1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Support PCI/PCIe on PowerNV platforms
4 *
5 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6 */
7
8 #undef DEBUG
9
10 #include <linux/kernel.h>
11 #include <linux/pci.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/string.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/msi.h>
20 #include <linux/iommu.h>
21 #include <linux/rculist.h>
22 #include <linux/sizes.h>
23 #include <linux/debugfs.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26
27 #include <asm/sections.h>
28 #include <asm/io.h>
29 #include <asm/pci-bridge.h>
30 #include <asm/machdep.h>
31 #include <asm/msi_bitmap.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/opal.h>
34 #include <asm/iommu.h>
35 #include <asm/tce.h>
36 #include <asm/xics.h>
37 #include <asm/firmware.h>
38 #include <asm/pnv-pci.h>
39 #include <asm/mmzone.h>
40 #include <asm/xive.h>
41
42 #include <misc/cxl-base.h>
43
44 #include "powernv.h"
45 #include "pci.h"
46 #include "../../../../drivers/pci/pci.h"
47
48 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */
49 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */
50 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
51
52 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_OCAPI" };
53
54 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
55 static void pnv_pci_configure_bus(struct pci_bus *bus);
56
pe_level_printk(const struct pnv_ioda_pe * pe,const char * level,const char * fmt,...)57 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
58 const char *fmt, ...)
59 {
60 struct va_format vaf;
61 va_list args;
62 char pfix[32];
63
64 va_start(args, fmt);
65
66 vaf.fmt = fmt;
67 vaf.va = &args;
68
69 if (pe->flags & PNV_IODA_PE_DEV)
70 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
71 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
72 sprintf(pfix, "%04x:%02x ",
73 pci_domain_nr(pe->pbus), pe->pbus->number);
74 #ifdef CONFIG_PCI_IOV
75 else if (pe->flags & PNV_IODA_PE_VF)
76 sprintf(pfix, "%04x:%02x:%2x.%d",
77 pci_domain_nr(pe->parent_dev->bus),
78 (pe->rid & 0xff00) >> 8,
79 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
80 #endif /* CONFIG_PCI_IOV*/
81
82 printk("%spci %s: [PE# %.2x] %pV",
83 level, pfix, pe->pe_number, &vaf);
84
85 va_end(args);
86 }
87
88 static bool pnv_iommu_bypass_disabled __read_mostly;
89 static bool pci_reset_phbs __read_mostly;
90
iommu_setup(char * str)91 static int __init iommu_setup(char *str)
92 {
93 if (!str)
94 return -EINVAL;
95
96 while (*str) {
97 if (!strncmp(str, "nobypass", 8)) {
98 pnv_iommu_bypass_disabled = true;
99 pr_info("PowerNV: IOMMU bypass window disabled.\n");
100 break;
101 }
102 str += strcspn(str, ",");
103 if (*str == ',')
104 str++;
105 }
106
107 return 0;
108 }
109 early_param("iommu", iommu_setup);
110
pci_reset_phbs_setup(char * str)111 static int __init pci_reset_phbs_setup(char *str)
112 {
113 pci_reset_phbs = true;
114 return 0;
115 }
116
117 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
118
pnv_ioda_init_pe(struct pnv_phb * phb,int pe_no)119 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
120 {
121 s64 rc;
122
123 phb->ioda.pe_array[pe_no].phb = phb;
124 phb->ioda.pe_array[pe_no].pe_number = pe_no;
125 phb->ioda.pe_array[pe_no].dma_setup_done = false;
126
127 /*
128 * Clear the PE frozen state as it might be put into frozen state
129 * in the last PCI remove path. It's not harmful to do so when the
130 * PE is already in unfrozen state.
131 */
132 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
133 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
134 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
135 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
136 __func__, rc, phb->hose->global_number, pe_no);
137
138 return &phb->ioda.pe_array[pe_no];
139 }
140
pnv_ioda_reserve_pe(struct pnv_phb * phb,int pe_no)141 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
142 {
143 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
144 pr_warn("%s: Invalid PE %x on PHB#%x\n",
145 __func__, pe_no, phb->hose->global_number);
146 return;
147 }
148
149 mutex_lock(&phb->ioda.pe_alloc_mutex);
150 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
151 pr_debug("%s: PE %x was reserved on PHB#%x\n",
152 __func__, pe_no, phb->hose->global_number);
153 mutex_unlock(&phb->ioda.pe_alloc_mutex);
154
155 pnv_ioda_init_pe(phb, pe_no);
156 }
157
pnv_ioda_alloc_pe(struct pnv_phb * phb,int count)158 struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count)
159 {
160 struct pnv_ioda_pe *ret = NULL;
161 int run = 0, pe, i;
162
163 mutex_lock(&phb->ioda.pe_alloc_mutex);
164
165 /* scan backwards for a run of @count cleared bits */
166 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
167 if (test_bit(pe, phb->ioda.pe_alloc)) {
168 run = 0;
169 continue;
170 }
171
172 run++;
173 if (run == count)
174 break;
175 }
176 if (run != count)
177 goto out;
178
179 for (i = pe; i < pe + count; i++) {
180 set_bit(i, phb->ioda.pe_alloc);
181 pnv_ioda_init_pe(phb, i);
182 }
183 ret = &phb->ioda.pe_array[pe];
184
185 out:
186 mutex_unlock(&phb->ioda.pe_alloc_mutex);
187 return ret;
188 }
189
pnv_ioda_free_pe(struct pnv_ioda_pe * pe)190 void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
191 {
192 struct pnv_phb *phb = pe->phb;
193 unsigned int pe_num = pe->pe_number;
194
195 WARN_ON(pe->pdev);
196 memset(pe, 0, sizeof(struct pnv_ioda_pe));
197
198 mutex_lock(&phb->ioda.pe_alloc_mutex);
199 clear_bit(pe_num, phb->ioda.pe_alloc);
200 mutex_unlock(&phb->ioda.pe_alloc_mutex);
201 }
202
203 /* The default M64 BAR is shared by all PEs */
pnv_ioda2_init_m64(struct pnv_phb * phb)204 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
205 {
206 const char *desc;
207 struct resource *r;
208 s64 rc;
209
210 /* Configure the default M64 BAR */
211 rc = opal_pci_set_phb_mem_window(phb->opal_id,
212 OPAL_M64_WINDOW_TYPE,
213 phb->ioda.m64_bar_idx,
214 phb->ioda.m64_base,
215 0, /* unused */
216 phb->ioda.m64_size);
217 if (rc != OPAL_SUCCESS) {
218 desc = "configuring";
219 goto fail;
220 }
221
222 /* Enable the default M64 BAR */
223 rc = opal_pci_phb_mmio_enable(phb->opal_id,
224 OPAL_M64_WINDOW_TYPE,
225 phb->ioda.m64_bar_idx,
226 OPAL_ENABLE_M64_SPLIT);
227 if (rc != OPAL_SUCCESS) {
228 desc = "enabling";
229 goto fail;
230 }
231
232 /*
233 * Exclude the segments for reserved and root bus PE, which
234 * are first or last two PEs.
235 */
236 r = &phb->hose->mem_resources[1];
237 if (phb->ioda.reserved_pe_idx == 0)
238 r->start += (2 * phb->ioda.m64_segsize);
239 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
240 r->end -= (2 * phb->ioda.m64_segsize);
241 else
242 pr_warn(" Cannot strip M64 segment for reserved PE#%x\n",
243 phb->ioda.reserved_pe_idx);
244
245 return 0;
246
247 fail:
248 pr_warn(" Failure %lld %s M64 BAR#%d\n",
249 rc, desc, phb->ioda.m64_bar_idx);
250 opal_pci_phb_mmio_enable(phb->opal_id,
251 OPAL_M64_WINDOW_TYPE,
252 phb->ioda.m64_bar_idx,
253 OPAL_DISABLE_M64);
254 return -EIO;
255 }
256
pnv_ioda_reserve_dev_m64_pe(struct pci_dev * pdev,unsigned long * pe_bitmap)257 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
258 unsigned long *pe_bitmap)
259 {
260 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
261 struct resource *r;
262 resource_size_t base, sgsz, start, end;
263 int segno, i;
264
265 base = phb->ioda.m64_base;
266 sgsz = phb->ioda.m64_segsize;
267 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
268 r = &pdev->resource[i];
269 if (!r->parent || !pnv_pci_is_m64(phb, r))
270 continue;
271
272 start = ALIGN_DOWN(r->start - base, sgsz);
273 end = ALIGN(r->end - base, sgsz);
274 for (segno = start / sgsz; segno < end / sgsz; segno++) {
275 if (pe_bitmap)
276 set_bit(segno, pe_bitmap);
277 else
278 pnv_ioda_reserve_pe(phb, segno);
279 }
280 }
281 }
282
pnv_ioda1_init_m64(struct pnv_phb * phb)283 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
284 {
285 struct resource *r;
286 int index;
287
288 /*
289 * There are 16 M64 BARs, each of which has 8 segments. So
290 * there are as many M64 segments as the maximum number of
291 * PEs, which is 128.
292 */
293 for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
294 unsigned long base, segsz = phb->ioda.m64_segsize;
295 int64_t rc;
296
297 base = phb->ioda.m64_base +
298 index * PNV_IODA1_M64_SEGS * segsz;
299 rc = opal_pci_set_phb_mem_window(phb->opal_id,
300 OPAL_M64_WINDOW_TYPE, index, base, 0,
301 PNV_IODA1_M64_SEGS * segsz);
302 if (rc != OPAL_SUCCESS) {
303 pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n",
304 rc, phb->hose->global_number, index);
305 goto fail;
306 }
307
308 rc = opal_pci_phb_mmio_enable(phb->opal_id,
309 OPAL_M64_WINDOW_TYPE, index,
310 OPAL_ENABLE_M64_SPLIT);
311 if (rc != OPAL_SUCCESS) {
312 pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n",
313 rc, phb->hose->global_number, index);
314 goto fail;
315 }
316 }
317
318 for (index = 0; index < phb->ioda.total_pe_num; index++) {
319 int64_t rc;
320
321 /*
322 * P7IOC supports M64DT, which helps mapping M64 segment
323 * to one particular PE#. However, PHB3 has fixed mapping
324 * between M64 segment and PE#. In order to have same logic
325 * for P7IOC and PHB3, we enforce fixed mapping between M64
326 * segment and PE# on P7IOC.
327 */
328 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
329 index, OPAL_M64_WINDOW_TYPE,
330 index / PNV_IODA1_M64_SEGS,
331 index % PNV_IODA1_M64_SEGS);
332 if (rc != OPAL_SUCCESS) {
333 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
334 __func__, rc, phb->hose->global_number,
335 index);
336 goto fail;
337 }
338 }
339
340 /*
341 * Exclude the segments for reserved and root bus PE, which
342 * are first or last two PEs.
343 */
344 r = &phb->hose->mem_resources[1];
345 if (phb->ioda.reserved_pe_idx == 0)
346 r->start += (2 * phb->ioda.m64_segsize);
347 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
348 r->end -= (2 * phb->ioda.m64_segsize);
349 else
350 WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
351 phb->ioda.reserved_pe_idx, phb->hose->global_number);
352
353 return 0;
354
355 fail:
356 for ( ; index >= 0; index--)
357 opal_pci_phb_mmio_enable(phb->opal_id,
358 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
359
360 return -EIO;
361 }
362
pnv_ioda_reserve_m64_pe(struct pci_bus * bus,unsigned long * pe_bitmap,bool all)363 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
364 unsigned long *pe_bitmap,
365 bool all)
366 {
367 struct pci_dev *pdev;
368
369 list_for_each_entry(pdev, &bus->devices, bus_list) {
370 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
371
372 if (all && pdev->subordinate)
373 pnv_ioda_reserve_m64_pe(pdev->subordinate,
374 pe_bitmap, all);
375 }
376 }
377
pnv_ioda_pick_m64_pe(struct pci_bus * bus,bool all)378 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
379 {
380 struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
381 struct pnv_ioda_pe *master_pe, *pe;
382 unsigned long size, *pe_alloc;
383 int i;
384
385 /* Root bus shouldn't use M64 */
386 if (pci_is_root_bus(bus))
387 return NULL;
388
389 /* Allocate bitmap */
390 size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
391 pe_alloc = kzalloc(size, GFP_KERNEL);
392 if (!pe_alloc) {
393 pr_warn("%s: Out of memory !\n",
394 __func__);
395 return NULL;
396 }
397
398 /* Figure out reserved PE numbers by the PE */
399 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
400
401 /*
402 * the current bus might not own M64 window and that's all
403 * contributed by its child buses. For the case, we needn't
404 * pick M64 dependent PE#.
405 */
406 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
407 kfree(pe_alloc);
408 return NULL;
409 }
410
411 /*
412 * Figure out the master PE and put all slave PEs to master
413 * PE's list to form compound PE.
414 */
415 master_pe = NULL;
416 i = -1;
417 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
418 phb->ioda.total_pe_num) {
419 pe = &phb->ioda.pe_array[i];
420
421 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
422 if (!master_pe) {
423 pe->flags |= PNV_IODA_PE_MASTER;
424 INIT_LIST_HEAD(&pe->slaves);
425 master_pe = pe;
426 } else {
427 pe->flags |= PNV_IODA_PE_SLAVE;
428 pe->master = master_pe;
429 list_add_tail(&pe->list, &master_pe->slaves);
430 }
431 }
432
433 kfree(pe_alloc);
434 return master_pe;
435 }
436
pnv_ioda_parse_m64_window(struct pnv_phb * phb)437 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
438 {
439 struct pci_controller *hose = phb->hose;
440 struct device_node *dn = hose->dn;
441 struct resource *res;
442 u32 m64_range[2], i;
443 const __be32 *r;
444 u64 pci_addr;
445
446 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
447 pr_info(" Not support M64 window\n");
448 return;
449 }
450
451 if (!firmware_has_feature(FW_FEATURE_OPAL)) {
452 pr_info(" Firmware too old to support M64 window\n");
453 return;
454 }
455
456 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
457 if (!r) {
458 pr_info(" No <ibm,opal-m64-window> on %pOF\n",
459 dn);
460 return;
461 }
462
463 /*
464 * Find the available M64 BAR range and pickup the last one for
465 * covering the whole 64-bits space. We support only one range.
466 */
467 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
468 m64_range, 2)) {
469 /* In absence of the property, assume 0..15 */
470 m64_range[0] = 0;
471 m64_range[1] = 16;
472 }
473 /* We only support 64 bits in our allocator */
474 if (m64_range[1] > 63) {
475 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
476 __func__, m64_range[1], phb->hose->global_number);
477 m64_range[1] = 63;
478 }
479 /* Empty range, no m64 */
480 if (m64_range[1] <= m64_range[0]) {
481 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
482 __func__, phb->hose->global_number);
483 return;
484 }
485
486 /* Configure M64 informations */
487 res = &hose->mem_resources[1];
488 res->name = dn->full_name;
489 res->start = of_translate_address(dn, r + 2);
490 res->end = res->start + of_read_number(r + 4, 2) - 1;
491 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
492 pci_addr = of_read_number(r, 2);
493 hose->mem_offset[1] = res->start - pci_addr;
494
495 phb->ioda.m64_size = resource_size(res);
496 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
497 phb->ioda.m64_base = pci_addr;
498
499 /* This lines up nicely with the display from processing OF ranges */
500 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
501 res->start, res->end, pci_addr, m64_range[0],
502 m64_range[0] + m64_range[1] - 1);
503
504 /* Mark all M64 used up by default */
505 phb->ioda.m64_bar_alloc = (unsigned long)-1;
506
507 /* Use last M64 BAR to cover M64 window */
508 m64_range[1]--;
509 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
510
511 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
512
513 /* Mark remaining ones free */
514 for (i = m64_range[0]; i < m64_range[1]; i++)
515 clear_bit(i, &phb->ioda.m64_bar_alloc);
516
517 /*
518 * Setup init functions for M64 based on IODA version, IODA3 uses
519 * the IODA2 code.
520 */
521 if (phb->type == PNV_PHB_IODA1)
522 phb->init_m64 = pnv_ioda1_init_m64;
523 else
524 phb->init_m64 = pnv_ioda2_init_m64;
525 }
526
pnv_ioda_freeze_pe(struct pnv_phb * phb,int pe_no)527 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
528 {
529 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
530 struct pnv_ioda_pe *slave;
531 s64 rc;
532
533 /* Fetch master PE */
534 if (pe->flags & PNV_IODA_PE_SLAVE) {
535 pe = pe->master;
536 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
537 return;
538
539 pe_no = pe->pe_number;
540 }
541
542 /* Freeze master PE */
543 rc = opal_pci_eeh_freeze_set(phb->opal_id,
544 pe_no,
545 OPAL_EEH_ACTION_SET_FREEZE_ALL);
546 if (rc != OPAL_SUCCESS) {
547 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
548 __func__, rc, phb->hose->global_number, pe_no);
549 return;
550 }
551
552 /* Freeze slave PEs */
553 if (!(pe->flags & PNV_IODA_PE_MASTER))
554 return;
555
556 list_for_each_entry(slave, &pe->slaves, list) {
557 rc = opal_pci_eeh_freeze_set(phb->opal_id,
558 slave->pe_number,
559 OPAL_EEH_ACTION_SET_FREEZE_ALL);
560 if (rc != OPAL_SUCCESS)
561 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
562 __func__, rc, phb->hose->global_number,
563 slave->pe_number);
564 }
565 }
566
pnv_ioda_unfreeze_pe(struct pnv_phb * phb,int pe_no,int opt)567 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
568 {
569 struct pnv_ioda_pe *pe, *slave;
570 s64 rc;
571
572 /* Find master PE */
573 pe = &phb->ioda.pe_array[pe_no];
574 if (pe->flags & PNV_IODA_PE_SLAVE) {
575 pe = pe->master;
576 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
577 pe_no = pe->pe_number;
578 }
579
580 /* Clear frozen state for master PE */
581 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
582 if (rc != OPAL_SUCCESS) {
583 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
584 __func__, rc, opt, phb->hose->global_number, pe_no);
585 return -EIO;
586 }
587
588 if (!(pe->flags & PNV_IODA_PE_MASTER))
589 return 0;
590
591 /* Clear frozen state for slave PEs */
592 list_for_each_entry(slave, &pe->slaves, list) {
593 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
594 slave->pe_number,
595 opt);
596 if (rc != OPAL_SUCCESS) {
597 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
598 __func__, rc, opt, phb->hose->global_number,
599 slave->pe_number);
600 return -EIO;
601 }
602 }
603
604 return 0;
605 }
606
pnv_ioda_get_pe_state(struct pnv_phb * phb,int pe_no)607 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
608 {
609 struct pnv_ioda_pe *slave, *pe;
610 u8 fstate = 0, state;
611 __be16 pcierr = 0;
612 s64 rc;
613
614 /* Sanity check on PE number */
615 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
616 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
617
618 /*
619 * Fetch the master PE and the PE instance might be
620 * not initialized yet.
621 */
622 pe = &phb->ioda.pe_array[pe_no];
623 if (pe->flags & PNV_IODA_PE_SLAVE) {
624 pe = pe->master;
625 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
626 pe_no = pe->pe_number;
627 }
628
629 /* Check the master PE */
630 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
631 &state, &pcierr, NULL);
632 if (rc != OPAL_SUCCESS) {
633 pr_warn("%s: Failure %lld getting "
634 "PHB#%x-PE#%x state\n",
635 __func__, rc,
636 phb->hose->global_number, pe_no);
637 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
638 }
639
640 /* Check the slave PE */
641 if (!(pe->flags & PNV_IODA_PE_MASTER))
642 return state;
643
644 list_for_each_entry(slave, &pe->slaves, list) {
645 rc = opal_pci_eeh_freeze_status(phb->opal_id,
646 slave->pe_number,
647 &fstate,
648 &pcierr,
649 NULL);
650 if (rc != OPAL_SUCCESS) {
651 pr_warn("%s: Failure %lld getting "
652 "PHB#%x-PE#%x state\n",
653 __func__, rc,
654 phb->hose->global_number, slave->pe_number);
655 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
656 }
657
658 /*
659 * Override the result based on the ascending
660 * priority.
661 */
662 if (fstate > state)
663 state = fstate;
664 }
665
666 return state;
667 }
668
pnv_pci_bdfn_to_pe(struct pnv_phb * phb,u16 bdfn)669 struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn)
670 {
671 int pe_number = phb->ioda.pe_rmap[bdfn];
672
673 if (pe_number == IODA_INVALID_PE)
674 return NULL;
675
676 return &phb->ioda.pe_array[pe_number];
677 }
678
pnv_ioda_get_pe(struct pci_dev * dev)679 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
680 {
681 struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
682 struct pci_dn *pdn = pci_get_pdn(dev);
683
684 if (!pdn)
685 return NULL;
686 if (pdn->pe_number == IODA_INVALID_PE)
687 return NULL;
688 return &phb->ioda.pe_array[pdn->pe_number];
689 }
690
pnv_ioda_set_one_peltv(struct pnv_phb * phb,struct pnv_ioda_pe * parent,struct pnv_ioda_pe * child,bool is_add)691 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
692 struct pnv_ioda_pe *parent,
693 struct pnv_ioda_pe *child,
694 bool is_add)
695 {
696 const char *desc = is_add ? "adding" : "removing";
697 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
698 OPAL_REMOVE_PE_FROM_DOMAIN;
699 struct pnv_ioda_pe *slave;
700 long rc;
701
702 /* Parent PE affects child PE */
703 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
704 child->pe_number, op);
705 if (rc != OPAL_SUCCESS) {
706 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
707 rc, desc);
708 return -ENXIO;
709 }
710
711 if (!(child->flags & PNV_IODA_PE_MASTER))
712 return 0;
713
714 /* Compound case: parent PE affects slave PEs */
715 list_for_each_entry(slave, &child->slaves, list) {
716 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
717 slave->pe_number, op);
718 if (rc != OPAL_SUCCESS) {
719 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
720 rc, desc);
721 return -ENXIO;
722 }
723 }
724
725 return 0;
726 }
727
pnv_ioda_set_peltv(struct pnv_phb * phb,struct pnv_ioda_pe * pe,bool is_add)728 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
729 struct pnv_ioda_pe *pe,
730 bool is_add)
731 {
732 struct pnv_ioda_pe *slave;
733 struct pci_dev *pdev = NULL;
734 int ret;
735
736 /*
737 * Clear PE frozen state. If it's master PE, we need
738 * clear slave PE frozen state as well.
739 */
740 if (is_add) {
741 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
742 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
743 if (pe->flags & PNV_IODA_PE_MASTER) {
744 list_for_each_entry(slave, &pe->slaves, list)
745 opal_pci_eeh_freeze_clear(phb->opal_id,
746 slave->pe_number,
747 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
748 }
749 }
750
751 /*
752 * Associate PE in PELT. We need add the PE into the
753 * corresponding PELT-V as well. Otherwise, the error
754 * originated from the PE might contribute to other
755 * PEs.
756 */
757 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
758 if (ret)
759 return ret;
760
761 /* For compound PEs, any one affects all of them */
762 if (pe->flags & PNV_IODA_PE_MASTER) {
763 list_for_each_entry(slave, &pe->slaves, list) {
764 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
765 if (ret)
766 return ret;
767 }
768 }
769
770 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
771 pdev = pe->pbus->self;
772 else if (pe->flags & PNV_IODA_PE_DEV)
773 pdev = pe->pdev->bus->self;
774 #ifdef CONFIG_PCI_IOV
775 else if (pe->flags & PNV_IODA_PE_VF)
776 pdev = pe->parent_dev;
777 #endif /* CONFIG_PCI_IOV */
778 while (pdev) {
779 struct pci_dn *pdn = pci_get_pdn(pdev);
780 struct pnv_ioda_pe *parent;
781
782 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
783 parent = &phb->ioda.pe_array[pdn->pe_number];
784 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
785 if (ret)
786 return ret;
787 }
788
789 pdev = pdev->bus->self;
790 }
791
792 return 0;
793 }
794
pnv_ioda_unset_peltv(struct pnv_phb * phb,struct pnv_ioda_pe * pe,struct pci_dev * parent)795 static void pnv_ioda_unset_peltv(struct pnv_phb *phb,
796 struct pnv_ioda_pe *pe,
797 struct pci_dev *parent)
798 {
799 int64_t rc;
800
801 while (parent) {
802 struct pci_dn *pdn = pci_get_pdn(parent);
803
804 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
805 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
806 pe->pe_number,
807 OPAL_REMOVE_PE_FROM_DOMAIN);
808 /* XXX What to do in case of error ? */
809 }
810 parent = parent->bus->self;
811 }
812
813 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
814 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
815
816 /* Disassociate PE in PELT */
817 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
818 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
819 if (rc)
820 pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
821 }
822
pnv_ioda_deconfigure_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)823 int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
824 {
825 struct pci_dev *parent;
826 uint8_t bcomp, dcomp, fcomp;
827 int64_t rc;
828 long rid_end, rid;
829
830 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
831 if (pe->pbus) {
832 int count;
833
834 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
835 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
836 parent = pe->pbus->self;
837 if (pe->flags & PNV_IODA_PE_BUS_ALL)
838 count = resource_size(&pe->pbus->busn_res);
839 else
840 count = 1;
841
842 switch(count) {
843 case 1: bcomp = OpalPciBusAll; break;
844 case 2: bcomp = OpalPciBus7Bits; break;
845 case 4: bcomp = OpalPciBus6Bits; break;
846 case 8: bcomp = OpalPciBus5Bits; break;
847 case 16: bcomp = OpalPciBus4Bits; break;
848 case 32: bcomp = OpalPciBus3Bits; break;
849 default:
850 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
851 count);
852 /* Do an exact match only */
853 bcomp = OpalPciBusAll;
854 }
855 rid_end = pe->rid + (count << 8);
856 } else {
857 #ifdef CONFIG_PCI_IOV
858 if (pe->flags & PNV_IODA_PE_VF)
859 parent = pe->parent_dev;
860 else
861 #endif
862 parent = pe->pdev->bus->self;
863 bcomp = OpalPciBusAll;
864 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
865 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
866 rid_end = pe->rid + 1;
867 }
868
869 /* Clear the reverse map */
870 for (rid = pe->rid; rid < rid_end; rid++)
871 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
872
873 /*
874 * Release from all parents PELT-V. NPUs don't have a PELTV
875 * table
876 */
877 if (phb->type != PNV_PHB_NPU_OCAPI)
878 pnv_ioda_unset_peltv(phb, pe, parent);
879
880 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
881 bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
882 if (rc)
883 pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
884
885 pe->pbus = NULL;
886 pe->pdev = NULL;
887 #ifdef CONFIG_PCI_IOV
888 pe->parent_dev = NULL;
889 #endif
890
891 return 0;
892 }
893
pnv_ioda_configure_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)894 int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
895 {
896 uint8_t bcomp, dcomp, fcomp;
897 long rc, rid_end, rid;
898
899 /* Bus validation ? */
900 if (pe->pbus) {
901 int count;
902
903 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
904 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
905 if (pe->flags & PNV_IODA_PE_BUS_ALL)
906 count = resource_size(&pe->pbus->busn_res);
907 else
908 count = 1;
909
910 switch(count) {
911 case 1: bcomp = OpalPciBusAll; break;
912 case 2: bcomp = OpalPciBus7Bits; break;
913 case 4: bcomp = OpalPciBus6Bits; break;
914 case 8: bcomp = OpalPciBus5Bits; break;
915 case 16: bcomp = OpalPciBus4Bits; break;
916 case 32: bcomp = OpalPciBus3Bits; break;
917 default:
918 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
919 count);
920 /* Do an exact match only */
921 bcomp = OpalPciBusAll;
922 }
923 rid_end = pe->rid + (count << 8);
924 } else {
925 bcomp = OpalPciBusAll;
926 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
927 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
928 rid_end = pe->rid + 1;
929 }
930
931 /*
932 * Associate PE in PELT. We need add the PE into the
933 * corresponding PELT-V as well. Otherwise, the error
934 * originated from the PE might contribute to other
935 * PEs.
936 */
937 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
938 bcomp, dcomp, fcomp, OPAL_MAP_PE);
939 if (rc) {
940 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
941 return -ENXIO;
942 }
943
944 /*
945 * Configure PELTV. NPUs don't have a PELTV table so skip
946 * configuration on them.
947 */
948 if (phb->type != PNV_PHB_NPU_OCAPI)
949 pnv_ioda_set_peltv(phb, pe, true);
950
951 /* Setup reverse map */
952 for (rid = pe->rid; rid < rid_end; rid++)
953 phb->ioda.pe_rmap[rid] = pe->pe_number;
954
955 /* Setup one MVTs on IODA1 */
956 if (phb->type != PNV_PHB_IODA1) {
957 pe->mve_number = 0;
958 goto out;
959 }
960
961 pe->mve_number = pe->pe_number;
962 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
963 if (rc != OPAL_SUCCESS) {
964 pe_err(pe, "OPAL error %ld setting up MVE %x\n",
965 rc, pe->mve_number);
966 pe->mve_number = -1;
967 } else {
968 rc = opal_pci_set_mve_enable(phb->opal_id,
969 pe->mve_number, OPAL_ENABLE_MVE);
970 if (rc) {
971 pe_err(pe, "OPAL error %ld enabling MVE %x\n",
972 rc, pe->mve_number);
973 pe->mve_number = -1;
974 }
975 }
976
977 out:
978 return 0;
979 }
980
pnv_ioda_setup_dev_PE(struct pci_dev * dev)981 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
982 {
983 struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
984 struct pci_dn *pdn = pci_get_pdn(dev);
985 struct pnv_ioda_pe *pe;
986
987 if (!pdn) {
988 pr_err("%s: Device tree node not associated properly\n",
989 pci_name(dev));
990 return NULL;
991 }
992 if (pdn->pe_number != IODA_INVALID_PE)
993 return NULL;
994
995 pe = pnv_ioda_alloc_pe(phb, 1);
996 if (!pe) {
997 pr_warn("%s: Not enough PE# available, disabling device\n",
998 pci_name(dev));
999 return NULL;
1000 }
1001
1002 /* NOTE: We don't get a reference for the pointer in the PE
1003 * data structure, both the device and PE structures should be
1004 * destroyed at the same time.
1005 *
1006 * At some point we want to remove the PDN completely anyways
1007 */
1008 pdn->pe_number = pe->pe_number;
1009 pe->flags = PNV_IODA_PE_DEV;
1010 pe->pdev = dev;
1011 pe->pbus = NULL;
1012 pe->mve_number = -1;
1013 pe->rid = dev->bus->number << 8 | pdn->devfn;
1014 pe->device_count++;
1015
1016 pe_info(pe, "Associated device to PE\n");
1017
1018 if (pnv_ioda_configure_pe(phb, pe)) {
1019 /* XXX What do we do here ? */
1020 pnv_ioda_free_pe(pe);
1021 pdn->pe_number = IODA_INVALID_PE;
1022 pe->pdev = NULL;
1023 return NULL;
1024 }
1025
1026 /* Put PE to the list */
1027 mutex_lock(&phb->ioda.pe_list_mutex);
1028 list_add_tail(&pe->list, &phb->ioda.pe_list);
1029 mutex_unlock(&phb->ioda.pe_list_mutex);
1030 return pe;
1031 }
1032
1033 /*
1034 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1035 * single PCI bus. Another one that contains the primary PCI bus and its
1036 * subordinate PCI devices and buses. The second type of PE is normally
1037 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1038 */
pnv_ioda_setup_bus_PE(struct pci_bus * bus,bool all)1039 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1040 {
1041 struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
1042 struct pnv_ioda_pe *pe = NULL;
1043 unsigned int pe_num;
1044
1045 /*
1046 * In partial hotplug case, the PE instance might be still alive.
1047 * We should reuse it instead of allocating a new one.
1048 */
1049 pe_num = phb->ioda.pe_rmap[bus->number << 8];
1050 if (WARN_ON(pe_num != IODA_INVALID_PE)) {
1051 pe = &phb->ioda.pe_array[pe_num];
1052 return NULL;
1053 }
1054
1055 /* PE number for root bus should have been reserved */
1056 if (pci_is_root_bus(bus))
1057 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1058
1059 /* Check if PE is determined by M64 */
1060 if (!pe)
1061 pe = pnv_ioda_pick_m64_pe(bus, all);
1062
1063 /* The PE number isn't pinned by M64 */
1064 if (!pe)
1065 pe = pnv_ioda_alloc_pe(phb, 1);
1066
1067 if (!pe) {
1068 pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1069 __func__, pci_domain_nr(bus), bus->number);
1070 return NULL;
1071 }
1072
1073 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1074 pe->pbus = bus;
1075 pe->pdev = NULL;
1076 pe->mve_number = -1;
1077 pe->rid = bus->busn_res.start << 8;
1078
1079 if (all)
1080 pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
1081 &bus->busn_res.start, &bus->busn_res.end,
1082 pe->pe_number);
1083 else
1084 pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
1085 &bus->busn_res.start, pe->pe_number);
1086
1087 if (pnv_ioda_configure_pe(phb, pe)) {
1088 /* XXX What do we do here ? */
1089 pnv_ioda_free_pe(pe);
1090 pe->pbus = NULL;
1091 return NULL;
1092 }
1093
1094 /* Put PE to the list */
1095 list_add_tail(&pe->list, &phb->ioda.pe_list);
1096
1097 return pe;
1098 }
1099
1100 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1101 struct pnv_ioda_pe *pe);
1102
pnv_pci_ioda_dma_dev_setup(struct pci_dev * pdev)1103 static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev)
1104 {
1105 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1106 struct pci_dn *pdn = pci_get_pdn(pdev);
1107 struct pnv_ioda_pe *pe;
1108
1109 /* Check if the BDFN for this device is associated with a PE yet */
1110 pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1111 if (!pe) {
1112 /* VF PEs should be pre-configured in pnv_pci_sriov_enable() */
1113 if (WARN_ON(pdev->is_virtfn))
1114 return;
1115
1116 pnv_pci_configure_bus(pdev->bus);
1117 pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1118 pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff);
1119
1120
1121 /*
1122 * If we can't setup the IODA PE something has gone horribly
1123 * wrong and we can't enable DMA for the device.
1124 */
1125 if (WARN_ON(!pe))
1126 return;
1127 } else {
1128 pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number);
1129 }
1130
1131 /*
1132 * We assume that bridges *probably* don't need to do any DMA so we can
1133 * skip allocating a TCE table, etc unless we get a non-bridge device.
1134 */
1135 if (!pe->dma_setup_done && !pci_is_bridge(pdev)) {
1136 switch (phb->type) {
1137 case PNV_PHB_IODA1:
1138 pnv_pci_ioda1_setup_dma_pe(phb, pe);
1139 break;
1140 case PNV_PHB_IODA2:
1141 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1142 break;
1143 default:
1144 pr_warn("%s: No DMA for PHB#%x (type %d)\n",
1145 __func__, phb->hose->global_number, phb->type);
1146 }
1147 }
1148
1149 if (pdn)
1150 pdn->pe_number = pe->pe_number;
1151 pe->device_count++;
1152
1153 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1154 pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1155 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1156
1157 /* PEs with a DMA weight of zero won't have a group */
1158 if (pe->table_group.group)
1159 iommu_add_device(&pe->table_group, &pdev->dev);
1160 }
1161
1162 /*
1163 * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1164 *
1165 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1166 * Devices can only access more than that if bit 59 of the PCI address is set
1167 * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1168 * Many PCI devices are not capable of addressing that many bits, and as a
1169 * result are limited to the 4GB of virtual memory made available to 32-bit
1170 * devices in TVE#0.
1171 *
1172 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1173 * devices by configuring the virtual memory past the first 4GB inaccessible
1174 * by 64-bit DMAs. This should only be used by devices that want more than
1175 * 4GB, and only on PEs that have no 32-bit devices.
1176 *
1177 * Currently this will only work on PHB3 (POWER8).
1178 */
pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe * pe)1179 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1180 {
1181 u64 window_size, table_size, tce_count, addr;
1182 struct page *table_pages;
1183 u64 tce_order = 28; /* 256MB TCEs */
1184 __be64 *tces;
1185 s64 rc;
1186
1187 /*
1188 * Window size needs to be a power of two, but needs to account for
1189 * shifting memory by the 4GB offset required to skip 32bit space.
1190 */
1191 window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1192 tce_count = window_size >> tce_order;
1193 table_size = tce_count << 3;
1194
1195 if (table_size < PAGE_SIZE)
1196 table_size = PAGE_SIZE;
1197
1198 table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1199 get_order(table_size));
1200 if (!table_pages)
1201 goto err;
1202
1203 tces = page_address(table_pages);
1204 if (!tces)
1205 goto err;
1206
1207 memset(tces, 0, table_size);
1208
1209 for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1210 tces[(addr + (1ULL << 32)) >> tce_order] =
1211 cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1212 }
1213
1214 rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1215 pe->pe_number,
1216 /* reconfigure window 0 */
1217 (pe->pe_number << 1) + 0,
1218 1,
1219 __pa(tces),
1220 table_size,
1221 1 << tce_order);
1222 if (rc == OPAL_SUCCESS) {
1223 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1224 return 0;
1225 }
1226 err:
1227 pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1228 return -EIO;
1229 }
1230
pnv_pci_ioda_iommu_bypass_supported(struct pci_dev * pdev,u64 dma_mask)1231 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1232 u64 dma_mask)
1233 {
1234 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1235 struct pci_dn *pdn = pci_get_pdn(pdev);
1236 struct pnv_ioda_pe *pe;
1237
1238 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1239 return false;
1240
1241 pe = &phb->ioda.pe_array[pdn->pe_number];
1242 if (pe->tce_bypass_enabled) {
1243 u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1244 if (dma_mask >= top)
1245 return true;
1246 }
1247
1248 /*
1249 * If the device can't set the TCE bypass bit but still wants
1250 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1251 * bypass the 32-bit region and be usable for 64-bit DMAs.
1252 * The device needs to be able to address all of this space.
1253 */
1254 if (dma_mask >> 32 &&
1255 dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1256 /* pe->pdev should be set if it's a single device, pe->pbus if not */
1257 (pe->device_count == 1 || !pe->pbus) &&
1258 phb->model == PNV_PHB_MODEL_PHB3) {
1259 /* Configure the bypass mode */
1260 s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1261 if (rc)
1262 return false;
1263 /* 4GB offset bypasses 32-bit space */
1264 pdev->dev.archdata.dma_offset = (1ULL << 32);
1265 return true;
1266 }
1267
1268 return false;
1269 }
1270
pnv_ioda_get_inval_reg(struct pnv_phb * phb)1271 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb)
1272 {
1273 return phb->regs + 0x210;
1274 }
1275
pnv_pci_p7ioc_tce_invalidate(struct iommu_table * tbl,unsigned long index,unsigned long npages)1276 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1277 unsigned long index, unsigned long npages)
1278 {
1279 struct iommu_table_group_link *tgl = list_first_entry_or_null(
1280 &tbl->it_group_list, struct iommu_table_group_link,
1281 next);
1282 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1283 struct pnv_ioda_pe, table_group);
1284 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1285 unsigned long start, end, inc;
1286
1287 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1288 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1289 npages - 1);
1290
1291 /* p7ioc-style invalidation, 2 TCEs per write */
1292 start |= (1ull << 63);
1293 end |= (1ull << 63);
1294 inc = 16;
1295 end |= inc - 1; /* round up end to be different than start */
1296
1297 mb(); /* Ensure above stores are visible */
1298 while (start <= end) {
1299 __raw_writeq_be(start, invalidate);
1300 start += inc;
1301 }
1302
1303 /*
1304 * The iommu layer will do another mb() for us on build()
1305 * and we don't care on free()
1306 */
1307 }
1308
pnv_ioda1_tce_build(struct iommu_table * tbl,long index,long npages,unsigned long uaddr,enum dma_data_direction direction,unsigned long attrs)1309 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1310 long npages, unsigned long uaddr,
1311 enum dma_data_direction direction,
1312 unsigned long attrs)
1313 {
1314 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1315 attrs);
1316
1317 if (!ret)
1318 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages);
1319
1320 return ret;
1321 }
1322
1323 #ifdef CONFIG_IOMMU_API
1324 /* Common for IODA1 and IODA2 */
pnv_ioda_tce_xchg_no_kill(struct iommu_table * tbl,long index,unsigned long * hpa,enum dma_data_direction * direction)1325 static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1326 unsigned long *hpa, enum dma_data_direction *direction)
1327 {
1328 return pnv_tce_xchg(tbl, index, hpa, direction);
1329 }
1330 #endif
1331
pnv_ioda1_tce_free(struct iommu_table * tbl,long index,long npages)1332 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1333 long npages)
1334 {
1335 pnv_tce_free(tbl, index, npages);
1336
1337 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages);
1338 }
1339
1340 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1341 .set = pnv_ioda1_tce_build,
1342 #ifdef CONFIG_IOMMU_API
1343 .xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1344 .tce_kill = pnv_pci_p7ioc_tce_invalidate,
1345 .useraddrptr = pnv_tce_useraddrptr,
1346 #endif
1347 .clear = pnv_ioda1_tce_free,
1348 .get = pnv_tce_get,
1349 };
1350
1351 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0)
1352 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1)
1353 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2)
1354
pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe * pe)1355 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1356 {
1357 /* 01xb - invalidate TCEs that match the specified PE# */
1358 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1359 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1360
1361 mb(); /* Ensure above stores are visible */
1362 __raw_writeq_be(val, invalidate);
1363 }
1364
pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe * pe,unsigned shift,unsigned long index,unsigned long npages)1365 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe,
1366 unsigned shift, unsigned long index,
1367 unsigned long npages)
1368 {
1369 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1370 unsigned long start, end, inc;
1371
1372 /* We'll invalidate DMA address in PE scope */
1373 start = PHB3_TCE_KILL_INVAL_ONE;
1374 start |= (pe->pe_number & 0xFF);
1375 end = start;
1376
1377 /* Figure out the start, end and step */
1378 start |= (index << shift);
1379 end |= ((index + npages - 1) << shift);
1380 inc = (0x1ull << shift);
1381 mb();
1382
1383 while (start <= end) {
1384 __raw_writeq_be(start, invalidate);
1385 start += inc;
1386 }
1387 }
1388
pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe * pe)1389 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1390 {
1391 struct pnv_phb *phb = pe->phb;
1392
1393 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1394 pnv_pci_phb3_tce_invalidate_pe(pe);
1395 else
1396 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1397 pe->pe_number, 0, 0, 0);
1398 }
1399
pnv_pci_ioda2_tce_invalidate(struct iommu_table * tbl,unsigned long index,unsigned long npages)1400 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1401 unsigned long index, unsigned long npages)
1402 {
1403 struct iommu_table_group_link *tgl;
1404
1405 list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
1406 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1407 struct pnv_ioda_pe, table_group);
1408 struct pnv_phb *phb = pe->phb;
1409 unsigned int shift = tbl->it_page_shift;
1410
1411 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1412 pnv_pci_phb3_tce_invalidate(pe, shift,
1413 index, npages);
1414 else
1415 opal_pci_tce_kill(phb->opal_id,
1416 OPAL_PCI_TCE_KILL_PAGES,
1417 pe->pe_number, 1u << shift,
1418 index << shift, npages);
1419 }
1420 }
1421
pnv_ioda2_tce_build(struct iommu_table * tbl,long index,long npages,unsigned long uaddr,enum dma_data_direction direction,unsigned long attrs)1422 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1423 long npages, unsigned long uaddr,
1424 enum dma_data_direction direction,
1425 unsigned long attrs)
1426 {
1427 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1428 attrs);
1429
1430 if (!ret)
1431 pnv_pci_ioda2_tce_invalidate(tbl, index, npages);
1432
1433 return ret;
1434 }
1435
pnv_ioda2_tce_free(struct iommu_table * tbl,long index,long npages)1436 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1437 long npages)
1438 {
1439 pnv_tce_free(tbl, index, npages);
1440
1441 pnv_pci_ioda2_tce_invalidate(tbl, index, npages);
1442 }
1443
1444 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1445 .set = pnv_ioda2_tce_build,
1446 #ifdef CONFIG_IOMMU_API
1447 .xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1448 .tce_kill = pnv_pci_ioda2_tce_invalidate,
1449 .useraddrptr = pnv_tce_useraddrptr,
1450 #endif
1451 .clear = pnv_ioda2_tce_free,
1452 .get = pnv_tce_get,
1453 .free = pnv_pci_ioda2_table_free_pages,
1454 };
1455
pnv_pci_ioda_dev_dma_weight(struct pci_dev * dev,void * data)1456 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1457 {
1458 unsigned int *weight = (unsigned int *)data;
1459
1460 /* This is quite simplistic. The "base" weight of a device
1461 * is 10. 0 means no DMA is to be accounted for it.
1462 */
1463 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1464 return 0;
1465
1466 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
1467 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
1468 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1469 *weight += 3;
1470 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
1471 *weight += 15;
1472 else
1473 *weight += 10;
1474
1475 return 0;
1476 }
1477
pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe * pe)1478 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
1479 {
1480 unsigned int weight = 0;
1481
1482 /* SRIOV VF has same DMA32 weight as its PF */
1483 #ifdef CONFIG_PCI_IOV
1484 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
1485 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
1486 return weight;
1487 }
1488 #endif
1489
1490 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
1491 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
1492 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
1493 struct pci_dev *pdev;
1494
1495 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
1496 pnv_pci_ioda_dev_dma_weight(pdev, &weight);
1497 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
1498 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
1499 }
1500
1501 return weight;
1502 }
1503
pnv_pci_ioda1_setup_dma_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)1504 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1505 struct pnv_ioda_pe *pe)
1506 {
1507
1508 struct page *tce_mem = NULL;
1509 struct iommu_table *tbl;
1510 unsigned int weight, total_weight = 0;
1511 unsigned int tce32_segsz, base, segs, avail, i;
1512 int64_t rc;
1513 void *addr;
1514
1515 /* XXX FIXME: Handle 64-bit only DMA devices */
1516 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1517 /* XXX FIXME: Allocate multi-level tables on PHB3 */
1518 weight = pnv_pci_ioda_pe_dma_weight(pe);
1519 if (!weight)
1520 return;
1521
1522 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
1523 &total_weight);
1524 segs = (weight * phb->ioda.dma32_count) / total_weight;
1525 if (!segs)
1526 segs = 1;
1527
1528 /*
1529 * Allocate contiguous DMA32 segments. We begin with the expected
1530 * number of segments. With one more attempt, the number of DMA32
1531 * segments to be allocated is decreased by one until one segment
1532 * is allocated successfully.
1533 */
1534 do {
1535 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
1536 for (avail = 0, i = base; i < base + segs; i++) {
1537 if (phb->ioda.dma32_segmap[i] ==
1538 IODA_INVALID_PE)
1539 avail++;
1540 }
1541
1542 if (avail == segs)
1543 goto found;
1544 }
1545 } while (--segs);
1546
1547 if (!segs) {
1548 pe_warn(pe, "No available DMA32 segments\n");
1549 return;
1550 }
1551
1552 found:
1553 tbl = pnv_pci_table_alloc(phb->hose->node);
1554 if (WARN_ON(!tbl))
1555 return;
1556
1557 iommu_register_group(&pe->table_group, phb->hose->global_number,
1558 pe->pe_number);
1559 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1560
1561 /* Grab a 32-bit TCE table */
1562 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
1563 weight, total_weight, base, segs);
1564 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1565 base * PNV_IODA1_DMA32_SEGSIZE,
1566 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
1567
1568 /* XXX Currently, we allocate one big contiguous table for the
1569 * TCEs. We only really need one chunk per 256M of TCE space
1570 * (ie per segment) but that's an optimization for later, it
1571 * requires some added smarts with our get/put_tce implementation
1572 *
1573 * Each TCE page is 4KB in size and each TCE entry occupies 8
1574 * bytes
1575 */
1576 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
1577 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1578 get_order(tce32_segsz * segs));
1579 if (!tce_mem) {
1580 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1581 goto fail;
1582 }
1583 addr = page_address(tce_mem);
1584 memset(addr, 0, tce32_segsz * segs);
1585
1586 /* Configure HW */
1587 for (i = 0; i < segs; i++) {
1588 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1589 pe->pe_number,
1590 base + i, 1,
1591 __pa(addr) + tce32_segsz * i,
1592 tce32_segsz, IOMMU_PAGE_SIZE_4K);
1593 if (rc) {
1594 pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n",
1595 rc);
1596 goto fail;
1597 }
1598 }
1599
1600 /* Setup DMA32 segment mapping */
1601 for (i = base; i < base + segs; i++)
1602 phb->ioda.dma32_segmap[i] = pe->pe_number;
1603
1604 /* Setup linux iommu table */
1605 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
1606 base * PNV_IODA1_DMA32_SEGSIZE,
1607 IOMMU_PAGE_SHIFT_4K);
1608
1609 tbl->it_ops = &pnv_ioda1_iommu_ops;
1610 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
1611 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
1612 tbl->it_index = (phb->hose->global_number << 16) | pe->pe_number;
1613 if (!iommu_init_table(tbl, phb->hose->node, 0, 0))
1614 panic("Failed to initialize iommu table");
1615
1616 pe->dma_setup_done = true;
1617 return;
1618 fail:
1619 /* XXX Failure: Try to fallback to 64-bit only ? */
1620 if (tce_mem)
1621 __free_pages(tce_mem, get_order(tce32_segsz * segs));
1622 if (tbl) {
1623 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1624 iommu_tce_table_put(tbl);
1625 }
1626 }
1627
pnv_pci_ioda2_set_window(struct iommu_table_group * table_group,int num,struct iommu_table * tbl)1628 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1629 int num, struct iommu_table *tbl)
1630 {
1631 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1632 table_group);
1633 struct pnv_phb *phb = pe->phb;
1634 int64_t rc;
1635 const unsigned long size = tbl->it_indirect_levels ?
1636 tbl->it_level_size : tbl->it_size;
1637 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1638 const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1639
1640 pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
1641 num, start_addr, start_addr + win_size - 1,
1642 IOMMU_PAGE_SIZE(tbl));
1643
1644 /*
1645 * Map TCE table through TVT. The TVE index is the PE number
1646 * shifted by 1 bit for 32-bits DMA space.
1647 */
1648 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1649 pe->pe_number,
1650 (pe->pe_number << 1) + num,
1651 tbl->it_indirect_levels + 1,
1652 __pa(tbl->it_base),
1653 size << 3,
1654 IOMMU_PAGE_SIZE(tbl));
1655 if (rc) {
1656 pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
1657 return rc;
1658 }
1659
1660 pnv_pci_link_table_and_group(phb->hose->node, num,
1661 tbl, &pe->table_group);
1662 pnv_pci_ioda2_tce_invalidate_pe(pe);
1663
1664 return 0;
1665 }
1666
pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe * pe,bool enable)1667 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1668 {
1669 uint16_t window_id = (pe->pe_number << 1 ) + 1;
1670 int64_t rc;
1671
1672 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1673 if (enable) {
1674 phys_addr_t top = memblock_end_of_DRAM();
1675
1676 top = roundup_pow_of_two(top);
1677 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1678 pe->pe_number,
1679 window_id,
1680 pe->tce_bypass_base,
1681 top);
1682 } else {
1683 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1684 pe->pe_number,
1685 window_id,
1686 pe->tce_bypass_base,
1687 0);
1688 }
1689 if (rc)
1690 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1691 else
1692 pe->tce_bypass_enabled = enable;
1693 }
1694
pnv_pci_ioda2_create_table(struct iommu_table_group * table_group,int num,__u32 page_shift,__u64 window_size,__u32 levels,bool alloc_userspace_copy,struct iommu_table ** ptbl)1695 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
1696 int num, __u32 page_shift, __u64 window_size, __u32 levels,
1697 bool alloc_userspace_copy, struct iommu_table **ptbl)
1698 {
1699 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1700 table_group);
1701 int nid = pe->phb->hose->node;
1702 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
1703 long ret;
1704 struct iommu_table *tbl;
1705
1706 tbl = pnv_pci_table_alloc(nid);
1707 if (!tbl)
1708 return -ENOMEM;
1709
1710 tbl->it_ops = &pnv_ioda2_iommu_ops;
1711
1712 ret = pnv_pci_ioda2_table_alloc_pages(nid,
1713 bus_offset, page_shift, window_size,
1714 levels, alloc_userspace_copy, tbl);
1715 if (ret) {
1716 iommu_tce_table_put(tbl);
1717 return ret;
1718 }
1719
1720 *ptbl = tbl;
1721
1722 return 0;
1723 }
1724
pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe * pe)1725 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
1726 {
1727 struct iommu_table *tbl = NULL;
1728 long rc;
1729 unsigned long res_start, res_end;
1730
1731 /*
1732 * crashkernel= specifies the kdump kernel's maximum memory at
1733 * some offset and there is no guaranteed the result is a power
1734 * of 2, which will cause errors later.
1735 */
1736 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
1737
1738 /*
1739 * In memory constrained environments, e.g. kdump kernel, the
1740 * DMA window can be larger than available memory, which will
1741 * cause errors later.
1742 */
1743 const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1);
1744
1745 /*
1746 * We create the default window as big as we can. The constraint is
1747 * the max order of allocation possible. The TCE table is likely to
1748 * end up being multilevel and with on-demand allocation in place,
1749 * the initial use is not going to be huge as the default window aims
1750 * to support crippled devices (i.e. not fully 64bit DMAble) only.
1751 */
1752 /* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
1753 const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
1754 /* Each TCE level cannot exceed maxblock so go multilevel if needed */
1755 unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
1756 unsigned long tcelevel_order = ilog2(maxblock >> 3);
1757 unsigned int levels = tces_order / tcelevel_order;
1758
1759 if (tces_order % tcelevel_order)
1760 levels += 1;
1761 /*
1762 * We try to stick to default levels (which is >1 at the moment) in
1763 * order to save memory by relying on on-demain TCE level allocation.
1764 */
1765 levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
1766
1767 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
1768 window_size, levels, false, &tbl);
1769 if (rc) {
1770 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
1771 rc);
1772 return rc;
1773 }
1774
1775 /* We use top part of 32bit space for MMIO so exclude it from DMA */
1776 res_start = 0;
1777 res_end = 0;
1778 if (window_size > pe->phb->ioda.m32_pci_base) {
1779 res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
1780 res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
1781 }
1782
1783 tbl->it_index = (pe->phb->hose->global_number << 16) | pe->pe_number;
1784 if (iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end))
1785 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
1786 else
1787 rc = -ENOMEM;
1788 if (rc) {
1789 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", rc);
1790 iommu_tce_table_put(tbl);
1791 tbl = NULL; /* This clears iommu_table_base below */
1792 }
1793 if (!pnv_iommu_bypass_disabled)
1794 pnv_pci_ioda2_set_bypass(pe, true);
1795
1796 /*
1797 * Set table base for the case of IOMMU DMA use. Usually this is done
1798 * from dma_dev_setup() which is not called when a device is returned
1799 * from VFIO so do it here.
1800 */
1801 if (pe->pdev)
1802 set_iommu_table_base(&pe->pdev->dev, tbl);
1803
1804 return 0;
1805 }
1806
pnv_pci_ioda2_unset_window(struct iommu_table_group * table_group,int num)1807 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1808 int num)
1809 {
1810 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1811 table_group);
1812 struct pnv_phb *phb = pe->phb;
1813 long ret;
1814
1815 pe_info(pe, "Removing DMA window #%d\n", num);
1816
1817 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1818 (pe->pe_number << 1) + num,
1819 0/* levels */, 0/* table address */,
1820 0/* table size */, 0/* page size */);
1821 if (ret)
1822 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
1823 else
1824 pnv_pci_ioda2_tce_invalidate_pe(pe);
1825
1826 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
1827
1828 return ret;
1829 }
1830
1831 #ifdef CONFIG_IOMMU_API
pnv_pci_ioda2_get_table_size(__u32 page_shift,__u64 window_size,__u32 levels)1832 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
1833 __u64 window_size, __u32 levels)
1834 {
1835 unsigned long bytes = 0;
1836 const unsigned window_shift = ilog2(window_size);
1837 unsigned entries_shift = window_shift - page_shift;
1838 unsigned table_shift = entries_shift + 3;
1839 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
1840 unsigned long direct_table_size;
1841
1842 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
1843 !is_power_of_2(window_size))
1844 return 0;
1845
1846 /* Calculate a direct table size from window_size and levels */
1847 entries_shift = (entries_shift + levels - 1) / levels;
1848 table_shift = entries_shift + 3;
1849 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
1850 direct_table_size = 1UL << table_shift;
1851
1852 for ( ; levels; --levels) {
1853 bytes += ALIGN(tce_table_size, direct_table_size);
1854
1855 tce_table_size /= direct_table_size;
1856 tce_table_size <<= 3;
1857 tce_table_size = max_t(unsigned long,
1858 tce_table_size, direct_table_size);
1859 }
1860
1861 return bytes + bytes; /* one for HW table, one for userspace copy */
1862 }
1863
pnv_pci_ioda2_create_table_userspace(struct iommu_table_group * table_group,int num,__u32 page_shift,__u64 window_size,__u32 levels,struct iommu_table ** ptbl)1864 static long pnv_pci_ioda2_create_table_userspace(
1865 struct iommu_table_group *table_group,
1866 int num, __u32 page_shift, __u64 window_size, __u32 levels,
1867 struct iommu_table **ptbl)
1868 {
1869 long ret = pnv_pci_ioda2_create_table(table_group,
1870 num, page_shift, window_size, levels, true, ptbl);
1871
1872 if (!ret)
1873 (*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
1874 page_shift, window_size, levels);
1875 return ret;
1876 }
1877
pnv_ioda_setup_bus_dma(struct pnv_ioda_pe * pe,struct pci_bus * bus)1878 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1879 {
1880 struct pci_dev *dev;
1881
1882 list_for_each_entry(dev, &bus->devices, bus_list) {
1883 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1884 dev->dev.archdata.dma_offset = pe->tce_bypass_base;
1885
1886 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1887 pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1888 }
1889 }
1890
pnv_ioda2_take_ownership(struct iommu_table_group * table_group)1891 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
1892 {
1893 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1894 table_group);
1895 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
1896 struct iommu_table *tbl = pe->table_group.tables[0];
1897
1898 pnv_pci_ioda2_set_bypass(pe, false);
1899 pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1900 if (pe->pbus)
1901 pnv_ioda_setup_bus_dma(pe, pe->pbus);
1902 else if (pe->pdev)
1903 set_iommu_table_base(&pe->pdev->dev, NULL);
1904 iommu_tce_table_put(tbl);
1905 }
1906
pnv_ioda2_release_ownership(struct iommu_table_group * table_group)1907 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
1908 {
1909 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1910 table_group);
1911
1912 pnv_pci_ioda2_setup_default_config(pe);
1913 if (pe->pbus)
1914 pnv_ioda_setup_bus_dma(pe, pe->pbus);
1915 }
1916
1917 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
1918 .get_table_size = pnv_pci_ioda2_get_table_size,
1919 .create_table = pnv_pci_ioda2_create_table_userspace,
1920 .set_window = pnv_pci_ioda2_set_window,
1921 .unset_window = pnv_pci_ioda2_unset_window,
1922 .take_ownership = pnv_ioda2_take_ownership,
1923 .release_ownership = pnv_ioda2_release_ownership,
1924 };
1925 #endif
1926
pnv_pci_ioda2_setup_dma_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)1927 void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1928 struct pnv_ioda_pe *pe)
1929 {
1930 int64_t rc;
1931
1932 /* TVE #1 is selected by PCI address bit 59 */
1933 pe->tce_bypass_base = 1ull << 59;
1934
1935 /* The PE will reserve all possible 32-bits space */
1936 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1937 phb->ioda.m32_pci_base);
1938
1939 /* Setup linux iommu table */
1940 pe->table_group.tce32_start = 0;
1941 pe->table_group.tce32_size = phb->ioda.m32_pci_base;
1942 pe->table_group.max_dynamic_windows_supported =
1943 IOMMU_TABLE_GROUP_MAX_TABLES;
1944 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
1945 pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
1946
1947 rc = pnv_pci_ioda2_setup_default_config(pe);
1948 if (rc)
1949 return;
1950
1951 #ifdef CONFIG_IOMMU_API
1952 pe->table_group.ops = &pnv_pci_ioda2_ops;
1953 iommu_register_group(&pe->table_group, phb->hose->global_number,
1954 pe->pe_number);
1955 #endif
1956 pe->dma_setup_done = true;
1957 }
1958
1959 /*
1960 * Called from KVM in real mode to EOI passthru interrupts. The ICP
1961 * EOI is handled directly in KVM in kvmppc_deliver_irq_passthru().
1962 *
1963 * The IRQ data is mapped in the PCI-MSI domain and the EOI OPAL call
1964 * needs an HW IRQ number mapped in the XICS IRQ domain. The HW IRQ
1965 * numbers of the in-the-middle MSI domain are vector numbers and it's
1966 * good enough for OPAL. Use that.
1967 */
pnv_opal_pci_msi_eoi(struct irq_data * d)1968 int64_t pnv_opal_pci_msi_eoi(struct irq_data *d)
1969 {
1970 struct pci_controller *hose = irq_data_get_irq_chip_data(d->parent_data);
1971 struct pnv_phb *phb = hose->private_data;
1972
1973 return opal_pci_msi_eoi(phb->opal_id, d->parent_data->hwirq);
1974 }
1975
1976 /*
1977 * The IRQ data is mapped in the XICS domain, with OPAL HW IRQ numbers
1978 */
pnv_ioda2_msi_eoi(struct irq_data * d)1979 static void pnv_ioda2_msi_eoi(struct irq_data *d)
1980 {
1981 int64_t rc;
1982 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1983 struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1984 struct pnv_phb *phb = hose->private_data;
1985
1986 rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
1987 WARN_ON_ONCE(rc);
1988
1989 icp_native_eoi(d);
1990 }
1991
1992 /* P8/CXL only */
pnv_set_msi_irq_chip(struct pnv_phb * phb,unsigned int virq)1993 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
1994 {
1995 struct irq_data *idata;
1996 struct irq_chip *ichip;
1997
1998 /* The MSI EOI OPAL call is only needed on PHB3 */
1999 if (phb->model != PNV_PHB_MODEL_PHB3)
2000 return;
2001
2002 if (!phb->ioda.irq_chip_init) {
2003 /*
2004 * First time we setup an MSI IRQ, we need to setup the
2005 * corresponding IRQ chip to route correctly.
2006 */
2007 idata = irq_get_irq_data(virq);
2008 ichip = irq_data_get_irq_chip(idata);
2009 phb->ioda.irq_chip_init = 1;
2010 phb->ioda.irq_chip = *ichip;
2011 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2012 }
2013 irq_set_chip(virq, &phb->ioda.irq_chip);
2014 irq_set_chip_data(virq, phb->hose);
2015 }
2016
2017 static struct irq_chip pnv_pci_msi_irq_chip;
2018
2019 /*
2020 * Returns true iff chip is something that we could call
2021 * pnv_opal_pci_msi_eoi for.
2022 */
is_pnv_opal_msi(struct irq_chip * chip)2023 bool is_pnv_opal_msi(struct irq_chip *chip)
2024 {
2025 return chip == &pnv_pci_msi_irq_chip;
2026 }
2027 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2028
__pnv_pci_ioda_msi_setup(struct pnv_phb * phb,struct pci_dev * dev,unsigned int xive_num,unsigned int is_64,struct msi_msg * msg)2029 static int __pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2030 unsigned int xive_num,
2031 unsigned int is_64, struct msi_msg *msg)
2032 {
2033 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2034 __be32 data;
2035 int rc;
2036
2037 dev_dbg(&dev->dev, "%s: setup %s-bit MSI for vector #%d\n", __func__,
2038 is_64 ? "64" : "32", xive_num);
2039
2040 /* No PE assigned ? bail out ... no MSI for you ! */
2041 if (pe == NULL)
2042 return -ENXIO;
2043
2044 /* Check if we have an MVE */
2045 if (pe->mve_number < 0)
2046 return -ENXIO;
2047
2048 /* Force 32-bit MSI on some broken devices */
2049 if (dev->no_64bit_msi)
2050 is_64 = 0;
2051
2052 /* Assign XIVE to PE */
2053 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2054 if (rc) {
2055 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2056 pci_name(dev), rc, xive_num);
2057 return -EIO;
2058 }
2059
2060 if (is_64) {
2061 __be64 addr64;
2062
2063 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2064 &addr64, &data);
2065 if (rc) {
2066 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2067 pci_name(dev), rc);
2068 return -EIO;
2069 }
2070 msg->address_hi = be64_to_cpu(addr64) >> 32;
2071 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2072 } else {
2073 __be32 addr32;
2074
2075 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2076 &addr32, &data);
2077 if (rc) {
2078 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2079 pci_name(dev), rc);
2080 return -EIO;
2081 }
2082 msg->address_hi = 0;
2083 msg->address_lo = be32_to_cpu(addr32);
2084 }
2085 msg->data = be32_to_cpu(data);
2086
2087 return 0;
2088 }
2089
2090 /*
2091 * The msi_free() op is called before irq_domain_free_irqs_top() when
2092 * the handler data is still available. Use that to clear the XIVE
2093 * controller.
2094 */
pnv_msi_ops_msi_free(struct irq_domain * domain,struct msi_domain_info * info,unsigned int irq)2095 static void pnv_msi_ops_msi_free(struct irq_domain *domain,
2096 struct msi_domain_info *info,
2097 unsigned int irq)
2098 {
2099 if (xive_enabled())
2100 xive_irq_free_data(irq);
2101 }
2102
2103 static struct msi_domain_ops pnv_pci_msi_domain_ops = {
2104 .msi_free = pnv_msi_ops_msi_free,
2105 };
2106
pnv_msi_shutdown(struct irq_data * d)2107 static void pnv_msi_shutdown(struct irq_data *d)
2108 {
2109 d = d->parent_data;
2110 if (d->chip->irq_shutdown)
2111 d->chip->irq_shutdown(d);
2112 }
2113
pnv_msi_mask(struct irq_data * d)2114 static void pnv_msi_mask(struct irq_data *d)
2115 {
2116 pci_msi_mask_irq(d);
2117 irq_chip_mask_parent(d);
2118 }
2119
pnv_msi_unmask(struct irq_data * d)2120 static void pnv_msi_unmask(struct irq_data *d)
2121 {
2122 pci_msi_unmask_irq(d);
2123 irq_chip_unmask_parent(d);
2124 }
2125
2126 static struct irq_chip pnv_pci_msi_irq_chip = {
2127 .name = "PNV-PCI-MSI",
2128 .irq_shutdown = pnv_msi_shutdown,
2129 .irq_mask = pnv_msi_mask,
2130 .irq_unmask = pnv_msi_unmask,
2131 .irq_eoi = irq_chip_eoi_parent,
2132 };
2133
2134 static struct msi_domain_info pnv_msi_domain_info = {
2135 .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
2136 MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX),
2137 .ops = &pnv_pci_msi_domain_ops,
2138 .chip = &pnv_pci_msi_irq_chip,
2139 };
2140
pnv_msi_compose_msg(struct irq_data * d,struct msi_msg * msg)2141 static void pnv_msi_compose_msg(struct irq_data *d, struct msi_msg *msg)
2142 {
2143 struct msi_desc *entry = irq_data_get_msi_desc(d);
2144 struct pci_dev *pdev = msi_desc_to_pci_dev(entry);
2145 struct pci_controller *hose = irq_data_get_irq_chip_data(d);
2146 struct pnv_phb *phb = hose->private_data;
2147 int rc;
2148
2149 rc = __pnv_pci_ioda_msi_setup(phb, pdev, d->hwirq,
2150 entry->pci.msi_attrib.is_64, msg);
2151 if (rc)
2152 dev_err(&pdev->dev, "Failed to setup %s-bit MSI #%ld : %d\n",
2153 entry->pci.msi_attrib.is_64 ? "64" : "32", d->hwirq, rc);
2154 }
2155
2156 /*
2157 * The IRQ data is mapped in the MSI domain in which HW IRQ numbers
2158 * correspond to vector numbers.
2159 */
pnv_msi_eoi(struct irq_data * d)2160 static void pnv_msi_eoi(struct irq_data *d)
2161 {
2162 struct pci_controller *hose = irq_data_get_irq_chip_data(d);
2163 struct pnv_phb *phb = hose->private_data;
2164
2165 if (phb->model == PNV_PHB_MODEL_PHB3) {
2166 /*
2167 * The EOI OPAL call takes an OPAL HW IRQ number but
2168 * since it is translated into a vector number in
2169 * OPAL, use that directly.
2170 */
2171 WARN_ON_ONCE(opal_pci_msi_eoi(phb->opal_id, d->hwirq));
2172 }
2173
2174 irq_chip_eoi_parent(d);
2175 }
2176
2177 static struct irq_chip pnv_msi_irq_chip = {
2178 .name = "PNV-MSI",
2179 .irq_shutdown = pnv_msi_shutdown,
2180 .irq_mask = irq_chip_mask_parent,
2181 .irq_unmask = irq_chip_unmask_parent,
2182 .irq_eoi = pnv_msi_eoi,
2183 .irq_set_affinity = irq_chip_set_affinity_parent,
2184 .irq_compose_msi_msg = pnv_msi_compose_msg,
2185 };
2186
pnv_irq_parent_domain_alloc(struct irq_domain * domain,unsigned int virq,int hwirq)2187 static int pnv_irq_parent_domain_alloc(struct irq_domain *domain,
2188 unsigned int virq, int hwirq)
2189 {
2190 struct irq_fwspec parent_fwspec;
2191 int ret;
2192
2193 parent_fwspec.fwnode = domain->parent->fwnode;
2194 parent_fwspec.param_count = 2;
2195 parent_fwspec.param[0] = hwirq;
2196 parent_fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2197
2198 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &parent_fwspec);
2199 if (ret)
2200 return ret;
2201
2202 return 0;
2203 }
2204
pnv_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)2205 static int pnv_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2206 unsigned int nr_irqs, void *arg)
2207 {
2208 struct pci_controller *hose = domain->host_data;
2209 struct pnv_phb *phb = hose->private_data;
2210 msi_alloc_info_t *info = arg;
2211 struct pci_dev *pdev = msi_desc_to_pci_dev(info->desc);
2212 int hwirq;
2213 int i, ret;
2214
2215 hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, nr_irqs);
2216 if (hwirq < 0) {
2217 dev_warn(&pdev->dev, "failed to find a free MSI\n");
2218 return -ENOSPC;
2219 }
2220
2221 dev_dbg(&pdev->dev, "%s bridge %pOF %d/%x #%d\n", __func__,
2222 hose->dn, virq, hwirq, nr_irqs);
2223
2224 for (i = 0; i < nr_irqs; i++) {
2225 ret = pnv_irq_parent_domain_alloc(domain, virq + i,
2226 phb->msi_base + hwirq + i);
2227 if (ret)
2228 goto out;
2229
2230 irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
2231 &pnv_msi_irq_chip, hose);
2232 }
2233
2234 return 0;
2235
2236 out:
2237 irq_domain_free_irqs_parent(domain, virq, i - 1);
2238 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, nr_irqs);
2239 return ret;
2240 }
2241
pnv_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)2242 static void pnv_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2243 unsigned int nr_irqs)
2244 {
2245 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2246 struct pci_controller *hose = irq_data_get_irq_chip_data(d);
2247 struct pnv_phb *phb = hose->private_data;
2248
2249 pr_debug("%s bridge %pOF %d/%lx #%d\n", __func__, hose->dn,
2250 virq, d->hwirq, nr_irqs);
2251
2252 msi_bitmap_free_hwirqs(&phb->msi_bmp, d->hwirq, nr_irqs);
2253 /* XIVE domain is cleared through ->msi_free() */
2254 }
2255
2256 static const struct irq_domain_ops pnv_irq_domain_ops = {
2257 .alloc = pnv_irq_domain_alloc,
2258 .free = pnv_irq_domain_free,
2259 };
2260
pnv_msi_allocate_domains(struct pci_controller * hose,unsigned int count)2261 static int __init pnv_msi_allocate_domains(struct pci_controller *hose, unsigned int count)
2262 {
2263 struct pnv_phb *phb = hose->private_data;
2264 struct irq_domain *parent = irq_get_default_host();
2265
2266 hose->fwnode = irq_domain_alloc_named_id_fwnode("PNV-MSI", phb->opal_id);
2267 if (!hose->fwnode)
2268 return -ENOMEM;
2269
2270 hose->dev_domain = irq_domain_create_hierarchy(parent, 0, count,
2271 hose->fwnode,
2272 &pnv_irq_domain_ops, hose);
2273 if (!hose->dev_domain) {
2274 pr_err("PCI: failed to create IRQ domain bridge %pOF (domain %d)\n",
2275 hose->dn, hose->global_number);
2276 irq_domain_free_fwnode(hose->fwnode);
2277 return -ENOMEM;
2278 }
2279
2280 hose->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(hose->dn),
2281 &pnv_msi_domain_info,
2282 hose->dev_domain);
2283 if (!hose->msi_domain) {
2284 pr_err("PCI: failed to create MSI IRQ domain bridge %pOF (domain %d)\n",
2285 hose->dn, hose->global_number);
2286 irq_domain_free_fwnode(hose->fwnode);
2287 irq_domain_remove(hose->dev_domain);
2288 return -ENOMEM;
2289 }
2290
2291 return 0;
2292 }
2293
pnv_pci_init_ioda_msis(struct pnv_phb * phb)2294 static void __init pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2295 {
2296 unsigned int count;
2297 const __be32 *prop = of_get_property(phb->hose->dn,
2298 "ibm,opal-msi-ranges", NULL);
2299 if (!prop) {
2300 /* BML Fallback */
2301 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2302 }
2303 if (!prop)
2304 return;
2305
2306 phb->msi_base = be32_to_cpup(prop);
2307 count = be32_to_cpup(prop + 1);
2308 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2309 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2310 phb->hose->global_number);
2311 return;
2312 }
2313
2314 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2315 count, phb->msi_base);
2316
2317 pnv_msi_allocate_domains(phb->hose, count);
2318 }
2319
pnv_ioda_setup_pe_res(struct pnv_ioda_pe * pe,struct resource * res)2320 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2321 struct resource *res)
2322 {
2323 struct pnv_phb *phb = pe->phb;
2324 struct pci_bus_region region;
2325 int index;
2326 int64_t rc;
2327
2328 if (!res || !res->flags || res->start > res->end)
2329 return;
2330
2331 if (res->flags & IORESOURCE_IO) {
2332 region.start = res->start - phb->ioda.io_pci_base;
2333 region.end = res->end - phb->ioda.io_pci_base;
2334 index = region.start / phb->ioda.io_segsize;
2335
2336 while (index < phb->ioda.total_pe_num &&
2337 region.start <= region.end) {
2338 phb->ioda.io_segmap[index] = pe->pe_number;
2339 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2340 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2341 if (rc != OPAL_SUCCESS) {
2342 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2343 __func__, rc, index, pe->pe_number);
2344 break;
2345 }
2346
2347 region.start += phb->ioda.io_segsize;
2348 index++;
2349 }
2350 } else if ((res->flags & IORESOURCE_MEM) &&
2351 !pnv_pci_is_m64(phb, res)) {
2352 region.start = res->start -
2353 phb->hose->mem_offset[0] -
2354 phb->ioda.m32_pci_base;
2355 region.end = res->end -
2356 phb->hose->mem_offset[0] -
2357 phb->ioda.m32_pci_base;
2358 index = region.start / phb->ioda.m32_segsize;
2359
2360 while (index < phb->ioda.total_pe_num &&
2361 region.start <= region.end) {
2362 phb->ioda.m32_segmap[index] = pe->pe_number;
2363 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2364 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2365 if (rc != OPAL_SUCCESS) {
2366 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
2367 __func__, rc, index, pe->pe_number);
2368 break;
2369 }
2370
2371 region.start += phb->ioda.m32_segsize;
2372 index++;
2373 }
2374 }
2375 }
2376
2377 /*
2378 * This function is supposed to be called on basis of PE from top
2379 * to bottom style. So the I/O or MMIO segment assigned to
2380 * parent PE could be overridden by its child PEs if necessary.
2381 */
pnv_ioda_setup_pe_seg(struct pnv_ioda_pe * pe)2382 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2383 {
2384 struct pci_dev *pdev;
2385 int i;
2386
2387 /*
2388 * NOTE: We only care PCI bus based PE for now. For PCI
2389 * device based PE, for example SRIOV sensitive VF should
2390 * be figured out later.
2391 */
2392 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2393
2394 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
2395 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2396 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
2397
2398 /*
2399 * If the PE contains all subordinate PCI buses, the
2400 * windows of the child bridges should be mapped to
2401 * the PE as well.
2402 */
2403 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
2404 continue;
2405 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
2406 pnv_ioda_setup_pe_res(pe,
2407 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
2408 }
2409 }
2410
2411 #ifdef CONFIG_DEBUG_FS
pnv_pci_diag_data_set(void * data,u64 val)2412 static int pnv_pci_diag_data_set(void *data, u64 val)
2413 {
2414 struct pnv_phb *phb = data;
2415 s64 ret;
2416
2417 /* Retrieve the diag data from firmware */
2418 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
2419 phb->diag_data_size);
2420 if (ret != OPAL_SUCCESS)
2421 return -EIO;
2422
2423 /* Print the diag data to the kernel log */
2424 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
2425 return 0;
2426 }
2427
2428 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
2429 "%llu\n");
2430
pnv_pci_ioda_pe_dump(void * data,u64 val)2431 static int pnv_pci_ioda_pe_dump(void *data, u64 val)
2432 {
2433 struct pnv_phb *phb = data;
2434 int pe_num;
2435
2436 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
2437 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num];
2438
2439 if (!test_bit(pe_num, phb->ioda.pe_alloc))
2440 continue;
2441
2442 pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n",
2443 pe->rid, pe->device_count,
2444 (pe->flags & PNV_IODA_PE_DEV) ? "dev " : "",
2445 (pe->flags & PNV_IODA_PE_BUS) ? "bus " : "",
2446 (pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "",
2447 (pe->flags & PNV_IODA_PE_MASTER) ? "master " : "",
2448 (pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "",
2449 (pe->flags & PNV_IODA_PE_VF) ? "vf " : "");
2450 }
2451
2452 return 0;
2453 }
2454
2455 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL,
2456 pnv_pci_ioda_pe_dump, "%llu\n");
2457
2458 #endif /* CONFIG_DEBUG_FS */
2459
pnv_pci_ioda_create_dbgfs(void)2460 static void pnv_pci_ioda_create_dbgfs(void)
2461 {
2462 #ifdef CONFIG_DEBUG_FS
2463 struct pci_controller *hose, *tmp;
2464 struct pnv_phb *phb;
2465 char name[16];
2466
2467 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2468 phb = hose->private_data;
2469
2470 sprintf(name, "PCI%04x", hose->global_number);
2471 phb->dbgfs = debugfs_create_dir(name, arch_debugfs_dir);
2472
2473 debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
2474 phb, &pnv_pci_diag_data_fops);
2475 debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs,
2476 phb, &pnv_pci_ioda_pe_dump_fops);
2477 }
2478 #endif /* CONFIG_DEBUG_FS */
2479 }
2480
pnv_pci_enable_bridge(struct pci_bus * bus)2481 static void pnv_pci_enable_bridge(struct pci_bus *bus)
2482 {
2483 struct pci_dev *dev = bus->self;
2484 struct pci_bus *child;
2485
2486 /* Empty bus ? bail */
2487 if (list_empty(&bus->devices))
2488 return;
2489
2490 /*
2491 * If there's a bridge associated with that bus enable it. This works
2492 * around races in the generic code if the enabling is done during
2493 * parallel probing. This can be removed once those races have been
2494 * fixed.
2495 */
2496 if (dev) {
2497 int rc = pci_enable_device(dev);
2498 if (rc)
2499 pci_err(dev, "Error enabling bridge (%d)\n", rc);
2500 pci_set_master(dev);
2501 }
2502
2503 /* Perform the same to child busses */
2504 list_for_each_entry(child, &bus->children, node)
2505 pnv_pci_enable_bridge(child);
2506 }
2507
pnv_pci_enable_bridges(void)2508 static void pnv_pci_enable_bridges(void)
2509 {
2510 struct pci_controller *hose;
2511
2512 list_for_each_entry(hose, &hose_list, list_node)
2513 pnv_pci_enable_bridge(hose->bus);
2514 }
2515
pnv_pci_ioda_fixup(void)2516 static void pnv_pci_ioda_fixup(void)
2517 {
2518 pnv_pci_ioda_create_dbgfs();
2519
2520 pnv_pci_enable_bridges();
2521
2522 #ifdef CONFIG_EEH
2523 pnv_eeh_post_init();
2524 #endif
2525 }
2526
2527 /*
2528 * Returns the alignment for I/O or memory windows for P2P
2529 * bridges. That actually depends on how PEs are segmented.
2530 * For now, we return I/O or M32 segment size for PE sensitive
2531 * P2P bridges. Otherwise, the default values (4KiB for I/O,
2532 * 1MiB for memory) will be returned.
2533 *
2534 * The current PCI bus might be put into one PE, which was
2535 * create against the parent PCI bridge. For that case, we
2536 * needn't enlarge the alignment so that we can save some
2537 * resources.
2538 */
pnv_pci_window_alignment(struct pci_bus * bus,unsigned long type)2539 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2540 unsigned long type)
2541 {
2542 struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2543 int num_pci_bridges = 0;
2544 struct pci_dev *bridge;
2545
2546 bridge = bus->self;
2547 while (bridge) {
2548 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2549 num_pci_bridges++;
2550 if (num_pci_bridges >= 2)
2551 return 1;
2552 }
2553
2554 bridge = bridge->bus->self;
2555 }
2556
2557 /*
2558 * We fall back to M32 if M64 isn't supported. We enforce the M64
2559 * alignment for any 64-bit resource, PCIe doesn't care and
2560 * bridges only do 64-bit prefetchable anyway.
2561 */
2562 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
2563 return phb->ioda.m64_segsize;
2564 if (type & IORESOURCE_MEM)
2565 return phb->ioda.m32_segsize;
2566
2567 return phb->ioda.io_segsize;
2568 }
2569
2570 /*
2571 * We are updating root port or the upstream port of the
2572 * bridge behind the root port with PHB's windows in order
2573 * to accommodate the changes on required resources during
2574 * PCI (slot) hotplug, which is connected to either root
2575 * port or the downstream ports of PCIe switch behind the
2576 * root port.
2577 */
pnv_pci_fixup_bridge_resources(struct pci_bus * bus,unsigned long type)2578 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
2579 unsigned long type)
2580 {
2581 struct pci_controller *hose = pci_bus_to_host(bus);
2582 struct pnv_phb *phb = hose->private_data;
2583 struct pci_dev *bridge = bus->self;
2584 struct resource *r, *w;
2585 bool msi_region = false;
2586 int i;
2587
2588 /* Check if we need apply fixup to the bridge's windows */
2589 if (!pci_is_root_bus(bridge->bus) &&
2590 !pci_is_root_bus(bridge->bus->self->bus))
2591 return;
2592
2593 /* Fixup the resources */
2594 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
2595 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
2596 if (!r->flags || !r->parent)
2597 continue;
2598
2599 w = NULL;
2600 if (r->flags & type & IORESOURCE_IO)
2601 w = &hose->io_resource;
2602 else if (pnv_pci_is_m64(phb, r) &&
2603 (type & IORESOURCE_PREFETCH) &&
2604 phb->ioda.m64_segsize)
2605 w = &hose->mem_resources[1];
2606 else if (r->flags & type & IORESOURCE_MEM) {
2607 w = &hose->mem_resources[0];
2608 msi_region = true;
2609 }
2610
2611 r->start = w->start;
2612 r->end = w->end;
2613
2614 /* The 64KB 32-bits MSI region shouldn't be included in
2615 * the 32-bits bridge window. Otherwise, we can see strange
2616 * issues. One of them is EEH error observed on Garrison.
2617 *
2618 * Exclude top 1MB region which is the minimal alignment of
2619 * 32-bits bridge window.
2620 */
2621 if (msi_region) {
2622 r->end += 0x10000;
2623 r->end -= 0x100000;
2624 }
2625 }
2626 }
2627
pnv_pci_configure_bus(struct pci_bus * bus)2628 static void pnv_pci_configure_bus(struct pci_bus *bus)
2629 {
2630 struct pci_dev *bridge = bus->self;
2631 struct pnv_ioda_pe *pe;
2632 bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
2633
2634 dev_info(&bus->dev, "Configuring PE for bus\n");
2635
2636 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
2637 if (WARN_ON(list_empty(&bus->devices)))
2638 return;
2639
2640 /* Reserve PEs according to used M64 resources */
2641 pnv_ioda_reserve_m64_pe(bus, NULL, all);
2642
2643 /*
2644 * Assign PE. We might run here because of partial hotplug.
2645 * For the case, we just pick up the existing PE and should
2646 * not allocate resources again.
2647 */
2648 pe = pnv_ioda_setup_bus_PE(bus, all);
2649 if (!pe)
2650 return;
2651
2652 pnv_ioda_setup_pe_seg(pe);
2653 }
2654
pnv_pci_default_alignment(void)2655 static resource_size_t pnv_pci_default_alignment(void)
2656 {
2657 return PAGE_SIZE;
2658 }
2659
2660 /* Prevent enabling devices for which we couldn't properly
2661 * assign a PE
2662 */
pnv_pci_enable_device_hook(struct pci_dev * dev)2663 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2664 {
2665 struct pci_dn *pdn;
2666
2667 pdn = pci_get_pdn(dev);
2668 if (!pdn || pdn->pe_number == IODA_INVALID_PE) {
2669 pci_err(dev, "pci_enable_device() blocked, no PE assigned.\n");
2670 return false;
2671 }
2672
2673 return true;
2674 }
2675
pnv_ocapi_enable_device_hook(struct pci_dev * dev)2676 static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev)
2677 {
2678 struct pci_dn *pdn;
2679 struct pnv_ioda_pe *pe;
2680
2681 pdn = pci_get_pdn(dev);
2682 if (!pdn)
2683 return false;
2684
2685 if (pdn->pe_number == IODA_INVALID_PE) {
2686 pe = pnv_ioda_setup_dev_PE(dev);
2687 if (!pe)
2688 return false;
2689 }
2690 return true;
2691 }
2692
pnv_pci_ioda1_unset_window(struct iommu_table_group * table_group,int num)2693 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
2694 int num)
2695 {
2696 struct pnv_ioda_pe *pe = container_of(table_group,
2697 struct pnv_ioda_pe, table_group);
2698 struct pnv_phb *phb = pe->phb;
2699 unsigned int idx;
2700 long rc;
2701
2702 pe_info(pe, "Removing DMA window #%d\n", num);
2703 for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
2704 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
2705 continue;
2706
2707 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2708 idx, 0, 0ul, 0ul, 0ul);
2709 if (rc != OPAL_SUCCESS) {
2710 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
2711 rc, idx);
2712 return rc;
2713 }
2714
2715 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
2716 }
2717
2718 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2719 return OPAL_SUCCESS;
2720 }
2721
pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe * pe)2722 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
2723 {
2724 struct iommu_table *tbl = pe->table_group.tables[0];
2725 int64_t rc;
2726
2727 if (!pe->dma_setup_done)
2728 return;
2729
2730 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
2731 if (rc != OPAL_SUCCESS)
2732 return;
2733
2734 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size);
2735 if (pe->table_group.group) {
2736 iommu_group_put(pe->table_group.group);
2737 WARN_ON(pe->table_group.group);
2738 }
2739
2740 free_pages(tbl->it_base, get_order(tbl->it_size << 3));
2741 iommu_tce_table_put(tbl);
2742 }
2743
pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe * pe)2744 void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
2745 {
2746 struct iommu_table *tbl = pe->table_group.tables[0];
2747 int64_t rc;
2748
2749 if (!pe->dma_setup_done)
2750 return;
2751
2752 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2753 if (rc)
2754 pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
2755
2756 pnv_pci_ioda2_set_bypass(pe, false);
2757 if (pe->table_group.group) {
2758 iommu_group_put(pe->table_group.group);
2759 WARN_ON(pe->table_group.group);
2760 }
2761
2762 iommu_tce_table_put(tbl);
2763 }
2764
pnv_ioda_free_pe_seg(struct pnv_ioda_pe * pe,unsigned short win,unsigned int * map)2765 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
2766 unsigned short win,
2767 unsigned int *map)
2768 {
2769 struct pnv_phb *phb = pe->phb;
2770 int idx;
2771 int64_t rc;
2772
2773 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
2774 if (map[idx] != pe->pe_number)
2775 continue;
2776
2777 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2778 phb->ioda.reserved_pe_idx, win, 0, idx);
2779
2780 if (rc != OPAL_SUCCESS)
2781 pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
2782 rc, win, idx);
2783
2784 map[idx] = IODA_INVALID_PE;
2785 }
2786 }
2787
pnv_ioda_release_pe_seg(struct pnv_ioda_pe * pe)2788 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
2789 {
2790 struct pnv_phb *phb = pe->phb;
2791
2792 if (phb->type == PNV_PHB_IODA1) {
2793 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
2794 phb->ioda.io_segmap);
2795 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2796 phb->ioda.m32_segmap);
2797 /* M64 is pre-configured by pnv_ioda1_init_m64() */
2798 } else if (phb->type == PNV_PHB_IODA2) {
2799 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2800 phb->ioda.m32_segmap);
2801 }
2802 }
2803
pnv_ioda_release_pe(struct pnv_ioda_pe * pe)2804 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
2805 {
2806 struct pnv_phb *phb = pe->phb;
2807 struct pnv_ioda_pe *slave, *tmp;
2808
2809 pe_info(pe, "Releasing PE\n");
2810
2811 mutex_lock(&phb->ioda.pe_list_mutex);
2812 list_del(&pe->list);
2813 mutex_unlock(&phb->ioda.pe_list_mutex);
2814
2815 switch (phb->type) {
2816 case PNV_PHB_IODA1:
2817 pnv_pci_ioda1_release_pe_dma(pe);
2818 break;
2819 case PNV_PHB_IODA2:
2820 pnv_pci_ioda2_release_pe_dma(pe);
2821 break;
2822 case PNV_PHB_NPU_OCAPI:
2823 break;
2824 default:
2825 WARN_ON(1);
2826 }
2827
2828 pnv_ioda_release_pe_seg(pe);
2829 pnv_ioda_deconfigure_pe(pe->phb, pe);
2830
2831 /* Release slave PEs in the compound PE */
2832 if (pe->flags & PNV_IODA_PE_MASTER) {
2833 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
2834 list_del(&slave->list);
2835 pnv_ioda_free_pe(slave);
2836 }
2837 }
2838
2839 /*
2840 * The PE for root bus can be removed because of hotplug in EEH
2841 * recovery for fenced PHB error. We need to mark the PE dead so
2842 * that it can be populated again in PCI hot add path. The PE
2843 * shouldn't be destroyed as it's the global reserved resource.
2844 */
2845 if (phb->ioda.root_pe_idx == pe->pe_number)
2846 return;
2847
2848 pnv_ioda_free_pe(pe);
2849 }
2850
pnv_pci_release_device(struct pci_dev * pdev)2851 static void pnv_pci_release_device(struct pci_dev *pdev)
2852 {
2853 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
2854 struct pci_dn *pdn = pci_get_pdn(pdev);
2855 struct pnv_ioda_pe *pe;
2856
2857 /* The VF PE state is torn down when sriov_disable() is called */
2858 if (pdev->is_virtfn)
2859 return;
2860
2861 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2862 return;
2863
2864 #ifdef CONFIG_PCI_IOV
2865 /*
2866 * FIXME: Try move this to sriov_disable(). It's here since we allocate
2867 * the iov state at probe time since we need to fiddle with the IOV
2868 * resources.
2869 */
2870 if (pdev->is_physfn)
2871 kfree(pdev->dev.archdata.iov_data);
2872 #endif
2873
2874 /*
2875 * PCI hotplug can happen as part of EEH error recovery. The @pdn
2876 * isn't removed and added afterwards in this scenario. We should
2877 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
2878 * device count is decreased on removing devices while failing to
2879 * be increased on adding devices. It leads to unbalanced PE's device
2880 * count and eventually make normal PCI hotplug path broken.
2881 */
2882 pe = &phb->ioda.pe_array[pdn->pe_number];
2883 pdn->pe_number = IODA_INVALID_PE;
2884
2885 WARN_ON(--pe->device_count < 0);
2886 if (pe->device_count == 0)
2887 pnv_ioda_release_pe(pe);
2888 }
2889
pnv_pci_ioda_shutdown(struct pci_controller * hose)2890 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2891 {
2892 struct pnv_phb *phb = hose->private_data;
2893
2894 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2895 OPAL_ASSERT_RESET);
2896 }
2897
pnv_pci_ioda_dma_bus_setup(struct pci_bus * bus)2898 static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus)
2899 {
2900 struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2901 struct pnv_ioda_pe *pe;
2902
2903 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2904 if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
2905 continue;
2906
2907 if (!pe->pbus)
2908 continue;
2909
2910 if (bus->number == ((pe->rid >> 8) & 0xFF)) {
2911 pe->pbus = bus;
2912 break;
2913 }
2914 }
2915 }
2916
2917 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2918 .dma_dev_setup = pnv_pci_ioda_dma_dev_setup,
2919 .dma_bus_setup = pnv_pci_ioda_dma_bus_setup,
2920 .iommu_bypass_supported = pnv_pci_ioda_iommu_bypass_supported,
2921 .enable_device_hook = pnv_pci_enable_device_hook,
2922 .release_device = pnv_pci_release_device,
2923 .window_alignment = pnv_pci_window_alignment,
2924 .setup_bridge = pnv_pci_fixup_bridge_resources,
2925 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
2926 .shutdown = pnv_pci_ioda_shutdown,
2927 };
2928
2929 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
2930 .enable_device_hook = pnv_ocapi_enable_device_hook,
2931 .release_device = pnv_pci_release_device,
2932 .window_alignment = pnv_pci_window_alignment,
2933 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
2934 .shutdown = pnv_pci_ioda_shutdown,
2935 };
2936
pnv_pci_init_ioda_phb(struct device_node * np,u64 hub_id,int ioda_type)2937 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2938 u64 hub_id, int ioda_type)
2939 {
2940 struct pci_controller *hose;
2941 struct pnv_phb *phb;
2942 unsigned long size, m64map_off, m32map_off, pemap_off;
2943 unsigned long iomap_off = 0, dma32map_off = 0;
2944 struct pnv_ioda_pe *root_pe;
2945 struct resource r;
2946 const __be64 *prop64;
2947 const __be32 *prop32;
2948 int len;
2949 unsigned int segno;
2950 u64 phb_id;
2951 void *aux;
2952 long rc;
2953
2954 if (!of_device_is_available(np))
2955 return;
2956
2957 pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
2958
2959 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2960 if (!prop64) {
2961 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
2962 return;
2963 }
2964 phb_id = be64_to_cpup(prop64);
2965 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
2966
2967 phb = kzalloc(sizeof(*phb), GFP_KERNEL);
2968 if (!phb)
2969 panic("%s: Failed to allocate %zu bytes\n", __func__,
2970 sizeof(*phb));
2971
2972 /* Allocate PCI controller */
2973 phb->hose = hose = pcibios_alloc_controller(np);
2974 if (!phb->hose) {
2975 pr_err(" Can't allocate PCI controller for %pOF\n",
2976 np);
2977 memblock_free(phb, sizeof(struct pnv_phb));
2978 return;
2979 }
2980
2981 spin_lock_init(&phb->lock);
2982 prop32 = of_get_property(np, "bus-range", &len);
2983 if (prop32 && len == 8) {
2984 hose->first_busno = be32_to_cpu(prop32[0]);
2985 hose->last_busno = be32_to_cpu(prop32[1]);
2986 } else {
2987 pr_warn(" Broken <bus-range> on %pOF\n", np);
2988 hose->first_busno = 0;
2989 hose->last_busno = 0xff;
2990 }
2991 hose->private_data = phb;
2992 phb->hub_id = hub_id;
2993 phb->opal_id = phb_id;
2994 phb->type = ioda_type;
2995 mutex_init(&phb->ioda.pe_alloc_mutex);
2996
2997 /* Detect specific models for error handling */
2998 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2999 phb->model = PNV_PHB_MODEL_P7IOC;
3000 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3001 phb->model = PNV_PHB_MODEL_PHB3;
3002 else
3003 phb->model = PNV_PHB_MODEL_UNKNOWN;
3004
3005 /* Initialize diagnostic data buffer */
3006 prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3007 if (prop32)
3008 phb->diag_data_size = be32_to_cpup(prop32);
3009 else
3010 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3011
3012 phb->diag_data = kzalloc(phb->diag_data_size, GFP_KERNEL);
3013 if (!phb->diag_data)
3014 panic("%s: Failed to allocate %u bytes\n", __func__,
3015 phb->diag_data_size);
3016
3017 /* Parse 32-bit and IO ranges (if any) */
3018 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3019
3020 /* Get registers */
3021 if (!of_address_to_resource(np, 0, &r)) {
3022 phb->regs_phys = r.start;
3023 phb->regs = ioremap(r.start, resource_size(&r));
3024 if (phb->regs == NULL)
3025 pr_err(" Failed to map registers !\n");
3026 }
3027
3028 /* Initialize more IODA stuff */
3029 phb->ioda.total_pe_num = 1;
3030 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3031 if (prop32)
3032 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3033 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3034 if (prop32)
3035 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3036
3037 /* Invalidate RID to PE# mapping */
3038 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3039 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3040
3041 /* Parse 64-bit MMIO range */
3042 pnv_ioda_parse_m64_window(phb);
3043
3044 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3045 /* FW Has already off top 64k of M32 space (MSI space) */
3046 phb->ioda.m32_size += 0x10000;
3047
3048 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3049 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3050 phb->ioda.io_size = hose->pci_io_size;
3051 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3052 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3053
3054 /* Calculate how many 32-bit TCE segments we have */
3055 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3056 PNV_IODA1_DMA32_SEGSIZE;
3057
3058 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3059 size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3060 sizeof(unsigned long));
3061 m64map_off = size;
3062 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3063 m32map_off = size;
3064 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3065 if (phb->type == PNV_PHB_IODA1) {
3066 iomap_off = size;
3067 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3068 dma32map_off = size;
3069 size += phb->ioda.dma32_count *
3070 sizeof(phb->ioda.dma32_segmap[0]);
3071 }
3072 pemap_off = size;
3073 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3074 aux = kzalloc(size, GFP_KERNEL);
3075 if (!aux)
3076 panic("%s: Failed to allocate %lu bytes\n", __func__, size);
3077
3078 phb->ioda.pe_alloc = aux;
3079 phb->ioda.m64_segmap = aux + m64map_off;
3080 phb->ioda.m32_segmap = aux + m32map_off;
3081 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3082 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3083 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3084 }
3085 if (phb->type == PNV_PHB_IODA1) {
3086 phb->ioda.io_segmap = aux + iomap_off;
3087 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3088 phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3089
3090 phb->ioda.dma32_segmap = aux + dma32map_off;
3091 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3092 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3093 }
3094 phb->ioda.pe_array = aux + pemap_off;
3095
3096 /*
3097 * Choose PE number for root bus, which shouldn't have
3098 * M64 resources consumed by its child devices. To pick
3099 * the PE number adjacent to the reserved one if possible.
3100 */
3101 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3102 if (phb->ioda.reserved_pe_idx == 0) {
3103 phb->ioda.root_pe_idx = 1;
3104 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3105 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3106 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3107 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3108 } else {
3109 /* otherwise just allocate one */
3110 root_pe = pnv_ioda_alloc_pe(phb, 1);
3111 phb->ioda.root_pe_idx = root_pe->pe_number;
3112 }
3113
3114 INIT_LIST_HEAD(&phb->ioda.pe_list);
3115 mutex_init(&phb->ioda.pe_list_mutex);
3116
3117 /* Calculate how many 32-bit TCE segments we have */
3118 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3119 PNV_IODA1_DMA32_SEGSIZE;
3120
3121 #if 0 /* We should really do that ... */
3122 rc = opal_pci_set_phb_mem_window(opal->phb_id,
3123 window_type,
3124 window_num,
3125 starting_real_address,
3126 starting_pci_address,
3127 segment_size);
3128 #endif
3129
3130 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3131 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3132 phb->ioda.m32_size, phb->ioda.m32_segsize);
3133 if (phb->ioda.m64_size)
3134 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
3135 phb->ioda.m64_size, phb->ioda.m64_segsize);
3136 if (phb->ioda.io_size)
3137 pr_info(" IO: 0x%x [segment=0x%x]\n",
3138 phb->ioda.io_size, phb->ioda.io_segsize);
3139
3140
3141 phb->hose->ops = &pnv_pci_ops;
3142 phb->get_pe_state = pnv_ioda_get_pe_state;
3143 phb->freeze_pe = pnv_ioda_freeze_pe;
3144 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3145
3146 /* Setup MSI support */
3147 pnv_pci_init_ioda_msis(phb);
3148
3149 /*
3150 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3151 * to let the PCI core do resource assignment. It's supposed
3152 * that the PCI core will do correct I/O and MMIO alignment
3153 * for the P2P bridge bars so that each PCI bus (excluding
3154 * the child P2P bridges) can form individual PE.
3155 */
3156 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3157
3158 switch (phb->type) {
3159 case PNV_PHB_NPU_OCAPI:
3160 hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3161 break;
3162 default:
3163 hose->controller_ops = pnv_pci_ioda_controller_ops;
3164 }
3165
3166 ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3167
3168 #ifdef CONFIG_PCI_IOV
3169 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
3170 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3171 ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3172 ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3173 #endif
3174
3175 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3176
3177 /* Reset IODA tables to a clean state */
3178 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3179 if (rc)
3180 pr_warn(" OPAL Error %ld performing IODA table reset !\n", rc);
3181
3182 /*
3183 * If we're running in kdump kernel, the previous kernel never
3184 * shutdown PCI devices correctly. We already got IODA table
3185 * cleaned out. So we have to issue PHB reset to stop all PCI
3186 * transactions from previous kernel. The ppc_pci_reset_phbs
3187 * kernel parameter will force this reset too. Additionally,
3188 * if the IODA reset above failed then use a bigger hammer.
3189 * This can happen if we get a PHB fatal error in very early
3190 * boot.
3191 */
3192 if (is_kdump_kernel() || pci_reset_phbs || rc) {
3193 pr_info(" Issue PHB reset ...\n");
3194 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3195 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3196 }
3197
3198 /* Remove M64 resource if we can't configure it successfully */
3199 if (!phb->init_m64 || phb->init_m64(phb))
3200 hose->mem_resources[1].flags = 0;
3201
3202 /* create pci_dn's for DT nodes under this PHB */
3203 pci_devs_phb_init_dynamic(hose);
3204 }
3205
pnv_pci_init_ioda2_phb(struct device_node * np)3206 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3207 {
3208 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3209 }
3210
pnv_pci_init_npu2_opencapi_phb(struct device_node * np)3211 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3212 {
3213 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3214 }
3215
pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev * dev)3216 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3217 {
3218 struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
3219
3220 if (!machine_is(powernv))
3221 return;
3222
3223 if (phb->type == PNV_PHB_NPU_OCAPI)
3224 dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3225 }
3226 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3227
pnv_pci_init_ioda_hub(struct device_node * np)3228 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3229 {
3230 struct device_node *phbn;
3231 const __be64 *prop64;
3232 u64 hub_id;
3233
3234 pr_info("Probing IODA IO-Hub %pOF\n", np);
3235
3236 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3237 if (!prop64) {
3238 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3239 return;
3240 }
3241 hub_id = be64_to_cpup(prop64);
3242 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3243
3244 /* Count child PHBs */
3245 for_each_child_of_node(np, phbn) {
3246 /* Look for IODA1 PHBs */
3247 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3248 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3249 }
3250 }
3251