1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Hardware monitoring driver for PMBus devices
4 *
5 * Copyright (c) 2010, 2011 Ericsson AB.
6 * Copyright (c) 2012 Guenter Roeck
7 */
8
9 #include <linux/debugfs.h>
10 #include <linux/kernel.h>
11 #include <linux/math64.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/err.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/hwmon.h>
18 #include <linux/hwmon-sysfs.h>
19 #include <linux/pmbus.h>
20 #include <linux/regulator/driver.h>
21 #include <linux/regulator/machine.h>
22 #include <linux/of.h>
23 #include <linux/thermal.h>
24 #include "pmbus.h"
25
26 /*
27 * Number of additional attribute pointers to allocate
28 * with each call to krealloc
29 */
30 #define PMBUS_ATTR_ALLOC_SIZE 32
31 #define PMBUS_NAME_SIZE 24
32
33 struct pmbus_sensor {
34 struct pmbus_sensor *next;
35 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
36 struct device_attribute attribute;
37 u8 page; /* page number */
38 u8 phase; /* phase number, 0xff for all phases */
39 u16 reg; /* register */
40 enum pmbus_sensor_classes class; /* sensor class */
41 bool update; /* runtime sensor update needed */
42 bool convert; /* Whether or not to apply linear/vid/direct */
43 int data; /* Sensor data.
44 Negative if there was a read error */
45 };
46 #define to_pmbus_sensor(_attr) \
47 container_of(_attr, struct pmbus_sensor, attribute)
48
49 struct pmbus_boolean {
50 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
51 struct sensor_device_attribute attribute;
52 struct pmbus_sensor *s1;
53 struct pmbus_sensor *s2;
54 };
55 #define to_pmbus_boolean(_attr) \
56 container_of(_attr, struct pmbus_boolean, attribute)
57
58 struct pmbus_label {
59 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
60 struct device_attribute attribute;
61 char label[PMBUS_NAME_SIZE]; /* label */
62 };
63 #define to_pmbus_label(_attr) \
64 container_of(_attr, struct pmbus_label, attribute)
65
66 /* Macros for converting between sensor index and register/page/status mask */
67
68 #define PB_STATUS_MASK 0xffff
69 #define PB_REG_SHIFT 16
70 #define PB_REG_MASK 0x3ff
71 #define PB_PAGE_SHIFT 26
72 #define PB_PAGE_MASK 0x3f
73
74 #define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \
75 ((reg) << PB_REG_SHIFT) | (mask))
76
77 #define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
78 #define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK)
79 #define pb_index_to_mask(index) ((index) & PB_STATUS_MASK)
80
81 struct pmbus_data {
82 struct device *dev;
83 struct device *hwmon_dev;
84 struct regulator_dev **rdevs;
85
86 u32 flags; /* from platform data */
87
88 int exponent[PMBUS_PAGES];
89 /* linear mode: exponent for output voltages */
90
91 const struct pmbus_driver_info *info;
92
93 int max_attributes;
94 int num_attributes;
95 struct attribute_group group;
96 const struct attribute_group **groups;
97 struct dentry *debugfs; /* debugfs device directory */
98
99 struct pmbus_sensor *sensors;
100
101 struct mutex update_lock;
102
103 bool has_status_word; /* device uses STATUS_WORD register */
104 int (*read_status)(struct i2c_client *client, int page);
105
106 s16 currpage; /* current page, -1 for unknown/unset */
107 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */
108
109 int vout_low[PMBUS_PAGES]; /* voltage low margin */
110 int vout_high[PMBUS_PAGES]; /* voltage high margin */
111 };
112
113 struct pmbus_debugfs_entry {
114 struct i2c_client *client;
115 u8 page;
116 u8 reg;
117 };
118
119 static const int pmbus_fan_rpm_mask[] = {
120 PB_FAN_1_RPM,
121 PB_FAN_2_RPM,
122 PB_FAN_1_RPM,
123 PB_FAN_2_RPM,
124 };
125
126 static const int pmbus_fan_config_registers[] = {
127 PMBUS_FAN_CONFIG_12,
128 PMBUS_FAN_CONFIG_12,
129 PMBUS_FAN_CONFIG_34,
130 PMBUS_FAN_CONFIG_34
131 };
132
133 static const int pmbus_fan_command_registers[] = {
134 PMBUS_FAN_COMMAND_1,
135 PMBUS_FAN_COMMAND_2,
136 PMBUS_FAN_COMMAND_3,
137 PMBUS_FAN_COMMAND_4,
138 };
139
pmbus_clear_cache(struct i2c_client * client)140 void pmbus_clear_cache(struct i2c_client *client)
141 {
142 struct pmbus_data *data = i2c_get_clientdata(client);
143 struct pmbus_sensor *sensor;
144
145 for (sensor = data->sensors; sensor; sensor = sensor->next)
146 sensor->data = -ENODATA;
147 }
148 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS);
149
pmbus_set_update(struct i2c_client * client,u8 reg,bool update)150 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
151 {
152 struct pmbus_data *data = i2c_get_clientdata(client);
153 struct pmbus_sensor *sensor;
154
155 for (sensor = data->sensors; sensor; sensor = sensor->next)
156 if (sensor->reg == reg)
157 sensor->update = update;
158 }
159 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS);
160
pmbus_set_page(struct i2c_client * client,int page,int phase)161 int pmbus_set_page(struct i2c_client *client, int page, int phase)
162 {
163 struct pmbus_data *data = i2c_get_clientdata(client);
164 int rv;
165
166 if (page < 0)
167 return 0;
168
169 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
170 data->info->pages > 1 && page != data->currpage) {
171 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
172 if (rv < 0)
173 return rv;
174
175 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
176 if (rv < 0)
177 return rv;
178
179 if (rv != page)
180 return -EIO;
181 }
182 data->currpage = page;
183
184 if (data->info->phases[page] && data->currphase != phase &&
185 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
186 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
187 phase);
188 if (rv)
189 return rv;
190 }
191 data->currphase = phase;
192
193 return 0;
194 }
195 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS);
196
pmbus_write_byte(struct i2c_client * client,int page,u8 value)197 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
198 {
199 int rv;
200
201 rv = pmbus_set_page(client, page, 0xff);
202 if (rv < 0)
203 return rv;
204
205 return i2c_smbus_write_byte(client, value);
206 }
207 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS);
208
209 /*
210 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
211 * a device specific mapping function exists and calls it if necessary.
212 */
_pmbus_write_byte(struct i2c_client * client,int page,u8 value)213 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
214 {
215 struct pmbus_data *data = i2c_get_clientdata(client);
216 const struct pmbus_driver_info *info = data->info;
217 int status;
218
219 if (info->write_byte) {
220 status = info->write_byte(client, page, value);
221 if (status != -ENODATA)
222 return status;
223 }
224 return pmbus_write_byte(client, page, value);
225 }
226
pmbus_write_word_data(struct i2c_client * client,int page,u8 reg,u16 word)227 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
228 u16 word)
229 {
230 int rv;
231
232 rv = pmbus_set_page(client, page, 0xff);
233 if (rv < 0)
234 return rv;
235
236 return i2c_smbus_write_word_data(client, reg, word);
237 }
238 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS);
239
240
pmbus_write_virt_reg(struct i2c_client * client,int page,int reg,u16 word)241 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
242 u16 word)
243 {
244 int bit;
245 int id;
246 int rv;
247
248 switch (reg) {
249 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
250 id = reg - PMBUS_VIRT_FAN_TARGET_1;
251 bit = pmbus_fan_rpm_mask[id];
252 rv = pmbus_update_fan(client, page, id, bit, bit, word);
253 break;
254 default:
255 rv = -ENXIO;
256 break;
257 }
258
259 return rv;
260 }
261
262 /*
263 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
264 * a device specific mapping function exists and calls it if necessary.
265 */
_pmbus_write_word_data(struct i2c_client * client,int page,int reg,u16 word)266 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
267 u16 word)
268 {
269 struct pmbus_data *data = i2c_get_clientdata(client);
270 const struct pmbus_driver_info *info = data->info;
271 int status;
272
273 if (info->write_word_data) {
274 status = info->write_word_data(client, page, reg, word);
275 if (status != -ENODATA)
276 return status;
277 }
278
279 if (reg >= PMBUS_VIRT_BASE)
280 return pmbus_write_virt_reg(client, page, reg, word);
281
282 return pmbus_write_word_data(client, page, reg, word);
283 }
284
285 /*
286 * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
287 * a device specific mapping function exists and calls it if necessary.
288 */
_pmbus_write_byte_data(struct i2c_client * client,int page,int reg,u8 value)289 static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
290 {
291 struct pmbus_data *data = i2c_get_clientdata(client);
292 const struct pmbus_driver_info *info = data->info;
293 int status;
294
295 if (info->write_byte_data) {
296 status = info->write_byte_data(client, page, reg, value);
297 if (status != -ENODATA)
298 return status;
299 }
300 return pmbus_write_byte_data(client, page, reg, value);
301 }
302
303 /*
304 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
305 * a device specific mapping function exists and calls it if necessary.
306 */
_pmbus_read_byte_data(struct i2c_client * client,int page,int reg)307 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
308 {
309 struct pmbus_data *data = i2c_get_clientdata(client);
310 const struct pmbus_driver_info *info = data->info;
311 int status;
312
313 if (info->read_byte_data) {
314 status = info->read_byte_data(client, page, reg);
315 if (status != -ENODATA)
316 return status;
317 }
318 return pmbus_read_byte_data(client, page, reg);
319 }
320
pmbus_update_fan(struct i2c_client * client,int page,int id,u8 config,u8 mask,u16 command)321 int pmbus_update_fan(struct i2c_client *client, int page, int id,
322 u8 config, u8 mask, u16 command)
323 {
324 int from;
325 int rv;
326 u8 to;
327
328 from = _pmbus_read_byte_data(client, page,
329 pmbus_fan_config_registers[id]);
330 if (from < 0)
331 return from;
332
333 to = (from & ~mask) | (config & mask);
334 if (to != from) {
335 rv = _pmbus_write_byte_data(client, page,
336 pmbus_fan_config_registers[id], to);
337 if (rv < 0)
338 return rv;
339 }
340
341 return _pmbus_write_word_data(client, page,
342 pmbus_fan_command_registers[id], command);
343 }
344 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS);
345
pmbus_read_word_data(struct i2c_client * client,int page,int phase,u8 reg)346 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
347 {
348 int rv;
349
350 rv = pmbus_set_page(client, page, phase);
351 if (rv < 0)
352 return rv;
353
354 return i2c_smbus_read_word_data(client, reg);
355 }
356 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS);
357
pmbus_read_virt_reg(struct i2c_client * client,int page,int reg)358 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
359 {
360 int rv;
361 int id;
362
363 switch (reg) {
364 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
365 id = reg - PMBUS_VIRT_FAN_TARGET_1;
366 rv = pmbus_get_fan_rate_device(client, page, id, rpm);
367 break;
368 default:
369 rv = -ENXIO;
370 break;
371 }
372
373 return rv;
374 }
375
376 /*
377 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
378 * a device specific mapping function exists and calls it if necessary.
379 */
_pmbus_read_word_data(struct i2c_client * client,int page,int phase,int reg)380 static int _pmbus_read_word_data(struct i2c_client *client, int page,
381 int phase, int reg)
382 {
383 struct pmbus_data *data = i2c_get_clientdata(client);
384 const struct pmbus_driver_info *info = data->info;
385 int status;
386
387 if (info->read_word_data) {
388 status = info->read_word_data(client, page, phase, reg);
389 if (status != -ENODATA)
390 return status;
391 }
392
393 if (reg >= PMBUS_VIRT_BASE)
394 return pmbus_read_virt_reg(client, page, reg);
395
396 return pmbus_read_word_data(client, page, phase, reg);
397 }
398
399 /* Same as above, but without phase parameter, for use in check functions */
__pmbus_read_word_data(struct i2c_client * client,int page,int reg)400 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
401 {
402 return _pmbus_read_word_data(client, page, 0xff, reg);
403 }
404
pmbus_read_byte_data(struct i2c_client * client,int page,u8 reg)405 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
406 {
407 int rv;
408
409 rv = pmbus_set_page(client, page, 0xff);
410 if (rv < 0)
411 return rv;
412
413 return i2c_smbus_read_byte_data(client, reg);
414 }
415 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS);
416
pmbus_write_byte_data(struct i2c_client * client,int page,u8 reg,u8 value)417 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
418 {
419 int rv;
420
421 rv = pmbus_set_page(client, page, 0xff);
422 if (rv < 0)
423 return rv;
424
425 return i2c_smbus_write_byte_data(client, reg, value);
426 }
427 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS);
428
pmbus_update_byte_data(struct i2c_client * client,int page,u8 reg,u8 mask,u8 value)429 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
430 u8 mask, u8 value)
431 {
432 unsigned int tmp;
433 int rv;
434
435 rv = _pmbus_read_byte_data(client, page, reg);
436 if (rv < 0)
437 return rv;
438
439 tmp = (rv & ~mask) | (value & mask);
440
441 if (tmp != rv)
442 rv = _pmbus_write_byte_data(client, page, reg, tmp);
443
444 return rv;
445 }
446 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS);
447
pmbus_read_block_data(struct i2c_client * client,int page,u8 reg,char * data_buf)448 static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
449 char *data_buf)
450 {
451 int rv;
452
453 rv = pmbus_set_page(client, page, 0xff);
454 if (rv < 0)
455 return rv;
456
457 return i2c_smbus_read_block_data(client, reg, data_buf);
458 }
459
pmbus_find_sensor(struct pmbus_data * data,int page,int reg)460 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
461 int reg)
462 {
463 struct pmbus_sensor *sensor;
464
465 for (sensor = data->sensors; sensor; sensor = sensor->next) {
466 if (sensor->page == page && sensor->reg == reg)
467 return sensor;
468 }
469
470 return ERR_PTR(-EINVAL);
471 }
472
pmbus_get_fan_rate(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode,bool from_cache)473 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
474 enum pmbus_fan_mode mode,
475 bool from_cache)
476 {
477 struct pmbus_data *data = i2c_get_clientdata(client);
478 bool want_rpm, have_rpm;
479 struct pmbus_sensor *s;
480 int config;
481 int reg;
482
483 want_rpm = (mode == rpm);
484
485 if (from_cache) {
486 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
487 s = pmbus_find_sensor(data, page, reg + id);
488 if (IS_ERR(s))
489 return PTR_ERR(s);
490
491 return s->data;
492 }
493
494 config = _pmbus_read_byte_data(client, page,
495 pmbus_fan_config_registers[id]);
496 if (config < 0)
497 return config;
498
499 have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
500 if (want_rpm == have_rpm)
501 return pmbus_read_word_data(client, page, 0xff,
502 pmbus_fan_command_registers[id]);
503
504 /* Can't sensibly map between RPM and PWM, just return zero */
505 return 0;
506 }
507
pmbus_get_fan_rate_device(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)508 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
509 enum pmbus_fan_mode mode)
510 {
511 return pmbus_get_fan_rate(client, page, id, mode, false);
512 }
513 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS);
514
pmbus_get_fan_rate_cached(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)515 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
516 enum pmbus_fan_mode mode)
517 {
518 return pmbus_get_fan_rate(client, page, id, mode, true);
519 }
520 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS);
521
pmbus_clear_fault_page(struct i2c_client * client,int page)522 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
523 {
524 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
525 }
526
pmbus_clear_faults(struct i2c_client * client)527 void pmbus_clear_faults(struct i2c_client *client)
528 {
529 struct pmbus_data *data = i2c_get_clientdata(client);
530 int i;
531
532 for (i = 0; i < data->info->pages; i++)
533 pmbus_clear_fault_page(client, i);
534 }
535 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS);
536
pmbus_check_status_cml(struct i2c_client * client)537 static int pmbus_check_status_cml(struct i2c_client *client)
538 {
539 struct pmbus_data *data = i2c_get_clientdata(client);
540 int status, status2;
541
542 status = data->read_status(client, -1);
543 if (status < 0 || (status & PB_STATUS_CML)) {
544 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
545 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
546 return -EIO;
547 }
548 return 0;
549 }
550
pmbus_check_register(struct i2c_client * client,int (* func)(struct i2c_client * client,int page,int reg),int page,int reg)551 static bool pmbus_check_register(struct i2c_client *client,
552 int (*func)(struct i2c_client *client,
553 int page, int reg),
554 int page, int reg)
555 {
556 int rv;
557 struct pmbus_data *data = i2c_get_clientdata(client);
558
559 rv = func(client, page, reg);
560 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
561 rv = pmbus_check_status_cml(client);
562 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
563 data->read_status(client, -1);
564 if (reg < PMBUS_VIRT_BASE)
565 pmbus_clear_fault_page(client, -1);
566 return rv >= 0;
567 }
568
pmbus_check_status_register(struct i2c_client * client,int page)569 static bool pmbus_check_status_register(struct i2c_client *client, int page)
570 {
571 int status;
572 struct pmbus_data *data = i2c_get_clientdata(client);
573
574 status = data->read_status(client, page);
575 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
576 (status & PB_STATUS_CML)) {
577 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
578 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
579 status = -EIO;
580 }
581
582 pmbus_clear_fault_page(client, -1);
583 return status >= 0;
584 }
585
pmbus_check_byte_register(struct i2c_client * client,int page,int reg)586 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
587 {
588 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
589 }
590 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS);
591
pmbus_check_word_register(struct i2c_client * client,int page,int reg)592 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
593 {
594 return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
595 }
596 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS);
597
pmbus_check_block_register(struct i2c_client * client,int page,int reg)598 static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
599 int page, int reg)
600 {
601 int rv;
602 struct pmbus_data *data = i2c_get_clientdata(client);
603 char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
604
605 rv = pmbus_read_block_data(client, page, reg, data_buf);
606 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
607 rv = pmbus_check_status_cml(client);
608 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
609 data->read_status(client, -1);
610 pmbus_clear_fault_page(client, -1);
611 return rv >= 0;
612 }
613
pmbus_get_driver_info(struct i2c_client * client)614 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
615 {
616 struct pmbus_data *data = i2c_get_clientdata(client);
617
618 return data->info;
619 }
620 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS);
621
pmbus_get_status(struct i2c_client * client,int page,int reg)622 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
623 {
624 struct pmbus_data *data = i2c_get_clientdata(client);
625 int status;
626
627 switch (reg) {
628 case PMBUS_STATUS_WORD:
629 status = data->read_status(client, page);
630 break;
631 default:
632 status = _pmbus_read_byte_data(client, page, reg);
633 break;
634 }
635 if (status < 0)
636 pmbus_clear_faults(client);
637 return status;
638 }
639
pmbus_update_sensor_data(struct i2c_client * client,struct pmbus_sensor * sensor)640 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
641 {
642 if (sensor->data < 0 || sensor->update)
643 sensor->data = _pmbus_read_word_data(client, sensor->page,
644 sensor->phase, sensor->reg);
645 }
646
647 /*
648 * Convert ieee754 sensor values to milli- or micro-units
649 * depending on sensor type.
650 *
651 * ieee754 data format:
652 * bit 15: sign
653 * bit 10..14: exponent
654 * bit 0..9: mantissa
655 * exponent=0:
656 * v=(−1)^signbit * 2^(−14) * 0.significantbits
657 * exponent=1..30:
658 * v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
659 * exponent=31:
660 * v=NaN
661 *
662 * Add the number mantissa bits into the calculations for simplicity.
663 * To do that, add '10' to the exponent. By doing that, we can just add
664 * 0x400 to normal values and get the expected result.
665 */
pmbus_reg2data_ieee754(struct pmbus_data * data,struct pmbus_sensor * sensor)666 static long pmbus_reg2data_ieee754(struct pmbus_data *data,
667 struct pmbus_sensor *sensor)
668 {
669 int exponent;
670 bool sign;
671 long val;
672
673 /* only support half precision for now */
674 sign = sensor->data & 0x8000;
675 exponent = (sensor->data >> 10) & 0x1f;
676 val = sensor->data & 0x3ff;
677
678 if (exponent == 0) { /* subnormal */
679 exponent = -(14 + 10);
680 } else if (exponent == 0x1f) { /* NaN, convert to min/max */
681 exponent = 0;
682 val = 65504;
683 } else {
684 exponent -= (15 + 10); /* normal */
685 val |= 0x400;
686 }
687
688 /* scale result to milli-units for all sensors except fans */
689 if (sensor->class != PSC_FAN)
690 val = val * 1000L;
691
692 /* scale result to micro-units for power sensors */
693 if (sensor->class == PSC_POWER)
694 val = val * 1000L;
695
696 if (exponent >= 0)
697 val <<= exponent;
698 else
699 val >>= -exponent;
700
701 if (sign)
702 val = -val;
703
704 return val;
705 }
706
707 /*
708 * Convert linear sensor values to milli- or micro-units
709 * depending on sensor type.
710 */
pmbus_reg2data_linear(struct pmbus_data * data,struct pmbus_sensor * sensor)711 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
712 struct pmbus_sensor *sensor)
713 {
714 s16 exponent;
715 s32 mantissa;
716 s64 val;
717
718 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
719 exponent = data->exponent[sensor->page];
720 mantissa = (u16) sensor->data;
721 } else { /* LINEAR11 */
722 exponent = ((s16)sensor->data) >> 11;
723 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
724 }
725
726 val = mantissa;
727
728 /* scale result to milli-units for all sensors except fans */
729 if (sensor->class != PSC_FAN)
730 val = val * 1000LL;
731
732 /* scale result to micro-units for power sensors */
733 if (sensor->class == PSC_POWER)
734 val = val * 1000LL;
735
736 if (exponent >= 0)
737 val <<= exponent;
738 else
739 val >>= -exponent;
740
741 return val;
742 }
743
744 /*
745 * Convert direct sensor values to milli- or micro-units
746 * depending on sensor type.
747 */
pmbus_reg2data_direct(struct pmbus_data * data,struct pmbus_sensor * sensor)748 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
749 struct pmbus_sensor *sensor)
750 {
751 s64 b, val = (s16)sensor->data;
752 s32 m, R;
753
754 m = data->info->m[sensor->class];
755 b = data->info->b[sensor->class];
756 R = data->info->R[sensor->class];
757
758 if (m == 0)
759 return 0;
760
761 /* X = 1/m * (Y * 10^-R - b) */
762 R = -R;
763 /* scale result to milli-units for everything but fans */
764 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
765 R += 3;
766 b *= 1000;
767 }
768
769 /* scale result to micro-units for power sensors */
770 if (sensor->class == PSC_POWER) {
771 R += 3;
772 b *= 1000;
773 }
774
775 while (R > 0) {
776 val *= 10;
777 R--;
778 }
779 while (R < 0) {
780 val = div_s64(val + 5LL, 10L); /* round closest */
781 R++;
782 }
783
784 val = div_s64(val - b, m);
785 return val;
786 }
787
788 /*
789 * Convert VID sensor values to milli- or micro-units
790 * depending on sensor type.
791 */
pmbus_reg2data_vid(struct pmbus_data * data,struct pmbus_sensor * sensor)792 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
793 struct pmbus_sensor *sensor)
794 {
795 long val = sensor->data;
796 long rv = 0;
797
798 switch (data->info->vrm_version[sensor->page]) {
799 case vr11:
800 if (val >= 0x02 && val <= 0xb2)
801 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
802 break;
803 case vr12:
804 if (val >= 0x01)
805 rv = 250 + (val - 1) * 5;
806 break;
807 case vr13:
808 if (val >= 0x01)
809 rv = 500 + (val - 1) * 10;
810 break;
811 case imvp9:
812 if (val >= 0x01)
813 rv = 200 + (val - 1) * 10;
814 break;
815 case amd625mv:
816 if (val >= 0x0 && val <= 0xd8)
817 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
818 break;
819 }
820 return rv;
821 }
822
pmbus_reg2data(struct pmbus_data * data,struct pmbus_sensor * sensor)823 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
824 {
825 s64 val;
826
827 if (!sensor->convert)
828 return sensor->data;
829
830 switch (data->info->format[sensor->class]) {
831 case direct:
832 val = pmbus_reg2data_direct(data, sensor);
833 break;
834 case vid:
835 val = pmbus_reg2data_vid(data, sensor);
836 break;
837 case ieee754:
838 val = pmbus_reg2data_ieee754(data, sensor);
839 break;
840 case linear:
841 default:
842 val = pmbus_reg2data_linear(data, sensor);
843 break;
844 }
845 return val;
846 }
847
848 #define MAX_IEEE_MANTISSA (0x7ff * 1000)
849 #define MIN_IEEE_MANTISSA (0x400 * 1000)
850
pmbus_data2reg_ieee754(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)851 static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
852 struct pmbus_sensor *sensor, long val)
853 {
854 u16 exponent = (15 + 10);
855 long mantissa;
856 u16 sign = 0;
857
858 /* simple case */
859 if (val == 0)
860 return 0;
861
862 if (val < 0) {
863 sign = 0x8000;
864 val = -val;
865 }
866
867 /* Power is in uW. Convert to mW before converting. */
868 if (sensor->class == PSC_POWER)
869 val = DIV_ROUND_CLOSEST(val, 1000L);
870
871 /*
872 * For simplicity, convert fan data to milli-units
873 * before calculating the exponent.
874 */
875 if (sensor->class == PSC_FAN)
876 val = val * 1000;
877
878 /* Reduce large mantissa until it fits into 10 bit */
879 while (val > MAX_IEEE_MANTISSA && exponent < 30) {
880 exponent++;
881 val >>= 1;
882 }
883 /*
884 * Increase small mantissa to generate valid 'normal'
885 * number
886 */
887 while (val < MIN_IEEE_MANTISSA && exponent > 1) {
888 exponent--;
889 val <<= 1;
890 }
891
892 /* Convert mantissa from milli-units to units */
893 mantissa = DIV_ROUND_CLOSEST(val, 1000);
894
895 /*
896 * Ensure that the resulting number is within range.
897 * Valid range is 0x400..0x7ff, where bit 10 reflects
898 * the implied high bit in normalized ieee754 numbers.
899 * Set the range to 0x400..0x7ff to reflect this.
900 * The upper bit is then removed by the mask against
901 * 0x3ff in the final assignment.
902 */
903 if (mantissa > 0x7ff)
904 mantissa = 0x7ff;
905 else if (mantissa < 0x400)
906 mantissa = 0x400;
907
908 /* Convert to sign, 5 bit exponent, 10 bit mantissa */
909 return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
910 }
911
912 #define MAX_LIN_MANTISSA (1023 * 1000)
913 #define MIN_LIN_MANTISSA (511 * 1000)
914
pmbus_data2reg_linear(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)915 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
916 struct pmbus_sensor *sensor, s64 val)
917 {
918 s16 exponent = 0, mantissa;
919 bool negative = false;
920
921 /* simple case */
922 if (val == 0)
923 return 0;
924
925 if (sensor->class == PSC_VOLTAGE_OUT) {
926 /* LINEAR16 does not support negative voltages */
927 if (val < 0)
928 return 0;
929
930 /*
931 * For a static exponents, we don't have a choice
932 * but to adjust the value to it.
933 */
934 if (data->exponent[sensor->page] < 0)
935 val <<= -data->exponent[sensor->page];
936 else
937 val >>= data->exponent[sensor->page];
938 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
939 return clamp_val(val, 0, 0xffff);
940 }
941
942 if (val < 0) {
943 negative = true;
944 val = -val;
945 }
946
947 /* Power is in uW. Convert to mW before converting. */
948 if (sensor->class == PSC_POWER)
949 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
950
951 /*
952 * For simplicity, convert fan data to milli-units
953 * before calculating the exponent.
954 */
955 if (sensor->class == PSC_FAN)
956 val = val * 1000LL;
957
958 /* Reduce large mantissa until it fits into 10 bit */
959 while (val >= MAX_LIN_MANTISSA && exponent < 15) {
960 exponent++;
961 val >>= 1;
962 }
963 /* Increase small mantissa to improve precision */
964 while (val < MIN_LIN_MANTISSA && exponent > -15) {
965 exponent--;
966 val <<= 1;
967 }
968
969 /* Convert mantissa from milli-units to units */
970 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
971
972 /* restore sign */
973 if (negative)
974 mantissa = -mantissa;
975
976 /* Convert to 5 bit exponent, 11 bit mantissa */
977 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
978 }
979
pmbus_data2reg_direct(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)980 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
981 struct pmbus_sensor *sensor, s64 val)
982 {
983 s64 b;
984 s32 m, R;
985
986 m = data->info->m[sensor->class];
987 b = data->info->b[sensor->class];
988 R = data->info->R[sensor->class];
989
990 /* Power is in uW. Adjust R and b. */
991 if (sensor->class == PSC_POWER) {
992 R -= 3;
993 b *= 1000;
994 }
995
996 /* Calculate Y = (m * X + b) * 10^R */
997 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
998 R -= 3; /* Adjust R and b for data in milli-units */
999 b *= 1000;
1000 }
1001 val = val * m + b;
1002
1003 while (R > 0) {
1004 val *= 10;
1005 R--;
1006 }
1007 while (R < 0) {
1008 val = div_s64(val + 5LL, 10L); /* round closest */
1009 R++;
1010 }
1011
1012 return (u16)clamp_val(val, S16_MIN, S16_MAX);
1013 }
1014
pmbus_data2reg_vid(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1015 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
1016 struct pmbus_sensor *sensor, s64 val)
1017 {
1018 val = clamp_val(val, 500, 1600);
1019
1020 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
1021 }
1022
pmbus_data2reg(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1023 static u16 pmbus_data2reg(struct pmbus_data *data,
1024 struct pmbus_sensor *sensor, s64 val)
1025 {
1026 u16 regval;
1027
1028 if (!sensor->convert)
1029 return val;
1030
1031 switch (data->info->format[sensor->class]) {
1032 case direct:
1033 regval = pmbus_data2reg_direct(data, sensor, val);
1034 break;
1035 case vid:
1036 regval = pmbus_data2reg_vid(data, sensor, val);
1037 break;
1038 case ieee754:
1039 regval = pmbus_data2reg_ieee754(data, sensor, val);
1040 break;
1041 case linear:
1042 default:
1043 regval = pmbus_data2reg_linear(data, sensor, val);
1044 break;
1045 }
1046 return regval;
1047 }
1048
1049 /*
1050 * Return boolean calculated from converted data.
1051 * <index> defines a status register index and mask.
1052 * The mask is in the lower 8 bits, the register index is in bits 8..23.
1053 *
1054 * The associated pmbus_boolean structure contains optional pointers to two
1055 * sensor attributes. If specified, those attributes are compared against each
1056 * other to determine if a limit has been exceeded.
1057 *
1058 * If the sensor attribute pointers are NULL, the function returns true if
1059 * (status[reg] & mask) is true.
1060 *
1061 * If sensor attribute pointers are provided, a comparison against a specified
1062 * limit has to be performed to determine the boolean result.
1063 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
1064 * sensor values referenced by sensor attribute pointers s1 and s2).
1065 *
1066 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
1067 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
1068 *
1069 * If a negative value is stored in any of the referenced registers, this value
1070 * reflects an error code which will be returned.
1071 */
pmbus_get_boolean(struct i2c_client * client,struct pmbus_boolean * b,int index)1072 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
1073 int index)
1074 {
1075 struct pmbus_data *data = i2c_get_clientdata(client);
1076 struct pmbus_sensor *s1 = b->s1;
1077 struct pmbus_sensor *s2 = b->s2;
1078 u16 mask = pb_index_to_mask(index);
1079 u8 page = pb_index_to_page(index);
1080 u16 reg = pb_index_to_reg(index);
1081 int ret, status;
1082 u16 regval;
1083
1084 mutex_lock(&data->update_lock);
1085 status = pmbus_get_status(client, page, reg);
1086 if (status < 0) {
1087 ret = status;
1088 goto unlock;
1089 }
1090
1091 if (s1)
1092 pmbus_update_sensor_data(client, s1);
1093 if (s2)
1094 pmbus_update_sensor_data(client, s2);
1095
1096 regval = status & mask;
1097 if (regval) {
1098 ret = _pmbus_write_byte_data(client, page, reg, regval);
1099 if (ret)
1100 goto unlock;
1101 }
1102 if (s1 && s2) {
1103 s64 v1, v2;
1104
1105 if (s1->data < 0) {
1106 ret = s1->data;
1107 goto unlock;
1108 }
1109 if (s2->data < 0) {
1110 ret = s2->data;
1111 goto unlock;
1112 }
1113
1114 v1 = pmbus_reg2data(data, s1);
1115 v2 = pmbus_reg2data(data, s2);
1116 ret = !!(regval && v1 >= v2);
1117 } else {
1118 ret = !!regval;
1119 }
1120 unlock:
1121 mutex_unlock(&data->update_lock);
1122 return ret;
1123 }
1124
pmbus_show_boolean(struct device * dev,struct device_attribute * da,char * buf)1125 static ssize_t pmbus_show_boolean(struct device *dev,
1126 struct device_attribute *da, char *buf)
1127 {
1128 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1129 struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
1130 struct i2c_client *client = to_i2c_client(dev->parent);
1131 int val;
1132
1133 val = pmbus_get_boolean(client, boolean, attr->index);
1134 if (val < 0)
1135 return val;
1136 return sysfs_emit(buf, "%d\n", val);
1137 }
1138
pmbus_show_sensor(struct device * dev,struct device_attribute * devattr,char * buf)1139 static ssize_t pmbus_show_sensor(struct device *dev,
1140 struct device_attribute *devattr, char *buf)
1141 {
1142 struct i2c_client *client = to_i2c_client(dev->parent);
1143 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1144 struct pmbus_data *data = i2c_get_clientdata(client);
1145 ssize_t ret;
1146
1147 mutex_lock(&data->update_lock);
1148 pmbus_update_sensor_data(client, sensor);
1149 if (sensor->data < 0)
1150 ret = sensor->data;
1151 else
1152 ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
1153 mutex_unlock(&data->update_lock);
1154 return ret;
1155 }
1156
pmbus_set_sensor(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)1157 static ssize_t pmbus_set_sensor(struct device *dev,
1158 struct device_attribute *devattr,
1159 const char *buf, size_t count)
1160 {
1161 struct i2c_client *client = to_i2c_client(dev->parent);
1162 struct pmbus_data *data = i2c_get_clientdata(client);
1163 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1164 ssize_t rv = count;
1165 s64 val;
1166 int ret;
1167 u16 regval;
1168
1169 if (kstrtos64(buf, 10, &val) < 0)
1170 return -EINVAL;
1171
1172 mutex_lock(&data->update_lock);
1173 regval = pmbus_data2reg(data, sensor, val);
1174 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
1175 if (ret < 0)
1176 rv = ret;
1177 else
1178 sensor->data = -ENODATA;
1179 mutex_unlock(&data->update_lock);
1180 return rv;
1181 }
1182
pmbus_show_label(struct device * dev,struct device_attribute * da,char * buf)1183 static ssize_t pmbus_show_label(struct device *dev,
1184 struct device_attribute *da, char *buf)
1185 {
1186 struct pmbus_label *label = to_pmbus_label(da);
1187
1188 return sysfs_emit(buf, "%s\n", label->label);
1189 }
1190
pmbus_add_attribute(struct pmbus_data * data,struct attribute * attr)1191 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1192 {
1193 if (data->num_attributes >= data->max_attributes - 1) {
1194 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1195 void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs,
1196 new_max_attrs, sizeof(void *),
1197 GFP_KERNEL);
1198 if (!new_attrs)
1199 return -ENOMEM;
1200 data->group.attrs = new_attrs;
1201 data->max_attributes = new_max_attrs;
1202 }
1203
1204 data->group.attrs[data->num_attributes++] = attr;
1205 data->group.attrs[data->num_attributes] = NULL;
1206 return 0;
1207 }
1208
pmbus_dev_attr_init(struct device_attribute * dev_attr,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count))1209 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1210 const char *name,
1211 umode_t mode,
1212 ssize_t (*show)(struct device *dev,
1213 struct device_attribute *attr,
1214 char *buf),
1215 ssize_t (*store)(struct device *dev,
1216 struct device_attribute *attr,
1217 const char *buf, size_t count))
1218 {
1219 sysfs_attr_init(&dev_attr->attr);
1220 dev_attr->attr.name = name;
1221 dev_attr->attr.mode = mode;
1222 dev_attr->show = show;
1223 dev_attr->store = store;
1224 }
1225
pmbus_attr_init(struct sensor_device_attribute * a,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count),int idx)1226 static void pmbus_attr_init(struct sensor_device_attribute *a,
1227 const char *name,
1228 umode_t mode,
1229 ssize_t (*show)(struct device *dev,
1230 struct device_attribute *attr,
1231 char *buf),
1232 ssize_t (*store)(struct device *dev,
1233 struct device_attribute *attr,
1234 const char *buf, size_t count),
1235 int idx)
1236 {
1237 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1238 a->index = idx;
1239 }
1240
pmbus_add_boolean(struct pmbus_data * data,const char * name,const char * type,int seq,struct pmbus_sensor * s1,struct pmbus_sensor * s2,u8 page,u16 reg,u16 mask)1241 static int pmbus_add_boolean(struct pmbus_data *data,
1242 const char *name, const char *type, int seq,
1243 struct pmbus_sensor *s1,
1244 struct pmbus_sensor *s2,
1245 u8 page, u16 reg, u16 mask)
1246 {
1247 struct pmbus_boolean *boolean;
1248 struct sensor_device_attribute *a;
1249
1250 if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1251 return -EINVAL;
1252
1253 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1254 if (!boolean)
1255 return -ENOMEM;
1256
1257 a = &boolean->attribute;
1258
1259 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1260 name, seq, type);
1261 boolean->s1 = s1;
1262 boolean->s2 = s2;
1263 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1264 pb_reg_to_index(page, reg, mask));
1265
1266 return pmbus_add_attribute(data, &a->dev_attr.attr);
1267 }
1268
1269 /* of thermal for pmbus temperature sensors */
1270 struct pmbus_thermal_data {
1271 struct pmbus_data *pmbus_data;
1272 struct pmbus_sensor *sensor;
1273 };
1274
pmbus_thermal_get_temp(struct thermal_zone_device * tz,int * temp)1275 static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
1276 {
1277 struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz);
1278 struct pmbus_sensor *sensor = tdata->sensor;
1279 struct pmbus_data *pmbus_data = tdata->pmbus_data;
1280 struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1281 struct device *dev = pmbus_data->hwmon_dev;
1282 int ret = 0;
1283
1284 if (!dev) {
1285 /* May not even get to hwmon yet */
1286 *temp = 0;
1287 return 0;
1288 }
1289
1290 mutex_lock(&pmbus_data->update_lock);
1291 pmbus_update_sensor_data(client, sensor);
1292 if (sensor->data < 0)
1293 ret = sensor->data;
1294 else
1295 *temp = (int)pmbus_reg2data(pmbus_data, sensor);
1296 mutex_unlock(&pmbus_data->update_lock);
1297
1298 return ret;
1299 }
1300
1301 static const struct thermal_zone_device_ops pmbus_thermal_ops = {
1302 .get_temp = pmbus_thermal_get_temp,
1303 };
1304
pmbus_thermal_add_sensor(struct pmbus_data * pmbus_data,struct pmbus_sensor * sensor,int index)1305 static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1306 struct pmbus_sensor *sensor, int index)
1307 {
1308 struct device *dev = pmbus_data->dev;
1309 struct pmbus_thermal_data *tdata;
1310 struct thermal_zone_device *tzd;
1311
1312 tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
1313 if (!tdata)
1314 return -ENOMEM;
1315
1316 tdata->sensor = sensor;
1317 tdata->pmbus_data = pmbus_data;
1318
1319 tzd = devm_thermal_of_zone_register(dev, index, tdata,
1320 &pmbus_thermal_ops);
1321 /*
1322 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1323 * so ignore that error but forward any other error.
1324 */
1325 if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
1326 return PTR_ERR(tzd);
1327
1328 return 0;
1329 }
1330
pmbus_add_sensor(struct pmbus_data * data,const char * name,const char * type,int seq,int page,int phase,int reg,enum pmbus_sensor_classes class,bool update,bool readonly,bool convert)1331 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1332 const char *name, const char *type,
1333 int seq, int page, int phase,
1334 int reg,
1335 enum pmbus_sensor_classes class,
1336 bool update, bool readonly,
1337 bool convert)
1338 {
1339 struct pmbus_sensor *sensor;
1340 struct device_attribute *a;
1341
1342 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1343 if (!sensor)
1344 return NULL;
1345 a = &sensor->attribute;
1346
1347 if (type)
1348 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1349 name, seq, type);
1350 else
1351 snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1352 name, seq);
1353
1354 if (data->flags & PMBUS_WRITE_PROTECTED)
1355 readonly = true;
1356
1357 sensor->page = page;
1358 sensor->phase = phase;
1359 sensor->reg = reg;
1360 sensor->class = class;
1361 sensor->update = update;
1362 sensor->convert = convert;
1363 sensor->data = -ENODATA;
1364 pmbus_dev_attr_init(a, sensor->name,
1365 readonly ? 0444 : 0644,
1366 pmbus_show_sensor, pmbus_set_sensor);
1367
1368 if (pmbus_add_attribute(data, &a->attr))
1369 return NULL;
1370
1371 sensor->next = data->sensors;
1372 data->sensors = sensor;
1373
1374 /* temperature sensors with _input values are registered with thermal */
1375 if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1376 pmbus_thermal_add_sensor(data, sensor, seq);
1377
1378 return sensor;
1379 }
1380
pmbus_add_label(struct pmbus_data * data,const char * name,int seq,const char * lstring,int index,int phase)1381 static int pmbus_add_label(struct pmbus_data *data,
1382 const char *name, int seq,
1383 const char *lstring, int index, int phase)
1384 {
1385 struct pmbus_label *label;
1386 struct device_attribute *a;
1387
1388 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1389 if (!label)
1390 return -ENOMEM;
1391
1392 a = &label->attribute;
1393
1394 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1395 if (!index) {
1396 if (phase == 0xff)
1397 strncpy(label->label, lstring,
1398 sizeof(label->label) - 1);
1399 else
1400 snprintf(label->label, sizeof(label->label), "%s.%d",
1401 lstring, phase);
1402 } else {
1403 if (phase == 0xff)
1404 snprintf(label->label, sizeof(label->label), "%s%d",
1405 lstring, index);
1406 else
1407 snprintf(label->label, sizeof(label->label), "%s%d.%d",
1408 lstring, index, phase);
1409 }
1410
1411 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1412 return pmbus_add_attribute(data, &a->attr);
1413 }
1414
1415 /*
1416 * Search for attributes. Allocate sensors, booleans, and labels as needed.
1417 */
1418
1419 /*
1420 * The pmbus_limit_attr structure describes a single limit attribute
1421 * and its associated alarm attribute.
1422 */
1423 struct pmbus_limit_attr {
1424 u16 reg; /* Limit register */
1425 u16 sbit; /* Alarm attribute status bit */
1426 bool update; /* True if register needs updates */
1427 bool low; /* True if low limit; for limits with compare
1428 functions only */
1429 const char *attr; /* Attribute name */
1430 const char *alarm; /* Alarm attribute name */
1431 };
1432
1433 /*
1434 * The pmbus_sensor_attr structure describes one sensor attribute. This
1435 * description includes a reference to the associated limit attributes.
1436 */
1437 struct pmbus_sensor_attr {
1438 u16 reg; /* sensor register */
1439 u16 gbit; /* generic status bit */
1440 u8 nlimit; /* # of limit registers */
1441 enum pmbus_sensor_classes class;/* sensor class */
1442 const char *label; /* sensor label */
1443 bool paged; /* true if paged sensor */
1444 bool update; /* true if update needed */
1445 bool compare; /* true if compare function needed */
1446 u32 func; /* sensor mask */
1447 u32 sfunc; /* sensor status mask */
1448 int sreg; /* status register */
1449 const struct pmbus_limit_attr *limit;/* limit registers */
1450 };
1451
1452 /*
1453 * Add a set of limit attributes and, if supported, the associated
1454 * alarm attributes.
1455 * returns 0 if no alarm register found, 1 if an alarm register was found,
1456 * < 0 on errors.
1457 */
pmbus_add_limit_attrs(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,struct pmbus_sensor * base,const struct pmbus_sensor_attr * attr)1458 static int pmbus_add_limit_attrs(struct i2c_client *client,
1459 struct pmbus_data *data,
1460 const struct pmbus_driver_info *info,
1461 const char *name, int index, int page,
1462 struct pmbus_sensor *base,
1463 const struct pmbus_sensor_attr *attr)
1464 {
1465 const struct pmbus_limit_attr *l = attr->limit;
1466 int nlimit = attr->nlimit;
1467 int have_alarm = 0;
1468 int i, ret;
1469 struct pmbus_sensor *curr;
1470
1471 for (i = 0; i < nlimit; i++) {
1472 if (pmbus_check_word_register(client, page, l->reg)) {
1473 curr = pmbus_add_sensor(data, name, l->attr, index,
1474 page, 0xff, l->reg, attr->class,
1475 attr->update || l->update,
1476 false, true);
1477 if (!curr)
1478 return -ENOMEM;
1479 if (l->sbit && (info->func[page] & attr->sfunc)) {
1480 ret = pmbus_add_boolean(data, name,
1481 l->alarm, index,
1482 attr->compare ? l->low ? curr : base
1483 : NULL,
1484 attr->compare ? l->low ? base : curr
1485 : NULL,
1486 page, attr->sreg, l->sbit);
1487 if (ret)
1488 return ret;
1489 have_alarm = 1;
1490 }
1491 }
1492 l++;
1493 }
1494 return have_alarm;
1495 }
1496
pmbus_add_sensor_attrs_one(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,int phase,const struct pmbus_sensor_attr * attr,bool paged)1497 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1498 struct pmbus_data *data,
1499 const struct pmbus_driver_info *info,
1500 const char *name,
1501 int index, int page, int phase,
1502 const struct pmbus_sensor_attr *attr,
1503 bool paged)
1504 {
1505 struct pmbus_sensor *base;
1506 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */
1507 int ret;
1508
1509 if (attr->label) {
1510 ret = pmbus_add_label(data, name, index, attr->label,
1511 paged ? page + 1 : 0, phase);
1512 if (ret)
1513 return ret;
1514 }
1515 base = pmbus_add_sensor(data, name, "input", index, page, phase,
1516 attr->reg, attr->class, true, true, true);
1517 if (!base)
1518 return -ENOMEM;
1519 /* No limit and alarm attributes for phase specific sensors */
1520 if (attr->sfunc && phase == 0xff) {
1521 ret = pmbus_add_limit_attrs(client, data, info, name,
1522 index, page, base, attr);
1523 if (ret < 0)
1524 return ret;
1525 /*
1526 * Add generic alarm attribute only if there are no individual
1527 * alarm attributes, if there is a global alarm bit, and if
1528 * the generic status register (word or byte, depending on
1529 * which global bit is set) for this page is accessible.
1530 */
1531 if (!ret && attr->gbit &&
1532 (!upper || data->has_status_word) &&
1533 pmbus_check_status_register(client, page)) {
1534 ret = pmbus_add_boolean(data, name, "alarm", index,
1535 NULL, NULL,
1536 page, PMBUS_STATUS_WORD,
1537 attr->gbit);
1538 if (ret)
1539 return ret;
1540 }
1541 }
1542 return 0;
1543 }
1544
pmbus_sensor_is_paged(const struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)1545 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1546 const struct pmbus_sensor_attr *attr)
1547 {
1548 int p;
1549
1550 if (attr->paged)
1551 return true;
1552
1553 /*
1554 * Some attributes may be present on more than one page despite
1555 * not being marked with the paged attribute. If that is the case,
1556 * then treat the sensor as being paged and add the page suffix to the
1557 * attribute name.
1558 * We don't just add the paged attribute to all such attributes, in
1559 * order to maintain the un-suffixed labels in the case where the
1560 * attribute is only on page 0.
1561 */
1562 for (p = 1; p < info->pages; p++) {
1563 if (info->func[p] & attr->func)
1564 return true;
1565 }
1566 return false;
1567 }
1568
pmbus_add_sensor_attrs(struct i2c_client * client,struct pmbus_data * data,const char * name,const struct pmbus_sensor_attr * attrs,int nattrs)1569 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1570 struct pmbus_data *data,
1571 const char *name,
1572 const struct pmbus_sensor_attr *attrs,
1573 int nattrs)
1574 {
1575 const struct pmbus_driver_info *info = data->info;
1576 int index, i;
1577 int ret;
1578
1579 index = 1;
1580 for (i = 0; i < nattrs; i++) {
1581 int page, pages;
1582 bool paged = pmbus_sensor_is_paged(info, attrs);
1583
1584 pages = paged ? info->pages : 1;
1585 for (page = 0; page < pages; page++) {
1586 if (info->func[page] & attrs->func) {
1587 ret = pmbus_add_sensor_attrs_one(client, data, info,
1588 name, index, page,
1589 0xff, attrs, paged);
1590 if (ret)
1591 return ret;
1592 index++;
1593 }
1594 if (info->phases[page]) {
1595 int phase;
1596
1597 for (phase = 0; phase < info->phases[page];
1598 phase++) {
1599 if (!(info->pfunc[phase] & attrs->func))
1600 continue;
1601 ret = pmbus_add_sensor_attrs_one(client,
1602 data, info, name, index, page,
1603 phase, attrs, paged);
1604 if (ret)
1605 return ret;
1606 index++;
1607 }
1608 }
1609 }
1610 attrs++;
1611 }
1612 return 0;
1613 }
1614
1615 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1616 {
1617 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1618 .attr = "min",
1619 .alarm = "min_alarm",
1620 .sbit = PB_VOLTAGE_UV_WARNING,
1621 }, {
1622 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1623 .attr = "lcrit",
1624 .alarm = "lcrit_alarm",
1625 .sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1626 }, {
1627 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1628 .attr = "max",
1629 .alarm = "max_alarm",
1630 .sbit = PB_VOLTAGE_OV_WARNING,
1631 }, {
1632 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1633 .attr = "crit",
1634 .alarm = "crit_alarm",
1635 .sbit = PB_VOLTAGE_OV_FAULT,
1636 }, {
1637 .reg = PMBUS_VIRT_READ_VIN_AVG,
1638 .update = true,
1639 .attr = "average",
1640 }, {
1641 .reg = PMBUS_VIRT_READ_VIN_MIN,
1642 .update = true,
1643 .attr = "lowest",
1644 }, {
1645 .reg = PMBUS_VIRT_READ_VIN_MAX,
1646 .update = true,
1647 .attr = "highest",
1648 }, {
1649 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1650 .attr = "reset_history",
1651 }, {
1652 .reg = PMBUS_MFR_VIN_MIN,
1653 .attr = "rated_min",
1654 }, {
1655 .reg = PMBUS_MFR_VIN_MAX,
1656 .attr = "rated_max",
1657 },
1658 };
1659
1660 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1661 {
1662 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1663 .attr = "min",
1664 .alarm = "min_alarm",
1665 .sbit = PB_VOLTAGE_UV_WARNING,
1666 }, {
1667 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1668 .attr = "lcrit",
1669 .alarm = "lcrit_alarm",
1670 .sbit = PB_VOLTAGE_UV_FAULT,
1671 }, {
1672 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1673 .attr = "max",
1674 .alarm = "max_alarm",
1675 .sbit = PB_VOLTAGE_OV_WARNING,
1676 }, {
1677 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1678 .attr = "crit",
1679 .alarm = "crit_alarm",
1680 .sbit = PB_VOLTAGE_OV_FAULT,
1681 }
1682 };
1683
1684 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1685 {
1686 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1687 .attr = "min",
1688 .alarm = "min_alarm",
1689 .sbit = PB_VOLTAGE_UV_WARNING,
1690 }, {
1691 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1692 .attr = "lcrit",
1693 .alarm = "lcrit_alarm",
1694 .sbit = PB_VOLTAGE_UV_FAULT,
1695 }, {
1696 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1697 .attr = "max",
1698 .alarm = "max_alarm",
1699 .sbit = PB_VOLTAGE_OV_WARNING,
1700 }, {
1701 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1702 .attr = "crit",
1703 .alarm = "crit_alarm",
1704 .sbit = PB_VOLTAGE_OV_FAULT,
1705 }, {
1706 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1707 .update = true,
1708 .attr = "average",
1709 }, {
1710 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1711 .update = true,
1712 .attr = "lowest",
1713 }, {
1714 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1715 .update = true,
1716 .attr = "highest",
1717 }, {
1718 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1719 .attr = "reset_history",
1720 }, {
1721 .reg = PMBUS_MFR_VOUT_MIN,
1722 .attr = "rated_min",
1723 }, {
1724 .reg = PMBUS_MFR_VOUT_MAX,
1725 .attr = "rated_max",
1726 },
1727 };
1728
1729 static const struct pmbus_sensor_attr voltage_attributes[] = {
1730 {
1731 .reg = PMBUS_READ_VIN,
1732 .class = PSC_VOLTAGE_IN,
1733 .label = "vin",
1734 .func = PMBUS_HAVE_VIN,
1735 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1736 .sreg = PMBUS_STATUS_INPUT,
1737 .gbit = PB_STATUS_VIN_UV,
1738 .limit = vin_limit_attrs,
1739 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1740 }, {
1741 .reg = PMBUS_VIRT_READ_VMON,
1742 .class = PSC_VOLTAGE_IN,
1743 .label = "vmon",
1744 .func = PMBUS_HAVE_VMON,
1745 .sfunc = PMBUS_HAVE_STATUS_VMON,
1746 .sreg = PMBUS_VIRT_STATUS_VMON,
1747 .limit = vmon_limit_attrs,
1748 .nlimit = ARRAY_SIZE(vmon_limit_attrs),
1749 }, {
1750 .reg = PMBUS_READ_VCAP,
1751 .class = PSC_VOLTAGE_IN,
1752 .label = "vcap",
1753 .func = PMBUS_HAVE_VCAP,
1754 }, {
1755 .reg = PMBUS_READ_VOUT,
1756 .class = PSC_VOLTAGE_OUT,
1757 .label = "vout",
1758 .paged = true,
1759 .func = PMBUS_HAVE_VOUT,
1760 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1761 .sreg = PMBUS_STATUS_VOUT,
1762 .gbit = PB_STATUS_VOUT_OV,
1763 .limit = vout_limit_attrs,
1764 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1765 }
1766 };
1767
1768 /* Current attributes */
1769
1770 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1771 {
1772 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1773 .attr = "max",
1774 .alarm = "max_alarm",
1775 .sbit = PB_IIN_OC_WARNING,
1776 }, {
1777 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1778 .attr = "crit",
1779 .alarm = "crit_alarm",
1780 .sbit = PB_IIN_OC_FAULT,
1781 }, {
1782 .reg = PMBUS_VIRT_READ_IIN_AVG,
1783 .update = true,
1784 .attr = "average",
1785 }, {
1786 .reg = PMBUS_VIRT_READ_IIN_MIN,
1787 .update = true,
1788 .attr = "lowest",
1789 }, {
1790 .reg = PMBUS_VIRT_READ_IIN_MAX,
1791 .update = true,
1792 .attr = "highest",
1793 }, {
1794 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1795 .attr = "reset_history",
1796 }, {
1797 .reg = PMBUS_MFR_IIN_MAX,
1798 .attr = "rated_max",
1799 },
1800 };
1801
1802 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1803 {
1804 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1805 .attr = "max",
1806 .alarm = "max_alarm",
1807 .sbit = PB_IOUT_OC_WARNING,
1808 }, {
1809 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1810 .attr = "lcrit",
1811 .alarm = "lcrit_alarm",
1812 .sbit = PB_IOUT_UC_FAULT,
1813 }, {
1814 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1815 .attr = "crit",
1816 .alarm = "crit_alarm",
1817 .sbit = PB_IOUT_OC_FAULT,
1818 }, {
1819 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1820 .update = true,
1821 .attr = "average",
1822 }, {
1823 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1824 .update = true,
1825 .attr = "lowest",
1826 }, {
1827 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1828 .update = true,
1829 .attr = "highest",
1830 }, {
1831 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1832 .attr = "reset_history",
1833 }, {
1834 .reg = PMBUS_MFR_IOUT_MAX,
1835 .attr = "rated_max",
1836 },
1837 };
1838
1839 static const struct pmbus_sensor_attr current_attributes[] = {
1840 {
1841 .reg = PMBUS_READ_IIN,
1842 .class = PSC_CURRENT_IN,
1843 .label = "iin",
1844 .func = PMBUS_HAVE_IIN,
1845 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1846 .sreg = PMBUS_STATUS_INPUT,
1847 .gbit = PB_STATUS_INPUT,
1848 .limit = iin_limit_attrs,
1849 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1850 }, {
1851 .reg = PMBUS_READ_IOUT,
1852 .class = PSC_CURRENT_OUT,
1853 .label = "iout",
1854 .paged = true,
1855 .func = PMBUS_HAVE_IOUT,
1856 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1857 .sreg = PMBUS_STATUS_IOUT,
1858 .gbit = PB_STATUS_IOUT_OC,
1859 .limit = iout_limit_attrs,
1860 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1861 }
1862 };
1863
1864 /* Power attributes */
1865
1866 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1867 {
1868 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1869 .attr = "max",
1870 .alarm = "alarm",
1871 .sbit = PB_PIN_OP_WARNING,
1872 }, {
1873 .reg = PMBUS_VIRT_READ_PIN_AVG,
1874 .update = true,
1875 .attr = "average",
1876 }, {
1877 .reg = PMBUS_VIRT_READ_PIN_MIN,
1878 .update = true,
1879 .attr = "input_lowest",
1880 }, {
1881 .reg = PMBUS_VIRT_READ_PIN_MAX,
1882 .update = true,
1883 .attr = "input_highest",
1884 }, {
1885 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1886 .attr = "reset_history",
1887 }, {
1888 .reg = PMBUS_MFR_PIN_MAX,
1889 .attr = "rated_max",
1890 },
1891 };
1892
1893 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1894 {
1895 .reg = PMBUS_POUT_MAX,
1896 .attr = "cap",
1897 .alarm = "cap_alarm",
1898 .sbit = PB_POWER_LIMITING,
1899 }, {
1900 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1901 .attr = "max",
1902 .alarm = "max_alarm",
1903 .sbit = PB_POUT_OP_WARNING,
1904 }, {
1905 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1906 .attr = "crit",
1907 .alarm = "crit_alarm",
1908 .sbit = PB_POUT_OP_FAULT,
1909 }, {
1910 .reg = PMBUS_VIRT_READ_POUT_AVG,
1911 .update = true,
1912 .attr = "average",
1913 }, {
1914 .reg = PMBUS_VIRT_READ_POUT_MIN,
1915 .update = true,
1916 .attr = "input_lowest",
1917 }, {
1918 .reg = PMBUS_VIRT_READ_POUT_MAX,
1919 .update = true,
1920 .attr = "input_highest",
1921 }, {
1922 .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1923 .attr = "reset_history",
1924 }, {
1925 .reg = PMBUS_MFR_POUT_MAX,
1926 .attr = "rated_max",
1927 },
1928 };
1929
1930 static const struct pmbus_sensor_attr power_attributes[] = {
1931 {
1932 .reg = PMBUS_READ_PIN,
1933 .class = PSC_POWER,
1934 .label = "pin",
1935 .func = PMBUS_HAVE_PIN,
1936 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1937 .sreg = PMBUS_STATUS_INPUT,
1938 .gbit = PB_STATUS_INPUT,
1939 .limit = pin_limit_attrs,
1940 .nlimit = ARRAY_SIZE(pin_limit_attrs),
1941 }, {
1942 .reg = PMBUS_READ_POUT,
1943 .class = PSC_POWER,
1944 .label = "pout",
1945 .paged = true,
1946 .func = PMBUS_HAVE_POUT,
1947 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1948 .sreg = PMBUS_STATUS_IOUT,
1949 .limit = pout_limit_attrs,
1950 .nlimit = ARRAY_SIZE(pout_limit_attrs),
1951 }
1952 };
1953
1954 /* Temperature atributes */
1955
1956 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1957 {
1958 .reg = PMBUS_UT_WARN_LIMIT,
1959 .low = true,
1960 .attr = "min",
1961 .alarm = "min_alarm",
1962 .sbit = PB_TEMP_UT_WARNING,
1963 }, {
1964 .reg = PMBUS_UT_FAULT_LIMIT,
1965 .low = true,
1966 .attr = "lcrit",
1967 .alarm = "lcrit_alarm",
1968 .sbit = PB_TEMP_UT_FAULT,
1969 }, {
1970 .reg = PMBUS_OT_WARN_LIMIT,
1971 .attr = "max",
1972 .alarm = "max_alarm",
1973 .sbit = PB_TEMP_OT_WARNING,
1974 }, {
1975 .reg = PMBUS_OT_FAULT_LIMIT,
1976 .attr = "crit",
1977 .alarm = "crit_alarm",
1978 .sbit = PB_TEMP_OT_FAULT,
1979 }, {
1980 .reg = PMBUS_VIRT_READ_TEMP_MIN,
1981 .attr = "lowest",
1982 }, {
1983 .reg = PMBUS_VIRT_READ_TEMP_AVG,
1984 .attr = "average",
1985 }, {
1986 .reg = PMBUS_VIRT_READ_TEMP_MAX,
1987 .attr = "highest",
1988 }, {
1989 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1990 .attr = "reset_history",
1991 }, {
1992 .reg = PMBUS_MFR_MAX_TEMP_1,
1993 .attr = "rated_max",
1994 },
1995 };
1996
1997 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1998 {
1999 .reg = PMBUS_UT_WARN_LIMIT,
2000 .low = true,
2001 .attr = "min",
2002 .alarm = "min_alarm",
2003 .sbit = PB_TEMP_UT_WARNING,
2004 }, {
2005 .reg = PMBUS_UT_FAULT_LIMIT,
2006 .low = true,
2007 .attr = "lcrit",
2008 .alarm = "lcrit_alarm",
2009 .sbit = PB_TEMP_UT_FAULT,
2010 }, {
2011 .reg = PMBUS_OT_WARN_LIMIT,
2012 .attr = "max",
2013 .alarm = "max_alarm",
2014 .sbit = PB_TEMP_OT_WARNING,
2015 }, {
2016 .reg = PMBUS_OT_FAULT_LIMIT,
2017 .attr = "crit",
2018 .alarm = "crit_alarm",
2019 .sbit = PB_TEMP_OT_FAULT,
2020 }, {
2021 .reg = PMBUS_VIRT_READ_TEMP2_MIN,
2022 .attr = "lowest",
2023 }, {
2024 .reg = PMBUS_VIRT_READ_TEMP2_AVG,
2025 .attr = "average",
2026 }, {
2027 .reg = PMBUS_VIRT_READ_TEMP2_MAX,
2028 .attr = "highest",
2029 }, {
2030 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
2031 .attr = "reset_history",
2032 }, {
2033 .reg = PMBUS_MFR_MAX_TEMP_2,
2034 .attr = "rated_max",
2035 },
2036 };
2037
2038 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
2039 {
2040 .reg = PMBUS_UT_WARN_LIMIT,
2041 .low = true,
2042 .attr = "min",
2043 .alarm = "min_alarm",
2044 .sbit = PB_TEMP_UT_WARNING,
2045 }, {
2046 .reg = PMBUS_UT_FAULT_LIMIT,
2047 .low = true,
2048 .attr = "lcrit",
2049 .alarm = "lcrit_alarm",
2050 .sbit = PB_TEMP_UT_FAULT,
2051 }, {
2052 .reg = PMBUS_OT_WARN_LIMIT,
2053 .attr = "max",
2054 .alarm = "max_alarm",
2055 .sbit = PB_TEMP_OT_WARNING,
2056 }, {
2057 .reg = PMBUS_OT_FAULT_LIMIT,
2058 .attr = "crit",
2059 .alarm = "crit_alarm",
2060 .sbit = PB_TEMP_OT_FAULT,
2061 }, {
2062 .reg = PMBUS_MFR_MAX_TEMP_3,
2063 .attr = "rated_max",
2064 },
2065 };
2066
2067 static const struct pmbus_sensor_attr temp_attributes[] = {
2068 {
2069 .reg = PMBUS_READ_TEMPERATURE_1,
2070 .class = PSC_TEMPERATURE,
2071 .paged = true,
2072 .update = true,
2073 .compare = true,
2074 .func = PMBUS_HAVE_TEMP,
2075 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2076 .sreg = PMBUS_STATUS_TEMPERATURE,
2077 .gbit = PB_STATUS_TEMPERATURE,
2078 .limit = temp_limit_attrs,
2079 .nlimit = ARRAY_SIZE(temp_limit_attrs),
2080 }, {
2081 .reg = PMBUS_READ_TEMPERATURE_2,
2082 .class = PSC_TEMPERATURE,
2083 .paged = true,
2084 .update = true,
2085 .compare = true,
2086 .func = PMBUS_HAVE_TEMP2,
2087 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2088 .sreg = PMBUS_STATUS_TEMPERATURE,
2089 .gbit = PB_STATUS_TEMPERATURE,
2090 .limit = temp_limit_attrs2,
2091 .nlimit = ARRAY_SIZE(temp_limit_attrs2),
2092 }, {
2093 .reg = PMBUS_READ_TEMPERATURE_3,
2094 .class = PSC_TEMPERATURE,
2095 .paged = true,
2096 .update = true,
2097 .compare = true,
2098 .func = PMBUS_HAVE_TEMP3,
2099 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2100 .sreg = PMBUS_STATUS_TEMPERATURE,
2101 .gbit = PB_STATUS_TEMPERATURE,
2102 .limit = temp_limit_attrs3,
2103 .nlimit = ARRAY_SIZE(temp_limit_attrs3),
2104 }
2105 };
2106
2107 static const int pmbus_fan_registers[] = {
2108 PMBUS_READ_FAN_SPEED_1,
2109 PMBUS_READ_FAN_SPEED_2,
2110 PMBUS_READ_FAN_SPEED_3,
2111 PMBUS_READ_FAN_SPEED_4
2112 };
2113
2114 static const int pmbus_fan_status_registers[] = {
2115 PMBUS_STATUS_FAN_12,
2116 PMBUS_STATUS_FAN_12,
2117 PMBUS_STATUS_FAN_34,
2118 PMBUS_STATUS_FAN_34
2119 };
2120
2121 static const u32 pmbus_fan_flags[] = {
2122 PMBUS_HAVE_FAN12,
2123 PMBUS_HAVE_FAN12,
2124 PMBUS_HAVE_FAN34,
2125 PMBUS_HAVE_FAN34
2126 };
2127
2128 static const u32 pmbus_fan_status_flags[] = {
2129 PMBUS_HAVE_STATUS_FAN12,
2130 PMBUS_HAVE_STATUS_FAN12,
2131 PMBUS_HAVE_STATUS_FAN34,
2132 PMBUS_HAVE_STATUS_FAN34
2133 };
2134
2135 /* Fans */
2136
2137 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
pmbus_add_fan_ctrl(struct i2c_client * client,struct pmbus_data * data,int index,int page,int id,u8 config)2138 static int pmbus_add_fan_ctrl(struct i2c_client *client,
2139 struct pmbus_data *data, int index, int page, int id,
2140 u8 config)
2141 {
2142 struct pmbus_sensor *sensor;
2143
2144 sensor = pmbus_add_sensor(data, "fan", "target", index, page,
2145 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
2146 false, false, true);
2147
2148 if (!sensor)
2149 return -ENOMEM;
2150
2151 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
2152 (data->info->func[page] & PMBUS_HAVE_PWM34)))
2153 return 0;
2154
2155 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
2156 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
2157 false, false, true);
2158
2159 if (!sensor)
2160 return -ENOMEM;
2161
2162 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
2163 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
2164 true, false, false);
2165
2166 if (!sensor)
2167 return -ENOMEM;
2168
2169 return 0;
2170 }
2171
pmbus_add_fan_attributes(struct i2c_client * client,struct pmbus_data * data)2172 static int pmbus_add_fan_attributes(struct i2c_client *client,
2173 struct pmbus_data *data)
2174 {
2175 const struct pmbus_driver_info *info = data->info;
2176 int index = 1;
2177 int page;
2178 int ret;
2179
2180 for (page = 0; page < info->pages; page++) {
2181 int f;
2182
2183 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2184 int regval;
2185
2186 if (!(info->func[page] & pmbus_fan_flags[f]))
2187 break;
2188
2189 if (!pmbus_check_word_register(client, page,
2190 pmbus_fan_registers[f]))
2191 break;
2192
2193 /*
2194 * Skip fan if not installed.
2195 * Each fan configuration register covers multiple fans,
2196 * so we have to do some magic.
2197 */
2198 regval = _pmbus_read_byte_data(client, page,
2199 pmbus_fan_config_registers[f]);
2200 if (regval < 0 ||
2201 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2202 continue;
2203
2204 if (pmbus_add_sensor(data, "fan", "input", index,
2205 page, 0xff, pmbus_fan_registers[f],
2206 PSC_FAN, true, true, true) == NULL)
2207 return -ENOMEM;
2208
2209 /* Fan control */
2210 if (pmbus_check_word_register(client, page,
2211 pmbus_fan_command_registers[f])) {
2212 ret = pmbus_add_fan_ctrl(client, data, index,
2213 page, f, regval);
2214 if (ret < 0)
2215 return ret;
2216 }
2217
2218 /*
2219 * Each fan status register covers multiple fans,
2220 * so we have to do some magic.
2221 */
2222 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2223 pmbus_check_byte_register(client,
2224 page, pmbus_fan_status_registers[f])) {
2225 int reg;
2226
2227 if (f > 1) /* fan 3, 4 */
2228 reg = PMBUS_STATUS_FAN_34;
2229 else
2230 reg = PMBUS_STATUS_FAN_12;
2231 ret = pmbus_add_boolean(data, "fan",
2232 "alarm", index, NULL, NULL, page, reg,
2233 PB_FAN_FAN1_WARNING >> (f & 1));
2234 if (ret)
2235 return ret;
2236 ret = pmbus_add_boolean(data, "fan",
2237 "fault", index, NULL, NULL, page, reg,
2238 PB_FAN_FAN1_FAULT >> (f & 1));
2239 if (ret)
2240 return ret;
2241 }
2242 index++;
2243 }
2244 }
2245 return 0;
2246 }
2247
2248 struct pmbus_samples_attr {
2249 int reg;
2250 char *name;
2251 };
2252
2253 struct pmbus_samples_reg {
2254 int page;
2255 struct pmbus_samples_attr *attr;
2256 struct device_attribute dev_attr;
2257 };
2258
2259 static struct pmbus_samples_attr pmbus_samples_registers[] = {
2260 {
2261 .reg = PMBUS_VIRT_SAMPLES,
2262 .name = "samples",
2263 }, {
2264 .reg = PMBUS_VIRT_IN_SAMPLES,
2265 .name = "in_samples",
2266 }, {
2267 .reg = PMBUS_VIRT_CURR_SAMPLES,
2268 .name = "curr_samples",
2269 }, {
2270 .reg = PMBUS_VIRT_POWER_SAMPLES,
2271 .name = "power_samples",
2272 }, {
2273 .reg = PMBUS_VIRT_TEMP_SAMPLES,
2274 .name = "temp_samples",
2275 }
2276 };
2277
2278 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2279
pmbus_show_samples(struct device * dev,struct device_attribute * devattr,char * buf)2280 static ssize_t pmbus_show_samples(struct device *dev,
2281 struct device_attribute *devattr, char *buf)
2282 {
2283 int val;
2284 struct i2c_client *client = to_i2c_client(dev->parent);
2285 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2286 struct pmbus_data *data = i2c_get_clientdata(client);
2287
2288 mutex_lock(&data->update_lock);
2289 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2290 mutex_unlock(&data->update_lock);
2291 if (val < 0)
2292 return val;
2293
2294 return sysfs_emit(buf, "%d\n", val);
2295 }
2296
pmbus_set_samples(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)2297 static ssize_t pmbus_set_samples(struct device *dev,
2298 struct device_attribute *devattr,
2299 const char *buf, size_t count)
2300 {
2301 int ret;
2302 long val;
2303 struct i2c_client *client = to_i2c_client(dev->parent);
2304 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2305 struct pmbus_data *data = i2c_get_clientdata(client);
2306
2307 if (kstrtol(buf, 0, &val) < 0)
2308 return -EINVAL;
2309
2310 mutex_lock(&data->update_lock);
2311 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2312 mutex_unlock(&data->update_lock);
2313
2314 return ret ? : count;
2315 }
2316
pmbus_add_samples_attr(struct pmbus_data * data,int page,struct pmbus_samples_attr * attr)2317 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2318 struct pmbus_samples_attr *attr)
2319 {
2320 struct pmbus_samples_reg *reg;
2321
2322 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2323 if (!reg)
2324 return -ENOMEM;
2325
2326 reg->attr = attr;
2327 reg->page = page;
2328
2329 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644,
2330 pmbus_show_samples, pmbus_set_samples);
2331
2332 return pmbus_add_attribute(data, ®->dev_attr.attr);
2333 }
2334
pmbus_add_samples_attributes(struct i2c_client * client,struct pmbus_data * data)2335 static int pmbus_add_samples_attributes(struct i2c_client *client,
2336 struct pmbus_data *data)
2337 {
2338 const struct pmbus_driver_info *info = data->info;
2339 int s;
2340
2341 if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2342 return 0;
2343
2344 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2345 struct pmbus_samples_attr *attr;
2346 int ret;
2347
2348 attr = &pmbus_samples_registers[s];
2349 if (!pmbus_check_word_register(client, 0, attr->reg))
2350 continue;
2351
2352 ret = pmbus_add_samples_attr(data, 0, attr);
2353 if (ret)
2354 return ret;
2355 }
2356
2357 return 0;
2358 }
2359
pmbus_find_attributes(struct i2c_client * client,struct pmbus_data * data)2360 static int pmbus_find_attributes(struct i2c_client *client,
2361 struct pmbus_data *data)
2362 {
2363 int ret;
2364
2365 /* Voltage sensors */
2366 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2367 ARRAY_SIZE(voltage_attributes));
2368 if (ret)
2369 return ret;
2370
2371 /* Current sensors */
2372 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2373 ARRAY_SIZE(current_attributes));
2374 if (ret)
2375 return ret;
2376
2377 /* Power sensors */
2378 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2379 ARRAY_SIZE(power_attributes));
2380 if (ret)
2381 return ret;
2382
2383 /* Temperature sensors */
2384 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2385 ARRAY_SIZE(temp_attributes));
2386 if (ret)
2387 return ret;
2388
2389 /* Fans */
2390 ret = pmbus_add_fan_attributes(client, data);
2391 if (ret)
2392 return ret;
2393
2394 ret = pmbus_add_samples_attributes(client, data);
2395 return ret;
2396 }
2397
2398 /*
2399 * The pmbus_class_attr_map structure maps one sensor class to
2400 * it's corresponding sensor attributes array.
2401 */
2402 struct pmbus_class_attr_map {
2403 enum pmbus_sensor_classes class;
2404 int nattr;
2405 const struct pmbus_sensor_attr *attr;
2406 };
2407
2408 static const struct pmbus_class_attr_map class_attr_map[] = {
2409 {
2410 .class = PSC_VOLTAGE_IN,
2411 .attr = voltage_attributes,
2412 .nattr = ARRAY_SIZE(voltage_attributes),
2413 }, {
2414 .class = PSC_VOLTAGE_OUT,
2415 .attr = voltage_attributes,
2416 .nattr = ARRAY_SIZE(voltage_attributes),
2417 }, {
2418 .class = PSC_CURRENT_IN,
2419 .attr = current_attributes,
2420 .nattr = ARRAY_SIZE(current_attributes),
2421 }, {
2422 .class = PSC_CURRENT_OUT,
2423 .attr = current_attributes,
2424 .nattr = ARRAY_SIZE(current_attributes),
2425 }, {
2426 .class = PSC_POWER,
2427 .attr = power_attributes,
2428 .nattr = ARRAY_SIZE(power_attributes),
2429 }, {
2430 .class = PSC_TEMPERATURE,
2431 .attr = temp_attributes,
2432 .nattr = ARRAY_SIZE(temp_attributes),
2433 }
2434 };
2435
2436 /*
2437 * Read the coefficients for direct mode.
2438 */
pmbus_read_coefficients(struct i2c_client * client,struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)2439 static int pmbus_read_coefficients(struct i2c_client *client,
2440 struct pmbus_driver_info *info,
2441 const struct pmbus_sensor_attr *attr)
2442 {
2443 int rv;
2444 union i2c_smbus_data data;
2445 enum pmbus_sensor_classes class = attr->class;
2446 s8 R;
2447 s16 m, b;
2448
2449 data.block[0] = 2;
2450 data.block[1] = attr->reg;
2451 data.block[2] = 0x01;
2452
2453 rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2454 I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2455 I2C_SMBUS_BLOCK_PROC_CALL, &data);
2456
2457 if (rv < 0)
2458 return rv;
2459
2460 if (data.block[0] != 5)
2461 return -EIO;
2462
2463 m = data.block[1] | (data.block[2] << 8);
2464 b = data.block[3] | (data.block[4] << 8);
2465 R = data.block[5];
2466 info->m[class] = m;
2467 info->b[class] = b;
2468 info->R[class] = R;
2469
2470 return rv;
2471 }
2472
pmbus_init_coefficients(struct i2c_client * client,struct pmbus_driver_info * info)2473 static int pmbus_init_coefficients(struct i2c_client *client,
2474 struct pmbus_driver_info *info)
2475 {
2476 int i, n, ret = -EINVAL;
2477 const struct pmbus_class_attr_map *map;
2478 const struct pmbus_sensor_attr *attr;
2479
2480 for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2481 map = &class_attr_map[i];
2482 if (info->format[map->class] != direct)
2483 continue;
2484 for (n = 0; n < map->nattr; n++) {
2485 attr = &map->attr[n];
2486 if (map->class != attr->class)
2487 continue;
2488 ret = pmbus_read_coefficients(client, info, attr);
2489 if (ret >= 0)
2490 break;
2491 }
2492 if (ret < 0) {
2493 dev_err(&client->dev,
2494 "No coefficients found for sensor class %d\n",
2495 map->class);
2496 return -EINVAL;
2497 }
2498 }
2499
2500 return 0;
2501 }
2502
2503 /*
2504 * Identify chip parameters.
2505 * This function is called for all chips.
2506 */
pmbus_identify_common(struct i2c_client * client,struct pmbus_data * data,int page)2507 static int pmbus_identify_common(struct i2c_client *client,
2508 struct pmbus_data *data, int page)
2509 {
2510 int vout_mode = -1;
2511
2512 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2513 vout_mode = _pmbus_read_byte_data(client, page,
2514 PMBUS_VOUT_MODE);
2515 if (vout_mode >= 0 && vout_mode != 0xff) {
2516 /*
2517 * Not all chips support the VOUT_MODE command,
2518 * so a failure to read it is not an error.
2519 */
2520 switch (vout_mode >> 5) {
2521 case 0: /* linear mode */
2522 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2523 return -ENODEV;
2524
2525 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2526 break;
2527 case 1: /* VID mode */
2528 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2529 return -ENODEV;
2530 break;
2531 case 2: /* direct mode */
2532 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2533 return -ENODEV;
2534 break;
2535 case 3: /* ieee 754 half precision */
2536 if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
2537 return -ENODEV;
2538 break;
2539 default:
2540 return -ENODEV;
2541 }
2542 }
2543
2544 return 0;
2545 }
2546
pmbus_read_status_byte(struct i2c_client * client,int page)2547 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2548 {
2549 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2550 }
2551
pmbus_read_status_word(struct i2c_client * client,int page)2552 static int pmbus_read_status_word(struct i2c_client *client, int page)
2553 {
2554 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2555 }
2556
2557 /* PEC attribute support */
2558
pec_show(struct device * dev,struct device_attribute * dummy,char * buf)2559 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
2560 char *buf)
2561 {
2562 struct i2c_client *client = to_i2c_client(dev);
2563
2564 return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
2565 }
2566
pec_store(struct device * dev,struct device_attribute * dummy,const char * buf,size_t count)2567 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
2568 const char *buf, size_t count)
2569 {
2570 struct i2c_client *client = to_i2c_client(dev);
2571 bool enable;
2572 int err;
2573
2574 err = kstrtobool(buf, &enable);
2575 if (err < 0)
2576 return err;
2577
2578 if (enable)
2579 client->flags |= I2C_CLIENT_PEC;
2580 else
2581 client->flags &= ~I2C_CLIENT_PEC;
2582
2583 return count;
2584 }
2585
2586 static DEVICE_ATTR_RW(pec);
2587
pmbus_remove_pec(void * dev)2588 static void pmbus_remove_pec(void *dev)
2589 {
2590 device_remove_file(dev, &dev_attr_pec);
2591 }
2592
pmbus_init_common(struct i2c_client * client,struct pmbus_data * data,struct pmbus_driver_info * info)2593 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2594 struct pmbus_driver_info *info)
2595 {
2596 struct device *dev = &client->dev;
2597 int page, ret;
2598
2599 /*
2600 * Figure out if PEC is enabled before accessing any other register.
2601 * Make sure PEC is disabled, will be enabled later if needed.
2602 */
2603 client->flags &= ~I2C_CLIENT_PEC;
2604
2605 /* Enable PEC if the controller and bus supports it */
2606 if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2607 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2608 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2609 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2610 client->flags |= I2C_CLIENT_PEC;
2611 }
2612 }
2613
2614 /*
2615 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2616 * to use PMBUS_STATUS_BYTE instead if that is the case.
2617 * Bail out if both registers are not supported.
2618 */
2619 data->read_status = pmbus_read_status_word;
2620 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2621 if (ret < 0 || ret == 0xffff) {
2622 data->read_status = pmbus_read_status_byte;
2623 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2624 if (ret < 0 || ret == 0xff) {
2625 dev_err(dev, "PMBus status register not found\n");
2626 return -ENODEV;
2627 }
2628 } else {
2629 data->has_status_word = true;
2630 }
2631
2632 /*
2633 * Check if the chip is write protected. If it is, we can not clear
2634 * faults, and we should not try it. Also, in that case, writes into
2635 * limit registers need to be disabled.
2636 */
2637 if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) {
2638 ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
2639 if (ret > 0 && (ret & PB_WP_ANY))
2640 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2641 }
2642
2643 if (data->info->pages)
2644 pmbus_clear_faults(client);
2645 else
2646 pmbus_clear_fault_page(client, -1);
2647
2648 if (info->identify) {
2649 ret = (*info->identify)(client, info);
2650 if (ret < 0) {
2651 dev_err(dev, "Chip identification failed\n");
2652 return ret;
2653 }
2654 }
2655
2656 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2657 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2658 return -ENODEV;
2659 }
2660
2661 for (page = 0; page < info->pages; page++) {
2662 ret = pmbus_identify_common(client, data, page);
2663 if (ret < 0) {
2664 dev_err(dev, "Failed to identify chip capabilities\n");
2665 return ret;
2666 }
2667 }
2668
2669 if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2670 if (!i2c_check_functionality(client->adapter,
2671 I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2672 return -ENODEV;
2673
2674 ret = pmbus_init_coefficients(client, info);
2675 if (ret < 0)
2676 return ret;
2677 }
2678
2679 if (client->flags & I2C_CLIENT_PEC) {
2680 /*
2681 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the
2682 * chip support PEC. Add 'pec' attribute to client device to let
2683 * the user control it.
2684 */
2685 ret = device_create_file(dev, &dev_attr_pec);
2686 if (ret)
2687 return ret;
2688 ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
2689 if (ret)
2690 return ret;
2691 }
2692
2693 return 0;
2694 }
2695
2696 /* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */
2697 struct pmbus_status_assoc {
2698 int pflag, rflag, eflag;
2699 };
2700
2701 /* PMBus->regulator bit mappings for a PMBus status register */
2702 struct pmbus_status_category {
2703 int func;
2704 int reg;
2705 const struct pmbus_status_assoc *bits; /* zero-terminated */
2706 };
2707
2708 static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = {
2709 {
2710 .func = PMBUS_HAVE_STATUS_VOUT,
2711 .reg = PMBUS_STATUS_VOUT,
2712 .bits = (const struct pmbus_status_assoc[]) {
2713 { PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN,
2714 REGULATOR_EVENT_UNDER_VOLTAGE_WARN },
2715 { PB_VOLTAGE_UV_FAULT, REGULATOR_ERROR_UNDER_VOLTAGE,
2716 REGULATOR_EVENT_UNDER_VOLTAGE },
2717 { PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN,
2718 REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2719 { PB_VOLTAGE_OV_FAULT, REGULATOR_ERROR_REGULATION_OUT,
2720 REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2721 { },
2722 },
2723 }, {
2724 .func = PMBUS_HAVE_STATUS_IOUT,
2725 .reg = PMBUS_STATUS_IOUT,
2726 .bits = (const struct pmbus_status_assoc[]) {
2727 { PB_IOUT_OC_WARNING, REGULATOR_ERROR_OVER_CURRENT_WARN,
2728 REGULATOR_EVENT_OVER_CURRENT_WARN },
2729 { PB_IOUT_OC_FAULT, REGULATOR_ERROR_OVER_CURRENT,
2730 REGULATOR_EVENT_OVER_CURRENT },
2731 { PB_IOUT_OC_LV_FAULT, REGULATOR_ERROR_OVER_CURRENT,
2732 REGULATOR_EVENT_OVER_CURRENT },
2733 { },
2734 },
2735 }, {
2736 .func = PMBUS_HAVE_STATUS_TEMP,
2737 .reg = PMBUS_STATUS_TEMPERATURE,
2738 .bits = (const struct pmbus_status_assoc[]) {
2739 { PB_TEMP_OT_WARNING, REGULATOR_ERROR_OVER_TEMP_WARN,
2740 REGULATOR_EVENT_OVER_TEMP_WARN },
2741 { PB_TEMP_OT_FAULT, REGULATOR_ERROR_OVER_TEMP,
2742 REGULATOR_EVENT_OVER_TEMP },
2743 { },
2744 },
2745 },
2746 };
2747
_pmbus_is_enabled(struct i2c_client * client,u8 page)2748 static int _pmbus_is_enabled(struct i2c_client *client, u8 page)
2749 {
2750 int ret;
2751
2752 ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2753
2754 if (ret < 0)
2755 return ret;
2756
2757 return !!(ret & PB_OPERATION_CONTROL_ON);
2758 }
2759
pmbus_is_enabled(struct i2c_client * client,u8 page)2760 static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page)
2761 {
2762 struct pmbus_data *data = i2c_get_clientdata(client);
2763 int ret;
2764
2765 mutex_lock(&data->update_lock);
2766 ret = _pmbus_is_enabled(client, page);
2767 mutex_unlock(&data->update_lock);
2768
2769 return ret;
2770 }
2771
2772 #define to_dev_attr(_dev_attr) \
2773 container_of(_dev_attr, struct device_attribute, attr)
2774
pmbus_notify(struct pmbus_data * data,int page,int reg,int flags)2775 static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags)
2776 {
2777 int i;
2778
2779 for (i = 0; i < data->num_attributes; i++) {
2780 struct device_attribute *da = to_dev_attr(data->group.attrs[i]);
2781 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
2782 int index = attr->index;
2783 u16 smask = pb_index_to_mask(index);
2784 u8 spage = pb_index_to_page(index);
2785 u16 sreg = pb_index_to_reg(index);
2786
2787 if (reg == sreg && page == spage && (smask & flags)) {
2788 dev_dbg(data->dev, "sysfs notify: %s", da->attr.name);
2789 sysfs_notify(&data->dev->kobj, NULL, da->attr.name);
2790 kobject_uevent(&data->dev->kobj, KOBJ_CHANGE);
2791 flags &= ~smask;
2792 }
2793
2794 if (!flags)
2795 break;
2796 }
2797 }
2798
_pmbus_get_flags(struct pmbus_data * data,u8 page,unsigned int * flags,unsigned int * event,bool notify)2799 static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2800 unsigned int *event, bool notify)
2801 {
2802 int i, status;
2803 const struct pmbus_status_category *cat;
2804 const struct pmbus_status_assoc *bit;
2805 struct device *dev = data->dev;
2806 struct i2c_client *client = to_i2c_client(dev);
2807 int func = data->info->func[page];
2808
2809 *flags = 0;
2810 *event = 0;
2811
2812 for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) {
2813 cat = &pmbus_status_flag_map[i];
2814 if (!(func & cat->func))
2815 continue;
2816
2817 status = _pmbus_read_byte_data(client, page, cat->reg);
2818 if (status < 0)
2819 return status;
2820
2821 for (bit = cat->bits; bit->pflag; bit++)
2822 if (status & bit->pflag) {
2823 *flags |= bit->rflag;
2824 *event |= bit->eflag;
2825 }
2826
2827 if (notify && status)
2828 pmbus_notify(data, page, cat->reg, status);
2829
2830 }
2831
2832 /*
2833 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2834 * bits. Some of the other bits are tempting (especially for cases
2835 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2836 * functionality), but there's an unfortunate ambiguity in that
2837 * they're defined as indicating a fault *or* a warning, so we can't
2838 * easily determine whether to report REGULATOR_ERROR_<foo> or
2839 * REGULATOR_ERROR_<foo>_WARN.
2840 */
2841 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2842 if (status < 0)
2843 return status;
2844
2845 if (_pmbus_is_enabled(client, page)) {
2846 if (status & PB_STATUS_OFF) {
2847 *flags |= REGULATOR_ERROR_FAIL;
2848 *event |= REGULATOR_EVENT_FAIL;
2849 }
2850
2851 if (status & PB_STATUS_POWER_GOOD_N) {
2852 *flags |= REGULATOR_ERROR_REGULATION_OUT;
2853 *event |= REGULATOR_EVENT_REGULATION_OUT;
2854 }
2855 }
2856 /*
2857 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2858 * defined strictly as fault indicators (not warnings).
2859 */
2860 if (status & PB_STATUS_IOUT_OC) {
2861 *flags |= REGULATOR_ERROR_OVER_CURRENT;
2862 *event |= REGULATOR_EVENT_OVER_CURRENT;
2863 }
2864 if (status & PB_STATUS_VOUT_OV) {
2865 *flags |= REGULATOR_ERROR_REGULATION_OUT;
2866 *event |= REGULATOR_EVENT_FAIL;
2867 }
2868
2869 /*
2870 * If we haven't discovered any thermal faults or warnings via
2871 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
2872 * a (conservative) best-effort interpretation.
2873 */
2874 if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
2875 (status & PB_STATUS_TEMPERATURE)) {
2876 *flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
2877 *event |= REGULATOR_EVENT_OVER_TEMP_WARN;
2878 }
2879
2880
2881 return 0;
2882 }
2883
pmbus_get_flags(struct pmbus_data * data,u8 page,unsigned int * flags,unsigned int * event,bool notify)2884 static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2885 unsigned int *event, bool notify)
2886 {
2887 int ret;
2888
2889 mutex_lock(&data->update_lock);
2890 ret = _pmbus_get_flags(data, page, flags, event, notify);
2891 mutex_unlock(&data->update_lock);
2892
2893 return ret;
2894 }
2895
2896 #if IS_ENABLED(CONFIG_REGULATOR)
pmbus_regulator_is_enabled(struct regulator_dev * rdev)2897 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2898 {
2899 struct device *dev = rdev_get_dev(rdev);
2900 struct i2c_client *client = to_i2c_client(dev->parent);
2901
2902 return pmbus_is_enabled(client, rdev_get_id(rdev));
2903 }
2904
_pmbus_regulator_on_off(struct regulator_dev * rdev,bool enable)2905 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2906 {
2907 struct device *dev = rdev_get_dev(rdev);
2908 struct i2c_client *client = to_i2c_client(dev->parent);
2909 struct pmbus_data *data = i2c_get_clientdata(client);
2910 u8 page = rdev_get_id(rdev);
2911 int ret;
2912
2913 mutex_lock(&data->update_lock);
2914 ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
2915 PB_OPERATION_CONTROL_ON,
2916 enable ? PB_OPERATION_CONTROL_ON : 0);
2917 mutex_unlock(&data->update_lock);
2918
2919 return ret;
2920 }
2921
pmbus_regulator_enable(struct regulator_dev * rdev)2922 static int pmbus_regulator_enable(struct regulator_dev *rdev)
2923 {
2924 return _pmbus_regulator_on_off(rdev, 1);
2925 }
2926
pmbus_regulator_disable(struct regulator_dev * rdev)2927 static int pmbus_regulator_disable(struct regulator_dev *rdev)
2928 {
2929 return _pmbus_regulator_on_off(rdev, 0);
2930 }
2931
pmbus_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)2932 static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
2933 {
2934 struct device *dev = rdev_get_dev(rdev);
2935 struct i2c_client *client = to_i2c_client(dev->parent);
2936 struct pmbus_data *data = i2c_get_clientdata(client);
2937 int event;
2938
2939 return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false);
2940 }
2941
pmbus_regulator_get_status(struct regulator_dev * rdev)2942 static int pmbus_regulator_get_status(struct regulator_dev *rdev)
2943 {
2944 struct device *dev = rdev_get_dev(rdev);
2945 struct i2c_client *client = to_i2c_client(dev->parent);
2946 struct pmbus_data *data = i2c_get_clientdata(client);
2947 u8 page = rdev_get_id(rdev);
2948 int status, ret;
2949 int event;
2950
2951 mutex_lock(&data->update_lock);
2952 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2953 if (status < 0) {
2954 ret = status;
2955 goto unlock;
2956 }
2957
2958 if (status & PB_STATUS_OFF) {
2959 ret = REGULATOR_STATUS_OFF;
2960 goto unlock;
2961 }
2962
2963 /* If regulator is ON & reports power good then return ON */
2964 if (!(status & PB_STATUS_POWER_GOOD_N)) {
2965 ret = REGULATOR_STATUS_ON;
2966 goto unlock;
2967 }
2968
2969 ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false);
2970 if (ret)
2971 goto unlock;
2972
2973 if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT |
2974 REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) {
2975 ret = REGULATOR_STATUS_ERROR;
2976 goto unlock;
2977 }
2978
2979 ret = REGULATOR_STATUS_UNDEFINED;
2980
2981 unlock:
2982 mutex_unlock(&data->update_lock);
2983 return ret;
2984 }
2985
pmbus_regulator_get_low_margin(struct i2c_client * client,int page)2986 static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
2987 {
2988 struct pmbus_data *data = i2c_get_clientdata(client);
2989 struct pmbus_sensor s = {
2990 .page = page,
2991 .class = PSC_VOLTAGE_OUT,
2992 .convert = true,
2993 .data = -1,
2994 };
2995
2996 if (data->vout_low[page] < 0) {
2997 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
2998 s.data = _pmbus_read_word_data(client, page, 0xff,
2999 PMBUS_MFR_VOUT_MIN);
3000 if (s.data < 0) {
3001 s.data = _pmbus_read_word_data(client, page, 0xff,
3002 PMBUS_VOUT_MARGIN_LOW);
3003 if (s.data < 0)
3004 return s.data;
3005 }
3006 data->vout_low[page] = pmbus_reg2data(data, &s);
3007 }
3008
3009 return data->vout_low[page];
3010 }
3011
pmbus_regulator_get_high_margin(struct i2c_client * client,int page)3012 static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
3013 {
3014 struct pmbus_data *data = i2c_get_clientdata(client);
3015 struct pmbus_sensor s = {
3016 .page = page,
3017 .class = PSC_VOLTAGE_OUT,
3018 .convert = true,
3019 .data = -1,
3020 };
3021
3022 if (data->vout_high[page] < 0) {
3023 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
3024 s.data = _pmbus_read_word_data(client, page, 0xff,
3025 PMBUS_MFR_VOUT_MAX);
3026 if (s.data < 0) {
3027 s.data = _pmbus_read_word_data(client, page, 0xff,
3028 PMBUS_VOUT_MARGIN_HIGH);
3029 if (s.data < 0)
3030 return s.data;
3031 }
3032 data->vout_high[page] = pmbus_reg2data(data, &s);
3033 }
3034
3035 return data->vout_high[page];
3036 }
3037
pmbus_regulator_get_voltage(struct regulator_dev * rdev)3038 static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
3039 {
3040 struct device *dev = rdev_get_dev(rdev);
3041 struct i2c_client *client = to_i2c_client(dev->parent);
3042 struct pmbus_data *data = i2c_get_clientdata(client);
3043 struct pmbus_sensor s = {
3044 .page = rdev_get_id(rdev),
3045 .class = PSC_VOLTAGE_OUT,
3046 .convert = true,
3047 };
3048
3049 s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
3050 if (s.data < 0)
3051 return s.data;
3052
3053 return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
3054 }
3055
pmbus_regulator_set_voltage(struct regulator_dev * rdev,int min_uv,int max_uv,unsigned int * selector)3056 static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
3057 int max_uv, unsigned int *selector)
3058 {
3059 struct device *dev = rdev_get_dev(rdev);
3060 struct i2c_client *client = to_i2c_client(dev->parent);
3061 struct pmbus_data *data = i2c_get_clientdata(client);
3062 struct pmbus_sensor s = {
3063 .page = rdev_get_id(rdev),
3064 .class = PSC_VOLTAGE_OUT,
3065 .convert = true,
3066 .data = -1,
3067 };
3068 int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
3069 int low, high;
3070
3071 *selector = 0;
3072
3073 low = pmbus_regulator_get_low_margin(client, s.page);
3074 if (low < 0)
3075 return low;
3076
3077 high = pmbus_regulator_get_high_margin(client, s.page);
3078 if (high < 0)
3079 return high;
3080
3081 /* Make sure we are within margins */
3082 if (low > val)
3083 val = low;
3084 if (high < val)
3085 val = high;
3086
3087 val = pmbus_data2reg(data, &s, val);
3088
3089 return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
3090 }
3091
pmbus_regulator_list_voltage(struct regulator_dev * rdev,unsigned int selector)3092 static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
3093 unsigned int selector)
3094 {
3095 struct device *dev = rdev_get_dev(rdev);
3096 struct i2c_client *client = to_i2c_client(dev->parent);
3097 int val, low, high;
3098
3099 if (selector >= rdev->desc->n_voltages ||
3100 selector < rdev->desc->linear_min_sel)
3101 return -EINVAL;
3102
3103 selector -= rdev->desc->linear_min_sel;
3104 val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
3105 (rdev->desc->uV_step * selector), 1000); /* convert to mV */
3106
3107 low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev));
3108 if (low < 0)
3109 return low;
3110
3111 high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev));
3112 if (high < 0)
3113 return high;
3114
3115 if (val >= low && val <= high)
3116 return val * 1000; /* unit is uV */
3117
3118 return 0;
3119 }
3120
3121 const struct regulator_ops pmbus_regulator_ops = {
3122 .enable = pmbus_regulator_enable,
3123 .disable = pmbus_regulator_disable,
3124 .is_enabled = pmbus_regulator_is_enabled,
3125 .get_error_flags = pmbus_regulator_get_error_flags,
3126 .get_status = pmbus_regulator_get_status,
3127 .get_voltage = pmbus_regulator_get_voltage,
3128 .set_voltage = pmbus_regulator_set_voltage,
3129 .list_voltage = pmbus_regulator_list_voltage,
3130 };
3131 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS);
3132
pmbus_regulator_register(struct pmbus_data * data)3133 static int pmbus_regulator_register(struct pmbus_data *data)
3134 {
3135 struct device *dev = data->dev;
3136 const struct pmbus_driver_info *info = data->info;
3137 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3138 int i;
3139
3140 data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators,
3141 GFP_KERNEL);
3142 if (!data->rdevs)
3143 return -ENOMEM;
3144
3145 for (i = 0; i < info->num_regulators; i++) {
3146 struct regulator_config config = { };
3147
3148 config.dev = dev;
3149 config.driver_data = data;
3150
3151 if (pdata && pdata->reg_init_data)
3152 config.init_data = &pdata->reg_init_data[i];
3153
3154 data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i],
3155 &config);
3156 if (IS_ERR(data->rdevs[i]))
3157 return dev_err_probe(dev, PTR_ERR(data->rdevs[i]),
3158 "Failed to register %s regulator\n",
3159 info->reg_desc[i].name);
3160 }
3161
3162 return 0;
3163 }
3164
pmbus_regulator_notify(struct pmbus_data * data,int page,int event)3165 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3166 {
3167 int j;
3168
3169 for (j = 0; j < data->info->num_regulators; j++) {
3170 if (page == rdev_get_id(data->rdevs[j])) {
3171 regulator_notifier_call_chain(data->rdevs[j], event, NULL);
3172 break;
3173 }
3174 }
3175 return 0;
3176 }
3177 #else
pmbus_regulator_register(struct pmbus_data * data)3178 static int pmbus_regulator_register(struct pmbus_data *data)
3179 {
3180 return 0;
3181 }
3182
pmbus_regulator_notify(struct pmbus_data * data,int page,int event)3183 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3184 {
3185 return 0;
3186 }
3187 #endif
3188
pmbus_write_smbalert_mask(struct i2c_client * client,u8 page,u8 reg,u8 val)3189 static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val)
3190 {
3191 return pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8));
3192 }
3193
pmbus_fault_handler(int irq,void * pdata)3194 static irqreturn_t pmbus_fault_handler(int irq, void *pdata)
3195 {
3196 struct pmbus_data *data = pdata;
3197 struct i2c_client *client = to_i2c_client(data->dev);
3198
3199 int i, status, event;
3200 mutex_lock(&data->update_lock);
3201 for (i = 0; i < data->info->pages; i++) {
3202 _pmbus_get_flags(data, i, &status, &event, true);
3203
3204 if (event)
3205 pmbus_regulator_notify(data, i, event);
3206 }
3207
3208 pmbus_clear_faults(client);
3209 mutex_unlock(&data->update_lock);
3210
3211 return IRQ_HANDLED;
3212 }
3213
pmbus_irq_setup(struct i2c_client * client,struct pmbus_data * data)3214 static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data)
3215 {
3216 struct device *dev = &client->dev;
3217 const struct pmbus_status_category *cat;
3218 const struct pmbus_status_assoc *bit;
3219 int i, j, err, func;
3220 u8 mask;
3221
3222 static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER,
3223 PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12,
3224 PMBUS_STATUS_FAN_34};
3225
3226 if (!client->irq)
3227 return 0;
3228
3229 for (i = 0; i < data->info->pages; i++) {
3230 func = data->info->func[i];
3231
3232 for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) {
3233 cat = &pmbus_status_flag_map[j];
3234 if (!(func & cat->func))
3235 continue;
3236 mask = 0;
3237 for (bit = cat->bits; bit->pflag; bit++)
3238 mask |= bit->pflag;
3239
3240 err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask);
3241 if (err)
3242 dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n",
3243 cat->reg);
3244 }
3245
3246 for (j = 0; j < ARRAY_SIZE(misc_status); j++)
3247 pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff);
3248 }
3249
3250 /* Register notifiers */
3251 err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler,
3252 IRQF_ONESHOT, "pmbus-irq", data);
3253 if (err) {
3254 dev_err(dev, "failed to request an irq %d\n", err);
3255 return err;
3256 }
3257
3258 return 0;
3259 }
3260
3261 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */
3262
3263 #if IS_ENABLED(CONFIG_DEBUG_FS)
pmbus_debugfs_get(void * data,u64 * val)3264 static int pmbus_debugfs_get(void *data, u64 *val)
3265 {
3266 int rc;
3267 struct pmbus_debugfs_entry *entry = data;
3268 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3269
3270 rc = mutex_lock_interruptible(&pdata->update_lock);
3271 if (rc)
3272 return rc;
3273 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
3274 mutex_unlock(&pdata->update_lock);
3275 if (rc < 0)
3276 return rc;
3277
3278 *val = rc;
3279
3280 return 0;
3281 }
3282 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
3283 "0x%02llx\n");
3284
pmbus_debugfs_get_status(void * data,u64 * val)3285 static int pmbus_debugfs_get_status(void *data, u64 *val)
3286 {
3287 int rc;
3288 struct pmbus_debugfs_entry *entry = data;
3289 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3290
3291 rc = mutex_lock_interruptible(&pdata->update_lock);
3292 if (rc)
3293 return rc;
3294 rc = pdata->read_status(entry->client, entry->page);
3295 mutex_unlock(&pdata->update_lock);
3296 if (rc < 0)
3297 return rc;
3298
3299 *val = rc;
3300
3301 return 0;
3302 }
3303 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
3304 NULL, "0x%04llx\n");
3305
pmbus_debugfs_mfr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3306 static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf,
3307 size_t count, loff_t *ppos)
3308 {
3309 int rc;
3310 struct pmbus_debugfs_entry *entry = file->private_data;
3311 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3312 char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
3313
3314 rc = mutex_lock_interruptible(&pdata->update_lock);
3315 if (rc)
3316 return rc;
3317 rc = pmbus_read_block_data(entry->client, entry->page, entry->reg,
3318 data);
3319 mutex_unlock(&pdata->update_lock);
3320 if (rc < 0)
3321 return rc;
3322
3323 /* Add newline at the end of a read data */
3324 data[rc] = '\n';
3325
3326 /* Include newline into the length */
3327 rc += 1;
3328
3329 return simple_read_from_buffer(buf, count, ppos, data, rc);
3330 }
3331
3332 static const struct file_operations pmbus_debugfs_ops_mfr = {
3333 .llseek = noop_llseek,
3334 .read = pmbus_debugfs_mfr_read,
3335 .write = NULL,
3336 .open = simple_open,
3337 };
3338
pmbus_remove_debugfs(void * data)3339 static void pmbus_remove_debugfs(void *data)
3340 {
3341 struct dentry *entry = data;
3342
3343 debugfs_remove_recursive(entry);
3344 }
3345
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)3346 static int pmbus_init_debugfs(struct i2c_client *client,
3347 struct pmbus_data *data)
3348 {
3349 int i, idx = 0;
3350 char name[PMBUS_NAME_SIZE];
3351 struct pmbus_debugfs_entry *entries;
3352
3353 if (!pmbus_debugfs_dir)
3354 return -ENODEV;
3355
3356 /*
3357 * Create the debugfs directory for this device. Use the hwmon device
3358 * name to avoid conflicts (hwmon numbers are globally unique).
3359 */
3360 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
3361 pmbus_debugfs_dir);
3362 if (IS_ERR_OR_NULL(data->debugfs)) {
3363 data->debugfs = NULL;
3364 return -ENODEV;
3365 }
3366
3367 /*
3368 * Allocate the max possible entries we need.
3369 * 6 entries device-specific
3370 * 10 entries page-specific
3371 */
3372 entries = devm_kcalloc(data->dev,
3373 6 + data->info->pages * 10, sizeof(*entries),
3374 GFP_KERNEL);
3375 if (!entries)
3376 return -ENOMEM;
3377
3378 /*
3379 * Add device-specific entries.
3380 * Please note that the PMBUS standard allows all registers to be
3381 * page-specific.
3382 * To reduce the number of debugfs entries for devices with many pages
3383 * assume that values of the following registers are the same for all
3384 * pages and report values only for page 0.
3385 */
3386 if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) {
3387 entries[idx].client = client;
3388 entries[idx].page = 0;
3389 entries[idx].reg = PMBUS_MFR_ID;
3390 debugfs_create_file("mfr_id", 0444, data->debugfs,
3391 &entries[idx++],
3392 &pmbus_debugfs_ops_mfr);
3393 }
3394
3395 if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) {
3396 entries[idx].client = client;
3397 entries[idx].page = 0;
3398 entries[idx].reg = PMBUS_MFR_MODEL;
3399 debugfs_create_file("mfr_model", 0444, data->debugfs,
3400 &entries[idx++],
3401 &pmbus_debugfs_ops_mfr);
3402 }
3403
3404 if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) {
3405 entries[idx].client = client;
3406 entries[idx].page = 0;
3407 entries[idx].reg = PMBUS_MFR_REVISION;
3408 debugfs_create_file("mfr_revision", 0444, data->debugfs,
3409 &entries[idx++],
3410 &pmbus_debugfs_ops_mfr);
3411 }
3412
3413 if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) {
3414 entries[idx].client = client;
3415 entries[idx].page = 0;
3416 entries[idx].reg = PMBUS_MFR_LOCATION;
3417 debugfs_create_file("mfr_location", 0444, data->debugfs,
3418 &entries[idx++],
3419 &pmbus_debugfs_ops_mfr);
3420 }
3421
3422 if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) {
3423 entries[idx].client = client;
3424 entries[idx].page = 0;
3425 entries[idx].reg = PMBUS_MFR_DATE;
3426 debugfs_create_file("mfr_date", 0444, data->debugfs,
3427 &entries[idx++],
3428 &pmbus_debugfs_ops_mfr);
3429 }
3430
3431 if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) {
3432 entries[idx].client = client;
3433 entries[idx].page = 0;
3434 entries[idx].reg = PMBUS_MFR_SERIAL;
3435 debugfs_create_file("mfr_serial", 0444, data->debugfs,
3436 &entries[idx++],
3437 &pmbus_debugfs_ops_mfr);
3438 }
3439
3440 /* Add page specific entries */
3441 for (i = 0; i < data->info->pages; ++i) {
3442 /* Check accessibility of status register if it's not page 0 */
3443 if (!i || pmbus_check_status_register(client, i)) {
3444 /* No need to set reg as we have special read op. */
3445 entries[idx].client = client;
3446 entries[idx].page = i;
3447 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
3448 debugfs_create_file(name, 0444, data->debugfs,
3449 &entries[idx++],
3450 &pmbus_debugfs_ops_status);
3451 }
3452
3453 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
3454 entries[idx].client = client;
3455 entries[idx].page = i;
3456 entries[idx].reg = PMBUS_STATUS_VOUT;
3457 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
3458 debugfs_create_file(name, 0444, data->debugfs,
3459 &entries[idx++],
3460 &pmbus_debugfs_ops);
3461 }
3462
3463 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
3464 entries[idx].client = client;
3465 entries[idx].page = i;
3466 entries[idx].reg = PMBUS_STATUS_IOUT;
3467 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
3468 debugfs_create_file(name, 0444, data->debugfs,
3469 &entries[idx++],
3470 &pmbus_debugfs_ops);
3471 }
3472
3473 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
3474 entries[idx].client = client;
3475 entries[idx].page = i;
3476 entries[idx].reg = PMBUS_STATUS_INPUT;
3477 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
3478 debugfs_create_file(name, 0444, data->debugfs,
3479 &entries[idx++],
3480 &pmbus_debugfs_ops);
3481 }
3482
3483 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
3484 entries[idx].client = client;
3485 entries[idx].page = i;
3486 entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
3487 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
3488 debugfs_create_file(name, 0444, data->debugfs,
3489 &entries[idx++],
3490 &pmbus_debugfs_ops);
3491 }
3492
3493 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
3494 entries[idx].client = client;
3495 entries[idx].page = i;
3496 entries[idx].reg = PMBUS_STATUS_CML;
3497 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
3498 debugfs_create_file(name, 0444, data->debugfs,
3499 &entries[idx++],
3500 &pmbus_debugfs_ops);
3501 }
3502
3503 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
3504 entries[idx].client = client;
3505 entries[idx].page = i;
3506 entries[idx].reg = PMBUS_STATUS_OTHER;
3507 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
3508 debugfs_create_file(name, 0444, data->debugfs,
3509 &entries[idx++],
3510 &pmbus_debugfs_ops);
3511 }
3512
3513 if (pmbus_check_byte_register(client, i,
3514 PMBUS_STATUS_MFR_SPECIFIC)) {
3515 entries[idx].client = client;
3516 entries[idx].page = i;
3517 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
3518 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
3519 debugfs_create_file(name, 0444, data->debugfs,
3520 &entries[idx++],
3521 &pmbus_debugfs_ops);
3522 }
3523
3524 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
3525 entries[idx].client = client;
3526 entries[idx].page = i;
3527 entries[idx].reg = PMBUS_STATUS_FAN_12;
3528 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
3529 debugfs_create_file(name, 0444, data->debugfs,
3530 &entries[idx++],
3531 &pmbus_debugfs_ops);
3532 }
3533
3534 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
3535 entries[idx].client = client;
3536 entries[idx].page = i;
3537 entries[idx].reg = PMBUS_STATUS_FAN_34;
3538 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
3539 debugfs_create_file(name, 0444, data->debugfs,
3540 &entries[idx++],
3541 &pmbus_debugfs_ops);
3542 }
3543 }
3544
3545 return devm_add_action_or_reset(data->dev,
3546 pmbus_remove_debugfs, data->debugfs);
3547 }
3548 #else
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)3549 static int pmbus_init_debugfs(struct i2c_client *client,
3550 struct pmbus_data *data)
3551 {
3552 return 0;
3553 }
3554 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */
3555
pmbus_do_probe(struct i2c_client * client,struct pmbus_driver_info * info)3556 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
3557 {
3558 struct device *dev = &client->dev;
3559 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3560 struct pmbus_data *data;
3561 size_t groups_num = 0;
3562 int ret;
3563 int i;
3564 char *name;
3565
3566 if (!info)
3567 return -ENODEV;
3568
3569 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
3570 | I2C_FUNC_SMBUS_BYTE_DATA
3571 | I2C_FUNC_SMBUS_WORD_DATA))
3572 return -ENODEV;
3573
3574 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
3575 if (!data)
3576 return -ENOMEM;
3577
3578 if (info->groups)
3579 while (info->groups[groups_num])
3580 groups_num++;
3581
3582 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
3583 GFP_KERNEL);
3584 if (!data->groups)
3585 return -ENOMEM;
3586
3587 i2c_set_clientdata(client, data);
3588 mutex_init(&data->update_lock);
3589 data->dev = dev;
3590
3591 if (pdata)
3592 data->flags = pdata->flags;
3593 data->info = info;
3594 data->currpage = -1;
3595 data->currphase = -1;
3596
3597 for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
3598 data->vout_low[i] = -1;
3599 data->vout_high[i] = -1;
3600 }
3601
3602 ret = pmbus_init_common(client, data, info);
3603 if (ret < 0)
3604 return ret;
3605
3606 ret = pmbus_find_attributes(client, data);
3607 if (ret)
3608 return ret;
3609
3610 /*
3611 * If there are no attributes, something is wrong.
3612 * Bail out instead of trying to register nothing.
3613 */
3614 if (!data->num_attributes) {
3615 dev_err(dev, "No attributes found\n");
3616 return -ENODEV;
3617 }
3618
3619 name = devm_kstrdup(dev, client->name, GFP_KERNEL);
3620 if (!name)
3621 return -ENOMEM;
3622 strreplace(name, '-', '_');
3623
3624 data->groups[0] = &data->group;
3625 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3626 data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
3627 name, data, data->groups);
3628 if (IS_ERR(data->hwmon_dev)) {
3629 dev_err(dev, "Failed to register hwmon device\n");
3630 return PTR_ERR(data->hwmon_dev);
3631 }
3632
3633 ret = pmbus_regulator_register(data);
3634 if (ret)
3635 return ret;
3636
3637 ret = pmbus_irq_setup(client, data);
3638 if (ret)
3639 return ret;
3640
3641 ret = pmbus_init_debugfs(client, data);
3642 if (ret)
3643 dev_warn(dev, "Failed to register debugfs\n");
3644
3645 return 0;
3646 }
3647 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS);
3648
pmbus_get_debugfs_dir(struct i2c_client * client)3649 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3650 {
3651 struct pmbus_data *data = i2c_get_clientdata(client);
3652
3653 return data->debugfs;
3654 }
3655 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS);
3656
pmbus_lock_interruptible(struct i2c_client * client)3657 int pmbus_lock_interruptible(struct i2c_client *client)
3658 {
3659 struct pmbus_data *data = i2c_get_clientdata(client);
3660
3661 return mutex_lock_interruptible(&data->update_lock);
3662 }
3663 EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, PMBUS);
3664
pmbus_unlock(struct i2c_client * client)3665 void pmbus_unlock(struct i2c_client *client)
3666 {
3667 struct pmbus_data *data = i2c_get_clientdata(client);
3668
3669 mutex_unlock(&data->update_lock);
3670 }
3671 EXPORT_SYMBOL_NS_GPL(pmbus_unlock, PMBUS);
3672
pmbus_core_init(void)3673 static int __init pmbus_core_init(void)
3674 {
3675 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
3676 if (IS_ERR(pmbus_debugfs_dir))
3677 pmbus_debugfs_dir = NULL;
3678
3679 return 0;
3680 }
3681
pmbus_core_exit(void)3682 static void __exit pmbus_core_exit(void)
3683 {
3684 debugfs_remove_recursive(pmbus_debugfs_dir);
3685 }
3686
3687 module_init(pmbus_core_init);
3688 module_exit(pmbus_core_exit);
3689
3690 MODULE_AUTHOR("Guenter Roeck");
3691 MODULE_DESCRIPTION("PMBus core driver");
3692 MODULE_LICENSE("GPL");
3693