1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20 
21 /*
22  * User-space ABI bits:
23  */
24 
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29 	PERF_TYPE_HARDWARE			= 0,
30 	PERF_TYPE_SOFTWARE			= 1,
31 	PERF_TYPE_TRACEPOINT			= 2,
32 	PERF_TYPE_HW_CACHE			= 3,
33 	PERF_TYPE_RAW				= 4,
34 	PERF_TYPE_BREAKPOINT			= 5,
35 
36 	PERF_TYPE_MAX,				/* non-ABI */
37 };
38 
39 /*
40  * Generalized performance event event_id types, used by the
41  * attr.event_id parameter of the sys_perf_event_open()
42  * syscall:
43  */
44 enum perf_hw_id {
45 	/*
46 	 * Common hardware events, generalized by the kernel:
47 	 */
48 	PERF_COUNT_HW_CPU_CYCLES		= 0,
49 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
50 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
51 	PERF_COUNT_HW_CACHE_MISSES		= 3,
52 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
53 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
54 	PERF_COUNT_HW_BUS_CYCLES		= 6,
55 	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
56 	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
57 	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
58 
59 	PERF_COUNT_HW_MAX,			/* non-ABI */
60 };
61 
62 /*
63  * Generalized hardware cache events:
64  *
65  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
66  *       { read, write, prefetch } x
67  *       { accesses, misses }
68  */
69 enum perf_hw_cache_id {
70 	PERF_COUNT_HW_CACHE_L1D			= 0,
71 	PERF_COUNT_HW_CACHE_L1I			= 1,
72 	PERF_COUNT_HW_CACHE_LL			= 2,
73 	PERF_COUNT_HW_CACHE_DTLB		= 3,
74 	PERF_COUNT_HW_CACHE_ITLB		= 4,
75 	PERF_COUNT_HW_CACHE_BPU			= 5,
76 	PERF_COUNT_HW_CACHE_NODE		= 6,
77 
78 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
79 };
80 
81 enum perf_hw_cache_op_id {
82 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
83 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
84 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
85 
86 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
87 };
88 
89 enum perf_hw_cache_op_result_id {
90 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
91 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
92 
93 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
94 };
95 
96 /*
97  * Special "software" events provided by the kernel, even if the hardware
98  * does not support performance events. These events measure various
99  * physical and sw events of the kernel (and allow the profiling of them as
100  * well):
101  */
102 enum perf_sw_ids {
103 	PERF_COUNT_SW_CPU_CLOCK			= 0,
104 	PERF_COUNT_SW_TASK_CLOCK		= 1,
105 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
106 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
107 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
108 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
109 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
110 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
111 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
112 
113 	PERF_COUNT_SW_MAX,			/* non-ABI */
114 };
115 
116 /*
117  * Bits that can be set in attr.sample_type to request information
118  * in the overflow packets.
119  */
120 enum perf_event_sample_format {
121 	PERF_SAMPLE_IP				= 1U << 0,
122 	PERF_SAMPLE_TID				= 1U << 1,
123 	PERF_SAMPLE_TIME			= 1U << 2,
124 	PERF_SAMPLE_ADDR			= 1U << 3,
125 	PERF_SAMPLE_READ			= 1U << 4,
126 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
127 	PERF_SAMPLE_ID				= 1U << 6,
128 	PERF_SAMPLE_CPU				= 1U << 7,
129 	PERF_SAMPLE_PERIOD			= 1U << 8,
130 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
131 	PERF_SAMPLE_RAW				= 1U << 10,
132 	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
133 
134 	PERF_SAMPLE_MAX = 1U << 12,		/* non-ABI */
135 };
136 
137 /*
138  * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
139  *
140  * If the user does not pass priv level information via branch_sample_type,
141  * the kernel uses the event's priv level. Branch and event priv levels do
142  * not have to match. Branch priv level is checked for permissions.
143  *
144  * The branch types can be combined, however BRANCH_ANY covers all types
145  * of branches and therefore it supersedes all the other types.
146  */
147 enum perf_branch_sample_type {
148 	PERF_SAMPLE_BRANCH_USER		= 1U << 0, /* user branches */
149 	PERF_SAMPLE_BRANCH_KERNEL	= 1U << 1, /* kernel branches */
150 	PERF_SAMPLE_BRANCH_HV		= 1U << 2, /* hypervisor branches */
151 
152 	PERF_SAMPLE_BRANCH_ANY		= 1U << 3, /* any branch types */
153 	PERF_SAMPLE_BRANCH_ANY_CALL	= 1U << 4, /* any call branch */
154 	PERF_SAMPLE_BRANCH_ANY_RETURN	= 1U << 5, /* any return branch */
155 	PERF_SAMPLE_BRANCH_IND_CALL	= 1U << 6, /* indirect calls */
156 
157 	PERF_SAMPLE_BRANCH_MAX		= 1U << 7, /* non-ABI */
158 };
159 
160 #define PERF_SAMPLE_BRANCH_PLM_ALL \
161 	(PERF_SAMPLE_BRANCH_USER|\
162 	 PERF_SAMPLE_BRANCH_KERNEL|\
163 	 PERF_SAMPLE_BRANCH_HV)
164 
165 /*
166  * The format of the data returned by read() on a perf event fd,
167  * as specified by attr.read_format:
168  *
169  * struct read_format {
170  *	{ u64		value;
171  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
172  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
173  *	  { u64		id;           } && PERF_FORMAT_ID
174  *	} && !PERF_FORMAT_GROUP
175  *
176  *	{ u64		nr;
177  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
178  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
179  *	  { u64		value;
180  *	    { u64	id;           } && PERF_FORMAT_ID
181  *	  }		cntr[nr];
182  *	} && PERF_FORMAT_GROUP
183  * };
184  */
185 enum perf_event_read_format {
186 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
187 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
188 	PERF_FORMAT_ID				= 1U << 2,
189 	PERF_FORMAT_GROUP			= 1U << 3,
190 
191 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
192 };
193 
194 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
195 #define PERF_ATTR_SIZE_VER1	72	/* add: config2 */
196 #define PERF_ATTR_SIZE_VER2	80	/* add: branch_sample_type */
197 
198 /*
199  * Hardware event_id to monitor via a performance monitoring event:
200  */
201 struct perf_event_attr {
202 
203 	/*
204 	 * Major type: hardware/software/tracepoint/etc.
205 	 */
206 	__u32			type;
207 
208 	/*
209 	 * Size of the attr structure, for fwd/bwd compat.
210 	 */
211 	__u32			size;
212 
213 	/*
214 	 * Type specific configuration information.
215 	 */
216 	__u64			config;
217 
218 	union {
219 		__u64		sample_period;
220 		__u64		sample_freq;
221 	};
222 
223 	__u64			sample_type;
224 	__u64			read_format;
225 
226 	__u64			disabled       :  1, /* off by default        */
227 				inherit	       :  1, /* children inherit it   */
228 				pinned	       :  1, /* must always be on PMU */
229 				exclusive      :  1, /* only group on PMU     */
230 				exclude_user   :  1, /* don't count user      */
231 				exclude_kernel :  1, /* ditto kernel          */
232 				exclude_hv     :  1, /* ditto hypervisor      */
233 				exclude_idle   :  1, /* don't count when idle */
234 				mmap           :  1, /* include mmap data     */
235 				comm	       :  1, /* include comm data     */
236 				freq           :  1, /* use freq, not period  */
237 				inherit_stat   :  1, /* per task counts       */
238 				enable_on_exec :  1, /* next exec enables     */
239 				task           :  1, /* trace fork/exit       */
240 				watermark      :  1, /* wakeup_watermark      */
241 				/*
242 				 * precise_ip:
243 				 *
244 				 *  0 - SAMPLE_IP can have arbitrary skid
245 				 *  1 - SAMPLE_IP must have constant skid
246 				 *  2 - SAMPLE_IP requested to have 0 skid
247 				 *  3 - SAMPLE_IP must have 0 skid
248 				 *
249 				 *  See also PERF_RECORD_MISC_EXACT_IP
250 				 */
251 				precise_ip     :  2, /* skid constraint       */
252 				mmap_data      :  1, /* non-exec mmap data    */
253 				sample_id_all  :  1, /* sample_type all events */
254 
255 				exclude_host   :  1, /* don't count in host   */
256 				exclude_guest  :  1, /* don't count in guest  */
257 
258 				__reserved_1   : 43;
259 
260 	union {
261 		__u32		wakeup_events;	  /* wakeup every n events */
262 		__u32		wakeup_watermark; /* bytes before wakeup   */
263 	};
264 
265 	__u32			bp_type;
266 	union {
267 		__u64		bp_addr;
268 		__u64		config1; /* extension of config */
269 	};
270 	union {
271 		__u64		bp_len;
272 		__u64		config2; /* extension of config1 */
273 	};
274 	__u64	branch_sample_type; /* enum branch_sample_type */
275 };
276 
277 /*
278  * Ioctls that can be done on a perf event fd:
279  */
280 #define PERF_EVENT_IOC_ENABLE		_IO ('$', 0)
281 #define PERF_EVENT_IOC_DISABLE		_IO ('$', 1)
282 #define PERF_EVENT_IOC_REFRESH		_IO ('$', 2)
283 #define PERF_EVENT_IOC_RESET		_IO ('$', 3)
284 #define PERF_EVENT_IOC_PERIOD		_IOW('$', 4, __u64)
285 #define PERF_EVENT_IOC_SET_OUTPUT	_IO ('$', 5)
286 #define PERF_EVENT_IOC_SET_FILTER	_IOW('$', 6, char *)
287 
288 enum perf_event_ioc_flags {
289 	PERF_IOC_FLAG_GROUP		= 1U << 0,
290 };
291 
292 /*
293  * Structure of the page that can be mapped via mmap
294  */
295 struct perf_event_mmap_page {
296 	__u32	version;		/* version number of this structure */
297 	__u32	compat_version;		/* lowest version this is compat with */
298 
299 	/*
300 	 * Bits needed to read the hw events in user-space.
301 	 *
302 	 *   u32 seq, time_mult, time_shift, idx, width;
303 	 *   u64 count, enabled, running;
304 	 *   u64 cyc, time_offset;
305 	 *   s64 pmc = 0;
306 	 *
307 	 *   do {
308 	 *     seq = pc->lock;
309 	 *     barrier()
310 	 *
311 	 *     enabled = pc->time_enabled;
312 	 *     running = pc->time_running;
313 	 *
314 	 *     if (pc->cap_usr_time && enabled != running) {
315 	 *       cyc = rdtsc();
316 	 *       time_offset = pc->time_offset;
317 	 *       time_mult   = pc->time_mult;
318 	 *       time_shift  = pc->time_shift;
319 	 *     }
320 	 *
321 	 *     idx = pc->index;
322 	 *     count = pc->offset;
323 	 *     if (pc->cap_usr_rdpmc && idx) {
324 	 *       width = pc->pmc_width;
325 	 *       pmc = rdpmc(idx - 1);
326 	 *     }
327 	 *
328 	 *     barrier();
329 	 *   } while (pc->lock != seq);
330 	 *
331 	 * NOTE: for obvious reason this only works on self-monitoring
332 	 *       processes.
333 	 */
334 	__u32	lock;			/* seqlock for synchronization */
335 	__u32	index;			/* hardware event identifier */
336 	__s64	offset;			/* add to hardware event value */
337 	__u64	time_enabled;		/* time event active */
338 	__u64	time_running;		/* time event on cpu */
339 	union {
340 		__u64	capabilities;
341 		__u64	cap_usr_time  : 1,
342 			cap_usr_rdpmc : 1,
343 			cap_____res   : 62;
344 	};
345 
346 	/*
347 	 * If cap_usr_rdpmc this field provides the bit-width of the value
348 	 * read using the rdpmc() or equivalent instruction. This can be used
349 	 * to sign extend the result like:
350 	 *
351 	 *   pmc <<= 64 - width;
352 	 *   pmc >>= 64 - width; // signed shift right
353 	 *   count += pmc;
354 	 */
355 	__u16	pmc_width;
356 
357 	/*
358 	 * If cap_usr_time the below fields can be used to compute the time
359 	 * delta since time_enabled (in ns) using rdtsc or similar.
360 	 *
361 	 *   u64 quot, rem;
362 	 *   u64 delta;
363 	 *
364 	 *   quot = (cyc >> time_shift);
365 	 *   rem = cyc & ((1 << time_shift) - 1);
366 	 *   delta = time_offset + quot * time_mult +
367 	 *              ((rem * time_mult) >> time_shift);
368 	 *
369 	 * Where time_offset,time_mult,time_shift and cyc are read in the
370 	 * seqcount loop described above. This delta can then be added to
371 	 * enabled and possible running (if idx), improving the scaling:
372 	 *
373 	 *   enabled += delta;
374 	 *   if (idx)
375 	 *     running += delta;
376 	 *
377 	 *   quot = count / running;
378 	 *   rem  = count % running;
379 	 *   count = quot * enabled + (rem * enabled) / running;
380 	 */
381 	__u16	time_shift;
382 	__u32	time_mult;
383 	__u64	time_offset;
384 
385 		/*
386 		 * Hole for extension of the self monitor capabilities
387 		 */
388 
389 	__u64	__reserved[120];	/* align to 1k */
390 
391 	/*
392 	 * Control data for the mmap() data buffer.
393 	 *
394 	 * User-space reading the @data_head value should issue an smp_rmb(),
395 	 * after reading this value.
396 	 *
397 	 * When the mapping is PROT_WRITE the @data_tail value should be
398 	 * written by userspace to reflect the last read data, after issueing
399 	 * an smp_mb() to separate the data read from the ->data_tail store.
400 	 * In this case the kernel will not over-write unread data.
401 	 *
402 	 * See perf_output_put_handle() for the data ordering.
403 	 */
404 	__u64   data_head;		/* head in the data section */
405 	__u64	data_tail;		/* user-space written tail */
406 };
407 
408 #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
409 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
410 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
411 #define PERF_RECORD_MISC_USER			(2 << 0)
412 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
413 #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
414 #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
415 
416 /*
417  * Indicates that the content of PERF_SAMPLE_IP points to
418  * the actual instruction that triggered the event. See also
419  * perf_event_attr::precise_ip.
420  */
421 #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
422 /*
423  * Reserve the last bit to indicate some extended misc field
424  */
425 #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
426 
427 struct perf_event_header {
428 	__u32	type;
429 	__u16	misc;
430 	__u16	size;
431 };
432 
433 enum perf_event_type {
434 
435 	/*
436 	 * If perf_event_attr.sample_id_all is set then all event types will
437 	 * have the sample_type selected fields related to where/when
438 	 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
439 	 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
440 	 * the perf_event_header and the fields already present for the existing
441 	 * fields, i.e. at the end of the payload. That way a newer perf.data
442 	 * file will be supported by older perf tools, with these new optional
443 	 * fields being ignored.
444 	 *
445 	 * The MMAP events record the PROT_EXEC mappings so that we can
446 	 * correlate userspace IPs to code. They have the following structure:
447 	 *
448 	 * struct {
449 	 *	struct perf_event_header	header;
450 	 *
451 	 *	u32				pid, tid;
452 	 *	u64				addr;
453 	 *	u64				len;
454 	 *	u64				pgoff;
455 	 *	char				filename[];
456 	 * };
457 	 */
458 	PERF_RECORD_MMAP			= 1,
459 
460 	/*
461 	 * struct {
462 	 *	struct perf_event_header	header;
463 	 *	u64				id;
464 	 *	u64				lost;
465 	 * };
466 	 */
467 	PERF_RECORD_LOST			= 2,
468 
469 	/*
470 	 * struct {
471 	 *	struct perf_event_header	header;
472 	 *
473 	 *	u32				pid, tid;
474 	 *	char				comm[];
475 	 * };
476 	 */
477 	PERF_RECORD_COMM			= 3,
478 
479 	/*
480 	 * struct {
481 	 *	struct perf_event_header	header;
482 	 *	u32				pid, ppid;
483 	 *	u32				tid, ptid;
484 	 *	u64				time;
485 	 * };
486 	 */
487 	PERF_RECORD_EXIT			= 4,
488 
489 	/*
490 	 * struct {
491 	 *	struct perf_event_header	header;
492 	 *	u64				time;
493 	 *	u64				id;
494 	 *	u64				stream_id;
495 	 * };
496 	 */
497 	PERF_RECORD_THROTTLE			= 5,
498 	PERF_RECORD_UNTHROTTLE			= 6,
499 
500 	/*
501 	 * struct {
502 	 *	struct perf_event_header	header;
503 	 *	u32				pid, ppid;
504 	 *	u32				tid, ptid;
505 	 *	u64				time;
506 	 * };
507 	 */
508 	PERF_RECORD_FORK			= 7,
509 
510 	/*
511 	 * struct {
512 	 *	struct perf_event_header	header;
513 	 *	u32				pid, tid;
514 	 *
515 	 *	struct read_format		values;
516 	 * };
517 	 */
518 	PERF_RECORD_READ			= 8,
519 
520 	/*
521 	 * struct {
522 	 *	struct perf_event_header	header;
523 	 *
524 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
525 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
526 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
527 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
528 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
529 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
530 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
531 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
532 	 *
533 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
534 	 *
535 	 *	{ u64			nr,
536 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
537 	 *
538 	 *	#
539 	 *	# The RAW record below is opaque data wrt the ABI
540 	 *	#
541 	 *	# That is, the ABI doesn't make any promises wrt to
542 	 *	# the stability of its content, it may vary depending
543 	 *	# on event, hardware, kernel version and phase of
544 	 *	# the moon.
545 	 *	#
546 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
547 	 *	#
548 	 *
549 	 *	{ u32			size;
550 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
551 	 *
552 	 *	{ u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
553 	 * };
554 	 */
555 	PERF_RECORD_SAMPLE			= 9,
556 
557 	PERF_RECORD_MAX,			/* non-ABI */
558 };
559 
560 enum perf_callchain_context {
561 	PERF_CONTEXT_HV			= (__u64)-32,
562 	PERF_CONTEXT_KERNEL		= (__u64)-128,
563 	PERF_CONTEXT_USER		= (__u64)-512,
564 
565 	PERF_CONTEXT_GUEST		= (__u64)-2048,
566 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
567 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
568 
569 	PERF_CONTEXT_MAX		= (__u64)-4095,
570 };
571 
572 #define PERF_FLAG_FD_NO_GROUP		(1U << 0)
573 #define PERF_FLAG_FD_OUTPUT		(1U << 1)
574 #define PERF_FLAG_PID_CGROUP		(1U << 2) /* pid=cgroup id, per-cpu mode only */
575 
576 #ifdef __KERNEL__
577 /*
578  * Kernel-internal data types and definitions:
579  */
580 
581 #ifdef CONFIG_PERF_EVENTS
582 # include <linux/cgroup.h>
583 # include <asm/perf_event.h>
584 # include <asm/local64.h>
585 #endif
586 
587 struct perf_guest_info_callbacks {
588 	int				(*is_in_guest)(void);
589 	int				(*is_user_mode)(void);
590 	unsigned long			(*get_guest_ip)(void);
591 };
592 
593 #ifdef CONFIG_HAVE_HW_BREAKPOINT
594 #include <asm/hw_breakpoint.h>
595 #endif
596 
597 #include <linux/list.h>
598 #include <linux/mutex.h>
599 #include <linux/rculist.h>
600 #include <linux/rcupdate.h>
601 #include <linux/spinlock.h>
602 #include <linux/hrtimer.h>
603 #include <linux/fs.h>
604 #include <linux/pid_namespace.h>
605 #include <linux/workqueue.h>
606 #include <linux/ftrace.h>
607 #include <linux/cpu.h>
608 #include <linux/irq_work.h>
609 #include <linux/static_key.h>
610 #include <linux/atomic.h>
611 #include <linux/sysfs.h>
612 #include <asm/local.h>
613 
614 #define PERF_MAX_STACK_DEPTH		255
615 
616 struct perf_callchain_entry {
617 	__u64				nr;
618 	__u64				ip[PERF_MAX_STACK_DEPTH];
619 };
620 
621 struct perf_raw_record {
622 	u32				size;
623 	void				*data;
624 };
625 
626 /*
627  * single taken branch record layout:
628  *
629  *      from: source instruction (may not always be a branch insn)
630  *        to: branch target
631  *   mispred: branch target was mispredicted
632  * predicted: branch target was predicted
633  *
634  * support for mispred, predicted is optional. In case it
635  * is not supported mispred = predicted = 0.
636  */
637 struct perf_branch_entry {
638 	__u64	from;
639 	__u64	to;
640 	__u64	mispred:1,  /* target mispredicted */
641 		predicted:1,/* target predicted */
642 		reserved:62;
643 };
644 
645 /*
646  * branch stack layout:
647  *  nr: number of taken branches stored in entries[]
648  *
649  * Note that nr can vary from sample to sample
650  * branches (to, from) are stored from most recent
651  * to least recent, i.e., entries[0] contains the most
652  * recent branch.
653  */
654 struct perf_branch_stack {
655 	__u64				nr;
656 	struct perf_branch_entry	entries[0];
657 };
658 
659 struct task_struct;
660 
661 /*
662  * extra PMU register associated with an event
663  */
664 struct hw_perf_event_extra {
665 	u64		config;	/* register value */
666 	unsigned int	reg;	/* register address or index */
667 	int		alloc;	/* extra register already allocated */
668 	int		idx;	/* index in shared_regs->regs[] */
669 };
670 
671 /**
672  * struct hw_perf_event - performance event hardware details:
673  */
674 struct hw_perf_event {
675 #ifdef CONFIG_PERF_EVENTS
676 	union {
677 		struct { /* hardware */
678 			u64		config;
679 			u64		last_tag;
680 			unsigned long	config_base;
681 			unsigned long	event_base;
682 			int		idx;
683 			int		last_cpu;
684 
685 			struct hw_perf_event_extra extra_reg;
686 			struct hw_perf_event_extra branch_reg;
687 		};
688 		struct { /* software */
689 			struct hrtimer	hrtimer;
690 		};
691 #ifdef CONFIG_HAVE_HW_BREAKPOINT
692 		struct { /* breakpoint */
693 			struct arch_hw_breakpoint	info;
694 			struct list_head		bp_list;
695 			/*
696 			 * Crufty hack to avoid the chicken and egg
697 			 * problem hw_breakpoint has with context
698 			 * creation and event initalization.
699 			 */
700 			struct task_struct		*bp_target;
701 		};
702 #endif
703 	};
704 	int				state;
705 	local64_t			prev_count;
706 	u64				sample_period;
707 	u64				last_period;
708 	local64_t			period_left;
709 	u64                             interrupts_seq;
710 	u64				interrupts;
711 
712 	u64				freq_time_stamp;
713 	u64				freq_count_stamp;
714 #endif
715 };
716 
717 /*
718  * hw_perf_event::state flags
719  */
720 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
721 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
722 #define PERF_HES_ARCH		0x04
723 
724 struct perf_event;
725 
726 /*
727  * Common implementation detail of pmu::{start,commit,cancel}_txn
728  */
729 #define PERF_EVENT_TXN 0x1
730 
731 /**
732  * struct pmu - generic performance monitoring unit
733  */
734 struct pmu {
735 	struct list_head		entry;
736 
737 	struct device			*dev;
738 	const struct attribute_group	**attr_groups;
739 	char				*name;
740 	int				type;
741 
742 	int * __percpu			pmu_disable_count;
743 	struct perf_cpu_context * __percpu pmu_cpu_context;
744 	int				task_ctx_nr;
745 
746 	/*
747 	 * Fully disable/enable this PMU, can be used to protect from the PMI
748 	 * as well as for lazy/batch writing of the MSRs.
749 	 */
750 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
751 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
752 
753 	/*
754 	 * Try and initialize the event for this PMU.
755 	 * Should return -ENOENT when the @event doesn't match this PMU.
756 	 */
757 	int (*event_init)		(struct perf_event *event);
758 
759 #define PERF_EF_START	0x01		/* start the counter when adding    */
760 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
761 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
762 
763 	/*
764 	 * Adds/Removes a counter to/from the PMU, can be done inside
765 	 * a transaction, see the ->*_txn() methods.
766 	 */
767 	int  (*add)			(struct perf_event *event, int flags);
768 	void (*del)			(struct perf_event *event, int flags);
769 
770 	/*
771 	 * Starts/Stops a counter present on the PMU. The PMI handler
772 	 * should stop the counter when perf_event_overflow() returns
773 	 * !0. ->start() will be used to continue.
774 	 */
775 	void (*start)			(struct perf_event *event, int flags);
776 	void (*stop)			(struct perf_event *event, int flags);
777 
778 	/*
779 	 * Updates the counter value of the event.
780 	 */
781 	void (*read)			(struct perf_event *event);
782 
783 	/*
784 	 * Group events scheduling is treated as a transaction, add
785 	 * group events as a whole and perform one schedulability test.
786 	 * If the test fails, roll back the whole group
787 	 *
788 	 * Start the transaction, after this ->add() doesn't need to
789 	 * do schedulability tests.
790 	 */
791 	void (*start_txn)		(struct pmu *pmu); /* optional */
792 	/*
793 	 * If ->start_txn() disabled the ->add() schedulability test
794 	 * then ->commit_txn() is required to perform one. On success
795 	 * the transaction is closed. On error the transaction is kept
796 	 * open until ->cancel_txn() is called.
797 	 */
798 	int  (*commit_txn)		(struct pmu *pmu); /* optional */
799 	/*
800 	 * Will cancel the transaction, assumes ->del() is called
801 	 * for each successful ->add() during the transaction.
802 	 */
803 	void (*cancel_txn)		(struct pmu *pmu); /* optional */
804 
805 	/*
806 	 * Will return the value for perf_event_mmap_page::index for this event,
807 	 * if no implementation is provided it will default to: event->hw.idx + 1.
808 	 */
809 	int (*event_idx)		(struct perf_event *event); /*optional */
810 
811 	/*
812 	 * flush branch stack on context-switches (needed in cpu-wide mode)
813 	 */
814 	void (*flush_branch_stack)	(void);
815 };
816 
817 /**
818  * enum perf_event_active_state - the states of a event
819  */
820 enum perf_event_active_state {
821 	PERF_EVENT_STATE_ERROR		= -2,
822 	PERF_EVENT_STATE_OFF		= -1,
823 	PERF_EVENT_STATE_INACTIVE	=  0,
824 	PERF_EVENT_STATE_ACTIVE		=  1,
825 };
826 
827 struct file;
828 struct perf_sample_data;
829 
830 typedef void (*perf_overflow_handler_t)(struct perf_event *,
831 					struct perf_sample_data *,
832 					struct pt_regs *regs);
833 
834 enum perf_group_flag {
835 	PERF_GROUP_SOFTWARE		= 0x1,
836 };
837 
838 #define SWEVENT_HLIST_BITS		8
839 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
840 
841 struct swevent_hlist {
842 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
843 	struct rcu_head			rcu_head;
844 };
845 
846 #define PERF_ATTACH_CONTEXT	0x01
847 #define PERF_ATTACH_GROUP	0x02
848 #define PERF_ATTACH_TASK	0x04
849 
850 #ifdef CONFIG_CGROUP_PERF
851 /*
852  * perf_cgroup_info keeps track of time_enabled for a cgroup.
853  * This is a per-cpu dynamically allocated data structure.
854  */
855 struct perf_cgroup_info {
856 	u64				time;
857 	u64				timestamp;
858 };
859 
860 struct perf_cgroup {
861 	struct				cgroup_subsys_state css;
862 	struct				perf_cgroup_info *info;	/* timing info, one per cpu */
863 };
864 #endif
865 
866 struct ring_buffer;
867 
868 /**
869  * struct perf_event - performance event kernel representation:
870  */
871 struct perf_event {
872 #ifdef CONFIG_PERF_EVENTS
873 	struct list_head		group_entry;
874 	struct list_head		event_entry;
875 	struct list_head		sibling_list;
876 	struct hlist_node		hlist_entry;
877 	int				nr_siblings;
878 	int				group_flags;
879 	struct perf_event		*group_leader;
880 	struct pmu			*pmu;
881 
882 	enum perf_event_active_state	state;
883 	unsigned int			attach_state;
884 	local64_t			count;
885 	atomic64_t			child_count;
886 
887 	/*
888 	 * These are the total time in nanoseconds that the event
889 	 * has been enabled (i.e. eligible to run, and the task has
890 	 * been scheduled in, if this is a per-task event)
891 	 * and running (scheduled onto the CPU), respectively.
892 	 *
893 	 * They are computed from tstamp_enabled, tstamp_running and
894 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
895 	 */
896 	u64				total_time_enabled;
897 	u64				total_time_running;
898 
899 	/*
900 	 * These are timestamps used for computing total_time_enabled
901 	 * and total_time_running when the event is in INACTIVE or
902 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
903 	 * in time.
904 	 * tstamp_enabled: the notional time when the event was enabled
905 	 * tstamp_running: the notional time when the event was scheduled on
906 	 * tstamp_stopped: in INACTIVE state, the notional time when the
907 	 *	event was scheduled off.
908 	 */
909 	u64				tstamp_enabled;
910 	u64				tstamp_running;
911 	u64				tstamp_stopped;
912 
913 	/*
914 	 * timestamp shadows the actual context timing but it can
915 	 * be safely used in NMI interrupt context. It reflects the
916 	 * context time as it was when the event was last scheduled in.
917 	 *
918 	 * ctx_time already accounts for ctx->timestamp. Therefore to
919 	 * compute ctx_time for a sample, simply add perf_clock().
920 	 */
921 	u64				shadow_ctx_time;
922 
923 	struct perf_event_attr		attr;
924 	u16				header_size;
925 	u16				id_header_size;
926 	u16				read_size;
927 	struct hw_perf_event		hw;
928 
929 	struct perf_event_context	*ctx;
930 	atomic_long_t			refcount;
931 
932 	/*
933 	 * These accumulate total time (in nanoseconds) that children
934 	 * events have been enabled and running, respectively.
935 	 */
936 	atomic64_t			child_total_time_enabled;
937 	atomic64_t			child_total_time_running;
938 
939 	/*
940 	 * Protect attach/detach and child_list:
941 	 */
942 	struct mutex			child_mutex;
943 	struct list_head		child_list;
944 	struct perf_event		*parent;
945 
946 	int				oncpu;
947 	int				cpu;
948 
949 	struct list_head		owner_entry;
950 	struct task_struct		*owner;
951 
952 	/* mmap bits */
953 	struct mutex			mmap_mutex;
954 	atomic_t			mmap_count;
955 
956 	struct ring_buffer		*rb;
957 	struct list_head		rb_entry;
958 
959 	/* poll related */
960 	wait_queue_head_t		waitq;
961 	struct fasync_struct		*fasync;
962 
963 	/* delayed work for NMIs and such */
964 	int				pending_wakeup;
965 	int				pending_kill;
966 	int				pending_disable;
967 	struct irq_work			pending;
968 
969 	atomic_t			event_limit;
970 
971 	void (*destroy)(struct perf_event *);
972 	struct rcu_head			rcu_head;
973 
974 	struct pid_namespace		*ns;
975 	u64				id;
976 
977 	perf_overflow_handler_t		overflow_handler;
978 	void				*overflow_handler_context;
979 
980 #ifdef CONFIG_EVENT_TRACING
981 	struct ftrace_event_call	*tp_event;
982 	struct event_filter		*filter;
983 #ifdef CONFIG_FUNCTION_TRACER
984 	struct ftrace_ops               ftrace_ops;
985 #endif
986 #endif
987 
988 #ifdef CONFIG_CGROUP_PERF
989 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
990 	int				cgrp_defer_enabled;
991 #endif
992 
993 #endif /* CONFIG_PERF_EVENTS */
994 };
995 
996 enum perf_event_context_type {
997 	task_context,
998 	cpu_context,
999 };
1000 
1001 /**
1002  * struct perf_event_context - event context structure
1003  *
1004  * Used as a container for task events and CPU events as well:
1005  */
1006 struct perf_event_context {
1007 	struct pmu			*pmu;
1008 	enum perf_event_context_type	type;
1009 	/*
1010 	 * Protect the states of the events in the list,
1011 	 * nr_active, and the list:
1012 	 */
1013 	raw_spinlock_t			lock;
1014 	/*
1015 	 * Protect the list of events.  Locking either mutex or lock
1016 	 * is sufficient to ensure the list doesn't change; to change
1017 	 * the list you need to lock both the mutex and the spinlock.
1018 	 */
1019 	struct mutex			mutex;
1020 
1021 	struct list_head		pinned_groups;
1022 	struct list_head		flexible_groups;
1023 	struct list_head		event_list;
1024 	int				nr_events;
1025 	int				nr_active;
1026 	int				is_active;
1027 	int				nr_stat;
1028 	int				nr_freq;
1029 	int				rotate_disable;
1030 	atomic_t			refcount;
1031 	struct task_struct		*task;
1032 
1033 	/*
1034 	 * Context clock, runs when context enabled.
1035 	 */
1036 	u64				time;
1037 	u64				timestamp;
1038 
1039 	/*
1040 	 * These fields let us detect when two contexts have both
1041 	 * been cloned (inherited) from a common ancestor.
1042 	 */
1043 	struct perf_event_context	*parent_ctx;
1044 	u64				parent_gen;
1045 	u64				generation;
1046 	int				pin_count;
1047 	int				nr_cgroups;	 /* cgroup evts */
1048 	int				nr_branch_stack; /* branch_stack evt */
1049 	struct rcu_head			rcu_head;
1050 };
1051 
1052 /*
1053  * Number of contexts where an event can trigger:
1054  *	task, softirq, hardirq, nmi.
1055  */
1056 #define PERF_NR_CONTEXTS	4
1057 
1058 /**
1059  * struct perf_event_cpu_context - per cpu event context structure
1060  */
1061 struct perf_cpu_context {
1062 	struct perf_event_context	ctx;
1063 	struct perf_event_context	*task_ctx;
1064 	int				active_oncpu;
1065 	int				exclusive;
1066 	struct list_head		rotation_list;
1067 	int				jiffies_interval;
1068 	struct pmu			*unique_pmu;
1069 	struct perf_cgroup		*cgrp;
1070 };
1071 
1072 struct perf_output_handle {
1073 	struct perf_event		*event;
1074 	struct ring_buffer		*rb;
1075 	unsigned long			wakeup;
1076 	unsigned long			size;
1077 	void				*addr;
1078 	int				page;
1079 };
1080 
1081 #ifdef CONFIG_PERF_EVENTS
1082 
1083 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
1084 extern void perf_pmu_unregister(struct pmu *pmu);
1085 
1086 extern int perf_num_counters(void);
1087 extern const char *perf_pmu_name(void);
1088 extern void __perf_event_task_sched_in(struct task_struct *prev,
1089 				       struct task_struct *task);
1090 extern void __perf_event_task_sched_out(struct task_struct *prev,
1091 					struct task_struct *next);
1092 extern int perf_event_init_task(struct task_struct *child);
1093 extern void perf_event_exit_task(struct task_struct *child);
1094 extern void perf_event_free_task(struct task_struct *task);
1095 extern void perf_event_delayed_put(struct task_struct *task);
1096 extern void perf_event_print_debug(void);
1097 extern void perf_pmu_disable(struct pmu *pmu);
1098 extern void perf_pmu_enable(struct pmu *pmu);
1099 extern int perf_event_task_disable(void);
1100 extern int perf_event_task_enable(void);
1101 extern int perf_event_refresh(struct perf_event *event, int refresh);
1102 extern void perf_event_update_userpage(struct perf_event *event);
1103 extern int perf_event_release_kernel(struct perf_event *event);
1104 extern struct perf_event *
1105 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1106 				int cpu,
1107 				struct task_struct *task,
1108 				perf_overflow_handler_t callback,
1109 				void *context);
1110 extern u64 perf_event_read_value(struct perf_event *event,
1111 				 u64 *enabled, u64 *running);
1112 
1113 
1114 struct perf_sample_data {
1115 	u64				type;
1116 
1117 	u64				ip;
1118 	struct {
1119 		u32	pid;
1120 		u32	tid;
1121 	}				tid_entry;
1122 	u64				time;
1123 	u64				addr;
1124 	u64				id;
1125 	u64				stream_id;
1126 	struct {
1127 		u32	cpu;
1128 		u32	reserved;
1129 	}				cpu_entry;
1130 	u64				period;
1131 	struct perf_callchain_entry	*callchain;
1132 	struct perf_raw_record		*raw;
1133 	struct perf_branch_stack	*br_stack;
1134 };
1135 
perf_sample_data_init(struct perf_sample_data * data,u64 addr)1136 static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
1137 {
1138 	data->addr = addr;
1139 	data->raw  = NULL;
1140 	data->br_stack = NULL;
1141 }
1142 
1143 extern void perf_output_sample(struct perf_output_handle *handle,
1144 			       struct perf_event_header *header,
1145 			       struct perf_sample_data *data,
1146 			       struct perf_event *event);
1147 extern void perf_prepare_sample(struct perf_event_header *header,
1148 				struct perf_sample_data *data,
1149 				struct perf_event *event,
1150 				struct pt_regs *regs);
1151 
1152 extern int perf_event_overflow(struct perf_event *event,
1153 				 struct perf_sample_data *data,
1154 				 struct pt_regs *regs);
1155 
is_sampling_event(struct perf_event * event)1156 static inline bool is_sampling_event(struct perf_event *event)
1157 {
1158 	return event->attr.sample_period != 0;
1159 }
1160 
1161 /*
1162  * Return 1 for a software event, 0 for a hardware event
1163  */
is_software_event(struct perf_event * event)1164 static inline int is_software_event(struct perf_event *event)
1165 {
1166 	return event->pmu->task_ctx_nr == perf_sw_context;
1167 }
1168 
1169 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1170 
1171 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1172 
1173 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1174 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1175 #endif
1176 
1177 /*
1178  * Take a snapshot of the regs. Skip ip and frame pointer to
1179  * the nth caller. We only need a few of the regs:
1180  * - ip for PERF_SAMPLE_IP
1181  * - cs for user_mode() tests
1182  * - bp for callchains
1183  * - eflags, for future purposes, just in case
1184  */
perf_fetch_caller_regs(struct pt_regs * regs)1185 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1186 {
1187 	memset(regs, 0, sizeof(*regs));
1188 
1189 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1190 }
1191 
1192 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1193 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1194 {
1195 	struct pt_regs hot_regs;
1196 
1197 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1198 		if (!regs) {
1199 			perf_fetch_caller_regs(&hot_regs);
1200 			regs = &hot_regs;
1201 		}
1202 		__perf_sw_event(event_id, nr, regs, addr);
1203 	}
1204 }
1205 
1206 extern struct static_key_deferred perf_sched_events;
1207 
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1208 static inline void perf_event_task_sched_in(struct task_struct *prev,
1209 					    struct task_struct *task)
1210 {
1211 	if (static_key_false(&perf_sched_events.key))
1212 		__perf_event_task_sched_in(prev, task);
1213 }
1214 
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1215 static inline void perf_event_task_sched_out(struct task_struct *prev,
1216 					     struct task_struct *next)
1217 {
1218 	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
1219 
1220 	if (static_key_false(&perf_sched_events.key))
1221 		__perf_event_task_sched_out(prev, next);
1222 }
1223 
1224 extern void perf_event_mmap(struct vm_area_struct *vma);
1225 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1226 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1227 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1228 
1229 extern void perf_event_comm(struct task_struct *tsk);
1230 extern void perf_event_fork(struct task_struct *tsk);
1231 
1232 /* Callchains */
1233 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1234 
1235 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1236 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1237 
perf_callchain_store(struct perf_callchain_entry * entry,u64 ip)1238 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1239 {
1240 	if (entry->nr < PERF_MAX_STACK_DEPTH)
1241 		entry->ip[entry->nr++] = ip;
1242 }
1243 
1244 extern int sysctl_perf_event_paranoid;
1245 extern int sysctl_perf_event_mlock;
1246 extern int sysctl_perf_event_sample_rate;
1247 
1248 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1249 		void __user *buffer, size_t *lenp,
1250 		loff_t *ppos);
1251 
perf_paranoid_tracepoint_raw(void)1252 static inline bool perf_paranoid_tracepoint_raw(void)
1253 {
1254 	return sysctl_perf_event_paranoid > -1;
1255 }
1256 
perf_paranoid_cpu(void)1257 static inline bool perf_paranoid_cpu(void)
1258 {
1259 	return sysctl_perf_event_paranoid > 0;
1260 }
1261 
perf_paranoid_kernel(void)1262 static inline bool perf_paranoid_kernel(void)
1263 {
1264 	return sysctl_perf_event_paranoid > 1;
1265 }
1266 
1267 extern void perf_event_init(void);
1268 extern void perf_tp_event(u64 addr, u64 count, void *record,
1269 			  int entry_size, struct pt_regs *regs,
1270 			  struct hlist_head *head, int rctx);
1271 extern void perf_bp_event(struct perf_event *event, void *data);
1272 
1273 #ifndef perf_misc_flags
1274 # define perf_misc_flags(regs) \
1275 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1276 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1277 #endif
1278 
has_branch_stack(struct perf_event * event)1279 static inline bool has_branch_stack(struct perf_event *event)
1280 {
1281 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1282 }
1283 
1284 extern int perf_output_begin(struct perf_output_handle *handle,
1285 			     struct perf_event *event, unsigned int size);
1286 extern void perf_output_end(struct perf_output_handle *handle);
1287 extern void perf_output_copy(struct perf_output_handle *handle,
1288 			     const void *buf, unsigned int len);
1289 extern int perf_swevent_get_recursion_context(void);
1290 extern void perf_swevent_put_recursion_context(int rctx);
1291 extern void perf_event_enable(struct perf_event *event);
1292 extern void perf_event_disable(struct perf_event *event);
1293 extern void perf_event_task_tick(void);
1294 #else
1295 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1296 perf_event_task_sched_in(struct task_struct *prev,
1297 			 struct task_struct *task)			{ }
1298 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1299 perf_event_task_sched_out(struct task_struct *prev,
1300 			  struct task_struct *next)			{ }
perf_event_init_task(struct task_struct * child)1301 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
perf_event_exit_task(struct task_struct * child)1302 static inline void perf_event_exit_task(struct task_struct *child)	{ }
perf_event_free_task(struct task_struct * task)1303 static inline void perf_event_free_task(struct task_struct *task)	{ }
perf_event_delayed_put(struct task_struct * task)1304 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
perf_event_print_debug(void)1305 static inline void perf_event_print_debug(void)				{ }
perf_event_task_disable(void)1306 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
perf_event_task_enable(void)1307 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1308 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1309 {
1310 	return -EINVAL;
1311 }
1312 
1313 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1314 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1315 static inline void
perf_bp_event(struct perf_event * event,void * data)1316 perf_bp_event(struct perf_event *event, void *data)			{ }
1317 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1318 static inline int perf_register_guest_info_callbacks
1319 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1320 static inline int perf_unregister_guest_info_callbacks
1321 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1322 
perf_event_mmap(struct vm_area_struct * vma)1323 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
perf_event_comm(struct task_struct * tsk)1324 static inline void perf_event_comm(struct task_struct *tsk)		{ }
perf_event_fork(struct task_struct * tsk)1325 static inline void perf_event_fork(struct task_struct *tsk)		{ }
perf_event_init(void)1326 static inline void perf_event_init(void)				{ }
perf_swevent_get_recursion_context(void)1327 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
perf_swevent_put_recursion_context(int rctx)1328 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
perf_event_enable(struct perf_event * event)1329 static inline void perf_event_enable(struct perf_event *event)		{ }
perf_event_disable(struct perf_event * event)1330 static inline void perf_event_disable(struct perf_event *event)		{ }
perf_event_task_tick(void)1331 static inline void perf_event_task_tick(void)				{ }
1332 #endif
1333 
1334 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1335 extern void perf_restore_debug_store(void);
1336 #else
perf_restore_debug_store(void)1337 static inline void perf_restore_debug_store(void)			{ }
1338 #endif
1339 
1340 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1341 
1342 /*
1343  * This has to have a higher priority than migration_notifier in sched.c.
1344  */
1345 #define perf_cpu_notifier(fn)						\
1346 do {									\
1347 	static struct notifier_block fn##_nb __cpuinitdata =		\
1348 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
1349 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,			\
1350 		(void *)(unsigned long)smp_processor_id());		\
1351 	fn(&fn##_nb, (unsigned long)CPU_STARTING,			\
1352 		(void *)(unsigned long)smp_processor_id());		\
1353 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,				\
1354 		(void *)(unsigned long)smp_processor_id());		\
1355 	register_cpu_notifier(&fn##_nb);				\
1356 } while (0)
1357 
1358 
1359 #define PMU_FORMAT_ATTR(_name, _format)					\
1360 static ssize_t								\
1361 _name##_show(struct device *dev,					\
1362 			       struct device_attribute *attr,		\
1363 			       char *page)				\
1364 {									\
1365 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1366 	return sprintf(page, _format "\n");				\
1367 }									\
1368 									\
1369 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1370 
1371 #endif /* __KERNEL__ */
1372 #endif /* _LINUX_PERF_EVENT_H */
1373