1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/string_helpers.h>
8
9 #include "intel_crtc.h"
10 #include "intel_de.h"
11 #include "intel_display.h"
12 #include "intel_display_types.h"
13 #include "intel_dpll.h"
14 #include "intel_lvds.h"
15 #include "intel_panel.h"
16 #include "intel_pps.h"
17 #include "intel_snps_phy.h"
18 #include "vlv_sideband.h"
19
20 struct intel_dpll_funcs {
21 int (*crtc_compute_clock)(struct intel_atomic_state *state,
22 struct intel_crtc *crtc);
23 int (*crtc_get_shared_dpll)(struct intel_atomic_state *state,
24 struct intel_crtc *crtc);
25 };
26
27 struct intel_limit {
28 struct {
29 int min, max;
30 } dot, vco, n, m, m1, m2, p, p1;
31
32 struct {
33 int dot_limit;
34 int p2_slow, p2_fast;
35 } p2;
36 };
37 static const struct intel_limit intel_limits_i8xx_dac = {
38 .dot = { .min = 25000, .max = 350000 },
39 .vco = { .min = 908000, .max = 1512000 },
40 .n = { .min = 2, .max = 16 },
41 .m = { .min = 96, .max = 140 },
42 .m1 = { .min = 18, .max = 26 },
43 .m2 = { .min = 6, .max = 16 },
44 .p = { .min = 4, .max = 128 },
45 .p1 = { .min = 2, .max = 33 },
46 .p2 = { .dot_limit = 165000,
47 .p2_slow = 4, .p2_fast = 2 },
48 };
49
50 static const struct intel_limit intel_limits_i8xx_dvo = {
51 .dot = { .min = 25000, .max = 350000 },
52 .vco = { .min = 908000, .max = 1512000 },
53 .n = { .min = 2, .max = 16 },
54 .m = { .min = 96, .max = 140 },
55 .m1 = { .min = 18, .max = 26 },
56 .m2 = { .min = 6, .max = 16 },
57 .p = { .min = 4, .max = 128 },
58 .p1 = { .min = 2, .max = 33 },
59 .p2 = { .dot_limit = 165000,
60 .p2_slow = 4, .p2_fast = 4 },
61 };
62
63 static const struct intel_limit intel_limits_i8xx_lvds = {
64 .dot = { .min = 25000, .max = 350000 },
65 .vco = { .min = 908000, .max = 1512000 },
66 .n = { .min = 2, .max = 16 },
67 .m = { .min = 96, .max = 140 },
68 .m1 = { .min = 18, .max = 26 },
69 .m2 = { .min = 6, .max = 16 },
70 .p = { .min = 4, .max = 128 },
71 .p1 = { .min = 1, .max = 6 },
72 .p2 = { .dot_limit = 165000,
73 .p2_slow = 14, .p2_fast = 7 },
74 };
75
76 static const struct intel_limit intel_limits_i9xx_sdvo = {
77 .dot = { .min = 20000, .max = 400000 },
78 .vco = { .min = 1400000, .max = 2800000 },
79 .n = { .min = 1, .max = 6 },
80 .m = { .min = 70, .max = 120 },
81 .m1 = { .min = 8, .max = 18 },
82 .m2 = { .min = 3, .max = 7 },
83 .p = { .min = 5, .max = 80 },
84 .p1 = { .min = 1, .max = 8 },
85 .p2 = { .dot_limit = 200000,
86 .p2_slow = 10, .p2_fast = 5 },
87 };
88
89 static const struct intel_limit intel_limits_i9xx_lvds = {
90 .dot = { .min = 20000, .max = 400000 },
91 .vco = { .min = 1400000, .max = 2800000 },
92 .n = { .min = 1, .max = 6 },
93 .m = { .min = 70, .max = 120 },
94 .m1 = { .min = 8, .max = 18 },
95 .m2 = { .min = 3, .max = 7 },
96 .p = { .min = 7, .max = 98 },
97 .p1 = { .min = 1, .max = 8 },
98 .p2 = { .dot_limit = 112000,
99 .p2_slow = 14, .p2_fast = 7 },
100 };
101
102
103 static const struct intel_limit intel_limits_g4x_sdvo = {
104 .dot = { .min = 25000, .max = 270000 },
105 .vco = { .min = 1750000, .max = 3500000},
106 .n = { .min = 1, .max = 4 },
107 .m = { .min = 104, .max = 138 },
108 .m1 = { .min = 17, .max = 23 },
109 .m2 = { .min = 5, .max = 11 },
110 .p = { .min = 10, .max = 30 },
111 .p1 = { .min = 1, .max = 3},
112 .p2 = { .dot_limit = 270000,
113 .p2_slow = 10,
114 .p2_fast = 10
115 },
116 };
117
118 static const struct intel_limit intel_limits_g4x_hdmi = {
119 .dot = { .min = 22000, .max = 400000 },
120 .vco = { .min = 1750000, .max = 3500000},
121 .n = { .min = 1, .max = 4 },
122 .m = { .min = 104, .max = 138 },
123 .m1 = { .min = 16, .max = 23 },
124 .m2 = { .min = 5, .max = 11 },
125 .p = { .min = 5, .max = 80 },
126 .p1 = { .min = 1, .max = 8},
127 .p2 = { .dot_limit = 165000,
128 .p2_slow = 10, .p2_fast = 5 },
129 };
130
131 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
132 .dot = { .min = 20000, .max = 115000 },
133 .vco = { .min = 1750000, .max = 3500000 },
134 .n = { .min = 1, .max = 3 },
135 .m = { .min = 104, .max = 138 },
136 .m1 = { .min = 17, .max = 23 },
137 .m2 = { .min = 5, .max = 11 },
138 .p = { .min = 28, .max = 112 },
139 .p1 = { .min = 2, .max = 8 },
140 .p2 = { .dot_limit = 0,
141 .p2_slow = 14, .p2_fast = 14
142 },
143 };
144
145 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
146 .dot = { .min = 80000, .max = 224000 },
147 .vco = { .min = 1750000, .max = 3500000 },
148 .n = { .min = 1, .max = 3 },
149 .m = { .min = 104, .max = 138 },
150 .m1 = { .min = 17, .max = 23 },
151 .m2 = { .min = 5, .max = 11 },
152 .p = { .min = 14, .max = 42 },
153 .p1 = { .min = 2, .max = 6 },
154 .p2 = { .dot_limit = 0,
155 .p2_slow = 7, .p2_fast = 7
156 },
157 };
158
159 static const struct intel_limit pnv_limits_sdvo = {
160 .dot = { .min = 20000, .max = 400000},
161 .vco = { .min = 1700000, .max = 3500000 },
162 /* Pineview's Ncounter is a ring counter */
163 .n = { .min = 3, .max = 6 },
164 .m = { .min = 2, .max = 256 },
165 /* Pineview only has one combined m divider, which we treat as m2. */
166 .m1 = { .min = 0, .max = 0 },
167 .m2 = { .min = 0, .max = 254 },
168 .p = { .min = 5, .max = 80 },
169 .p1 = { .min = 1, .max = 8 },
170 .p2 = { .dot_limit = 200000,
171 .p2_slow = 10, .p2_fast = 5 },
172 };
173
174 static const struct intel_limit pnv_limits_lvds = {
175 .dot = { .min = 20000, .max = 400000 },
176 .vco = { .min = 1700000, .max = 3500000 },
177 .n = { .min = 3, .max = 6 },
178 .m = { .min = 2, .max = 256 },
179 .m1 = { .min = 0, .max = 0 },
180 .m2 = { .min = 0, .max = 254 },
181 .p = { .min = 7, .max = 112 },
182 .p1 = { .min = 1, .max = 8 },
183 .p2 = { .dot_limit = 112000,
184 .p2_slow = 14, .p2_fast = 14 },
185 };
186
187 /* Ironlake / Sandybridge
188 *
189 * We calculate clock using (register_value + 2) for N/M1/M2, so here
190 * the range value for them is (actual_value - 2).
191 */
192 static const struct intel_limit ilk_limits_dac = {
193 .dot = { .min = 25000, .max = 350000 },
194 .vco = { .min = 1760000, .max = 3510000 },
195 .n = { .min = 1, .max = 5 },
196 .m = { .min = 79, .max = 127 },
197 .m1 = { .min = 12, .max = 22 },
198 .m2 = { .min = 5, .max = 9 },
199 .p = { .min = 5, .max = 80 },
200 .p1 = { .min = 1, .max = 8 },
201 .p2 = { .dot_limit = 225000,
202 .p2_slow = 10, .p2_fast = 5 },
203 };
204
205 static const struct intel_limit ilk_limits_single_lvds = {
206 .dot = { .min = 25000, .max = 350000 },
207 .vco = { .min = 1760000, .max = 3510000 },
208 .n = { .min = 1, .max = 3 },
209 .m = { .min = 79, .max = 118 },
210 .m1 = { .min = 12, .max = 22 },
211 .m2 = { .min = 5, .max = 9 },
212 .p = { .min = 28, .max = 112 },
213 .p1 = { .min = 2, .max = 8 },
214 .p2 = { .dot_limit = 225000,
215 .p2_slow = 14, .p2_fast = 14 },
216 };
217
218 static const struct intel_limit ilk_limits_dual_lvds = {
219 .dot = { .min = 25000, .max = 350000 },
220 .vco = { .min = 1760000, .max = 3510000 },
221 .n = { .min = 1, .max = 3 },
222 .m = { .min = 79, .max = 127 },
223 .m1 = { .min = 12, .max = 22 },
224 .m2 = { .min = 5, .max = 9 },
225 .p = { .min = 14, .max = 56 },
226 .p1 = { .min = 2, .max = 8 },
227 .p2 = { .dot_limit = 225000,
228 .p2_slow = 7, .p2_fast = 7 },
229 };
230
231 /* LVDS 100mhz refclk limits. */
232 static const struct intel_limit ilk_limits_single_lvds_100m = {
233 .dot = { .min = 25000, .max = 350000 },
234 .vco = { .min = 1760000, .max = 3510000 },
235 .n = { .min = 1, .max = 2 },
236 .m = { .min = 79, .max = 126 },
237 .m1 = { .min = 12, .max = 22 },
238 .m2 = { .min = 5, .max = 9 },
239 .p = { .min = 28, .max = 112 },
240 .p1 = { .min = 2, .max = 8 },
241 .p2 = { .dot_limit = 225000,
242 .p2_slow = 14, .p2_fast = 14 },
243 };
244
245 static const struct intel_limit ilk_limits_dual_lvds_100m = {
246 .dot = { .min = 25000, .max = 350000 },
247 .vco = { .min = 1760000, .max = 3510000 },
248 .n = { .min = 1, .max = 3 },
249 .m = { .min = 79, .max = 126 },
250 .m1 = { .min = 12, .max = 22 },
251 .m2 = { .min = 5, .max = 9 },
252 .p = { .min = 14, .max = 42 },
253 .p1 = { .min = 2, .max = 6 },
254 .p2 = { .dot_limit = 225000,
255 .p2_slow = 7, .p2_fast = 7 },
256 };
257
258 static const struct intel_limit intel_limits_vlv = {
259 /*
260 * These are based on the data rate limits (measured in fast clocks)
261 * since those are the strictest limits we have. The fast
262 * clock and actual rate limits are more relaxed, so checking
263 * them would make no difference.
264 */
265 .dot = { .min = 25000, .max = 270000 },
266 .vco = { .min = 4000000, .max = 6000000 },
267 .n = { .min = 1, .max = 7 },
268 .m1 = { .min = 2, .max = 3 },
269 .m2 = { .min = 11, .max = 156 },
270 .p1 = { .min = 2, .max = 3 },
271 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
272 };
273
274 static const struct intel_limit intel_limits_chv = {
275 /*
276 * These are based on the data rate limits (measured in fast clocks)
277 * since those are the strictest limits we have. The fast
278 * clock and actual rate limits are more relaxed, so checking
279 * them would make no difference.
280 */
281 .dot = { .min = 25000, .max = 540000 },
282 .vco = { .min = 4800000, .max = 6480000 },
283 .n = { .min = 1, .max = 1 },
284 .m1 = { .min = 2, .max = 2 },
285 .m2 = { .min = 24 << 22, .max = 175 << 22 },
286 .p1 = { .min = 2, .max = 4 },
287 .p2 = { .p2_slow = 1, .p2_fast = 14 },
288 };
289
290 static const struct intel_limit intel_limits_bxt = {
291 .dot = { .min = 25000, .max = 594000 },
292 .vco = { .min = 4800000, .max = 6700000 },
293 .n = { .min = 1, .max = 1 },
294 .m1 = { .min = 2, .max = 2 },
295 /* FIXME: find real m2 limits */
296 .m2 = { .min = 2 << 22, .max = 255 << 22 },
297 .p1 = { .min = 2, .max = 4 },
298 .p2 = { .p2_slow = 1, .p2_fast = 20 },
299 };
300
301 /*
302 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
303 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
304 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
305 * The helpers' return value is the rate of the clock that is fed to the
306 * display engine's pipe which can be the above fast dot clock rate or a
307 * divided-down version of it.
308 */
309 /* m1 is reserved as 0 in Pineview, n is a ring counter */
pnv_calc_dpll_params(int refclk,struct dpll * clock)310 int pnv_calc_dpll_params(int refclk, struct dpll *clock)
311 {
312 clock->m = clock->m2 + 2;
313 clock->p = clock->p1 * clock->p2;
314 if (WARN_ON(clock->n == 0 || clock->p == 0))
315 return 0;
316 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
317 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
318
319 return clock->dot;
320 }
321
i9xx_dpll_compute_m(const struct dpll * dpll)322 static u32 i9xx_dpll_compute_m(const struct dpll *dpll)
323 {
324 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
325 }
326
i9xx_calc_dpll_params(int refclk,struct dpll * clock)327 int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
328 {
329 clock->m = i9xx_dpll_compute_m(clock);
330 clock->p = clock->p1 * clock->p2;
331 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
332 return 0;
333 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
334 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
335
336 return clock->dot;
337 }
338
vlv_calc_dpll_params(int refclk,struct dpll * clock)339 int vlv_calc_dpll_params(int refclk, struct dpll *clock)
340 {
341 clock->m = clock->m1 * clock->m2;
342 clock->p = clock->p1 * clock->p2 * 5;
343 if (WARN_ON(clock->n == 0 || clock->p == 0))
344 return 0;
345 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
346 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
347
348 return clock->dot;
349 }
350
chv_calc_dpll_params(int refclk,struct dpll * clock)351 int chv_calc_dpll_params(int refclk, struct dpll *clock)
352 {
353 clock->m = clock->m1 * clock->m2;
354 clock->p = clock->p1 * clock->p2 * 5;
355 if (WARN_ON(clock->n == 0 || clock->p == 0))
356 return 0;
357 clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
358 clock->n << 22);
359 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
360
361 return clock->dot;
362 }
363
364 /*
365 * Returns whether the given set of divisors are valid for a given refclk with
366 * the given connectors.
367 */
intel_pll_is_valid(struct drm_i915_private * dev_priv,const struct intel_limit * limit,const struct dpll * clock)368 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
369 const struct intel_limit *limit,
370 const struct dpll *clock)
371 {
372 if (clock->n < limit->n.min || limit->n.max < clock->n)
373 return false;
374 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
375 return false;
376 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
377 return false;
378 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
379 return false;
380
381 if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv))
382 if (clock->m1 <= clock->m2)
383 return false;
384
385 if (!IS_LP(dev_priv)) {
386 if (clock->p < limit->p.min || limit->p.max < clock->p)
387 return false;
388 if (clock->m < limit->m.min || limit->m.max < clock->m)
389 return false;
390 }
391
392 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
393 return false;
394 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
395 * connector, etc., rather than just a single range.
396 */
397 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
398 return false;
399
400 return true;
401 }
402
403 static int
i9xx_select_p2_div(const struct intel_limit * limit,const struct intel_crtc_state * crtc_state,int target)404 i9xx_select_p2_div(const struct intel_limit *limit,
405 const struct intel_crtc_state *crtc_state,
406 int target)
407 {
408 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
409
410 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
411 /*
412 * For LVDS just rely on its current settings for dual-channel.
413 * We haven't figured out how to reliably set up different
414 * single/dual channel state, if we even can.
415 */
416 if (intel_is_dual_link_lvds(dev_priv))
417 return limit->p2.p2_fast;
418 else
419 return limit->p2.p2_slow;
420 } else {
421 if (target < limit->p2.dot_limit)
422 return limit->p2.p2_slow;
423 else
424 return limit->p2.p2_fast;
425 }
426 }
427
428 /*
429 * Returns a set of divisors for the desired target clock with the given
430 * refclk, or FALSE.
431 *
432 * Target and reference clocks are specified in kHz.
433 *
434 * If match_clock is provided, then best_clock P divider must match the P
435 * divider from @match_clock used for LVDS downclocking.
436 */
437 static bool
i9xx_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)438 i9xx_find_best_dpll(const struct intel_limit *limit,
439 struct intel_crtc_state *crtc_state,
440 int target, int refclk,
441 const struct dpll *match_clock,
442 struct dpll *best_clock)
443 {
444 struct drm_device *dev = crtc_state->uapi.crtc->dev;
445 struct dpll clock;
446 int err = target;
447
448 memset(best_clock, 0, sizeof(*best_clock));
449
450 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
451
452 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
453 clock.m1++) {
454 for (clock.m2 = limit->m2.min;
455 clock.m2 <= limit->m2.max; clock.m2++) {
456 if (clock.m2 >= clock.m1)
457 break;
458 for (clock.n = limit->n.min;
459 clock.n <= limit->n.max; clock.n++) {
460 for (clock.p1 = limit->p1.min;
461 clock.p1 <= limit->p1.max; clock.p1++) {
462 int this_err;
463
464 i9xx_calc_dpll_params(refclk, &clock);
465 if (!intel_pll_is_valid(to_i915(dev),
466 limit,
467 &clock))
468 continue;
469 if (match_clock &&
470 clock.p != match_clock->p)
471 continue;
472
473 this_err = abs(clock.dot - target);
474 if (this_err < err) {
475 *best_clock = clock;
476 err = this_err;
477 }
478 }
479 }
480 }
481 }
482
483 return (err != target);
484 }
485
486 /*
487 * Returns a set of divisors for the desired target clock with the given
488 * refclk, or FALSE.
489 *
490 * Target and reference clocks are specified in kHz.
491 *
492 * If match_clock is provided, then best_clock P divider must match the P
493 * divider from @match_clock used for LVDS downclocking.
494 */
495 static bool
pnv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)496 pnv_find_best_dpll(const struct intel_limit *limit,
497 struct intel_crtc_state *crtc_state,
498 int target, int refclk,
499 const struct dpll *match_clock,
500 struct dpll *best_clock)
501 {
502 struct drm_device *dev = crtc_state->uapi.crtc->dev;
503 struct dpll clock;
504 int err = target;
505
506 memset(best_clock, 0, sizeof(*best_clock));
507
508 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
509
510 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
511 clock.m1++) {
512 for (clock.m2 = limit->m2.min;
513 clock.m2 <= limit->m2.max; clock.m2++) {
514 for (clock.n = limit->n.min;
515 clock.n <= limit->n.max; clock.n++) {
516 for (clock.p1 = limit->p1.min;
517 clock.p1 <= limit->p1.max; clock.p1++) {
518 int this_err;
519
520 pnv_calc_dpll_params(refclk, &clock);
521 if (!intel_pll_is_valid(to_i915(dev),
522 limit,
523 &clock))
524 continue;
525 if (match_clock &&
526 clock.p != match_clock->p)
527 continue;
528
529 this_err = abs(clock.dot - target);
530 if (this_err < err) {
531 *best_clock = clock;
532 err = this_err;
533 }
534 }
535 }
536 }
537 }
538
539 return (err != target);
540 }
541
542 /*
543 * Returns a set of divisors for the desired target clock with the given
544 * refclk, or FALSE.
545 *
546 * Target and reference clocks are specified in kHz.
547 *
548 * If match_clock is provided, then best_clock P divider must match the P
549 * divider from @match_clock used for LVDS downclocking.
550 */
551 static bool
g4x_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)552 g4x_find_best_dpll(const struct intel_limit *limit,
553 struct intel_crtc_state *crtc_state,
554 int target, int refclk,
555 const struct dpll *match_clock,
556 struct dpll *best_clock)
557 {
558 struct drm_device *dev = crtc_state->uapi.crtc->dev;
559 struct dpll clock;
560 int max_n;
561 bool found = false;
562 /* approximately equals target * 0.00585 */
563 int err_most = (target >> 8) + (target >> 9);
564
565 memset(best_clock, 0, sizeof(*best_clock));
566
567 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
568
569 max_n = limit->n.max;
570 /* based on hardware requirement, prefer smaller n to precision */
571 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
572 /* based on hardware requirement, prefere larger m1,m2 */
573 for (clock.m1 = limit->m1.max;
574 clock.m1 >= limit->m1.min; clock.m1--) {
575 for (clock.m2 = limit->m2.max;
576 clock.m2 >= limit->m2.min; clock.m2--) {
577 for (clock.p1 = limit->p1.max;
578 clock.p1 >= limit->p1.min; clock.p1--) {
579 int this_err;
580
581 i9xx_calc_dpll_params(refclk, &clock);
582 if (!intel_pll_is_valid(to_i915(dev),
583 limit,
584 &clock))
585 continue;
586
587 this_err = abs(clock.dot - target);
588 if (this_err < err_most) {
589 *best_clock = clock;
590 err_most = this_err;
591 max_n = clock.n;
592 found = true;
593 }
594 }
595 }
596 }
597 }
598 return found;
599 }
600
601 /*
602 * Check if the calculated PLL configuration is more optimal compared to the
603 * best configuration and error found so far. Return the calculated error.
604 */
vlv_PLL_is_optimal(struct drm_device * dev,int target_freq,const struct dpll * calculated_clock,const struct dpll * best_clock,unsigned int best_error_ppm,unsigned int * error_ppm)605 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
606 const struct dpll *calculated_clock,
607 const struct dpll *best_clock,
608 unsigned int best_error_ppm,
609 unsigned int *error_ppm)
610 {
611 /*
612 * For CHV ignore the error and consider only the P value.
613 * Prefer a bigger P value based on HW requirements.
614 */
615 if (IS_CHERRYVIEW(to_i915(dev))) {
616 *error_ppm = 0;
617
618 return calculated_clock->p > best_clock->p;
619 }
620
621 if (drm_WARN_ON_ONCE(dev, !target_freq))
622 return false;
623
624 *error_ppm = div_u64(1000000ULL *
625 abs(target_freq - calculated_clock->dot),
626 target_freq);
627 /*
628 * Prefer a better P value over a better (smaller) error if the error
629 * is small. Ensure this preference for future configurations too by
630 * setting the error to 0.
631 */
632 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
633 *error_ppm = 0;
634
635 return true;
636 }
637
638 return *error_ppm + 10 < best_error_ppm;
639 }
640
641 /*
642 * Returns a set of divisors for the desired target clock with the given
643 * refclk, or FALSE.
644 */
645 static bool
vlv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)646 vlv_find_best_dpll(const struct intel_limit *limit,
647 struct intel_crtc_state *crtc_state,
648 int target, int refclk,
649 const struct dpll *match_clock,
650 struct dpll *best_clock)
651 {
652 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
653 struct drm_device *dev = crtc->base.dev;
654 struct dpll clock;
655 unsigned int bestppm = 1000000;
656 /* min update 19.2 MHz */
657 int max_n = min(limit->n.max, refclk / 19200);
658 bool found = false;
659
660 memset(best_clock, 0, sizeof(*best_clock));
661
662 /* based on hardware requirement, prefer smaller n to precision */
663 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
664 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
665 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
666 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
667 clock.p = clock.p1 * clock.p2 * 5;
668 /* based on hardware requirement, prefer bigger m1,m2 values */
669 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
670 unsigned int ppm;
671
672 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
673 refclk * clock.m1);
674
675 vlv_calc_dpll_params(refclk, &clock);
676
677 if (!intel_pll_is_valid(to_i915(dev),
678 limit,
679 &clock))
680 continue;
681
682 if (!vlv_PLL_is_optimal(dev, target,
683 &clock,
684 best_clock,
685 bestppm, &ppm))
686 continue;
687
688 *best_clock = clock;
689 bestppm = ppm;
690 found = true;
691 }
692 }
693 }
694 }
695
696 return found;
697 }
698
699 /*
700 * Returns a set of divisors for the desired target clock with the given
701 * refclk, or FALSE.
702 */
703 static bool
chv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)704 chv_find_best_dpll(const struct intel_limit *limit,
705 struct intel_crtc_state *crtc_state,
706 int target, int refclk,
707 const struct dpll *match_clock,
708 struct dpll *best_clock)
709 {
710 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
711 struct drm_device *dev = crtc->base.dev;
712 unsigned int best_error_ppm;
713 struct dpll clock;
714 u64 m2;
715 int found = false;
716
717 memset(best_clock, 0, sizeof(*best_clock));
718 best_error_ppm = 1000000;
719
720 /*
721 * Based on hardware doc, the n always set to 1, and m1 always
722 * set to 2. If requires to support 200Mhz refclk, we need to
723 * revisit this because n may not 1 anymore.
724 */
725 clock.n = 1;
726 clock.m1 = 2;
727
728 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
729 for (clock.p2 = limit->p2.p2_fast;
730 clock.p2 >= limit->p2.p2_slow;
731 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
732 unsigned int error_ppm;
733
734 clock.p = clock.p1 * clock.p2 * 5;
735
736 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
737 refclk * clock.m1);
738
739 if (m2 > INT_MAX/clock.m1)
740 continue;
741
742 clock.m2 = m2;
743
744 chv_calc_dpll_params(refclk, &clock);
745
746 if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
747 continue;
748
749 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
750 best_error_ppm, &error_ppm))
751 continue;
752
753 *best_clock = clock;
754 best_error_ppm = error_ppm;
755 found = true;
756 }
757 }
758
759 return found;
760 }
761
bxt_find_best_dpll(struct intel_crtc_state * crtc_state,struct dpll * best_clock)762 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
763 struct dpll *best_clock)
764 {
765 const struct intel_limit *limit = &intel_limits_bxt;
766 int refclk = 100000;
767
768 return chv_find_best_dpll(limit, crtc_state,
769 crtc_state->port_clock, refclk,
770 NULL, best_clock);
771 }
772
i9xx_dpll_compute_fp(const struct dpll * dpll)773 u32 i9xx_dpll_compute_fp(const struct dpll *dpll)
774 {
775 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
776 }
777
pnv_dpll_compute_fp(const struct dpll * dpll)778 static u32 pnv_dpll_compute_fp(const struct dpll *dpll)
779 {
780 return (1 << dpll->n) << 16 | dpll->m2;
781 }
782
i9xx_update_pll_dividers(struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)783 static void i9xx_update_pll_dividers(struct intel_crtc_state *crtc_state,
784 const struct dpll *clock,
785 const struct dpll *reduced_clock)
786 {
787 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
788 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
789 u32 fp, fp2;
790
791 if (IS_PINEVIEW(dev_priv)) {
792 fp = pnv_dpll_compute_fp(clock);
793 fp2 = pnv_dpll_compute_fp(reduced_clock);
794 } else {
795 fp = i9xx_dpll_compute_fp(clock);
796 fp2 = i9xx_dpll_compute_fp(reduced_clock);
797 }
798
799 crtc_state->dpll_hw_state.fp0 = fp;
800 crtc_state->dpll_hw_state.fp1 = fp2;
801 }
802
i9xx_compute_dpll(struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)803 static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state,
804 const struct dpll *clock,
805 const struct dpll *reduced_clock)
806 {
807 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
808 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
809 u32 dpll;
810
811 i9xx_update_pll_dividers(crtc_state, clock, reduced_clock);
812
813 dpll = DPLL_VGA_MODE_DIS;
814
815 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
816 dpll |= DPLLB_MODE_LVDS;
817 else
818 dpll |= DPLLB_MODE_DAC_SERIAL;
819
820 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
821 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
822 dpll |= (crtc_state->pixel_multiplier - 1)
823 << SDVO_MULTIPLIER_SHIFT_HIRES;
824 }
825
826 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
827 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
828 dpll |= DPLL_SDVO_HIGH_SPEED;
829
830 if (intel_crtc_has_dp_encoder(crtc_state))
831 dpll |= DPLL_SDVO_HIGH_SPEED;
832
833 /* compute bitmask from p1 value */
834 if (IS_G4X(dev_priv)) {
835 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
836 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
837 } else if (IS_PINEVIEW(dev_priv)) {
838 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
839 WARN_ON(reduced_clock->p1 != clock->p1);
840 } else {
841 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
842 WARN_ON(reduced_clock->p1 != clock->p1);
843 }
844
845 switch (clock->p2) {
846 case 5:
847 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
848 break;
849 case 7:
850 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
851 break;
852 case 10:
853 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
854 break;
855 case 14:
856 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
857 break;
858 }
859 WARN_ON(reduced_clock->p2 != clock->p2);
860
861 if (DISPLAY_VER(dev_priv) >= 4)
862 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
863
864 if (crtc_state->sdvo_tv_clock)
865 dpll |= PLL_REF_INPUT_TVCLKINBC;
866 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
867 intel_panel_use_ssc(dev_priv))
868 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
869 else
870 dpll |= PLL_REF_INPUT_DREFCLK;
871
872 dpll |= DPLL_VCO_ENABLE;
873 crtc_state->dpll_hw_state.dpll = dpll;
874
875 if (DISPLAY_VER(dev_priv) >= 4) {
876 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
877 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
878 crtc_state->dpll_hw_state.dpll_md = dpll_md;
879 }
880 }
881
i8xx_compute_dpll(struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)882 static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state,
883 const struct dpll *clock,
884 const struct dpll *reduced_clock)
885 {
886 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
887 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
888 u32 dpll;
889
890 i9xx_update_pll_dividers(crtc_state, clock, reduced_clock);
891
892 dpll = DPLL_VGA_MODE_DIS;
893
894 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
895 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
896 } else {
897 if (clock->p1 == 2)
898 dpll |= PLL_P1_DIVIDE_BY_TWO;
899 else
900 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
901 if (clock->p2 == 4)
902 dpll |= PLL_P2_DIVIDE_BY_4;
903 }
904 WARN_ON(reduced_clock->p1 != clock->p1);
905 WARN_ON(reduced_clock->p2 != clock->p2);
906
907 /*
908 * Bspec:
909 * "[Almador Errata}: For the correct operation of the muxed DVO pins
910 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
911 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
912 * Enable) must be set to “1” in both the DPLL A Control Register
913 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
914 *
915 * For simplicity We simply keep both bits always enabled in
916 * both DPLLS. The spec says we should disable the DVO 2X clock
917 * when not needed, but this seems to work fine in practice.
918 */
919 if (IS_I830(dev_priv) ||
920 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
921 dpll |= DPLL_DVO_2X_MODE;
922
923 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
924 intel_panel_use_ssc(dev_priv))
925 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
926 else
927 dpll |= PLL_REF_INPUT_DREFCLK;
928
929 dpll |= DPLL_VCO_ENABLE;
930 crtc_state->dpll_hw_state.dpll = dpll;
931 }
932
hsw_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)933 static int hsw_crtc_compute_clock(struct intel_atomic_state *state,
934 struct intel_crtc *crtc)
935 {
936 return 0;
937 }
938
hsw_crtc_get_shared_dpll(struct intel_atomic_state * state,struct intel_crtc * crtc)939 static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state,
940 struct intel_crtc *crtc)
941 {
942 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
943 struct intel_crtc_state *crtc_state =
944 intel_atomic_get_new_crtc_state(state, crtc);
945 struct intel_encoder *encoder =
946 intel_get_crtc_new_encoder(state, crtc_state);
947 int ret;
948
949 if (DISPLAY_VER(dev_priv) < 11 &&
950 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
951 return 0;
952
953 ret = intel_reserve_shared_dplls(state, crtc, encoder);
954 if (ret) {
955 drm_dbg_kms(&dev_priv->drm,
956 "failed to find PLL for pipe %c\n",
957 pipe_name(crtc->pipe));
958 return ret;
959 }
960
961 return 0;
962 }
963
dg2_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)964 static int dg2_crtc_compute_clock(struct intel_atomic_state *state,
965 struct intel_crtc *crtc)
966 {
967 struct intel_crtc_state *crtc_state =
968 intel_atomic_get_new_crtc_state(state, crtc);
969 struct intel_encoder *encoder =
970 intel_get_crtc_new_encoder(state, crtc_state);
971
972 return intel_mpllb_calc_state(crtc_state, encoder);
973 }
974
ilk_needs_fb_cb_tune(const struct dpll * dpll,int factor)975 static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor)
976 {
977 return dpll->m < factor * dpll->n;
978 }
979
ilk_update_pll_dividers(struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)980 static void ilk_update_pll_dividers(struct intel_crtc_state *crtc_state,
981 const struct dpll *clock,
982 const struct dpll *reduced_clock)
983 {
984 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
985 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
986 u32 fp, fp2;
987 int factor;
988
989 /* Enable autotuning of the PLL clock (if permissible) */
990 factor = 21;
991 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
992 if ((intel_panel_use_ssc(dev_priv) &&
993 dev_priv->vbt.lvds_ssc_freq == 100000) ||
994 (HAS_PCH_IBX(dev_priv) &&
995 intel_is_dual_link_lvds(dev_priv)))
996 factor = 25;
997 } else if (crtc_state->sdvo_tv_clock) {
998 factor = 20;
999 }
1000
1001 fp = i9xx_dpll_compute_fp(clock);
1002 if (ilk_needs_fb_cb_tune(clock, factor))
1003 fp |= FP_CB_TUNE;
1004
1005 fp2 = i9xx_dpll_compute_fp(reduced_clock);
1006 if (ilk_needs_fb_cb_tune(reduced_clock, factor))
1007 fp2 |= FP_CB_TUNE;
1008
1009 crtc_state->dpll_hw_state.fp0 = fp;
1010 crtc_state->dpll_hw_state.fp1 = fp2;
1011 }
1012
ilk_compute_dpll(struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)1013 static void ilk_compute_dpll(struct intel_crtc_state *crtc_state,
1014 const struct dpll *clock,
1015 const struct dpll *reduced_clock)
1016 {
1017 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1018 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1019 u32 dpll;
1020
1021 ilk_update_pll_dividers(crtc_state, clock, reduced_clock);
1022
1023 dpll = 0;
1024
1025 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1026 dpll |= DPLLB_MODE_LVDS;
1027 else
1028 dpll |= DPLLB_MODE_DAC_SERIAL;
1029
1030 dpll |= (crtc_state->pixel_multiplier - 1)
1031 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
1032
1033 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1034 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1035 dpll |= DPLL_SDVO_HIGH_SPEED;
1036
1037 if (intel_crtc_has_dp_encoder(crtc_state))
1038 dpll |= DPLL_SDVO_HIGH_SPEED;
1039
1040 /*
1041 * The high speed IO clock is only really required for
1042 * SDVO/HDMI/DP, but we also enable it for CRT to make it
1043 * possible to share the DPLL between CRT and HDMI. Enabling
1044 * the clock needlessly does no real harm, except use up a
1045 * bit of power potentially.
1046 *
1047 * We'll limit this to IVB with 3 pipes, since it has only two
1048 * DPLLs and so DPLL sharing is the only way to get three pipes
1049 * driving PCH ports at the same time. On SNB we could do this,
1050 * and potentially avoid enabling the second DPLL, but it's not
1051 * clear if it''s a win or loss power wise. No point in doing
1052 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1053 */
1054 if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1055 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1056 dpll |= DPLL_SDVO_HIGH_SPEED;
1057
1058 /* compute bitmask from p1 value */
1059 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1060 /* also FPA1 */
1061 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1062
1063 switch (clock->p2) {
1064 case 5:
1065 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1066 break;
1067 case 7:
1068 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1069 break;
1070 case 10:
1071 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1072 break;
1073 case 14:
1074 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1075 break;
1076 }
1077 WARN_ON(reduced_clock->p2 != clock->p2);
1078
1079 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1080 intel_panel_use_ssc(dev_priv))
1081 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1082 else
1083 dpll |= PLL_REF_INPUT_DREFCLK;
1084
1085 dpll |= DPLL_VCO_ENABLE;
1086
1087 crtc_state->dpll_hw_state.dpll = dpll;
1088 }
1089
ilk_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1090 static int ilk_crtc_compute_clock(struct intel_atomic_state *state,
1091 struct intel_crtc *crtc)
1092 {
1093 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1094 struct intel_crtc_state *crtc_state =
1095 intel_atomic_get_new_crtc_state(state, crtc);
1096 const struct intel_limit *limit;
1097 int refclk = 120000;
1098
1099 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1100 if (!crtc_state->has_pch_encoder)
1101 return 0;
1102
1103 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1104 if (intel_panel_use_ssc(dev_priv)) {
1105 drm_dbg_kms(&dev_priv->drm,
1106 "using SSC reference clock of %d kHz\n",
1107 dev_priv->vbt.lvds_ssc_freq);
1108 refclk = dev_priv->vbt.lvds_ssc_freq;
1109 }
1110
1111 if (intel_is_dual_link_lvds(dev_priv)) {
1112 if (refclk == 100000)
1113 limit = &ilk_limits_dual_lvds_100m;
1114 else
1115 limit = &ilk_limits_dual_lvds;
1116 } else {
1117 if (refclk == 100000)
1118 limit = &ilk_limits_single_lvds_100m;
1119 else
1120 limit = &ilk_limits_single_lvds;
1121 }
1122 } else {
1123 limit = &ilk_limits_dac;
1124 }
1125
1126 if (!crtc_state->clock_set &&
1127 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1128 refclk, NULL, &crtc_state->dpll)) {
1129 drm_err(&dev_priv->drm,
1130 "Couldn't find PLL settings for mode!\n");
1131 return -EINVAL;
1132 }
1133
1134 ilk_compute_dpll(crtc_state, &crtc_state->dpll,
1135 &crtc_state->dpll);
1136
1137 return 0;
1138 }
1139
ilk_crtc_get_shared_dpll(struct intel_atomic_state * state,struct intel_crtc * crtc)1140 static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state,
1141 struct intel_crtc *crtc)
1142 {
1143 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1144 struct intel_crtc_state *crtc_state =
1145 intel_atomic_get_new_crtc_state(state, crtc);
1146 int ret;
1147
1148 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1149 if (!crtc_state->has_pch_encoder)
1150 return 0;
1151
1152 ret = intel_reserve_shared_dplls(state, crtc, NULL);
1153 if (ret) {
1154 drm_dbg_kms(&dev_priv->drm,
1155 "failed to find PLL for pipe %c\n",
1156 pipe_name(crtc->pipe));
1157 return ret;
1158 }
1159
1160 return 0;
1161 }
1162
vlv_compute_dpll(struct intel_crtc_state * crtc_state)1163 void vlv_compute_dpll(struct intel_crtc_state *crtc_state)
1164 {
1165 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1166
1167 crtc_state->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
1168 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1169 if (crtc->pipe != PIPE_A)
1170 crtc_state->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1171
1172 /* DPLL not used with DSI, but still need the rest set up */
1173 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1174 crtc_state->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
1175 DPLL_EXT_BUFFER_ENABLE_VLV;
1176
1177 crtc_state->dpll_hw_state.dpll_md =
1178 (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1179 }
1180
chv_compute_dpll(struct intel_crtc_state * crtc_state)1181 void chv_compute_dpll(struct intel_crtc_state *crtc_state)
1182 {
1183 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1184
1185 crtc_state->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
1186 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1187 if (crtc->pipe != PIPE_A)
1188 crtc_state->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1189
1190 /* DPLL not used with DSI, but still need the rest set up */
1191 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1192 crtc_state->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
1193
1194 crtc_state->dpll_hw_state.dpll_md =
1195 (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1196 }
1197
chv_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1198 static int chv_crtc_compute_clock(struct intel_atomic_state *state,
1199 struct intel_crtc *crtc)
1200 {
1201 struct drm_i915_private *i915 = to_i915(state->base.dev);
1202 struct intel_crtc_state *crtc_state =
1203 intel_atomic_get_new_crtc_state(state, crtc);
1204 const struct intel_limit *limit = &intel_limits_chv;
1205 int refclk = 100000;
1206
1207 if (!crtc_state->clock_set &&
1208 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1209 refclk, NULL, &crtc_state->dpll)) {
1210 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n");
1211 return -EINVAL;
1212 }
1213
1214 chv_compute_dpll(crtc_state);
1215
1216 return 0;
1217 }
1218
vlv_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1219 static int vlv_crtc_compute_clock(struct intel_atomic_state *state,
1220 struct intel_crtc *crtc)
1221 {
1222 struct drm_i915_private *i915 = to_i915(state->base.dev);
1223 struct intel_crtc_state *crtc_state =
1224 intel_atomic_get_new_crtc_state(state, crtc);
1225 const struct intel_limit *limit = &intel_limits_vlv;
1226 int refclk = 100000;
1227
1228 if (!crtc_state->clock_set &&
1229 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1230 refclk, NULL, &crtc_state->dpll)) {
1231 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n");
1232 return -EINVAL;
1233 }
1234
1235 vlv_compute_dpll(crtc_state);
1236
1237 return 0;
1238 }
1239
g4x_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1240 static int g4x_crtc_compute_clock(struct intel_atomic_state *state,
1241 struct intel_crtc *crtc)
1242 {
1243 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1244 struct intel_crtc_state *crtc_state =
1245 intel_atomic_get_new_crtc_state(state, crtc);
1246 const struct intel_limit *limit;
1247 int refclk = 96000;
1248
1249 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1250 if (intel_panel_use_ssc(dev_priv)) {
1251 refclk = dev_priv->vbt.lvds_ssc_freq;
1252 drm_dbg_kms(&dev_priv->drm,
1253 "using SSC reference clock of %d kHz\n",
1254 refclk);
1255 }
1256
1257 if (intel_is_dual_link_lvds(dev_priv))
1258 limit = &intel_limits_g4x_dual_channel_lvds;
1259 else
1260 limit = &intel_limits_g4x_single_channel_lvds;
1261 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1262 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1263 limit = &intel_limits_g4x_hdmi;
1264 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1265 limit = &intel_limits_g4x_sdvo;
1266 } else {
1267 /* The option is for other outputs */
1268 limit = &intel_limits_i9xx_sdvo;
1269 }
1270
1271 if (!crtc_state->clock_set &&
1272 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1273 refclk, NULL, &crtc_state->dpll)) {
1274 drm_err(&dev_priv->drm,
1275 "Couldn't find PLL settings for mode!\n");
1276 return -EINVAL;
1277 }
1278
1279 i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1280 &crtc_state->dpll);
1281
1282 return 0;
1283 }
1284
pnv_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1285 static int pnv_crtc_compute_clock(struct intel_atomic_state *state,
1286 struct intel_crtc *crtc)
1287 {
1288 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1289 struct intel_crtc_state *crtc_state =
1290 intel_atomic_get_new_crtc_state(state, crtc);
1291 const struct intel_limit *limit;
1292 int refclk = 96000;
1293
1294 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1295 if (intel_panel_use_ssc(dev_priv)) {
1296 refclk = dev_priv->vbt.lvds_ssc_freq;
1297 drm_dbg_kms(&dev_priv->drm,
1298 "using SSC reference clock of %d kHz\n",
1299 refclk);
1300 }
1301
1302 limit = &pnv_limits_lvds;
1303 } else {
1304 limit = &pnv_limits_sdvo;
1305 }
1306
1307 if (!crtc_state->clock_set &&
1308 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1309 refclk, NULL, &crtc_state->dpll)) {
1310 drm_err(&dev_priv->drm,
1311 "Couldn't find PLL settings for mode!\n");
1312 return -EINVAL;
1313 }
1314
1315 i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1316 &crtc_state->dpll);
1317
1318 return 0;
1319 }
1320
i9xx_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1321 static int i9xx_crtc_compute_clock(struct intel_atomic_state *state,
1322 struct intel_crtc *crtc)
1323 {
1324 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1325 struct intel_crtc_state *crtc_state =
1326 intel_atomic_get_new_crtc_state(state, crtc);
1327 const struct intel_limit *limit;
1328 int refclk = 96000;
1329
1330 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1331 if (intel_panel_use_ssc(dev_priv)) {
1332 refclk = dev_priv->vbt.lvds_ssc_freq;
1333 drm_dbg_kms(&dev_priv->drm,
1334 "using SSC reference clock of %d kHz\n",
1335 refclk);
1336 }
1337
1338 limit = &intel_limits_i9xx_lvds;
1339 } else {
1340 limit = &intel_limits_i9xx_sdvo;
1341 }
1342
1343 if (!crtc_state->clock_set &&
1344 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1345 refclk, NULL, &crtc_state->dpll)) {
1346 drm_err(&dev_priv->drm,
1347 "Couldn't find PLL settings for mode!\n");
1348 return -EINVAL;
1349 }
1350
1351 i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1352 &crtc_state->dpll);
1353
1354 return 0;
1355 }
1356
i8xx_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1357 static int i8xx_crtc_compute_clock(struct intel_atomic_state *state,
1358 struct intel_crtc *crtc)
1359 {
1360 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1361 struct intel_crtc_state *crtc_state =
1362 intel_atomic_get_new_crtc_state(state, crtc);
1363 const struct intel_limit *limit;
1364 int refclk = 48000;
1365
1366 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1367 if (intel_panel_use_ssc(dev_priv)) {
1368 refclk = dev_priv->vbt.lvds_ssc_freq;
1369 drm_dbg_kms(&dev_priv->drm,
1370 "using SSC reference clock of %d kHz\n",
1371 refclk);
1372 }
1373
1374 limit = &intel_limits_i8xx_lvds;
1375 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1376 limit = &intel_limits_i8xx_dvo;
1377 } else {
1378 limit = &intel_limits_i8xx_dac;
1379 }
1380
1381 if (!crtc_state->clock_set &&
1382 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1383 refclk, NULL, &crtc_state->dpll)) {
1384 drm_err(&dev_priv->drm,
1385 "Couldn't find PLL settings for mode!\n");
1386 return -EINVAL;
1387 }
1388
1389 i8xx_compute_dpll(crtc_state, &crtc_state->dpll,
1390 &crtc_state->dpll);
1391
1392 return 0;
1393 }
1394
1395 static const struct intel_dpll_funcs dg2_dpll_funcs = {
1396 .crtc_compute_clock = dg2_crtc_compute_clock,
1397 };
1398
1399 static const struct intel_dpll_funcs hsw_dpll_funcs = {
1400 .crtc_compute_clock = hsw_crtc_compute_clock,
1401 .crtc_get_shared_dpll = hsw_crtc_get_shared_dpll,
1402 };
1403
1404 static const struct intel_dpll_funcs ilk_dpll_funcs = {
1405 .crtc_compute_clock = ilk_crtc_compute_clock,
1406 .crtc_get_shared_dpll = ilk_crtc_get_shared_dpll,
1407 };
1408
1409 static const struct intel_dpll_funcs chv_dpll_funcs = {
1410 .crtc_compute_clock = chv_crtc_compute_clock,
1411 };
1412
1413 static const struct intel_dpll_funcs vlv_dpll_funcs = {
1414 .crtc_compute_clock = vlv_crtc_compute_clock,
1415 };
1416
1417 static const struct intel_dpll_funcs g4x_dpll_funcs = {
1418 .crtc_compute_clock = g4x_crtc_compute_clock,
1419 };
1420
1421 static const struct intel_dpll_funcs pnv_dpll_funcs = {
1422 .crtc_compute_clock = pnv_crtc_compute_clock,
1423 };
1424
1425 static const struct intel_dpll_funcs i9xx_dpll_funcs = {
1426 .crtc_compute_clock = i9xx_crtc_compute_clock,
1427 };
1428
1429 static const struct intel_dpll_funcs i8xx_dpll_funcs = {
1430 .crtc_compute_clock = i8xx_crtc_compute_clock,
1431 };
1432
intel_dpll_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1433 int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state,
1434 struct intel_crtc *crtc)
1435 {
1436 struct drm_i915_private *i915 = to_i915(state->base.dev);
1437 struct intel_crtc_state *crtc_state =
1438 intel_atomic_get_new_crtc_state(state, crtc);
1439
1440 drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1441
1442 if (drm_WARN_ON(&i915->drm, crtc_state->shared_dpll))
1443 return 0;
1444
1445 memset(&crtc_state->dpll_hw_state, 0,
1446 sizeof(crtc_state->dpll_hw_state));
1447
1448 if (!crtc_state->hw.enable)
1449 return 0;
1450
1451 return i915->dpll_funcs->crtc_compute_clock(state, crtc);
1452 }
1453
intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state * state,struct intel_crtc * crtc)1454 int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state,
1455 struct intel_crtc *crtc)
1456 {
1457 struct drm_i915_private *i915 = to_i915(state->base.dev);
1458 struct intel_crtc_state *crtc_state =
1459 intel_atomic_get_new_crtc_state(state, crtc);
1460
1461 drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1462
1463 if (drm_WARN_ON(&i915->drm, crtc_state->shared_dpll))
1464 return 0;
1465
1466 if (!crtc_state->hw.enable)
1467 return 0;
1468
1469 if (!i915->dpll_funcs->crtc_get_shared_dpll)
1470 return 0;
1471
1472 return i915->dpll_funcs->crtc_get_shared_dpll(state, crtc);
1473 }
1474
1475 void
intel_dpll_init_clock_hook(struct drm_i915_private * dev_priv)1476 intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1477 {
1478 if (IS_DG2(dev_priv))
1479 dev_priv->dpll_funcs = &dg2_dpll_funcs;
1480 else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
1481 dev_priv->dpll_funcs = &hsw_dpll_funcs;
1482 else if (HAS_PCH_SPLIT(dev_priv))
1483 dev_priv->dpll_funcs = &ilk_dpll_funcs;
1484 else if (IS_CHERRYVIEW(dev_priv))
1485 dev_priv->dpll_funcs = &chv_dpll_funcs;
1486 else if (IS_VALLEYVIEW(dev_priv))
1487 dev_priv->dpll_funcs = &vlv_dpll_funcs;
1488 else if (IS_G4X(dev_priv))
1489 dev_priv->dpll_funcs = &g4x_dpll_funcs;
1490 else if (IS_PINEVIEW(dev_priv))
1491 dev_priv->dpll_funcs = &pnv_dpll_funcs;
1492 else if (DISPLAY_VER(dev_priv) != 2)
1493 dev_priv->dpll_funcs = &i9xx_dpll_funcs;
1494 else
1495 dev_priv->dpll_funcs = &i8xx_dpll_funcs;
1496 }
1497
i9xx_has_pps(struct drm_i915_private * dev_priv)1498 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1499 {
1500 if (IS_I830(dev_priv))
1501 return false;
1502
1503 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1504 }
1505
i9xx_enable_pll(const struct intel_crtc_state * crtc_state)1506 void i9xx_enable_pll(const struct intel_crtc_state *crtc_state)
1507 {
1508 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1509 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1510 u32 dpll = crtc_state->dpll_hw_state.dpll;
1511 enum pipe pipe = crtc->pipe;
1512 int i;
1513
1514 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1515
1516 /* PLL is protected by panel, make sure we can write it */
1517 if (i9xx_has_pps(dev_priv))
1518 assert_pps_unlocked(dev_priv, pipe);
1519
1520 intel_de_write(dev_priv, FP0(pipe), crtc_state->dpll_hw_state.fp0);
1521 intel_de_write(dev_priv, FP1(pipe), crtc_state->dpll_hw_state.fp1);
1522
1523 /*
1524 * Apparently we need to have VGA mode enabled prior to changing
1525 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1526 * dividers, even though the register value does change.
1527 */
1528 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
1529 intel_de_write(dev_priv, DPLL(pipe), dpll);
1530
1531 /* Wait for the clocks to stabilize. */
1532 intel_de_posting_read(dev_priv, DPLL(pipe));
1533 udelay(150);
1534
1535 if (DISPLAY_VER(dev_priv) >= 4) {
1536 intel_de_write(dev_priv, DPLL_MD(pipe),
1537 crtc_state->dpll_hw_state.dpll_md);
1538 } else {
1539 /* The pixel multiplier can only be updated once the
1540 * DPLL is enabled and the clocks are stable.
1541 *
1542 * So write it again.
1543 */
1544 intel_de_write(dev_priv, DPLL(pipe), dpll);
1545 }
1546
1547 /* We do this three times for luck */
1548 for (i = 0; i < 3; i++) {
1549 intel_de_write(dev_priv, DPLL(pipe), dpll);
1550 intel_de_posting_read(dev_priv, DPLL(pipe));
1551 udelay(150); /* wait for warmup */
1552 }
1553 }
1554
vlv_pllb_recal_opamp(struct drm_i915_private * dev_priv,enum pipe pipe)1555 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
1556 enum pipe pipe)
1557 {
1558 u32 reg_val;
1559
1560 /*
1561 * PLLB opamp always calibrates to max value of 0x3f, force enable it
1562 * and set it to a reasonable value instead.
1563 */
1564 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
1565 reg_val &= 0xffffff00;
1566 reg_val |= 0x00000030;
1567 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
1568
1569 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
1570 reg_val &= 0x00ffffff;
1571 reg_val |= 0x8c000000;
1572 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
1573
1574 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
1575 reg_val &= 0xffffff00;
1576 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
1577
1578 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
1579 reg_val &= 0x00ffffff;
1580 reg_val |= 0xb0000000;
1581 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
1582 }
1583
vlv_prepare_pll(const struct intel_crtc_state * crtc_state)1584 static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state)
1585 {
1586 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1587 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1588 enum pipe pipe = crtc->pipe;
1589 u32 mdiv;
1590 u32 bestn, bestm1, bestm2, bestp1, bestp2;
1591 u32 coreclk, reg_val;
1592
1593 vlv_dpio_get(dev_priv);
1594
1595 bestn = crtc_state->dpll.n;
1596 bestm1 = crtc_state->dpll.m1;
1597 bestm2 = crtc_state->dpll.m2;
1598 bestp1 = crtc_state->dpll.p1;
1599 bestp2 = crtc_state->dpll.p2;
1600
1601 /* See eDP HDMI DPIO driver vbios notes doc */
1602
1603 /* PLL B needs special handling */
1604 if (pipe == PIPE_B)
1605 vlv_pllb_recal_opamp(dev_priv, pipe);
1606
1607 /* Set up Tx target for periodic Rcomp update */
1608 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
1609
1610 /* Disable target IRef on PLL */
1611 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
1612 reg_val &= 0x00ffffff;
1613 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
1614
1615 /* Disable fast lock */
1616 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
1617
1618 /* Set idtafcrecal before PLL is enabled */
1619 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
1620 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
1621 mdiv |= ((bestn << DPIO_N_SHIFT));
1622 mdiv |= (1 << DPIO_K_SHIFT);
1623
1624 /*
1625 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
1626 * but we don't support that).
1627 * Note: don't use the DAC post divider as it seems unstable.
1628 */
1629 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
1630 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
1631
1632 mdiv |= DPIO_ENABLE_CALIBRATION;
1633 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
1634
1635 /* Set HBR and RBR LPF coefficients */
1636 if (crtc_state->port_clock == 162000 ||
1637 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) ||
1638 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1639 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
1640 0x009f0003);
1641 else
1642 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
1643 0x00d0000f);
1644
1645 if (intel_crtc_has_dp_encoder(crtc_state)) {
1646 /* Use SSC source */
1647 if (pipe == PIPE_A)
1648 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1649 0x0df40000);
1650 else
1651 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1652 0x0df70000);
1653 } else { /* HDMI or VGA */
1654 /* Use bend source */
1655 if (pipe == PIPE_A)
1656 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1657 0x0df70000);
1658 else
1659 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1660 0x0df40000);
1661 }
1662
1663 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
1664 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
1665 if (intel_crtc_has_dp_encoder(crtc_state))
1666 coreclk |= 0x01000000;
1667 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
1668
1669 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
1670
1671 vlv_dpio_put(dev_priv);
1672 }
1673
_vlv_enable_pll(const struct intel_crtc_state * crtc_state)1674 static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state)
1675 {
1676 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1677 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1678 enum pipe pipe = crtc->pipe;
1679
1680 intel_de_write(dev_priv, DPLL(pipe), crtc_state->dpll_hw_state.dpll);
1681 intel_de_posting_read(dev_priv, DPLL(pipe));
1682 udelay(150);
1683
1684 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1685 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
1686 }
1687
vlv_enable_pll(const struct intel_crtc_state * crtc_state)1688 void vlv_enable_pll(const struct intel_crtc_state *crtc_state)
1689 {
1690 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1691 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1692 enum pipe pipe = crtc->pipe;
1693
1694 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1695
1696 /* PLL is protected by panel, make sure we can write it */
1697 assert_pps_unlocked(dev_priv, pipe);
1698
1699 /* Enable Refclk */
1700 intel_de_write(dev_priv, DPLL(pipe),
1701 crtc_state->dpll_hw_state.dpll &
1702 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
1703
1704 if (crtc_state->dpll_hw_state.dpll & DPLL_VCO_ENABLE) {
1705 vlv_prepare_pll(crtc_state);
1706 _vlv_enable_pll(crtc_state);
1707 }
1708
1709 intel_de_write(dev_priv, DPLL_MD(pipe),
1710 crtc_state->dpll_hw_state.dpll_md);
1711 intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1712 }
1713
chv_prepare_pll(const struct intel_crtc_state * crtc_state)1714 static void chv_prepare_pll(const struct intel_crtc_state *crtc_state)
1715 {
1716 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1717 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1718 enum pipe pipe = crtc->pipe;
1719 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1720 u32 loopfilter, tribuf_calcntr;
1721 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
1722 u32 dpio_val;
1723 int vco;
1724
1725 bestn = crtc_state->dpll.n;
1726 bestm2_frac = crtc_state->dpll.m2 & 0x3fffff;
1727 bestm1 = crtc_state->dpll.m1;
1728 bestm2 = crtc_state->dpll.m2 >> 22;
1729 bestp1 = crtc_state->dpll.p1;
1730 bestp2 = crtc_state->dpll.p2;
1731 vco = crtc_state->dpll.vco;
1732 dpio_val = 0;
1733 loopfilter = 0;
1734
1735 vlv_dpio_get(dev_priv);
1736
1737 /* p1 and p2 divider */
1738 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
1739 5 << DPIO_CHV_S1_DIV_SHIFT |
1740 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
1741 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
1742 1 << DPIO_CHV_K_DIV_SHIFT);
1743
1744 /* Feedback post-divider - m2 */
1745 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
1746
1747 /* Feedback refclk divider - n and m1 */
1748 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
1749 DPIO_CHV_M1_DIV_BY_2 |
1750 1 << DPIO_CHV_N_DIV_SHIFT);
1751
1752 /* M2 fraction division */
1753 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
1754
1755 /* M2 fraction division enable */
1756 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
1757 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
1758 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
1759 if (bestm2_frac)
1760 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
1761 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
1762
1763 /* Program digital lock detect threshold */
1764 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
1765 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
1766 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
1767 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
1768 if (!bestm2_frac)
1769 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
1770 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
1771
1772 /* Loop filter */
1773 if (vco == 5400000) {
1774 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
1775 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
1776 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
1777 tribuf_calcntr = 0x9;
1778 } else if (vco <= 6200000) {
1779 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
1780 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
1781 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1782 tribuf_calcntr = 0x9;
1783 } else if (vco <= 6480000) {
1784 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
1785 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
1786 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1787 tribuf_calcntr = 0x8;
1788 } else {
1789 /* Not supported. Apply the same limits as in the max case */
1790 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
1791 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
1792 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1793 tribuf_calcntr = 0;
1794 }
1795 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
1796
1797 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
1798 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
1799 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
1800 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
1801
1802 /* AFC Recal */
1803 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
1804 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
1805 DPIO_AFC_RECAL);
1806
1807 vlv_dpio_put(dev_priv);
1808 }
1809
_chv_enable_pll(const struct intel_crtc_state * crtc_state)1810 static void _chv_enable_pll(const struct intel_crtc_state *crtc_state)
1811 {
1812 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1813 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1814 enum pipe pipe = crtc->pipe;
1815 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1816 u32 tmp;
1817
1818 vlv_dpio_get(dev_priv);
1819
1820 /* Enable back the 10bit clock to display controller */
1821 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1822 tmp |= DPIO_DCLKP_EN;
1823 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1824
1825 vlv_dpio_put(dev_priv);
1826
1827 /*
1828 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1829 */
1830 udelay(1);
1831
1832 /* Enable PLL */
1833 intel_de_write(dev_priv, DPLL(pipe), crtc_state->dpll_hw_state.dpll);
1834
1835 /* Check PLL is locked */
1836 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1837 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
1838 }
1839
chv_enable_pll(const struct intel_crtc_state * crtc_state)1840 void chv_enable_pll(const struct intel_crtc_state *crtc_state)
1841 {
1842 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1843 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1844 enum pipe pipe = crtc->pipe;
1845
1846 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1847
1848 /* PLL is protected by panel, make sure we can write it */
1849 assert_pps_unlocked(dev_priv, pipe);
1850
1851 /* Enable Refclk and SSC */
1852 intel_de_write(dev_priv, DPLL(pipe),
1853 crtc_state->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
1854
1855 if (crtc_state->dpll_hw_state.dpll & DPLL_VCO_ENABLE) {
1856 chv_prepare_pll(crtc_state);
1857 _chv_enable_pll(crtc_state);
1858 }
1859
1860 if (pipe != PIPE_A) {
1861 /*
1862 * WaPixelRepeatModeFixForC0:chv
1863 *
1864 * DPLLCMD is AWOL. Use chicken bits to propagate
1865 * the value from DPLLBMD to either pipe B or C.
1866 */
1867 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1868 intel_de_write(dev_priv, DPLL_MD(PIPE_B),
1869 crtc_state->dpll_hw_state.dpll_md);
1870 intel_de_write(dev_priv, CBR4_VLV, 0);
1871 dev_priv->chv_dpll_md[pipe] = crtc_state->dpll_hw_state.dpll_md;
1872
1873 /*
1874 * DPLLB VGA mode also seems to cause problems.
1875 * We should always have it disabled.
1876 */
1877 drm_WARN_ON(&dev_priv->drm,
1878 (intel_de_read(dev_priv, DPLL(PIPE_B)) &
1879 DPLL_VGA_MODE_DIS) == 0);
1880 } else {
1881 intel_de_write(dev_priv, DPLL_MD(pipe),
1882 crtc_state->dpll_hw_state.dpll_md);
1883 intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1884 }
1885 }
1886
1887 /**
1888 * vlv_force_pll_on - forcibly enable just the PLL
1889 * @dev_priv: i915 private structure
1890 * @pipe: pipe PLL to enable
1891 * @dpll: PLL configuration
1892 *
1893 * Enable the PLL for @pipe using the supplied @dpll config. To be used
1894 * in cases where we need the PLL enabled even when @pipe is not going to
1895 * be enabled.
1896 */
vlv_force_pll_on(struct drm_i915_private * dev_priv,enum pipe pipe,const struct dpll * dpll)1897 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
1898 const struct dpll *dpll)
1899 {
1900 struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
1901 struct intel_crtc_state *crtc_state;
1902
1903 crtc_state = intel_crtc_state_alloc(crtc);
1904 if (!crtc_state)
1905 return -ENOMEM;
1906
1907 crtc_state->cpu_transcoder = (enum transcoder)pipe;
1908 crtc_state->pixel_multiplier = 1;
1909 crtc_state->dpll = *dpll;
1910 crtc_state->output_types = BIT(INTEL_OUTPUT_EDP);
1911
1912 if (IS_CHERRYVIEW(dev_priv)) {
1913 chv_compute_dpll(crtc_state);
1914 chv_enable_pll(crtc_state);
1915 } else {
1916 vlv_compute_dpll(crtc_state);
1917 vlv_enable_pll(crtc_state);
1918 }
1919
1920 kfree(crtc_state);
1921
1922 return 0;
1923 }
1924
vlv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1925 void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1926 {
1927 u32 val;
1928
1929 /* Make sure the pipe isn't still relying on us */
1930 assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
1931
1932 val = DPLL_INTEGRATED_REF_CLK_VLV |
1933 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1934 if (pipe != PIPE_A)
1935 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1936
1937 intel_de_write(dev_priv, DPLL(pipe), val);
1938 intel_de_posting_read(dev_priv, DPLL(pipe));
1939 }
1940
chv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1941 void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1942 {
1943 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1944 u32 val;
1945
1946 /* Make sure the pipe isn't still relying on us */
1947 assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
1948
1949 val = DPLL_SSC_REF_CLK_CHV |
1950 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1951 if (pipe != PIPE_A)
1952 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1953
1954 intel_de_write(dev_priv, DPLL(pipe), val);
1955 intel_de_posting_read(dev_priv, DPLL(pipe));
1956
1957 vlv_dpio_get(dev_priv);
1958
1959 /* Disable 10bit clock to display controller */
1960 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1961 val &= ~DPIO_DCLKP_EN;
1962 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1963
1964 vlv_dpio_put(dev_priv);
1965 }
1966
i9xx_disable_pll(const struct intel_crtc_state * crtc_state)1967 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1968 {
1969 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1970 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1971 enum pipe pipe = crtc->pipe;
1972
1973 /* Don't disable pipe or pipe PLLs if needed */
1974 if (IS_I830(dev_priv))
1975 return;
1976
1977 /* Make sure the pipe isn't still relying on us */
1978 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1979
1980 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
1981 intel_de_posting_read(dev_priv, DPLL(pipe));
1982 }
1983
1984
1985 /**
1986 * vlv_force_pll_off - forcibly disable just the PLL
1987 * @dev_priv: i915 private structure
1988 * @pipe: pipe PLL to disable
1989 *
1990 * Disable the PLL for @pipe. To be used in cases where we need
1991 * the PLL enabled even when @pipe is not going to be enabled.
1992 */
vlv_force_pll_off(struct drm_i915_private * dev_priv,enum pipe pipe)1993 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
1994 {
1995 if (IS_CHERRYVIEW(dev_priv))
1996 chv_disable_pll(dev_priv, pipe);
1997 else
1998 vlv_disable_pll(dev_priv, pipe);
1999 }
2000
2001 /* Only for pre-ILK configs */
assert_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)2002 static void assert_pll(struct drm_i915_private *dev_priv,
2003 enum pipe pipe, bool state)
2004 {
2005 bool cur_state;
2006
2007 cur_state = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
2008 I915_STATE_WARN(cur_state != state,
2009 "PLL state assertion failure (expected %s, current %s)\n",
2010 str_on_off(state), str_on_off(cur_state));
2011 }
2012
assert_pll_enabled(struct drm_i915_private * i915,enum pipe pipe)2013 void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe)
2014 {
2015 assert_pll(i915, pipe, true);
2016 }
2017
assert_pll_disabled(struct drm_i915_private * i915,enum pipe pipe)2018 void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe)
2019 {
2020 assert_pll(i915, pipe, false);
2021 }
2022