%d\t%u\t%u%n",
2560 					 fi->fib_dev ? fi->fib_dev->name : "*",
2561 					 prefix,
2562 					 fi->fib_nh->nh_gw, flags, 0, 0,
2563 					 fi->fib_priority,
2564 					 mask,
2565 					 (fi->fib_advmss ?
2566 					  fi->fib_advmss + 40 : 0),
2567 					 fi->fib_window,
2568 					 fi->fib_rtt >> 3, &len);
2569 			else
2570 				seq_printf(seq,
2571 					 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2572 					 "%d\t%08X\t%d\t%u\t%u%n",
2573 					 prefix, 0, flags, 0, 0, 0,
2574 					 mask, 0, 0, 0, &len);
2575 
2576 			seq_printf(seq, "%*s\n", 127 - len, "");
2577 		}
2578 	}
2579 
2580 	return 0;
2581 }
2582 
2583 static const struct seq_operations fib_route_seq_ops = {
2584 	.start  = fib_route_seq_start,
2585 	.next   = fib_route_seq_next,
2586 	.stop   = fib_route_seq_stop,
2587 	.show   = fib_route_seq_show,
2588 };
2589 
fib_route_seq_open(struct inode * inode,struct file * file)2590 static int fib_route_seq_open(struct inode *inode, struct file *file)
2591 {
2592 	return seq_open_net(inode, file, &fib_route_seq_ops,
2593 			    sizeof(struct fib_route_iter));
2594 }
2595 
2596 static const struct file_operations fib_route_fops = {
2597 	.owner  = THIS_MODULE,
2598 	.open   = fib_route_seq_open,
2599 	.read   = seq_read,
2600 	.llseek = seq_lseek,
2601 	.release = seq_release_net,
2602 };
2603 
fib_proc_init(struct net * net)2604 int __net_init fib_proc_init(struct net *net)
2605 {
2606 	if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2607 		goto out1;
2608 
2609 	if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2610 				  &fib_triestat_fops))
2611 		goto out2;
2612 
2613 	if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2614 		goto out3;
2615 
2616 	return 0;
2617 
2618 out3:
2619 	proc_net_remove(net, "fib_triestat");
2620 out2:
2621 	proc_net_remove(net, "fib_trie");
2622 out1:
2623 	return -ENOMEM;
2624 }
2625 
fib_proc_exit(struct net * net)2626 void __net_exit fib_proc_exit(struct net *net)
2627 {
2628 	proc_net_remove(net, "fib_trie");
2629 	proc_net_remove(net, "fib_triestat");
2630 	proc_net_remove(net, "route");
2631 }
2632 
2633 #endif /* CONFIG_PROC_FS */
2634