1 /*
2 * linux/arch/parisc/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 * Copyright 2004 Randolph Chung (tausq@debian.org)
9 * Copyright 2006-2007 Helge Deller (deller@gmx.de)
10 *
11 */
12
13
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/gfp.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h> /* for node_online_map */
25 #include <linux/pagemap.h> /* for release_pages and page_cache_release */
26
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33
34 extern int data_start;
35
36 #ifdef CONFIG_DISCONTIGMEM
37 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
38 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
39 #endif
40
41 static struct resource data_resource = {
42 .name = "Kernel data",
43 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
44 };
45
46 static struct resource code_resource = {
47 .name = "Kernel code",
48 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
49 };
50
51 static struct resource pdcdata_resource = {
52 .name = "PDC data (Page Zero)",
53 .start = 0,
54 .end = 0x9ff,
55 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
56 };
57
58 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
59
60 /* The following array is initialized from the firmware specific
61 * information retrieved in kernel/inventory.c.
62 */
63
64 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
65 int npmem_ranges __read_mostly;
66
67 #ifdef CONFIG_64BIT
68 #define MAX_MEM (~0UL)
69 #else /* !CONFIG_64BIT */
70 #define MAX_MEM (3584U*1024U*1024U)
71 #endif /* !CONFIG_64BIT */
72
73 static unsigned long mem_limit __read_mostly = MAX_MEM;
74
mem_limit_func(void)75 static void __init mem_limit_func(void)
76 {
77 char *cp, *end;
78 unsigned long limit;
79
80 /* We need this before __setup() functions are called */
81
82 limit = MAX_MEM;
83 for (cp = boot_command_line; *cp; ) {
84 if (memcmp(cp, "mem=", 4) == 0) {
85 cp += 4;
86 limit = memparse(cp, &end);
87 if (end != cp)
88 break;
89 cp = end;
90 } else {
91 while (*cp != ' ' && *cp)
92 ++cp;
93 while (*cp == ' ')
94 ++cp;
95 }
96 }
97
98 if (limit < mem_limit)
99 mem_limit = limit;
100 }
101
102 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
103
setup_bootmem(void)104 static void __init setup_bootmem(void)
105 {
106 unsigned long bootmap_size;
107 unsigned long mem_max;
108 unsigned long bootmap_pages;
109 unsigned long bootmap_start_pfn;
110 unsigned long bootmap_pfn;
111 #ifndef CONFIG_DISCONTIGMEM
112 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
113 int npmem_holes;
114 #endif
115 int i, sysram_resource_count;
116
117 disable_sr_hashing(); /* Turn off space register hashing */
118
119 /*
120 * Sort the ranges. Since the number of ranges is typically
121 * small, and performance is not an issue here, just do
122 * a simple insertion sort.
123 */
124
125 for (i = 1; i < npmem_ranges; i++) {
126 int j;
127
128 for (j = i; j > 0; j--) {
129 unsigned long tmp;
130
131 if (pmem_ranges[j-1].start_pfn <
132 pmem_ranges[j].start_pfn) {
133
134 break;
135 }
136 tmp = pmem_ranges[j-1].start_pfn;
137 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
138 pmem_ranges[j].start_pfn = tmp;
139 tmp = pmem_ranges[j-1].pages;
140 pmem_ranges[j-1].pages = pmem_ranges[j].pages;
141 pmem_ranges[j].pages = tmp;
142 }
143 }
144
145 #ifndef CONFIG_DISCONTIGMEM
146 /*
147 * Throw out ranges that are too far apart (controlled by
148 * MAX_GAP).
149 */
150
151 for (i = 1; i < npmem_ranges; i++) {
152 if (pmem_ranges[i].start_pfn -
153 (pmem_ranges[i-1].start_pfn +
154 pmem_ranges[i-1].pages) > MAX_GAP) {
155 npmem_ranges = i;
156 printk("Large gap in memory detected (%ld pages). "
157 "Consider turning on CONFIG_DISCONTIGMEM\n",
158 pmem_ranges[i].start_pfn -
159 (pmem_ranges[i-1].start_pfn +
160 pmem_ranges[i-1].pages));
161 break;
162 }
163 }
164 #endif
165
166 if (npmem_ranges > 1) {
167
168 /* Print the memory ranges */
169
170 printk(KERN_INFO "Memory Ranges:\n");
171
172 for (i = 0; i < npmem_ranges; i++) {
173 unsigned long start;
174 unsigned long size;
175
176 size = (pmem_ranges[i].pages << PAGE_SHIFT);
177 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
178 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
179 i,start, start + (size - 1), size >> 20);
180 }
181 }
182
183 sysram_resource_count = npmem_ranges;
184 for (i = 0; i < sysram_resource_count; i++) {
185 struct resource *res = &sysram_resources[i];
186 res->name = "System RAM";
187 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
188 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
189 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
190 request_resource(&iomem_resource, res);
191 }
192
193 /*
194 * For 32 bit kernels we limit the amount of memory we can
195 * support, in order to preserve enough kernel address space
196 * for other purposes. For 64 bit kernels we don't normally
197 * limit the memory, but this mechanism can be used to
198 * artificially limit the amount of memory (and it is written
199 * to work with multiple memory ranges).
200 */
201
202 mem_limit_func(); /* check for "mem=" argument */
203
204 mem_max = 0;
205 num_physpages = 0;
206 for (i = 0; i < npmem_ranges; i++) {
207 unsigned long rsize;
208
209 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
210 if ((mem_max + rsize) > mem_limit) {
211 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
212 if (mem_max == mem_limit)
213 npmem_ranges = i;
214 else {
215 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
216 - (mem_max >> PAGE_SHIFT);
217 npmem_ranges = i + 1;
218 mem_max = mem_limit;
219 }
220 num_physpages += pmem_ranges[i].pages;
221 break;
222 }
223 num_physpages += pmem_ranges[i].pages;
224 mem_max += rsize;
225 }
226
227 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
228
229 #ifndef CONFIG_DISCONTIGMEM
230 /* Merge the ranges, keeping track of the holes */
231
232 {
233 unsigned long end_pfn;
234 unsigned long hole_pages;
235
236 npmem_holes = 0;
237 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
238 for (i = 1; i < npmem_ranges; i++) {
239
240 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
241 if (hole_pages) {
242 pmem_holes[npmem_holes].start_pfn = end_pfn;
243 pmem_holes[npmem_holes++].pages = hole_pages;
244 end_pfn += hole_pages;
245 }
246 end_pfn += pmem_ranges[i].pages;
247 }
248
249 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
250 npmem_ranges = 1;
251 }
252 #endif
253
254 bootmap_pages = 0;
255 for (i = 0; i < npmem_ranges; i++)
256 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
257
258 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
259
260 #ifdef CONFIG_DISCONTIGMEM
261 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
262 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
263 NODE_DATA(i)->bdata = &bootmem_node_data[i];
264 }
265 memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
266
267 for (i = 0; i < npmem_ranges; i++) {
268 node_set_state(i, N_NORMAL_MEMORY);
269 node_set_online(i);
270 }
271 #endif
272
273 /*
274 * Initialize and free the full range of memory in each range.
275 * Note that the only writing these routines do are to the bootmap,
276 * and we've made sure to locate the bootmap properly so that they
277 * won't be writing over anything important.
278 */
279
280 bootmap_pfn = bootmap_start_pfn;
281 max_pfn = 0;
282 for (i = 0; i < npmem_ranges; i++) {
283 unsigned long start_pfn;
284 unsigned long npages;
285
286 start_pfn = pmem_ranges[i].start_pfn;
287 npages = pmem_ranges[i].pages;
288
289 bootmap_size = init_bootmem_node(NODE_DATA(i),
290 bootmap_pfn,
291 start_pfn,
292 (start_pfn + npages) );
293 free_bootmem_node(NODE_DATA(i),
294 (start_pfn << PAGE_SHIFT),
295 (npages << PAGE_SHIFT) );
296 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
297 if ((start_pfn + npages) > max_pfn)
298 max_pfn = start_pfn + npages;
299 }
300
301 /* IOMMU is always used to access "high mem" on those boxes
302 * that can support enough mem that a PCI device couldn't
303 * directly DMA to any physical addresses.
304 * ISA DMA support will need to revisit this.
305 */
306 max_low_pfn = max_pfn;
307
308 /* bootmap sizing messed up? */
309 BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
310
311 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
312
313 #define PDC_CONSOLE_IO_IODC_SIZE 32768
314
315 reserve_bootmem_node(NODE_DATA(0), 0UL,
316 (unsigned long)(PAGE0->mem_free +
317 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
318 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
319 (unsigned long)(_end - _text), BOOTMEM_DEFAULT);
320 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
321 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
322 BOOTMEM_DEFAULT);
323
324 #ifndef CONFIG_DISCONTIGMEM
325
326 /* reserve the holes */
327
328 for (i = 0; i < npmem_holes; i++) {
329 reserve_bootmem_node(NODE_DATA(0),
330 (pmem_holes[i].start_pfn << PAGE_SHIFT),
331 (pmem_holes[i].pages << PAGE_SHIFT),
332 BOOTMEM_DEFAULT);
333 }
334 #endif
335
336 #ifdef CONFIG_BLK_DEV_INITRD
337 if (initrd_start) {
338 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
339 if (__pa(initrd_start) < mem_max) {
340 unsigned long initrd_reserve;
341
342 if (__pa(initrd_end) > mem_max) {
343 initrd_reserve = mem_max - __pa(initrd_start);
344 } else {
345 initrd_reserve = initrd_end - initrd_start;
346 }
347 initrd_below_start_ok = 1;
348 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
349
350 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
351 initrd_reserve, BOOTMEM_DEFAULT);
352 }
353 }
354 #endif
355
356 data_resource.start = virt_to_phys(&data_start);
357 data_resource.end = virt_to_phys(_end) - 1;
358 code_resource.start = virt_to_phys(_text);
359 code_resource.end = virt_to_phys(&data_start)-1;
360
361 /* We don't know which region the kernel will be in, so try
362 * all of them.
363 */
364 for (i = 0; i < sysram_resource_count; i++) {
365 struct resource *res = &sysram_resources[i];
366 request_resource(res, &code_resource);
367 request_resource(res, &data_resource);
368 }
369 request_resource(&sysram_resources[0], &pdcdata_resource);
370 }
371
map_pages(unsigned long start_vaddr,unsigned long start_paddr,unsigned long size,pgprot_t pgprot,int force)372 static void __init map_pages(unsigned long start_vaddr,
373 unsigned long start_paddr, unsigned long size,
374 pgprot_t pgprot, int force)
375 {
376 pgd_t *pg_dir;
377 pmd_t *pmd;
378 pte_t *pg_table;
379 unsigned long end_paddr;
380 unsigned long start_pmd;
381 unsigned long start_pte;
382 unsigned long tmp1;
383 unsigned long tmp2;
384 unsigned long address;
385 unsigned long vaddr;
386 unsigned long ro_start;
387 unsigned long ro_end;
388 unsigned long fv_addr;
389 unsigned long gw_addr;
390 extern const unsigned long fault_vector_20;
391 extern void * const linux_gateway_page;
392
393 ro_start = __pa((unsigned long)_text);
394 ro_end = __pa((unsigned long)&data_start);
395 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
396 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
397
398 end_paddr = start_paddr + size;
399
400 pg_dir = pgd_offset_k(start_vaddr);
401
402 #if PTRS_PER_PMD == 1
403 start_pmd = 0;
404 #else
405 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
406 #endif
407 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
408
409 address = start_paddr;
410 vaddr = start_vaddr;
411 while (address < end_paddr) {
412 #if PTRS_PER_PMD == 1
413 pmd = (pmd_t *)__pa(pg_dir);
414 #else
415 pmd = (pmd_t *)pgd_address(*pg_dir);
416
417 /*
418 * pmd is physical at this point
419 */
420
421 if (!pmd) {
422 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
423 pmd = (pmd_t *) __pa(pmd);
424 }
425
426 pgd_populate(NULL, pg_dir, __va(pmd));
427 #endif
428 pg_dir++;
429
430 /* now change pmd to kernel virtual addresses */
431
432 pmd = (pmd_t *)__va(pmd) + start_pmd;
433 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
434
435 /*
436 * pg_table is physical at this point
437 */
438
439 pg_table = (pte_t *)pmd_address(*pmd);
440 if (!pg_table) {
441 pg_table = (pte_t *)
442 alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
443 pg_table = (pte_t *) __pa(pg_table);
444 }
445
446 pmd_populate_kernel(NULL, pmd, __va(pg_table));
447
448 /* now change pg_table to kernel virtual addresses */
449
450 pg_table = (pte_t *) __va(pg_table) + start_pte;
451 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
452 pte_t pte;
453
454 /*
455 * Map the fault vector writable so we can
456 * write the HPMC checksum.
457 */
458 if (force)
459 pte = __mk_pte(address, pgprot);
460 else if (core_kernel_text(vaddr) &&
461 address != fv_addr)
462 pte = __mk_pte(address, PAGE_KERNEL_EXEC);
463 else
464 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
465 if (address >= ro_start && address < ro_end
466 && address != fv_addr
467 && address != gw_addr)
468 pte = __mk_pte(address, PAGE_KERNEL_RO);
469 else
470 #endif
471 pte = __mk_pte(address, pgprot);
472
473 if (address >= end_paddr) {
474 if (force)
475 break;
476 else
477 pte_val(pte) = 0;
478 }
479
480 set_pte(pg_table, pte);
481
482 address += PAGE_SIZE;
483 vaddr += PAGE_SIZE;
484 }
485 start_pte = 0;
486
487 if (address >= end_paddr)
488 break;
489 }
490 start_pmd = 0;
491 }
492 }
493
free_initmem(void)494 void free_initmem(void)
495 {
496 unsigned long addr;
497 unsigned long init_begin = (unsigned long)__init_begin;
498 unsigned long init_end = (unsigned long)__init_end;
499
500 /* The init text pages are marked R-X. We have to
501 * flush the icache and mark them RW-
502 *
503 * This is tricky, because map_pages is in the init section.
504 * Do a dummy remap of the data section first (the data
505 * section is already PAGE_KERNEL) to pull in the TLB entries
506 * for map_kernel */
507 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
508 PAGE_KERNEL_RWX, 1);
509 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
510 * map_pages */
511 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
512 PAGE_KERNEL, 1);
513
514 /* force the kernel to see the new TLB entries */
515 __flush_tlb_range(0, init_begin, init_end);
516 /* Attempt to catch anyone trying to execute code here
517 * by filling the page with BRK insns.
518 */
519 memset((void *)init_begin, 0x00, init_end - init_begin);
520 /* finally dump all the instructions which were cached, since the
521 * pages are no-longer executable */
522 flush_icache_range(init_begin, init_end);
523
524 for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
525 ClearPageReserved(virt_to_page(addr));
526 init_page_count(virt_to_page(addr));
527 free_page(addr);
528 num_physpages++;
529 totalram_pages++;
530 }
531
532 /* set up a new led state on systems shipped LED State panel */
533 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
534
535 printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n",
536 (init_end - init_begin) >> 10);
537 }
538
539
540 #ifdef CONFIG_DEBUG_RODATA
mark_rodata_ro(void)541 void mark_rodata_ro(void)
542 {
543 /* rodata memory was already mapped with KERNEL_RO access rights by
544 pagetable_init() and map_pages(). No need to do additional stuff here */
545 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
546 (unsigned long)(__end_rodata - __start_rodata) >> 10);
547 }
548 #endif
549
550
551 /*
552 * Just an arbitrary offset to serve as a "hole" between mapping areas
553 * (between top of physical memory and a potential pcxl dma mapping
554 * area, and below the vmalloc mapping area).
555 *
556 * The current 32K value just means that there will be a 32K "hole"
557 * between mapping areas. That means that any out-of-bounds memory
558 * accesses will hopefully be caught. The vmalloc() routines leaves
559 * a hole of 4kB between each vmalloced area for the same reason.
560 */
561
562 /* Leave room for gateway page expansion */
563 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
564 #error KERNEL_MAP_START is in gateway reserved region
565 #endif
566 #define MAP_START (KERNEL_MAP_START)
567
568 #define VM_MAP_OFFSET (32*1024)
569 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
570 & ~(VM_MAP_OFFSET-1)))
571
572 void *parisc_vmalloc_start __read_mostly;
573 EXPORT_SYMBOL(parisc_vmalloc_start);
574
575 #ifdef CONFIG_PA11
576 unsigned long pcxl_dma_start __read_mostly;
577 #endif
578
mem_init(void)579 void __init mem_init(void)
580 {
581 int codesize, reservedpages, datasize, initsize;
582
583 /* Do sanity checks on page table constants */
584 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
585 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
586 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
587 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
588 > BITS_PER_LONG);
589
590 high_memory = __va((max_pfn << PAGE_SHIFT));
591
592 #ifndef CONFIG_DISCONTIGMEM
593 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
594 totalram_pages += free_all_bootmem();
595 #else
596 {
597 int i;
598
599 for (i = 0; i < npmem_ranges; i++)
600 totalram_pages += free_all_bootmem_node(NODE_DATA(i));
601 }
602 #endif
603
604 codesize = (unsigned long)_etext - (unsigned long)_text;
605 datasize = (unsigned long)_edata - (unsigned long)_etext;
606 initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
607
608 reservedpages = 0;
609 {
610 unsigned long pfn;
611 #ifdef CONFIG_DISCONTIGMEM
612 int i;
613
614 for (i = 0; i < npmem_ranges; i++) {
615 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
616 if (PageReserved(pfn_to_page(pfn)))
617 reservedpages++;
618 }
619 }
620 #else /* !CONFIG_DISCONTIGMEM */
621 for (pfn = 0; pfn < max_pfn; pfn++) {
622 /*
623 * Only count reserved RAM pages
624 */
625 if (PageReserved(pfn_to_page(pfn)))
626 reservedpages++;
627 }
628 #endif
629 }
630
631 #ifdef CONFIG_PA11
632 if (hppa_dma_ops == &pcxl_dma_ops) {
633 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
634 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
635 + PCXL_DMA_MAP_SIZE);
636 } else {
637 pcxl_dma_start = 0;
638 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
639 }
640 #else
641 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
642 #endif
643
644 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
645 nr_free_pages() << (PAGE_SHIFT-10),
646 num_physpages << (PAGE_SHIFT-10),
647 codesize >> 10,
648 reservedpages << (PAGE_SHIFT-10),
649 datasize >> 10,
650 initsize >> 10
651 );
652
653 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
654 printk("virtual kernel memory layout:\n"
655 " vmalloc : 0x%p - 0x%p (%4ld MB)\n"
656 " memory : 0x%p - 0x%p (%4ld MB)\n"
657 " .init : 0x%p - 0x%p (%4ld kB)\n"
658 " .data : 0x%p - 0x%p (%4ld kB)\n"
659 " .text : 0x%p - 0x%p (%4ld kB)\n",
660
661 (void*)VMALLOC_START, (void*)VMALLOC_END,
662 (VMALLOC_END - VMALLOC_START) >> 20,
663
664 __va(0), high_memory,
665 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
666
667 __init_begin, __init_end,
668 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
669
670 _etext, _edata,
671 ((unsigned long)_edata - (unsigned long)_etext) >> 10,
672
673 _text, _etext,
674 ((unsigned long)_etext - (unsigned long)_text) >> 10);
675 #endif
676 }
677
678 unsigned long *empty_zero_page __read_mostly;
679 EXPORT_SYMBOL(empty_zero_page);
680
show_mem(unsigned int filter)681 void show_mem(unsigned int filter)
682 {
683 int i,free = 0,total = 0,reserved = 0;
684 int shared = 0, cached = 0;
685
686 printk(KERN_INFO "Mem-info:\n");
687 show_free_areas(filter);
688 if (filter & SHOW_MEM_FILTER_PAGE_COUNT)
689 return;
690 #ifndef CONFIG_DISCONTIGMEM
691 i = max_mapnr;
692 while (i-- > 0) {
693 total++;
694 if (PageReserved(mem_map+i))
695 reserved++;
696 else if (PageSwapCache(mem_map+i))
697 cached++;
698 else if (!page_count(&mem_map[i]))
699 free++;
700 else
701 shared += page_count(&mem_map[i]) - 1;
702 }
703 #else
704 for (i = 0; i < npmem_ranges; i++) {
705 int j;
706
707 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
708 struct page *p;
709 unsigned long flags;
710
711 pgdat_resize_lock(NODE_DATA(i), &flags);
712 p = nid_page_nr(i, j) - node_start_pfn(i);
713
714 total++;
715 if (PageReserved(p))
716 reserved++;
717 else if (PageSwapCache(p))
718 cached++;
719 else if (!page_count(p))
720 free++;
721 else
722 shared += page_count(p) - 1;
723 pgdat_resize_unlock(NODE_DATA(i), &flags);
724 }
725 }
726 #endif
727 printk(KERN_INFO "%d pages of RAM\n", total);
728 printk(KERN_INFO "%d reserved pages\n", reserved);
729 printk(KERN_INFO "%d pages shared\n", shared);
730 printk(KERN_INFO "%d pages swap cached\n", cached);
731
732
733 #ifdef CONFIG_DISCONTIGMEM
734 {
735 struct zonelist *zl;
736 int i, j;
737
738 for (i = 0; i < npmem_ranges; i++) {
739 zl = node_zonelist(i, 0);
740 for (j = 0; j < MAX_NR_ZONES; j++) {
741 struct zoneref *z;
742 struct zone *zone;
743
744 printk("Zone list for zone %d on node %d: ", j, i);
745 for_each_zone_zonelist(zone, z, zl, j)
746 printk("[%d/%s] ", zone_to_nid(zone),
747 zone->name);
748 printk("\n");
749 }
750 }
751 }
752 #endif
753 }
754
755 /*
756 * pagetable_init() sets up the page tables
757 *
758 * Note that gateway_init() places the Linux gateway page at page 0.
759 * Since gateway pages cannot be dereferenced this has the desirable
760 * side effect of trapping those pesky NULL-reference errors in the
761 * kernel.
762 */
pagetable_init(void)763 static void __init pagetable_init(void)
764 {
765 int range;
766
767 /* Map each physical memory range to its kernel vaddr */
768
769 for (range = 0; range < npmem_ranges; range++) {
770 unsigned long start_paddr;
771 unsigned long end_paddr;
772 unsigned long size;
773
774 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
775 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
776 size = pmem_ranges[range].pages << PAGE_SHIFT;
777
778 map_pages((unsigned long)__va(start_paddr), start_paddr,
779 size, PAGE_KERNEL, 0);
780 }
781
782 #ifdef CONFIG_BLK_DEV_INITRD
783 if (initrd_end && initrd_end > mem_limit) {
784 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
785 map_pages(initrd_start, __pa(initrd_start),
786 initrd_end - initrd_start, PAGE_KERNEL, 0);
787 }
788 #endif
789
790 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
791 memset(empty_zero_page, 0, PAGE_SIZE);
792 }
793
gateway_init(void)794 static void __init gateway_init(void)
795 {
796 unsigned long linux_gateway_page_addr;
797 /* FIXME: This is 'const' in order to trick the compiler
798 into not treating it as DP-relative data. */
799 extern void * const linux_gateway_page;
800
801 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
802
803 /*
804 * Setup Linux Gateway page.
805 *
806 * The Linux gateway page will reside in kernel space (on virtual
807 * page 0), so it doesn't need to be aliased into user space.
808 */
809
810 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
811 PAGE_SIZE, PAGE_GATEWAY, 1);
812 }
813
814 #ifdef CONFIG_HPUX
815 void
map_hpux_gateway_page(struct task_struct * tsk,struct mm_struct * mm)816 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
817 {
818 pgd_t *pg_dir;
819 pmd_t *pmd;
820 pte_t *pg_table;
821 unsigned long start_pmd;
822 unsigned long start_pte;
823 unsigned long address;
824 unsigned long hpux_gw_page_addr;
825 /* FIXME: This is 'const' in order to trick the compiler
826 into not treating it as DP-relative data. */
827 extern void * const hpux_gateway_page;
828
829 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
830
831 /*
832 * Setup HP-UX Gateway page.
833 *
834 * The HP-UX gateway page resides in the user address space,
835 * so it needs to be aliased into each process.
836 */
837
838 pg_dir = pgd_offset(mm,hpux_gw_page_addr);
839
840 #if PTRS_PER_PMD == 1
841 start_pmd = 0;
842 #else
843 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
844 #endif
845 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
846
847 address = __pa(&hpux_gateway_page);
848 #if PTRS_PER_PMD == 1
849 pmd = (pmd_t *)__pa(pg_dir);
850 #else
851 pmd = (pmd_t *) pgd_address(*pg_dir);
852
853 /*
854 * pmd is physical at this point
855 */
856
857 if (!pmd) {
858 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
859 pmd = (pmd_t *) __pa(pmd);
860 }
861
862 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
863 #endif
864 /* now change pmd to kernel virtual addresses */
865
866 pmd = (pmd_t *)__va(pmd) + start_pmd;
867
868 /*
869 * pg_table is physical at this point
870 */
871
872 pg_table = (pte_t *) pmd_address(*pmd);
873 if (!pg_table)
874 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
875
876 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
877
878 /* now change pg_table to kernel virtual addresses */
879
880 pg_table = (pte_t *) __va(pg_table) + start_pte;
881 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
882 }
883 EXPORT_SYMBOL(map_hpux_gateway_page);
884 #endif
885
paging_init(void)886 void __init paging_init(void)
887 {
888 int i;
889
890 setup_bootmem();
891 pagetable_init();
892 gateway_init();
893 flush_cache_all_local(); /* start with known state */
894 flush_tlb_all_local(NULL);
895
896 for (i = 0; i < npmem_ranges; i++) {
897 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
898
899 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
900
901 #ifdef CONFIG_DISCONTIGMEM
902 /* Need to initialize the pfnnid_map before we can initialize
903 the zone */
904 {
905 int j;
906 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
907 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
908 j++) {
909 pfnnid_map[j] = i;
910 }
911 }
912 #endif
913
914 free_area_init_node(i, zones_size,
915 pmem_ranges[i].start_pfn, NULL);
916 }
917 }
918
919 #ifdef CONFIG_PA20
920
921 /*
922 * Currently, all PA20 chips have 18 bit protection IDs, which is the
923 * limiting factor (space ids are 32 bits).
924 */
925
926 #define NR_SPACE_IDS 262144
927
928 #else
929
930 /*
931 * Currently we have a one-to-one relationship between space IDs and
932 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
933 * support 15 bit protection IDs, so that is the limiting factor.
934 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
935 * probably not worth the effort for a special case here.
936 */
937
938 #define NR_SPACE_IDS 32768
939
940 #endif /* !CONFIG_PA20 */
941
942 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
943 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
944
945 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
946 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
947 static unsigned long space_id_index;
948 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
949 static unsigned long dirty_space_ids = 0;
950
951 static DEFINE_SPINLOCK(sid_lock);
952
alloc_sid(void)953 unsigned long alloc_sid(void)
954 {
955 unsigned long index;
956
957 spin_lock(&sid_lock);
958
959 if (free_space_ids == 0) {
960 if (dirty_space_ids != 0) {
961 spin_unlock(&sid_lock);
962 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
963 spin_lock(&sid_lock);
964 }
965 BUG_ON(free_space_ids == 0);
966 }
967
968 free_space_ids--;
969
970 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
971 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
972 space_id_index = index;
973
974 spin_unlock(&sid_lock);
975
976 return index << SPACEID_SHIFT;
977 }
978
free_sid(unsigned long spaceid)979 void free_sid(unsigned long spaceid)
980 {
981 unsigned long index = spaceid >> SPACEID_SHIFT;
982 unsigned long *dirty_space_offset;
983
984 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
985 index &= (BITS_PER_LONG - 1);
986
987 spin_lock(&sid_lock);
988
989 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
990
991 *dirty_space_offset |= (1L << index);
992 dirty_space_ids++;
993
994 spin_unlock(&sid_lock);
995 }
996
997
998 #ifdef CONFIG_SMP
get_dirty_sids(unsigned long * ndirtyptr,unsigned long * dirty_array)999 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
1000 {
1001 int i;
1002
1003 /* NOTE: sid_lock must be held upon entry */
1004
1005 *ndirtyptr = dirty_space_ids;
1006 if (dirty_space_ids != 0) {
1007 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1008 dirty_array[i] = dirty_space_id[i];
1009 dirty_space_id[i] = 0;
1010 }
1011 dirty_space_ids = 0;
1012 }
1013
1014 return;
1015 }
1016
recycle_sids(unsigned long ndirty,unsigned long * dirty_array)1017 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
1018 {
1019 int i;
1020
1021 /* NOTE: sid_lock must be held upon entry */
1022
1023 if (ndirty != 0) {
1024 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1025 space_id[i] ^= dirty_array[i];
1026 }
1027
1028 free_space_ids += ndirty;
1029 space_id_index = 0;
1030 }
1031 }
1032
1033 #else /* CONFIG_SMP */
1034
recycle_sids(void)1035 static void recycle_sids(void)
1036 {
1037 int i;
1038
1039 /* NOTE: sid_lock must be held upon entry */
1040
1041 if (dirty_space_ids != 0) {
1042 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1043 space_id[i] ^= dirty_space_id[i];
1044 dirty_space_id[i] = 0;
1045 }
1046
1047 free_space_ids += dirty_space_ids;
1048 dirty_space_ids = 0;
1049 space_id_index = 0;
1050 }
1051 }
1052 #endif
1053
1054 /*
1055 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1056 * purged, we can safely reuse the space ids that were released but
1057 * not flushed from the tlb.
1058 */
1059
1060 #ifdef CONFIG_SMP
1061
1062 static unsigned long recycle_ndirty;
1063 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1064 static unsigned int recycle_inuse;
1065
flush_tlb_all(void)1066 void flush_tlb_all(void)
1067 {
1068 int do_recycle;
1069
1070 do_recycle = 0;
1071 spin_lock(&sid_lock);
1072 if (dirty_space_ids > RECYCLE_THRESHOLD) {
1073 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
1074 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1075 recycle_inuse++;
1076 do_recycle++;
1077 }
1078 spin_unlock(&sid_lock);
1079 on_each_cpu(flush_tlb_all_local, NULL, 1);
1080 if (do_recycle) {
1081 spin_lock(&sid_lock);
1082 recycle_sids(recycle_ndirty,recycle_dirty_array);
1083 recycle_inuse = 0;
1084 spin_unlock(&sid_lock);
1085 }
1086 }
1087 #else
flush_tlb_all(void)1088 void flush_tlb_all(void)
1089 {
1090 spin_lock(&sid_lock);
1091 flush_tlb_all_local(NULL);
1092 recycle_sids();
1093 spin_unlock(&sid_lock);
1094 }
1095 #endif
1096
1097 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)1098 void free_initrd_mem(unsigned long start, unsigned long end)
1099 {
1100 if (start >= end)
1101 return;
1102 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1103 for (; start < end; start += PAGE_SIZE) {
1104 ClearPageReserved(virt_to_page(start));
1105 init_page_count(virt_to_page(start));
1106 free_page(start);
1107 num_physpages++;
1108 totalram_pages++;
1109 }
1110 }
1111 #endif
1112