1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4 
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7 
8 #ifndef __ASSEMBLY__
9 #ifdef CONFIG_MMU
10 
11 #include <linux/mm_types.h>
12 #include <linux/bug.h>
13 #include <linux/errno.h>
14 #include <asm-generic/pgtable_uffd.h>
15 #include <linux/page_table_check.h>
16 
17 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
18 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
19 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
20 #endif
21 
22 /*
23  * On almost all architectures and configurations, 0 can be used as the
24  * upper ceiling to free_pgtables(): on many architectures it has the same
25  * effect as using TASK_SIZE.  However, there is one configuration which
26  * must impose a more careful limit, to avoid freeing kernel pgtables.
27  */
28 #ifndef USER_PGTABLES_CEILING
29 #define USER_PGTABLES_CEILING	0UL
30 #endif
31 
32 /*
33  * This defines the first usable user address. Platforms
34  * can override its value with custom FIRST_USER_ADDRESS
35  * defined in their respective <asm/pgtable.h>.
36  */
37 #ifndef FIRST_USER_ADDRESS
38 #define FIRST_USER_ADDRESS	0UL
39 #endif
40 
41 /*
42  * This defines the generic helper for accessing PMD page
43  * table page. Although platforms can still override this
44  * via their respective <asm/pgtable.h>.
45  */
46 #ifndef pmd_pgtable
47 #define pmd_pgtable(pmd) pmd_page(pmd)
48 #endif
49 
50 /*
51  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
52  *
53  * The pXx_index() functions return the index of the entry in the page
54  * table page which would control the given virtual address
55  *
56  * As these functions may be used by the same code for different levels of
57  * the page table folding, they are always available, regardless of
58  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
59  * because in such cases PTRS_PER_PxD equals 1.
60  */
61 
pte_index(unsigned long address)62 static inline unsigned long pte_index(unsigned long address)
63 {
64 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
65 }
66 #define pte_index pte_index
67 
68 #ifndef pmd_index
pmd_index(unsigned long address)69 static inline unsigned long pmd_index(unsigned long address)
70 {
71 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
72 }
73 #define pmd_index pmd_index
74 #endif
75 
76 #ifndef pud_index
pud_index(unsigned long address)77 static inline unsigned long pud_index(unsigned long address)
78 {
79 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
80 }
81 #define pud_index pud_index
82 #endif
83 
84 #ifndef pgd_index
85 /* Must be a compile-time constant, so implement it as a macro */
86 #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
87 #endif
88 
89 #ifndef pte_offset_kernel
pte_offset_kernel(pmd_t * pmd,unsigned long address)90 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
91 {
92 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
93 }
94 #define pte_offset_kernel pte_offset_kernel
95 #endif
96 
97 #if defined(CONFIG_HIGHPTE)
98 #define pte_offset_map(dir, address)				\
99 	((pte_t *)kmap_atomic(pmd_page(*(dir))) +		\
100 	 pte_index((address)))
101 #define pte_unmap(pte) kunmap_atomic((pte))
102 #else
103 #define pte_offset_map(dir, address)	pte_offset_kernel((dir), (address))
104 #define pte_unmap(pte) ((void)(pte))	/* NOP */
105 #endif
106 
107 /* Find an entry in the second-level page table.. */
108 #ifndef pmd_offset
pmd_offset(pud_t * pud,unsigned long address)109 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
110 {
111 	return pud_pgtable(*pud) + pmd_index(address);
112 }
113 #define pmd_offset pmd_offset
114 #endif
115 
116 #ifndef pud_offset
pud_offset(p4d_t * p4d,unsigned long address)117 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
118 {
119 	return p4d_pgtable(*p4d) + pud_index(address);
120 }
121 #define pud_offset pud_offset
122 #endif
123 
pgd_offset_pgd(pgd_t * pgd,unsigned long address)124 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
125 {
126 	return (pgd + pgd_index(address));
127 };
128 
129 /*
130  * a shortcut to get a pgd_t in a given mm
131  */
132 #ifndef pgd_offset
133 #define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
134 #endif
135 
136 /*
137  * a shortcut which implies the use of the kernel's pgd, instead
138  * of a process's
139  */
140 #ifndef pgd_offset_k
141 #define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
142 #endif
143 
144 /*
145  * In many cases it is known that a virtual address is mapped at PMD or PTE
146  * level, so instead of traversing all the page table levels, we can get a
147  * pointer to the PMD entry in user or kernel page table or translate a virtual
148  * address to the pointer in the PTE in the kernel page tables with simple
149  * helpers.
150  */
pmd_off(struct mm_struct * mm,unsigned long va)151 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
152 {
153 	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
154 }
155 
pmd_off_k(unsigned long va)156 static inline pmd_t *pmd_off_k(unsigned long va)
157 {
158 	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
159 }
160 
virt_to_kpte(unsigned long vaddr)161 static inline pte_t *virt_to_kpte(unsigned long vaddr)
162 {
163 	pmd_t *pmd = pmd_off_k(vaddr);
164 
165 	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
166 }
167 
168 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
169 extern int ptep_set_access_flags(struct vm_area_struct *vma,
170 				 unsigned long address, pte_t *ptep,
171 				 pte_t entry, int dirty);
172 #endif
173 
174 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
175 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
176 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
177 				 unsigned long address, pmd_t *pmdp,
178 				 pmd_t entry, int dirty);
179 extern int pudp_set_access_flags(struct vm_area_struct *vma,
180 				 unsigned long address, pud_t *pudp,
181 				 pud_t entry, int dirty);
182 #else
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)183 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
184 					unsigned long address, pmd_t *pmdp,
185 					pmd_t entry, int dirty)
186 {
187 	BUILD_BUG();
188 	return 0;
189 }
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)190 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
191 					unsigned long address, pud_t *pudp,
192 					pud_t entry, int dirty)
193 {
194 	BUILD_BUG();
195 	return 0;
196 }
197 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
198 #endif
199 
200 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)201 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
202 					    unsigned long address,
203 					    pte_t *ptep)
204 {
205 	pte_t pte = *ptep;
206 	int r = 1;
207 	if (!pte_young(pte))
208 		r = 0;
209 	else
210 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
211 	return r;
212 }
213 #endif
214 
215 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
216 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)217 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
218 					    unsigned long address,
219 					    pmd_t *pmdp)
220 {
221 	pmd_t pmd = *pmdp;
222 	int r = 1;
223 	if (!pmd_young(pmd))
224 		r = 0;
225 	else
226 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
227 	return r;
228 }
229 #else
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)230 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
231 					    unsigned long address,
232 					    pmd_t *pmdp)
233 {
234 	BUILD_BUG();
235 	return 0;
236 }
237 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
238 #endif
239 
240 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
241 int ptep_clear_flush_young(struct vm_area_struct *vma,
242 			   unsigned long address, pte_t *ptep);
243 #endif
244 
245 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
246 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
248 				  unsigned long address, pmd_t *pmdp);
249 #else
250 /*
251  * Despite relevant to THP only, this API is called from generic rmap code
252  * under PageTransHuge(), hence needs a dummy implementation for !THP
253  */
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)254 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
255 					 unsigned long address, pmd_t *pmdp)
256 {
257 	BUILD_BUG();
258 	return 0;
259 }
260 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
261 #endif
262 
263 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)264 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
265 				       unsigned long address,
266 				       pte_t *ptep)
267 {
268 	pte_t pte = *ptep;
269 	pte_clear(mm, address, ptep);
270 	page_table_check_pte_clear(mm, address, pte);
271 	return pte;
272 }
273 #endif
274 
ptep_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)275 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
276 			      pte_t *ptep)
277 {
278 	ptep_get_and_clear(mm, addr, ptep);
279 }
280 
281 #ifndef __HAVE_ARCH_PTEP_GET
ptep_get(pte_t * ptep)282 static inline pte_t ptep_get(pte_t *ptep)
283 {
284 	return READ_ONCE(*ptep);
285 }
286 #endif
287 
288 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
289 /*
290  * WARNING: only to be used in the get_user_pages_fast() implementation.
291  *
292  * With get_user_pages_fast(), we walk down the pagetables without taking any
293  * locks.  For this we would like to load the pointers atomically, but sometimes
294  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
295  * we do have is the guarantee that a PTE will only either go from not present
296  * to present, or present to not present or both -- it will not switch to a
297  * completely different present page without a TLB flush in between; something
298  * that we are blocking by holding interrupts off.
299  *
300  * Setting ptes from not present to present goes:
301  *
302  *   ptep->pte_high = h;
303  *   smp_wmb();
304  *   ptep->pte_low = l;
305  *
306  * And present to not present goes:
307  *
308  *   ptep->pte_low = 0;
309  *   smp_wmb();
310  *   ptep->pte_high = 0;
311  *
312  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
313  * We load pte_high *after* loading pte_low, which ensures we don't see an older
314  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
315  * picked up a changed pte high. We might have gotten rubbish values from
316  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
317  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
318  * operates on present ptes we're safe.
319  */
ptep_get_lockless(pte_t * ptep)320 static inline pte_t ptep_get_lockless(pte_t *ptep)
321 {
322 	pte_t pte;
323 
324 	do {
325 		pte.pte_low = ptep->pte_low;
326 		smp_rmb();
327 		pte.pte_high = ptep->pte_high;
328 		smp_rmb();
329 	} while (unlikely(pte.pte_low != ptep->pte_low));
330 
331 	return pte;
332 }
333 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
334 /*
335  * We require that the PTE can be read atomically.
336  */
ptep_get_lockless(pte_t * ptep)337 static inline pte_t ptep_get_lockless(pte_t *ptep)
338 {
339 	return ptep_get(ptep);
340 }
341 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
342 
343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)345 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
346 					    unsigned long address,
347 					    pmd_t *pmdp)
348 {
349 	pmd_t pmd = *pmdp;
350 
351 	pmd_clear(pmdp);
352 	page_table_check_pmd_clear(mm, address, pmd);
353 
354 	return pmd;
355 }
356 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
357 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pud_t * pudp)358 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
359 					    unsigned long address,
360 					    pud_t *pudp)
361 {
362 	pud_t pud = *pudp;
363 
364 	pud_clear(pudp);
365 	page_table_check_pud_clear(mm, address, pud);
366 
367 	return pud;
368 }
369 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
370 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
371 
372 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
373 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,int full)374 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
375 					    unsigned long address, pmd_t *pmdp,
376 					    int full)
377 {
378 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
379 }
380 #endif
381 
382 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
pudp_huge_get_and_clear_full(struct mm_struct * mm,unsigned long address,pud_t * pudp,int full)383 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
384 					    unsigned long address, pud_t *pudp,
385 					    int full)
386 {
387 	return pudp_huge_get_and_clear(mm, address, pudp);
388 }
389 #endif
390 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
391 
392 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)393 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
394 					    unsigned long address, pte_t *ptep,
395 					    int full)
396 {
397 	pte_t pte;
398 	pte = ptep_get_and_clear(mm, address, ptep);
399 	return pte;
400 }
401 #endif
402 
403 
404 /*
405  * If two threads concurrently fault at the same page, the thread that
406  * won the race updates the PTE and its local TLB/Cache. The other thread
407  * gives up, simply does nothing, and continues; on architectures where
408  * software can update TLB,  local TLB can be updated here to avoid next page
409  * fault. This function updates TLB only, do nothing with cache or others.
410  * It is the difference with function update_mmu_cache.
411  */
412 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
update_mmu_tlb(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)413 static inline void update_mmu_tlb(struct vm_area_struct *vma,
414 				unsigned long address, pte_t *ptep)
415 {
416 }
417 #define __HAVE_ARCH_UPDATE_MMU_TLB
418 #endif
419 
420 /*
421  * Some architectures may be able to avoid expensive synchronization
422  * primitives when modifications are made to PTE's which are already
423  * not present, or in the process of an address space destruction.
424  */
425 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
pte_clear_not_present_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)426 static inline void pte_clear_not_present_full(struct mm_struct *mm,
427 					      unsigned long address,
428 					      pte_t *ptep,
429 					      int full)
430 {
431 	pte_clear(mm, address, ptep);
432 }
433 #endif
434 
435 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
436 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
437 			      unsigned long address,
438 			      pte_t *ptep);
439 #endif
440 
441 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
442 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
443 			      unsigned long address,
444 			      pmd_t *pmdp);
445 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
446 			      unsigned long address,
447 			      pud_t *pudp);
448 #endif
449 
450 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
451 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)452 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
453 {
454 	pte_t old_pte = *ptep;
455 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
456 }
457 #endif
458 
459 /*
460  * On some architectures hardware does not set page access bit when accessing
461  * memory page, it is responsibility of software setting this bit. It brings
462  * out extra page fault penalty to track page access bit. For optimization page
463  * access bit can be set during all page fault flow on these arches.
464  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
465  * where software maintains page access bit.
466  */
467 #ifndef pte_sw_mkyoung
pte_sw_mkyoung(pte_t pte)468 static inline pte_t pte_sw_mkyoung(pte_t pte)
469 {
470 	return pte;
471 }
472 #define pte_sw_mkyoung	pte_sw_mkyoung
473 #endif
474 
475 #ifndef pte_savedwrite
476 #define pte_savedwrite pte_write
477 #endif
478 
479 #ifndef pte_mk_savedwrite
480 #define pte_mk_savedwrite pte_mkwrite
481 #endif
482 
483 #ifndef pte_clear_savedwrite
484 #define pte_clear_savedwrite pte_wrprotect
485 #endif
486 
487 #ifndef pmd_savedwrite
488 #define pmd_savedwrite pmd_write
489 #endif
490 
491 #ifndef pmd_mk_savedwrite
492 #define pmd_mk_savedwrite pmd_mkwrite
493 #endif
494 
495 #ifndef pmd_clear_savedwrite
496 #define pmd_clear_savedwrite pmd_wrprotect
497 #endif
498 
499 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
500 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)501 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
502 				      unsigned long address, pmd_t *pmdp)
503 {
504 	pmd_t old_pmd = *pmdp;
505 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
506 }
507 #else
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)508 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
509 				      unsigned long address, pmd_t *pmdp)
510 {
511 	BUILD_BUG();
512 }
513 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
514 #endif
515 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
516 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)517 static inline void pudp_set_wrprotect(struct mm_struct *mm,
518 				      unsigned long address, pud_t *pudp)
519 {
520 	pud_t old_pud = *pudp;
521 
522 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
523 }
524 #else
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)525 static inline void pudp_set_wrprotect(struct mm_struct *mm,
526 				      unsigned long address, pud_t *pudp)
527 {
528 	BUILD_BUG();
529 }
530 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
531 #endif
532 
533 #ifndef pmdp_collapse_flush
534 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
535 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
536 				 unsigned long address, pmd_t *pmdp);
537 #else
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)538 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
539 					unsigned long address,
540 					pmd_t *pmdp)
541 {
542 	BUILD_BUG();
543 	return *pmdp;
544 }
545 #define pmdp_collapse_flush pmdp_collapse_flush
546 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
547 #endif
548 
549 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
550 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
551 				       pgtable_t pgtable);
552 #endif
553 
554 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
555 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
556 #endif
557 
558 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
559 /*
560  * This is an implementation of pmdp_establish() that is only suitable for an
561  * architecture that doesn't have hardware dirty/accessed bits. In this case we
562  * can't race with CPU which sets these bits and non-atomic approach is fine.
563  */
generic_pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)564 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
565 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
566 {
567 	pmd_t old_pmd = *pmdp;
568 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
569 	return old_pmd;
570 }
571 #endif
572 
573 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
574 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
575 			    pmd_t *pmdp);
576 #endif
577 
578 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
579 
580 /*
581  * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
582  * hugepage mapping in the page tables. This function is similar to
583  * pmdp_invalidate(), but should only be used if the access and dirty bits would
584  * not be cleared by the software in the new PMD value. The function ensures
585  * that hardware changes of the access and dirty bits updates would not be lost.
586  *
587  * Doing so can allow in certain architectures to avoid a TLB flush in most
588  * cases. Yet, another TLB flush might be necessary later if the PMD update
589  * itself requires such flush (e.g., if protection was set to be stricter). Yet,
590  * even when a TLB flush is needed because of the update, the caller may be able
591  * to batch these TLB flushing operations, so fewer TLB flush operations are
592  * needed.
593  */
594 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
595 				unsigned long address, pmd_t *pmdp);
596 #endif
597 
598 #ifndef __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)599 static inline int pte_same(pte_t pte_a, pte_t pte_b)
600 {
601 	return pte_val(pte_a) == pte_val(pte_b);
602 }
603 #endif
604 
605 #ifndef __HAVE_ARCH_PTE_UNUSED
606 /*
607  * Some architectures provide facilities to virtualization guests
608  * so that they can flag allocated pages as unused. This allows the
609  * host to transparently reclaim unused pages. This function returns
610  * whether the pte's page is unused.
611  */
pte_unused(pte_t pte)612 static inline int pte_unused(pte_t pte)
613 {
614 	return 0;
615 }
616 #endif
617 
618 #ifndef pte_access_permitted
619 #define pte_access_permitted(pte, write) \
620 	(pte_present(pte) && (!(write) || pte_write(pte)))
621 #endif
622 
623 #ifndef pmd_access_permitted
624 #define pmd_access_permitted(pmd, write) \
625 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
626 #endif
627 
628 #ifndef pud_access_permitted
629 #define pud_access_permitted(pud, write) \
630 	(pud_present(pud) && (!(write) || pud_write(pud)))
631 #endif
632 
633 #ifndef p4d_access_permitted
634 #define p4d_access_permitted(p4d, write) \
635 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
636 #endif
637 
638 #ifndef pgd_access_permitted
639 #define pgd_access_permitted(pgd, write) \
640 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
641 #endif
642 
643 #ifndef __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)644 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
645 {
646 	return pmd_val(pmd_a) == pmd_val(pmd_b);
647 }
648 
pud_same(pud_t pud_a,pud_t pud_b)649 static inline int pud_same(pud_t pud_a, pud_t pud_b)
650 {
651 	return pud_val(pud_a) == pud_val(pud_b);
652 }
653 #endif
654 
655 #ifndef __HAVE_ARCH_P4D_SAME
p4d_same(p4d_t p4d_a,p4d_t p4d_b)656 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
657 {
658 	return p4d_val(p4d_a) == p4d_val(p4d_b);
659 }
660 #endif
661 
662 #ifndef __HAVE_ARCH_PGD_SAME
pgd_same(pgd_t pgd_a,pgd_t pgd_b)663 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
664 {
665 	return pgd_val(pgd_a) == pgd_val(pgd_b);
666 }
667 #endif
668 
669 /*
670  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
671  * TLB flush will be required as a result of the "set". For example, use
672  * in scenarios where it is known ahead of time that the routine is
673  * setting non-present entries, or re-setting an existing entry to the
674  * same value. Otherwise, use the typical "set" helpers and flush the
675  * TLB.
676  */
677 #define set_pte_safe(ptep, pte) \
678 ({ \
679 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
680 	set_pte(ptep, pte); \
681 })
682 
683 #define set_pmd_safe(pmdp, pmd) \
684 ({ \
685 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
686 	set_pmd(pmdp, pmd); \
687 })
688 
689 #define set_pud_safe(pudp, pud) \
690 ({ \
691 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
692 	set_pud(pudp, pud); \
693 })
694 
695 #define set_p4d_safe(p4dp, p4d) \
696 ({ \
697 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
698 	set_p4d(p4dp, p4d); \
699 })
700 
701 #define set_pgd_safe(pgdp, pgd) \
702 ({ \
703 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
704 	set_pgd(pgdp, pgd); \
705 })
706 
707 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
708 /*
709  * Some architectures support metadata associated with a page. When a
710  * page is being swapped out, this metadata must be saved so it can be
711  * restored when the page is swapped back in. SPARC M7 and newer
712  * processors support an ADI (Application Data Integrity) tag for the
713  * page as metadata for the page. arch_do_swap_page() can restore this
714  * metadata when a page is swapped back in.
715  */
arch_do_swap_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t pte,pte_t oldpte)716 static inline void arch_do_swap_page(struct mm_struct *mm,
717 				     struct vm_area_struct *vma,
718 				     unsigned long addr,
719 				     pte_t pte, pte_t oldpte)
720 {
721 
722 }
723 #endif
724 
725 #ifndef __HAVE_ARCH_UNMAP_ONE
726 /*
727  * Some architectures support metadata associated with a page. When a
728  * page is being swapped out, this metadata must be saved so it can be
729  * restored when the page is swapped back in. SPARC M7 and newer
730  * processors support an ADI (Application Data Integrity) tag for the
731  * page as metadata for the page. arch_unmap_one() can save this
732  * metadata on a swap-out of a page.
733  */
arch_unmap_one(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t orig_pte)734 static inline int arch_unmap_one(struct mm_struct *mm,
735 				  struct vm_area_struct *vma,
736 				  unsigned long addr,
737 				  pte_t orig_pte)
738 {
739 	return 0;
740 }
741 #endif
742 
743 /*
744  * Allow architectures to preserve additional metadata associated with
745  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
746  * prototypes must be defined in the arch-specific asm/pgtable.h file.
747  */
748 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
arch_prepare_to_swap(struct page * page)749 static inline int arch_prepare_to_swap(struct page *page)
750 {
751 	return 0;
752 }
753 #endif
754 
755 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)756 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
757 {
758 }
759 
arch_swap_invalidate_area(int type)760 static inline void arch_swap_invalidate_area(int type)
761 {
762 }
763 #endif
764 
765 #ifndef __HAVE_ARCH_SWAP_RESTORE
arch_swap_restore(swp_entry_t entry,struct folio * folio)766 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
767 {
768 }
769 #endif
770 
771 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
772 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
773 #endif
774 
775 #ifndef __HAVE_ARCH_MOVE_PTE
776 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
777 #endif
778 
779 #ifndef pte_accessible
780 # define pte_accessible(mm, pte)	((void)(pte), 1)
781 #endif
782 
783 #ifndef flush_tlb_fix_spurious_fault
784 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
785 #endif
786 
787 /*
788  * When walking page tables, get the address of the next boundary,
789  * or the end address of the range if that comes earlier.  Although no
790  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
791  */
792 
793 #define pgd_addr_end(addr, end)						\
794 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
795 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
796 })
797 
798 #ifndef p4d_addr_end
799 #define p4d_addr_end(addr, end)						\
800 ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
801 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
802 })
803 #endif
804 
805 #ifndef pud_addr_end
806 #define pud_addr_end(addr, end)						\
807 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
808 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
809 })
810 #endif
811 
812 #ifndef pmd_addr_end
813 #define pmd_addr_end(addr, end)						\
814 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
815 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
816 })
817 #endif
818 
819 /*
820  * When walking page tables, we usually want to skip any p?d_none entries;
821  * and any p?d_bad entries - reporting the error before resetting to none.
822  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
823  */
824 void pgd_clear_bad(pgd_t *);
825 
826 #ifndef __PAGETABLE_P4D_FOLDED
827 void p4d_clear_bad(p4d_t *);
828 #else
829 #define p4d_clear_bad(p4d)        do { } while (0)
830 #endif
831 
832 #ifndef __PAGETABLE_PUD_FOLDED
833 void pud_clear_bad(pud_t *);
834 #else
835 #define pud_clear_bad(p4d)        do { } while (0)
836 #endif
837 
838 void pmd_clear_bad(pmd_t *);
839 
pgd_none_or_clear_bad(pgd_t * pgd)840 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
841 {
842 	if (pgd_none(*pgd))
843 		return 1;
844 	if (unlikely(pgd_bad(*pgd))) {
845 		pgd_clear_bad(pgd);
846 		return 1;
847 	}
848 	return 0;
849 }
850 
p4d_none_or_clear_bad(p4d_t * p4d)851 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
852 {
853 	if (p4d_none(*p4d))
854 		return 1;
855 	if (unlikely(p4d_bad(*p4d))) {
856 		p4d_clear_bad(p4d);
857 		return 1;
858 	}
859 	return 0;
860 }
861 
pud_none_or_clear_bad(pud_t * pud)862 static inline int pud_none_or_clear_bad(pud_t *pud)
863 {
864 	if (pud_none(*pud))
865 		return 1;
866 	if (unlikely(pud_bad(*pud))) {
867 		pud_clear_bad(pud);
868 		return 1;
869 	}
870 	return 0;
871 }
872 
pmd_none_or_clear_bad(pmd_t * pmd)873 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
874 {
875 	if (pmd_none(*pmd))
876 		return 1;
877 	if (unlikely(pmd_bad(*pmd))) {
878 		pmd_clear_bad(pmd);
879 		return 1;
880 	}
881 	return 0;
882 }
883 
__ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)884 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
885 					     unsigned long addr,
886 					     pte_t *ptep)
887 {
888 	/*
889 	 * Get the current pte state, but zero it out to make it
890 	 * non-present, preventing the hardware from asynchronously
891 	 * updating it.
892 	 */
893 	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
894 }
895 
__ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte)896 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
897 					     unsigned long addr,
898 					     pte_t *ptep, pte_t pte)
899 {
900 	/*
901 	 * The pte is non-present, so there's no hardware state to
902 	 * preserve.
903 	 */
904 	set_pte_at(vma->vm_mm, addr, ptep, pte);
905 }
906 
907 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
908 /*
909  * Start a pte protection read-modify-write transaction, which
910  * protects against asynchronous hardware modifications to the pte.
911  * The intention is not to prevent the hardware from making pte
912  * updates, but to prevent any updates it may make from being lost.
913  *
914  * This does not protect against other software modifications of the
915  * pte; the appropriate pte lock must be held over the transaction.
916  *
917  * Note that this interface is intended to be batchable, meaning that
918  * ptep_modify_prot_commit may not actually update the pte, but merely
919  * queue the update to be done at some later time.  The update must be
920  * actually committed before the pte lock is released, however.
921  */
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)922 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
923 					   unsigned long addr,
924 					   pte_t *ptep)
925 {
926 	return __ptep_modify_prot_start(vma, addr, ptep);
927 }
928 
929 /*
930  * Commit an update to a pte, leaving any hardware-controlled bits in
931  * the PTE unmodified.
932  */
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)933 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
934 					   unsigned long addr,
935 					   pte_t *ptep, pte_t old_pte, pte_t pte)
936 {
937 	__ptep_modify_prot_commit(vma, addr, ptep, pte);
938 }
939 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
940 #endif /* CONFIG_MMU */
941 
942 /*
943  * No-op macros that just return the current protection value. Defined here
944  * because these macros can be used even if CONFIG_MMU is not defined.
945  */
946 
947 #ifndef pgprot_nx
948 #define pgprot_nx(prot)	(prot)
949 #endif
950 
951 #ifndef pgprot_noncached
952 #define pgprot_noncached(prot)	(prot)
953 #endif
954 
955 #ifndef pgprot_writecombine
956 #define pgprot_writecombine pgprot_noncached
957 #endif
958 
959 #ifndef pgprot_writethrough
960 #define pgprot_writethrough pgprot_noncached
961 #endif
962 
963 #ifndef pgprot_device
964 #define pgprot_device pgprot_noncached
965 #endif
966 
967 #ifndef pgprot_mhp
968 #define pgprot_mhp(prot)	(prot)
969 #endif
970 
971 #ifdef CONFIG_MMU
972 #ifndef pgprot_modify
973 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)974 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
975 {
976 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
977 		newprot = pgprot_noncached(newprot);
978 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
979 		newprot = pgprot_writecombine(newprot);
980 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
981 		newprot = pgprot_device(newprot);
982 	return newprot;
983 }
984 #endif
985 #endif /* CONFIG_MMU */
986 
987 #ifndef pgprot_encrypted
988 #define pgprot_encrypted(prot)	(prot)
989 #endif
990 
991 #ifndef pgprot_decrypted
992 #define pgprot_decrypted(prot)	(prot)
993 #endif
994 
995 /*
996  * A facility to provide lazy MMU batching.  This allows PTE updates and
997  * page invalidations to be delayed until a call to leave lazy MMU mode
998  * is issued.  Some architectures may benefit from doing this, and it is
999  * beneficial for both shadow and direct mode hypervisors, which may batch
1000  * the PTE updates which happen during this window.  Note that using this
1001  * interface requires that read hazards be removed from the code.  A read
1002  * hazard could result in the direct mode hypervisor case, since the actual
1003  * write to the page tables may not yet have taken place, so reads though
1004  * a raw PTE pointer after it has been modified are not guaranteed to be
1005  * up to date.  This mode can only be entered and left under the protection of
1006  * the page table locks for all page tables which may be modified.  In the UP
1007  * case, this is required so that preemption is disabled, and in the SMP case,
1008  * it must synchronize the delayed page table writes properly on other CPUs.
1009  */
1010 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1011 #define arch_enter_lazy_mmu_mode()	do {} while (0)
1012 #define arch_leave_lazy_mmu_mode()	do {} while (0)
1013 #define arch_flush_lazy_mmu_mode()	do {} while (0)
1014 #endif
1015 
1016 /*
1017  * A facility to provide batching of the reload of page tables and
1018  * other process state with the actual context switch code for
1019  * paravirtualized guests.  By convention, only one of the batched
1020  * update (lazy) modes (CPU, MMU) should be active at any given time,
1021  * entry should never be nested, and entry and exits should always be
1022  * paired.  This is for sanity of maintaining and reasoning about the
1023  * kernel code.  In this case, the exit (end of the context switch) is
1024  * in architecture-specific code, and so doesn't need a generic
1025  * definition.
1026  */
1027 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1028 #define arch_start_context_switch(prev)	do {} while (0)
1029 #endif
1030 
1031 /*
1032  * When replacing an anonymous page by a real (!non) swap entry, we clear
1033  * PG_anon_exclusive from the page and instead remember whether the flag was
1034  * set in the swp pte. During fork(), we have to mark the entry as !exclusive
1035  * (possibly shared). On swapin, we use that information to restore
1036  * PG_anon_exclusive, which is very helpful in cases where we might have
1037  * additional (e.g., FOLL_GET) references on a page and wouldn't be able to
1038  * detect exclusivity.
1039  *
1040  * These functions don't apply to non-swap entries (e.g., migration, hwpoison,
1041  * ...).
1042  */
1043 #ifndef __HAVE_ARCH_PTE_SWP_EXCLUSIVE
pte_swp_mkexclusive(pte_t pte)1044 static inline pte_t pte_swp_mkexclusive(pte_t pte)
1045 {
1046 	return pte;
1047 }
1048 
pte_swp_exclusive(pte_t pte)1049 static inline int pte_swp_exclusive(pte_t pte)
1050 {
1051 	return false;
1052 }
1053 
pte_swp_clear_exclusive(pte_t pte)1054 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1055 {
1056 	return pte;
1057 }
1058 #endif
1059 
1060 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1061 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_swp_mksoft_dirty(pmd_t pmd)1062 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1063 {
1064 	return pmd;
1065 }
1066 
pmd_swp_soft_dirty(pmd_t pmd)1067 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1068 {
1069 	return 0;
1070 }
1071 
pmd_swp_clear_soft_dirty(pmd_t pmd)1072 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1073 {
1074 	return pmd;
1075 }
1076 #endif
1077 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
pte_soft_dirty(pte_t pte)1078 static inline int pte_soft_dirty(pte_t pte)
1079 {
1080 	return 0;
1081 }
1082 
pmd_soft_dirty(pmd_t pmd)1083 static inline int pmd_soft_dirty(pmd_t pmd)
1084 {
1085 	return 0;
1086 }
1087 
pte_mksoft_dirty(pte_t pte)1088 static inline pte_t pte_mksoft_dirty(pte_t pte)
1089 {
1090 	return pte;
1091 }
1092 
pmd_mksoft_dirty(pmd_t pmd)1093 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1094 {
1095 	return pmd;
1096 }
1097 
pte_clear_soft_dirty(pte_t pte)1098 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1099 {
1100 	return pte;
1101 }
1102 
pmd_clear_soft_dirty(pmd_t pmd)1103 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1104 {
1105 	return pmd;
1106 }
1107 
pte_swp_mksoft_dirty(pte_t pte)1108 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1109 {
1110 	return pte;
1111 }
1112 
pte_swp_soft_dirty(pte_t pte)1113 static inline int pte_swp_soft_dirty(pte_t pte)
1114 {
1115 	return 0;
1116 }
1117 
pte_swp_clear_soft_dirty(pte_t pte)1118 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1119 {
1120 	return pte;
1121 }
1122 
pmd_swp_mksoft_dirty(pmd_t pmd)1123 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1124 {
1125 	return pmd;
1126 }
1127 
pmd_swp_soft_dirty(pmd_t pmd)1128 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1129 {
1130 	return 0;
1131 }
1132 
pmd_swp_clear_soft_dirty(pmd_t pmd)1133 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1134 {
1135 	return pmd;
1136 }
1137 #endif
1138 
1139 #ifndef __HAVE_PFNMAP_TRACKING
1140 /*
1141  * Interfaces that can be used by architecture code to keep track of
1142  * memory type of pfn mappings specified by the remap_pfn_range,
1143  * vmf_insert_pfn.
1144  */
1145 
1146 /*
1147  * track_pfn_remap is called when a _new_ pfn mapping is being established
1148  * by remap_pfn_range() for physical range indicated by pfn and size.
1149  */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1150 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1151 				  unsigned long pfn, unsigned long addr,
1152 				  unsigned long size)
1153 {
1154 	return 0;
1155 }
1156 
1157 /*
1158  * track_pfn_insert is called when a _new_ single pfn is established
1159  * by vmf_insert_pfn().
1160  */
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1161 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1162 				    pfn_t pfn)
1163 {
1164 }
1165 
1166 /*
1167  * track_pfn_copy is called when vma that is covering the pfnmap gets
1168  * copied through copy_page_range().
1169  */
track_pfn_copy(struct vm_area_struct * vma)1170 static inline int track_pfn_copy(struct vm_area_struct *vma)
1171 {
1172 	return 0;
1173 }
1174 
1175 /*
1176  * untrack_pfn is called while unmapping a pfnmap for a region.
1177  * untrack can be called for a specific region indicated by pfn and size or
1178  * can be for the entire vma (in which case pfn, size are zero).
1179  */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)1180 static inline void untrack_pfn(struct vm_area_struct *vma,
1181 			       unsigned long pfn, unsigned long size)
1182 {
1183 }
1184 
1185 /*
1186  * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1187  */
untrack_pfn_moved(struct vm_area_struct * vma)1188 static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1189 {
1190 }
1191 #else
1192 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1193 			   unsigned long pfn, unsigned long addr,
1194 			   unsigned long size);
1195 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1196 			     pfn_t pfn);
1197 extern int track_pfn_copy(struct vm_area_struct *vma);
1198 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1199 			unsigned long size);
1200 extern void untrack_pfn_moved(struct vm_area_struct *vma);
1201 #endif
1202 
1203 #ifdef CONFIG_MMU
1204 #ifdef __HAVE_COLOR_ZERO_PAGE
is_zero_pfn(unsigned long pfn)1205 static inline int is_zero_pfn(unsigned long pfn)
1206 {
1207 	extern unsigned long zero_pfn;
1208 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1209 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1210 }
1211 
1212 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
1213 
1214 #else
is_zero_pfn(unsigned long pfn)1215 static inline int is_zero_pfn(unsigned long pfn)
1216 {
1217 	extern unsigned long zero_pfn;
1218 	return pfn == zero_pfn;
1219 }
1220 
my_zero_pfn(unsigned long addr)1221 static inline unsigned long my_zero_pfn(unsigned long addr)
1222 {
1223 	extern unsigned long zero_pfn;
1224 	return zero_pfn;
1225 }
1226 #endif
1227 #else
is_zero_pfn(unsigned long pfn)1228 static inline int is_zero_pfn(unsigned long pfn)
1229 {
1230 	return 0;
1231 }
1232 
my_zero_pfn(unsigned long addr)1233 static inline unsigned long my_zero_pfn(unsigned long addr)
1234 {
1235 	return 0;
1236 }
1237 #endif /* CONFIG_MMU */
1238 
1239 #ifdef CONFIG_MMU
1240 
1241 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)1242 static inline int pmd_trans_huge(pmd_t pmd)
1243 {
1244 	return 0;
1245 }
1246 #ifndef pmd_write
pmd_write(pmd_t pmd)1247 static inline int pmd_write(pmd_t pmd)
1248 {
1249 	BUG();
1250 	return 0;
1251 }
1252 #endif /* pmd_write */
1253 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1254 
1255 #ifndef pud_write
pud_write(pud_t pud)1256 static inline int pud_write(pud_t pud)
1257 {
1258 	BUG();
1259 	return 0;
1260 }
1261 #endif /* pud_write */
1262 
1263 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
pmd_devmap(pmd_t pmd)1264 static inline int pmd_devmap(pmd_t pmd)
1265 {
1266 	return 0;
1267 }
pud_devmap(pud_t pud)1268 static inline int pud_devmap(pud_t pud)
1269 {
1270 	return 0;
1271 }
pgd_devmap(pgd_t pgd)1272 static inline int pgd_devmap(pgd_t pgd)
1273 {
1274 	return 0;
1275 }
1276 #endif
1277 
1278 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1279 	(defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1280 	 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
pud_trans_huge(pud_t pud)1281 static inline int pud_trans_huge(pud_t pud)
1282 {
1283 	return 0;
1284 }
1285 #endif
1286 
1287 /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t * pud)1288 static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1289 {
1290 	pud_t pudval = READ_ONCE(*pud);
1291 
1292 	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1293 		return 1;
1294 	if (unlikely(pud_bad(pudval))) {
1295 		pud_clear_bad(pud);
1296 		return 1;
1297 	}
1298 	return 0;
1299 }
1300 
1301 /* See pmd_trans_unstable for discussion. */
pud_trans_unstable(pud_t * pud)1302 static inline int pud_trans_unstable(pud_t *pud)
1303 {
1304 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
1305 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1306 	return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1307 #else
1308 	return 0;
1309 #endif
1310 }
1311 
1312 #ifndef pmd_read_atomic
pmd_read_atomic(pmd_t * pmdp)1313 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1314 {
1315 	/*
1316 	 * Depend on compiler for an atomic pmd read. NOTE: this is
1317 	 * only going to work, if the pmdval_t isn't larger than
1318 	 * an unsigned long.
1319 	 */
1320 	return *pmdp;
1321 }
1322 #endif
1323 
1324 #ifndef arch_needs_pgtable_deposit
1325 #define arch_needs_pgtable_deposit() (false)
1326 #endif
1327 /*
1328  * This function is meant to be used by sites walking pagetables with
1329  * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1330  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1331  * into a null pmd and the transhuge page fault can convert a null pmd
1332  * into an hugepmd or into a regular pmd (if the hugepage allocation
1333  * fails). While holding the mmap_lock in read mode the pmd becomes
1334  * stable and stops changing under us only if it's not null and not a
1335  * transhuge pmd. When those races occurs and this function makes a
1336  * difference vs the standard pmd_none_or_clear_bad, the result is
1337  * undefined so behaving like if the pmd was none is safe (because it
1338  * can return none anyway). The compiler level barrier() is critically
1339  * important to compute the two checks atomically on the same pmdval.
1340  *
1341  * For 32bit kernels with a 64bit large pmd_t this automatically takes
1342  * care of reading the pmd atomically to avoid SMP race conditions
1343  * against pmd_populate() when the mmap_lock is hold for reading by the
1344  * caller (a special atomic read not done by "gcc" as in the generic
1345  * version above, is also needed when THP is disabled because the page
1346  * fault can populate the pmd from under us).
1347  */
pmd_none_or_trans_huge_or_clear_bad(pmd_t * pmd)1348 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1349 {
1350 	pmd_t pmdval = pmd_read_atomic(pmd);
1351 	/*
1352 	 * The barrier will stabilize the pmdval in a register or on
1353 	 * the stack so that it will stop changing under the code.
1354 	 *
1355 	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1356 	 * pmd_read_atomic is allowed to return a not atomic pmdval
1357 	 * (for example pointing to an hugepage that has never been
1358 	 * mapped in the pmd). The below checks will only care about
1359 	 * the low part of the pmd with 32bit PAE x86 anyway, with the
1360 	 * exception of pmd_none(). So the important thing is that if
1361 	 * the low part of the pmd is found null, the high part will
1362 	 * be also null or the pmd_none() check below would be
1363 	 * confused.
1364 	 */
1365 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1366 	barrier();
1367 #endif
1368 	/*
1369 	 * !pmd_present() checks for pmd migration entries
1370 	 *
1371 	 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1372 	 * But using that requires moving current function and pmd_trans_unstable()
1373 	 * to linux/swapops.h to resolve dependency, which is too much code move.
1374 	 *
1375 	 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1376 	 * because !pmd_present() pages can only be under migration not swapped
1377 	 * out.
1378 	 *
1379 	 * pmd_none() is preserved for future condition checks on pmd migration
1380 	 * entries and not confusing with this function name, although it is
1381 	 * redundant with !pmd_present().
1382 	 */
1383 	if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1384 		(IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1385 		return 1;
1386 	if (unlikely(pmd_bad(pmdval))) {
1387 		pmd_clear_bad(pmd);
1388 		return 1;
1389 	}
1390 	return 0;
1391 }
1392 
1393 /*
1394  * This is a noop if Transparent Hugepage Support is not built into
1395  * the kernel. Otherwise it is equivalent to
1396  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1397  * places that already verified the pmd is not none and they want to
1398  * walk ptes while holding the mmap sem in read mode (write mode don't
1399  * need this). If THP is not enabled, the pmd can't go away under the
1400  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1401  * run a pmd_trans_unstable before walking the ptes after
1402  * split_huge_pmd returns (because it may have run when the pmd become
1403  * null, but then a page fault can map in a THP and not a regular page).
1404  */
pmd_trans_unstable(pmd_t * pmd)1405 static inline int pmd_trans_unstable(pmd_t *pmd)
1406 {
1407 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1408 	return pmd_none_or_trans_huge_or_clear_bad(pmd);
1409 #else
1410 	return 0;
1411 #endif
1412 }
1413 
1414 /*
1415  * the ordering of these checks is important for pmds with _page_devmap set.
1416  * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1417  * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1418  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1419  */
pmd_devmap_trans_unstable(pmd_t * pmd)1420 static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1421 {
1422 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1423 }
1424 
1425 #ifndef CONFIG_NUMA_BALANCING
1426 /*
1427  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1428  * the only case the kernel cares is for NUMA balancing and is only ever set
1429  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1430  * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1431  * is the responsibility of the caller to distinguish between PROT_NONE
1432  * protections and NUMA hinting fault protections.
1433  */
pte_protnone(pte_t pte)1434 static inline int pte_protnone(pte_t pte)
1435 {
1436 	return 0;
1437 }
1438 
pmd_protnone(pmd_t pmd)1439 static inline int pmd_protnone(pmd_t pmd)
1440 {
1441 	return 0;
1442 }
1443 #endif /* CONFIG_NUMA_BALANCING */
1444 
1445 #endif /* CONFIG_MMU */
1446 
1447 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1448 
1449 #ifndef __PAGETABLE_P4D_FOLDED
1450 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1451 void p4d_clear_huge(p4d_t *p4d);
1452 #else
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1453 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1454 {
1455 	return 0;
1456 }
p4d_clear_huge(p4d_t * p4d)1457 static inline void p4d_clear_huge(p4d_t *p4d) { }
1458 #endif /* !__PAGETABLE_P4D_FOLDED */
1459 
1460 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1461 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1462 int pud_clear_huge(pud_t *pud);
1463 int pmd_clear_huge(pmd_t *pmd);
1464 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1465 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1466 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1467 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1468 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1469 {
1470 	return 0;
1471 }
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1472 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1473 {
1474 	return 0;
1475 }
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1476 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1477 {
1478 	return 0;
1479 }
p4d_clear_huge(p4d_t * p4d)1480 static inline void p4d_clear_huge(p4d_t *p4d) { }
pud_clear_huge(pud_t * pud)1481 static inline int pud_clear_huge(pud_t *pud)
1482 {
1483 	return 0;
1484 }
pmd_clear_huge(pmd_t * pmd)1485 static inline int pmd_clear_huge(pmd_t *pmd)
1486 {
1487 	return 0;
1488 }
p4d_free_pud_page(p4d_t * p4d,unsigned long addr)1489 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1490 {
1491 	return 0;
1492 }
pud_free_pmd_page(pud_t * pud,unsigned long addr)1493 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1494 {
1495 	return 0;
1496 }
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1497 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1498 {
1499 	return 0;
1500 }
1501 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1502 
1503 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1504 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1505 /*
1506  * ARCHes with special requirements for evicting THP backing TLB entries can
1507  * implement this. Otherwise also, it can help optimize normal TLB flush in
1508  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1509  * entire TLB if flush span is greater than a threshold, which will
1510  * likely be true for a single huge page. Thus a single THP flush will
1511  * invalidate the entire TLB which is not desirable.
1512  * e.g. see arch/arc: flush_pmd_tlb_range
1513  */
1514 #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1515 #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1516 #else
1517 #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1518 #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1519 #endif
1520 #endif
1521 
1522 struct file;
1523 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1524 			unsigned long size, pgprot_t *vma_prot);
1525 
1526 #ifndef CONFIG_X86_ESPFIX64
init_espfix_bsp(void)1527 static inline void init_espfix_bsp(void) { }
1528 #endif
1529 
1530 extern void __init pgtable_cache_init(void);
1531 
1532 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
pfn_modify_allowed(unsigned long pfn,pgprot_t prot)1533 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1534 {
1535 	return true;
1536 }
1537 
arch_has_pfn_modify_check(void)1538 static inline bool arch_has_pfn_modify_check(void)
1539 {
1540 	return false;
1541 }
1542 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1543 
1544 /*
1545  * Architecture PAGE_KERNEL_* fallbacks
1546  *
1547  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1548  * because they really don't support them, or the port needs to be updated to
1549  * reflect the required functionality. Below are a set of relatively safe
1550  * fallbacks, as best effort, which we can count on in lieu of the architectures
1551  * not defining them on their own yet.
1552  */
1553 
1554 #ifndef PAGE_KERNEL_RO
1555 # define PAGE_KERNEL_RO PAGE_KERNEL
1556 #endif
1557 
1558 #ifndef PAGE_KERNEL_EXEC
1559 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1560 #endif
1561 
1562 /*
1563  * Page Table Modification bits for pgtbl_mod_mask.
1564  *
1565  * These are used by the p?d_alloc_track*() set of functions an in the generic
1566  * vmalloc/ioremap code to track at which page-table levels entries have been
1567  * modified. Based on that the code can better decide when vmalloc and ioremap
1568  * mapping changes need to be synchronized to other page-tables in the system.
1569  */
1570 #define		__PGTBL_PGD_MODIFIED	0
1571 #define		__PGTBL_P4D_MODIFIED	1
1572 #define		__PGTBL_PUD_MODIFIED	2
1573 #define		__PGTBL_PMD_MODIFIED	3
1574 #define		__PGTBL_PTE_MODIFIED	4
1575 
1576 #define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
1577 #define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
1578 #define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
1579 #define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
1580 #define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
1581 
1582 /* Page-Table Modification Mask */
1583 typedef unsigned int pgtbl_mod_mask;
1584 
1585 #endif /* !__ASSEMBLY__ */
1586 
1587 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1588 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1589 /*
1590  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1591  * with physical address space extension, but falls back to
1592  * BITS_PER_LONG otherwise.
1593  */
1594 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1595 #else
1596 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1597 #endif
1598 #endif
1599 
1600 #ifndef has_transparent_hugepage
1601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1602 #define has_transparent_hugepage() 1
1603 #else
1604 #define has_transparent_hugepage() 0
1605 #endif
1606 #endif
1607 
1608 /*
1609  * On some architectures it depends on the mm if the p4d/pud or pmd
1610  * layer of the page table hierarchy is folded or not.
1611  */
1612 #ifndef mm_p4d_folded
1613 #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1614 #endif
1615 
1616 #ifndef mm_pud_folded
1617 #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1618 #endif
1619 
1620 #ifndef mm_pmd_folded
1621 #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1622 #endif
1623 
1624 #ifndef p4d_offset_lockless
1625 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1626 #endif
1627 #ifndef pud_offset_lockless
1628 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1629 #endif
1630 #ifndef pmd_offset_lockless
1631 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1632 #endif
1633 
1634 /*
1635  * p?d_leaf() - true if this entry is a final mapping to a physical address.
1636  * This differs from p?d_huge() by the fact that they are always available (if
1637  * the architecture supports large pages at the appropriate level) even
1638  * if CONFIG_HUGETLB_PAGE is not defined.
1639  * Only meaningful when called on a valid entry.
1640  */
1641 #ifndef pgd_leaf
1642 #define pgd_leaf(x)	0
1643 #endif
1644 #ifndef p4d_leaf
1645 #define p4d_leaf(x)	0
1646 #endif
1647 #ifndef pud_leaf
1648 #define pud_leaf(x)	0
1649 #endif
1650 #ifndef pmd_leaf
1651 #define pmd_leaf(x)	0
1652 #endif
1653 
1654 #ifndef pgd_leaf_size
1655 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1656 #endif
1657 #ifndef p4d_leaf_size
1658 #define p4d_leaf_size(x) P4D_SIZE
1659 #endif
1660 #ifndef pud_leaf_size
1661 #define pud_leaf_size(x) PUD_SIZE
1662 #endif
1663 #ifndef pmd_leaf_size
1664 #define pmd_leaf_size(x) PMD_SIZE
1665 #endif
1666 #ifndef pte_leaf_size
1667 #define pte_leaf_size(x) PAGE_SIZE
1668 #endif
1669 
1670 /*
1671  * Some architectures have MMUs that are configurable or selectable at boot
1672  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1673  * helps to have a static maximum value.
1674  */
1675 
1676 #ifndef MAX_PTRS_PER_PTE
1677 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1678 #endif
1679 
1680 #ifndef MAX_PTRS_PER_PMD
1681 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1682 #endif
1683 
1684 #ifndef MAX_PTRS_PER_PUD
1685 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1686 #endif
1687 
1688 #ifndef MAX_PTRS_PER_P4D
1689 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1690 #endif
1691 
1692 #endif /* _LINUX_PGTABLE_H */
1693