1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Hardware monitoring driver for PMBus devices
4 *
5 * Copyright (c) 2010, 2011 Ericsson AB.
6 * Copyright (c) 2012 Guenter Roeck
7 */
8
9 #include <linux/debugfs.h>
10 #include <linux/kernel.h>
11 #include <linux/math64.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/err.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/hwmon.h>
18 #include <linux/hwmon-sysfs.h>
19 #include <linux/pmbus.h>
20 #include <linux/regulator/driver.h>
21 #include <linux/regulator/machine.h>
22 #include <linux/of.h>
23 #include <linux/thermal.h>
24 #include "pmbus.h"
25
26 /*
27 * Number of additional attribute pointers to allocate
28 * with each call to krealloc
29 */
30 #define PMBUS_ATTR_ALLOC_SIZE 32
31 #define PMBUS_NAME_SIZE 24
32
33 struct pmbus_sensor {
34 struct pmbus_sensor *next;
35 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
36 struct device_attribute attribute;
37 u8 page; /* page number */
38 u8 phase; /* phase number, 0xff for all phases */
39 u16 reg; /* register */
40 enum pmbus_sensor_classes class; /* sensor class */
41 bool update; /* runtime sensor update needed */
42 bool convert; /* Whether or not to apply linear/vid/direct */
43 int data; /* Sensor data.
44 Negative if there was a read error */
45 };
46 #define to_pmbus_sensor(_attr) \
47 container_of(_attr, struct pmbus_sensor, attribute)
48
49 struct pmbus_boolean {
50 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
51 struct sensor_device_attribute attribute;
52 struct pmbus_sensor *s1;
53 struct pmbus_sensor *s2;
54 };
55 #define to_pmbus_boolean(_attr) \
56 container_of(_attr, struct pmbus_boolean, attribute)
57
58 struct pmbus_label {
59 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
60 struct device_attribute attribute;
61 char label[PMBUS_NAME_SIZE]; /* label */
62 };
63 #define to_pmbus_label(_attr) \
64 container_of(_attr, struct pmbus_label, attribute)
65
66 /* Macros for converting between sensor index and register/page/status mask */
67
68 #define PB_STATUS_MASK 0xffff
69 #define PB_REG_SHIFT 16
70 #define PB_REG_MASK 0x3ff
71 #define PB_PAGE_SHIFT 26
72 #define PB_PAGE_MASK 0x3f
73
74 #define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \
75 ((reg) << PB_REG_SHIFT) | (mask))
76
77 #define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
78 #define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK)
79 #define pb_index_to_mask(index) ((index) & PB_STATUS_MASK)
80
81 struct pmbus_data {
82 struct device *dev;
83 struct device *hwmon_dev;
84
85 u32 flags; /* from platform data */
86
87 int exponent[PMBUS_PAGES];
88 /* linear mode: exponent for output voltages */
89
90 const struct pmbus_driver_info *info;
91
92 int max_attributes;
93 int num_attributes;
94 struct attribute_group group;
95 const struct attribute_group **groups;
96 struct dentry *debugfs; /* debugfs device directory */
97
98 struct pmbus_sensor *sensors;
99
100 struct mutex update_lock;
101
102 bool has_status_word; /* device uses STATUS_WORD register */
103 int (*read_status)(struct i2c_client *client, int page);
104
105 s16 currpage; /* current page, -1 for unknown/unset */
106 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */
107
108 int vout_low[PMBUS_PAGES]; /* voltage low margin */
109 int vout_high[PMBUS_PAGES]; /* voltage high margin */
110 };
111
112 struct pmbus_debugfs_entry {
113 struct i2c_client *client;
114 u8 page;
115 u8 reg;
116 };
117
118 static const int pmbus_fan_rpm_mask[] = {
119 PB_FAN_1_RPM,
120 PB_FAN_2_RPM,
121 PB_FAN_1_RPM,
122 PB_FAN_2_RPM,
123 };
124
125 static const int pmbus_fan_config_registers[] = {
126 PMBUS_FAN_CONFIG_12,
127 PMBUS_FAN_CONFIG_12,
128 PMBUS_FAN_CONFIG_34,
129 PMBUS_FAN_CONFIG_34
130 };
131
132 static const int pmbus_fan_command_registers[] = {
133 PMBUS_FAN_COMMAND_1,
134 PMBUS_FAN_COMMAND_2,
135 PMBUS_FAN_COMMAND_3,
136 PMBUS_FAN_COMMAND_4,
137 };
138
pmbus_clear_cache(struct i2c_client * client)139 void pmbus_clear_cache(struct i2c_client *client)
140 {
141 struct pmbus_data *data = i2c_get_clientdata(client);
142 struct pmbus_sensor *sensor;
143
144 for (sensor = data->sensors; sensor; sensor = sensor->next)
145 sensor->data = -ENODATA;
146 }
147 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS);
148
pmbus_set_update(struct i2c_client * client,u8 reg,bool update)149 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
150 {
151 struct pmbus_data *data = i2c_get_clientdata(client);
152 struct pmbus_sensor *sensor;
153
154 for (sensor = data->sensors; sensor; sensor = sensor->next)
155 if (sensor->reg == reg)
156 sensor->update = update;
157 }
158 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS);
159
pmbus_set_page(struct i2c_client * client,int page,int phase)160 int pmbus_set_page(struct i2c_client *client, int page, int phase)
161 {
162 struct pmbus_data *data = i2c_get_clientdata(client);
163 int rv;
164
165 if (page < 0)
166 return 0;
167
168 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
169 data->info->pages > 1 && page != data->currpage) {
170 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
171 if (rv < 0)
172 return rv;
173
174 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
175 if (rv < 0)
176 return rv;
177
178 if (rv != page)
179 return -EIO;
180 }
181 data->currpage = page;
182
183 if (data->info->phases[page] && data->currphase != phase &&
184 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
185 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
186 phase);
187 if (rv)
188 return rv;
189 }
190 data->currphase = phase;
191
192 return 0;
193 }
194 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS);
195
pmbus_write_byte(struct i2c_client * client,int page,u8 value)196 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
197 {
198 int rv;
199
200 rv = pmbus_set_page(client, page, 0xff);
201 if (rv < 0)
202 return rv;
203
204 return i2c_smbus_write_byte(client, value);
205 }
206 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS);
207
208 /*
209 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
210 * a device specific mapping function exists and calls it if necessary.
211 */
_pmbus_write_byte(struct i2c_client * client,int page,u8 value)212 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
213 {
214 struct pmbus_data *data = i2c_get_clientdata(client);
215 const struct pmbus_driver_info *info = data->info;
216 int status;
217
218 if (info->write_byte) {
219 status = info->write_byte(client, page, value);
220 if (status != -ENODATA)
221 return status;
222 }
223 return pmbus_write_byte(client, page, value);
224 }
225
pmbus_write_word_data(struct i2c_client * client,int page,u8 reg,u16 word)226 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
227 u16 word)
228 {
229 int rv;
230
231 rv = pmbus_set_page(client, page, 0xff);
232 if (rv < 0)
233 return rv;
234
235 return i2c_smbus_write_word_data(client, reg, word);
236 }
237 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS);
238
239
pmbus_write_virt_reg(struct i2c_client * client,int page,int reg,u16 word)240 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
241 u16 word)
242 {
243 int bit;
244 int id;
245 int rv;
246
247 switch (reg) {
248 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
249 id = reg - PMBUS_VIRT_FAN_TARGET_1;
250 bit = pmbus_fan_rpm_mask[id];
251 rv = pmbus_update_fan(client, page, id, bit, bit, word);
252 break;
253 default:
254 rv = -ENXIO;
255 break;
256 }
257
258 return rv;
259 }
260
261 /*
262 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
263 * a device specific mapping function exists and calls it if necessary.
264 */
_pmbus_write_word_data(struct i2c_client * client,int page,int reg,u16 word)265 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
266 u16 word)
267 {
268 struct pmbus_data *data = i2c_get_clientdata(client);
269 const struct pmbus_driver_info *info = data->info;
270 int status;
271
272 if (info->write_word_data) {
273 status = info->write_word_data(client, page, reg, word);
274 if (status != -ENODATA)
275 return status;
276 }
277
278 if (reg >= PMBUS_VIRT_BASE)
279 return pmbus_write_virt_reg(client, page, reg, word);
280
281 return pmbus_write_word_data(client, page, reg, word);
282 }
283
284 /*
285 * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
286 * a device specific mapping function exists and calls it if necessary.
287 */
_pmbus_write_byte_data(struct i2c_client * client,int page,int reg,u8 value)288 static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
289 {
290 struct pmbus_data *data = i2c_get_clientdata(client);
291 const struct pmbus_driver_info *info = data->info;
292 int status;
293
294 if (info->write_byte_data) {
295 status = info->write_byte_data(client, page, reg, value);
296 if (status != -ENODATA)
297 return status;
298 }
299 return pmbus_write_byte_data(client, page, reg, value);
300 }
301
302 /*
303 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
304 * a device specific mapping function exists and calls it if necessary.
305 */
_pmbus_read_byte_data(struct i2c_client * client,int page,int reg)306 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
307 {
308 struct pmbus_data *data = i2c_get_clientdata(client);
309 const struct pmbus_driver_info *info = data->info;
310 int status;
311
312 if (info->read_byte_data) {
313 status = info->read_byte_data(client, page, reg);
314 if (status != -ENODATA)
315 return status;
316 }
317 return pmbus_read_byte_data(client, page, reg);
318 }
319
pmbus_update_fan(struct i2c_client * client,int page,int id,u8 config,u8 mask,u16 command)320 int pmbus_update_fan(struct i2c_client *client, int page, int id,
321 u8 config, u8 mask, u16 command)
322 {
323 int from;
324 int rv;
325 u8 to;
326
327 from = _pmbus_read_byte_data(client, page,
328 pmbus_fan_config_registers[id]);
329 if (from < 0)
330 return from;
331
332 to = (from & ~mask) | (config & mask);
333 if (to != from) {
334 rv = _pmbus_write_byte_data(client, page,
335 pmbus_fan_config_registers[id], to);
336 if (rv < 0)
337 return rv;
338 }
339
340 return _pmbus_write_word_data(client, page,
341 pmbus_fan_command_registers[id], command);
342 }
343 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS);
344
pmbus_read_word_data(struct i2c_client * client,int page,int phase,u8 reg)345 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
346 {
347 int rv;
348
349 rv = pmbus_set_page(client, page, phase);
350 if (rv < 0)
351 return rv;
352
353 return i2c_smbus_read_word_data(client, reg);
354 }
355 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS);
356
pmbus_read_virt_reg(struct i2c_client * client,int page,int reg)357 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
358 {
359 int rv;
360 int id;
361
362 switch (reg) {
363 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
364 id = reg - PMBUS_VIRT_FAN_TARGET_1;
365 rv = pmbus_get_fan_rate_device(client, page, id, rpm);
366 break;
367 default:
368 rv = -ENXIO;
369 break;
370 }
371
372 return rv;
373 }
374
375 /*
376 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
377 * a device specific mapping function exists and calls it if necessary.
378 */
_pmbus_read_word_data(struct i2c_client * client,int page,int phase,int reg)379 static int _pmbus_read_word_data(struct i2c_client *client, int page,
380 int phase, int reg)
381 {
382 struct pmbus_data *data = i2c_get_clientdata(client);
383 const struct pmbus_driver_info *info = data->info;
384 int status;
385
386 if (info->read_word_data) {
387 status = info->read_word_data(client, page, phase, reg);
388 if (status != -ENODATA)
389 return status;
390 }
391
392 if (reg >= PMBUS_VIRT_BASE)
393 return pmbus_read_virt_reg(client, page, reg);
394
395 return pmbus_read_word_data(client, page, phase, reg);
396 }
397
398 /* Same as above, but without phase parameter, for use in check functions */
__pmbus_read_word_data(struct i2c_client * client,int page,int reg)399 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
400 {
401 return _pmbus_read_word_data(client, page, 0xff, reg);
402 }
403
pmbus_read_byte_data(struct i2c_client * client,int page,u8 reg)404 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
405 {
406 int rv;
407
408 rv = pmbus_set_page(client, page, 0xff);
409 if (rv < 0)
410 return rv;
411
412 return i2c_smbus_read_byte_data(client, reg);
413 }
414 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS);
415
pmbus_write_byte_data(struct i2c_client * client,int page,u8 reg,u8 value)416 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
417 {
418 int rv;
419
420 rv = pmbus_set_page(client, page, 0xff);
421 if (rv < 0)
422 return rv;
423
424 return i2c_smbus_write_byte_data(client, reg, value);
425 }
426 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS);
427
pmbus_update_byte_data(struct i2c_client * client,int page,u8 reg,u8 mask,u8 value)428 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
429 u8 mask, u8 value)
430 {
431 unsigned int tmp;
432 int rv;
433
434 rv = _pmbus_read_byte_data(client, page, reg);
435 if (rv < 0)
436 return rv;
437
438 tmp = (rv & ~mask) | (value & mask);
439
440 if (tmp != rv)
441 rv = _pmbus_write_byte_data(client, page, reg, tmp);
442
443 return rv;
444 }
445 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS);
446
pmbus_read_block_data(struct i2c_client * client,int page,u8 reg,char * data_buf)447 static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
448 char *data_buf)
449 {
450 int rv;
451
452 rv = pmbus_set_page(client, page, 0xff);
453 if (rv < 0)
454 return rv;
455
456 return i2c_smbus_read_block_data(client, reg, data_buf);
457 }
458
pmbus_find_sensor(struct pmbus_data * data,int page,int reg)459 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
460 int reg)
461 {
462 struct pmbus_sensor *sensor;
463
464 for (sensor = data->sensors; sensor; sensor = sensor->next) {
465 if (sensor->page == page && sensor->reg == reg)
466 return sensor;
467 }
468
469 return ERR_PTR(-EINVAL);
470 }
471
pmbus_get_fan_rate(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode,bool from_cache)472 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
473 enum pmbus_fan_mode mode,
474 bool from_cache)
475 {
476 struct pmbus_data *data = i2c_get_clientdata(client);
477 bool want_rpm, have_rpm;
478 struct pmbus_sensor *s;
479 int config;
480 int reg;
481
482 want_rpm = (mode == rpm);
483
484 if (from_cache) {
485 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
486 s = pmbus_find_sensor(data, page, reg + id);
487 if (IS_ERR(s))
488 return PTR_ERR(s);
489
490 return s->data;
491 }
492
493 config = _pmbus_read_byte_data(client, page,
494 pmbus_fan_config_registers[id]);
495 if (config < 0)
496 return config;
497
498 have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
499 if (want_rpm == have_rpm)
500 return pmbus_read_word_data(client, page, 0xff,
501 pmbus_fan_command_registers[id]);
502
503 /* Can't sensibly map between RPM and PWM, just return zero */
504 return 0;
505 }
506
pmbus_get_fan_rate_device(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)507 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
508 enum pmbus_fan_mode mode)
509 {
510 return pmbus_get_fan_rate(client, page, id, mode, false);
511 }
512 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS);
513
pmbus_get_fan_rate_cached(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)514 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
515 enum pmbus_fan_mode mode)
516 {
517 return pmbus_get_fan_rate(client, page, id, mode, true);
518 }
519 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS);
520
pmbus_clear_fault_page(struct i2c_client * client,int page)521 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
522 {
523 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
524 }
525
pmbus_clear_faults(struct i2c_client * client)526 void pmbus_clear_faults(struct i2c_client *client)
527 {
528 struct pmbus_data *data = i2c_get_clientdata(client);
529 int i;
530
531 for (i = 0; i < data->info->pages; i++)
532 pmbus_clear_fault_page(client, i);
533 }
534 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS);
535
pmbus_check_status_cml(struct i2c_client * client)536 static int pmbus_check_status_cml(struct i2c_client *client)
537 {
538 struct pmbus_data *data = i2c_get_clientdata(client);
539 int status, status2;
540
541 status = data->read_status(client, -1);
542 if (status < 0 || (status & PB_STATUS_CML)) {
543 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
544 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
545 return -EIO;
546 }
547 return 0;
548 }
549
pmbus_check_register(struct i2c_client * client,int (* func)(struct i2c_client * client,int page,int reg),int page,int reg)550 static bool pmbus_check_register(struct i2c_client *client,
551 int (*func)(struct i2c_client *client,
552 int page, int reg),
553 int page, int reg)
554 {
555 int rv;
556 struct pmbus_data *data = i2c_get_clientdata(client);
557
558 rv = func(client, page, reg);
559 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
560 rv = pmbus_check_status_cml(client);
561 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
562 data->read_status(client, -1);
563 pmbus_clear_fault_page(client, -1);
564 return rv >= 0;
565 }
566
pmbus_check_status_register(struct i2c_client * client,int page)567 static bool pmbus_check_status_register(struct i2c_client *client, int page)
568 {
569 int status;
570 struct pmbus_data *data = i2c_get_clientdata(client);
571
572 status = data->read_status(client, page);
573 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
574 (status & PB_STATUS_CML)) {
575 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
576 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
577 status = -EIO;
578 }
579
580 pmbus_clear_fault_page(client, -1);
581 return status >= 0;
582 }
583
pmbus_check_byte_register(struct i2c_client * client,int page,int reg)584 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
585 {
586 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
587 }
588 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS);
589
pmbus_check_word_register(struct i2c_client * client,int page,int reg)590 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
591 {
592 return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
593 }
594 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS);
595
pmbus_check_block_register(struct i2c_client * client,int page,int reg)596 static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
597 int page, int reg)
598 {
599 int rv;
600 struct pmbus_data *data = i2c_get_clientdata(client);
601 char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
602
603 rv = pmbus_read_block_data(client, page, reg, data_buf);
604 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
605 rv = pmbus_check_status_cml(client);
606 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
607 data->read_status(client, -1);
608 pmbus_clear_fault_page(client, -1);
609 return rv >= 0;
610 }
611
pmbus_get_driver_info(struct i2c_client * client)612 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
613 {
614 struct pmbus_data *data = i2c_get_clientdata(client);
615
616 return data->info;
617 }
618 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS);
619
pmbus_get_status(struct i2c_client * client,int page,int reg)620 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
621 {
622 struct pmbus_data *data = i2c_get_clientdata(client);
623 int status;
624
625 switch (reg) {
626 case PMBUS_STATUS_WORD:
627 status = data->read_status(client, page);
628 break;
629 default:
630 status = _pmbus_read_byte_data(client, page, reg);
631 break;
632 }
633 if (status < 0)
634 pmbus_clear_faults(client);
635 return status;
636 }
637
pmbus_update_sensor_data(struct i2c_client * client,struct pmbus_sensor * sensor)638 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
639 {
640 if (sensor->data < 0 || sensor->update)
641 sensor->data = _pmbus_read_word_data(client, sensor->page,
642 sensor->phase, sensor->reg);
643 }
644
645 /*
646 * Convert ieee754 sensor values to milli- or micro-units
647 * depending on sensor type.
648 *
649 * ieee754 data format:
650 * bit 15: sign
651 * bit 10..14: exponent
652 * bit 0..9: mantissa
653 * exponent=0:
654 * v=(−1)^signbit * 2^(−14) * 0.significantbits
655 * exponent=1..30:
656 * v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
657 * exponent=31:
658 * v=NaN
659 *
660 * Add the number mantissa bits into the calculations for simplicity.
661 * To do that, add '10' to the exponent. By doing that, we can just add
662 * 0x400 to normal values and get the expected result.
663 */
pmbus_reg2data_ieee754(struct pmbus_data * data,struct pmbus_sensor * sensor)664 static long pmbus_reg2data_ieee754(struct pmbus_data *data,
665 struct pmbus_sensor *sensor)
666 {
667 int exponent;
668 bool sign;
669 long val;
670
671 /* only support half precision for now */
672 sign = sensor->data & 0x8000;
673 exponent = (sensor->data >> 10) & 0x1f;
674 val = sensor->data & 0x3ff;
675
676 if (exponent == 0) { /* subnormal */
677 exponent = -(14 + 10);
678 } else if (exponent == 0x1f) { /* NaN, convert to min/max */
679 exponent = 0;
680 val = 65504;
681 } else {
682 exponent -= (15 + 10); /* normal */
683 val |= 0x400;
684 }
685
686 /* scale result to milli-units for all sensors except fans */
687 if (sensor->class != PSC_FAN)
688 val = val * 1000L;
689
690 /* scale result to micro-units for power sensors */
691 if (sensor->class == PSC_POWER)
692 val = val * 1000L;
693
694 if (exponent >= 0)
695 val <<= exponent;
696 else
697 val >>= -exponent;
698
699 if (sign)
700 val = -val;
701
702 return val;
703 }
704
705 /*
706 * Convert linear sensor values to milli- or micro-units
707 * depending on sensor type.
708 */
pmbus_reg2data_linear(struct pmbus_data * data,struct pmbus_sensor * sensor)709 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
710 struct pmbus_sensor *sensor)
711 {
712 s16 exponent;
713 s32 mantissa;
714 s64 val;
715
716 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
717 exponent = data->exponent[sensor->page];
718 mantissa = (u16) sensor->data;
719 } else { /* LINEAR11 */
720 exponent = ((s16)sensor->data) >> 11;
721 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
722 }
723
724 val = mantissa;
725
726 /* scale result to milli-units for all sensors except fans */
727 if (sensor->class != PSC_FAN)
728 val = val * 1000LL;
729
730 /* scale result to micro-units for power sensors */
731 if (sensor->class == PSC_POWER)
732 val = val * 1000LL;
733
734 if (exponent >= 0)
735 val <<= exponent;
736 else
737 val >>= -exponent;
738
739 return val;
740 }
741
742 /*
743 * Convert direct sensor values to milli- or micro-units
744 * depending on sensor type.
745 */
pmbus_reg2data_direct(struct pmbus_data * data,struct pmbus_sensor * sensor)746 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
747 struct pmbus_sensor *sensor)
748 {
749 s64 b, val = (s16)sensor->data;
750 s32 m, R;
751
752 m = data->info->m[sensor->class];
753 b = data->info->b[sensor->class];
754 R = data->info->R[sensor->class];
755
756 if (m == 0)
757 return 0;
758
759 /* X = 1/m * (Y * 10^-R - b) */
760 R = -R;
761 /* scale result to milli-units for everything but fans */
762 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
763 R += 3;
764 b *= 1000;
765 }
766
767 /* scale result to micro-units for power sensors */
768 if (sensor->class == PSC_POWER) {
769 R += 3;
770 b *= 1000;
771 }
772
773 while (R > 0) {
774 val *= 10;
775 R--;
776 }
777 while (R < 0) {
778 val = div_s64(val + 5LL, 10L); /* round closest */
779 R++;
780 }
781
782 val = div_s64(val - b, m);
783 return val;
784 }
785
786 /*
787 * Convert VID sensor values to milli- or micro-units
788 * depending on sensor type.
789 */
pmbus_reg2data_vid(struct pmbus_data * data,struct pmbus_sensor * sensor)790 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
791 struct pmbus_sensor *sensor)
792 {
793 long val = sensor->data;
794 long rv = 0;
795
796 switch (data->info->vrm_version[sensor->page]) {
797 case vr11:
798 if (val >= 0x02 && val <= 0xb2)
799 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
800 break;
801 case vr12:
802 if (val >= 0x01)
803 rv = 250 + (val - 1) * 5;
804 break;
805 case vr13:
806 if (val >= 0x01)
807 rv = 500 + (val - 1) * 10;
808 break;
809 case imvp9:
810 if (val >= 0x01)
811 rv = 200 + (val - 1) * 10;
812 break;
813 case amd625mv:
814 if (val >= 0x0 && val <= 0xd8)
815 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
816 break;
817 }
818 return rv;
819 }
820
pmbus_reg2data(struct pmbus_data * data,struct pmbus_sensor * sensor)821 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
822 {
823 s64 val;
824
825 if (!sensor->convert)
826 return sensor->data;
827
828 switch (data->info->format[sensor->class]) {
829 case direct:
830 val = pmbus_reg2data_direct(data, sensor);
831 break;
832 case vid:
833 val = pmbus_reg2data_vid(data, sensor);
834 break;
835 case ieee754:
836 val = pmbus_reg2data_ieee754(data, sensor);
837 break;
838 case linear:
839 default:
840 val = pmbus_reg2data_linear(data, sensor);
841 break;
842 }
843 return val;
844 }
845
846 #define MAX_IEEE_MANTISSA (0x7ff * 1000)
847 #define MIN_IEEE_MANTISSA (0x400 * 1000)
848
pmbus_data2reg_ieee754(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)849 static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
850 struct pmbus_sensor *sensor, long val)
851 {
852 u16 exponent = (15 + 10);
853 long mantissa;
854 u16 sign = 0;
855
856 /* simple case */
857 if (val == 0)
858 return 0;
859
860 if (val < 0) {
861 sign = 0x8000;
862 val = -val;
863 }
864
865 /* Power is in uW. Convert to mW before converting. */
866 if (sensor->class == PSC_POWER)
867 val = DIV_ROUND_CLOSEST(val, 1000L);
868
869 /*
870 * For simplicity, convert fan data to milli-units
871 * before calculating the exponent.
872 */
873 if (sensor->class == PSC_FAN)
874 val = val * 1000;
875
876 /* Reduce large mantissa until it fits into 10 bit */
877 while (val > MAX_IEEE_MANTISSA && exponent < 30) {
878 exponent++;
879 val >>= 1;
880 }
881 /*
882 * Increase small mantissa to generate valid 'normal'
883 * number
884 */
885 while (val < MIN_IEEE_MANTISSA && exponent > 1) {
886 exponent--;
887 val <<= 1;
888 }
889
890 /* Convert mantissa from milli-units to units */
891 mantissa = DIV_ROUND_CLOSEST(val, 1000);
892
893 /*
894 * Ensure that the resulting number is within range.
895 * Valid range is 0x400..0x7ff, where bit 10 reflects
896 * the implied high bit in normalized ieee754 numbers.
897 * Set the range to 0x400..0x7ff to reflect this.
898 * The upper bit is then removed by the mask against
899 * 0x3ff in the final assignment.
900 */
901 if (mantissa > 0x7ff)
902 mantissa = 0x7ff;
903 else if (mantissa < 0x400)
904 mantissa = 0x400;
905
906 /* Convert to sign, 5 bit exponent, 10 bit mantissa */
907 return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
908 }
909
910 #define MAX_LIN_MANTISSA (1023 * 1000)
911 #define MIN_LIN_MANTISSA (511 * 1000)
912
pmbus_data2reg_linear(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)913 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
914 struct pmbus_sensor *sensor, s64 val)
915 {
916 s16 exponent = 0, mantissa;
917 bool negative = false;
918
919 /* simple case */
920 if (val == 0)
921 return 0;
922
923 if (sensor->class == PSC_VOLTAGE_OUT) {
924 /* LINEAR16 does not support negative voltages */
925 if (val < 0)
926 return 0;
927
928 /*
929 * For a static exponents, we don't have a choice
930 * but to adjust the value to it.
931 */
932 if (data->exponent[sensor->page] < 0)
933 val <<= -data->exponent[sensor->page];
934 else
935 val >>= data->exponent[sensor->page];
936 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
937 return clamp_val(val, 0, 0xffff);
938 }
939
940 if (val < 0) {
941 negative = true;
942 val = -val;
943 }
944
945 /* Power is in uW. Convert to mW before converting. */
946 if (sensor->class == PSC_POWER)
947 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
948
949 /*
950 * For simplicity, convert fan data to milli-units
951 * before calculating the exponent.
952 */
953 if (sensor->class == PSC_FAN)
954 val = val * 1000LL;
955
956 /* Reduce large mantissa until it fits into 10 bit */
957 while (val >= MAX_LIN_MANTISSA && exponent < 15) {
958 exponent++;
959 val >>= 1;
960 }
961 /* Increase small mantissa to improve precision */
962 while (val < MIN_LIN_MANTISSA && exponent > -15) {
963 exponent--;
964 val <<= 1;
965 }
966
967 /* Convert mantissa from milli-units to units */
968 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
969
970 /* restore sign */
971 if (negative)
972 mantissa = -mantissa;
973
974 /* Convert to 5 bit exponent, 11 bit mantissa */
975 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
976 }
977
pmbus_data2reg_direct(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)978 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
979 struct pmbus_sensor *sensor, s64 val)
980 {
981 s64 b;
982 s32 m, R;
983
984 m = data->info->m[sensor->class];
985 b = data->info->b[sensor->class];
986 R = data->info->R[sensor->class];
987
988 /* Power is in uW. Adjust R and b. */
989 if (sensor->class == PSC_POWER) {
990 R -= 3;
991 b *= 1000;
992 }
993
994 /* Calculate Y = (m * X + b) * 10^R */
995 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
996 R -= 3; /* Adjust R and b for data in milli-units */
997 b *= 1000;
998 }
999 val = val * m + b;
1000
1001 while (R > 0) {
1002 val *= 10;
1003 R--;
1004 }
1005 while (R < 0) {
1006 val = div_s64(val + 5LL, 10L); /* round closest */
1007 R++;
1008 }
1009
1010 return (u16)clamp_val(val, S16_MIN, S16_MAX);
1011 }
1012
pmbus_data2reg_vid(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1013 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
1014 struct pmbus_sensor *sensor, s64 val)
1015 {
1016 val = clamp_val(val, 500, 1600);
1017
1018 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
1019 }
1020
pmbus_data2reg(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1021 static u16 pmbus_data2reg(struct pmbus_data *data,
1022 struct pmbus_sensor *sensor, s64 val)
1023 {
1024 u16 regval;
1025
1026 if (!sensor->convert)
1027 return val;
1028
1029 switch (data->info->format[sensor->class]) {
1030 case direct:
1031 regval = pmbus_data2reg_direct(data, sensor, val);
1032 break;
1033 case vid:
1034 regval = pmbus_data2reg_vid(data, sensor, val);
1035 break;
1036 case ieee754:
1037 regval = pmbus_data2reg_ieee754(data, sensor, val);
1038 break;
1039 case linear:
1040 default:
1041 regval = pmbus_data2reg_linear(data, sensor, val);
1042 break;
1043 }
1044 return regval;
1045 }
1046
1047 /*
1048 * Return boolean calculated from converted data.
1049 * <index> defines a status register index and mask.
1050 * The mask is in the lower 8 bits, the register index is in bits 8..23.
1051 *
1052 * The associated pmbus_boolean structure contains optional pointers to two
1053 * sensor attributes. If specified, those attributes are compared against each
1054 * other to determine if a limit has been exceeded.
1055 *
1056 * If the sensor attribute pointers are NULL, the function returns true if
1057 * (status[reg] & mask) is true.
1058 *
1059 * If sensor attribute pointers are provided, a comparison against a specified
1060 * limit has to be performed to determine the boolean result.
1061 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
1062 * sensor values referenced by sensor attribute pointers s1 and s2).
1063 *
1064 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
1065 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
1066 *
1067 * If a negative value is stored in any of the referenced registers, this value
1068 * reflects an error code which will be returned.
1069 */
pmbus_get_boolean(struct i2c_client * client,struct pmbus_boolean * b,int index)1070 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
1071 int index)
1072 {
1073 struct pmbus_data *data = i2c_get_clientdata(client);
1074 struct pmbus_sensor *s1 = b->s1;
1075 struct pmbus_sensor *s2 = b->s2;
1076 u16 mask = pb_index_to_mask(index);
1077 u8 page = pb_index_to_page(index);
1078 u16 reg = pb_index_to_reg(index);
1079 int ret, status;
1080 u16 regval;
1081
1082 mutex_lock(&data->update_lock);
1083 status = pmbus_get_status(client, page, reg);
1084 if (status < 0) {
1085 ret = status;
1086 goto unlock;
1087 }
1088
1089 if (s1)
1090 pmbus_update_sensor_data(client, s1);
1091 if (s2)
1092 pmbus_update_sensor_data(client, s2);
1093
1094 regval = status & mask;
1095 if (regval) {
1096 ret = _pmbus_write_byte_data(client, page, reg, regval);
1097 if (ret)
1098 goto unlock;
1099 }
1100 if (s1 && s2) {
1101 s64 v1, v2;
1102
1103 if (s1->data < 0) {
1104 ret = s1->data;
1105 goto unlock;
1106 }
1107 if (s2->data < 0) {
1108 ret = s2->data;
1109 goto unlock;
1110 }
1111
1112 v1 = pmbus_reg2data(data, s1);
1113 v2 = pmbus_reg2data(data, s2);
1114 ret = !!(regval && v1 >= v2);
1115 } else {
1116 ret = !!regval;
1117 }
1118 unlock:
1119 mutex_unlock(&data->update_lock);
1120 return ret;
1121 }
1122
pmbus_show_boolean(struct device * dev,struct device_attribute * da,char * buf)1123 static ssize_t pmbus_show_boolean(struct device *dev,
1124 struct device_attribute *da, char *buf)
1125 {
1126 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1127 struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
1128 struct i2c_client *client = to_i2c_client(dev->parent);
1129 int val;
1130
1131 val = pmbus_get_boolean(client, boolean, attr->index);
1132 if (val < 0)
1133 return val;
1134 return sysfs_emit(buf, "%d\n", val);
1135 }
1136
pmbus_show_sensor(struct device * dev,struct device_attribute * devattr,char * buf)1137 static ssize_t pmbus_show_sensor(struct device *dev,
1138 struct device_attribute *devattr, char *buf)
1139 {
1140 struct i2c_client *client = to_i2c_client(dev->parent);
1141 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1142 struct pmbus_data *data = i2c_get_clientdata(client);
1143 ssize_t ret;
1144
1145 mutex_lock(&data->update_lock);
1146 pmbus_update_sensor_data(client, sensor);
1147 if (sensor->data < 0)
1148 ret = sensor->data;
1149 else
1150 ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
1151 mutex_unlock(&data->update_lock);
1152 return ret;
1153 }
1154
pmbus_set_sensor(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)1155 static ssize_t pmbus_set_sensor(struct device *dev,
1156 struct device_attribute *devattr,
1157 const char *buf, size_t count)
1158 {
1159 struct i2c_client *client = to_i2c_client(dev->parent);
1160 struct pmbus_data *data = i2c_get_clientdata(client);
1161 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1162 ssize_t rv = count;
1163 s64 val;
1164 int ret;
1165 u16 regval;
1166
1167 if (kstrtos64(buf, 10, &val) < 0)
1168 return -EINVAL;
1169
1170 mutex_lock(&data->update_lock);
1171 regval = pmbus_data2reg(data, sensor, val);
1172 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
1173 if (ret < 0)
1174 rv = ret;
1175 else
1176 sensor->data = -ENODATA;
1177 mutex_unlock(&data->update_lock);
1178 return rv;
1179 }
1180
pmbus_show_label(struct device * dev,struct device_attribute * da,char * buf)1181 static ssize_t pmbus_show_label(struct device *dev,
1182 struct device_attribute *da, char *buf)
1183 {
1184 struct pmbus_label *label = to_pmbus_label(da);
1185
1186 return sysfs_emit(buf, "%s\n", label->label);
1187 }
1188
pmbus_add_attribute(struct pmbus_data * data,struct attribute * attr)1189 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1190 {
1191 if (data->num_attributes >= data->max_attributes - 1) {
1192 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1193 void *new_attrs = devm_krealloc(data->dev, data->group.attrs,
1194 new_max_attrs * sizeof(void *),
1195 GFP_KERNEL);
1196 if (!new_attrs)
1197 return -ENOMEM;
1198 data->group.attrs = new_attrs;
1199 data->max_attributes = new_max_attrs;
1200 }
1201
1202 data->group.attrs[data->num_attributes++] = attr;
1203 data->group.attrs[data->num_attributes] = NULL;
1204 return 0;
1205 }
1206
pmbus_dev_attr_init(struct device_attribute * dev_attr,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count))1207 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1208 const char *name,
1209 umode_t mode,
1210 ssize_t (*show)(struct device *dev,
1211 struct device_attribute *attr,
1212 char *buf),
1213 ssize_t (*store)(struct device *dev,
1214 struct device_attribute *attr,
1215 const char *buf, size_t count))
1216 {
1217 sysfs_attr_init(&dev_attr->attr);
1218 dev_attr->attr.name = name;
1219 dev_attr->attr.mode = mode;
1220 dev_attr->show = show;
1221 dev_attr->store = store;
1222 }
1223
pmbus_attr_init(struct sensor_device_attribute * a,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count),int idx)1224 static void pmbus_attr_init(struct sensor_device_attribute *a,
1225 const char *name,
1226 umode_t mode,
1227 ssize_t (*show)(struct device *dev,
1228 struct device_attribute *attr,
1229 char *buf),
1230 ssize_t (*store)(struct device *dev,
1231 struct device_attribute *attr,
1232 const char *buf, size_t count),
1233 int idx)
1234 {
1235 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1236 a->index = idx;
1237 }
1238
pmbus_add_boolean(struct pmbus_data * data,const char * name,const char * type,int seq,struct pmbus_sensor * s1,struct pmbus_sensor * s2,u8 page,u16 reg,u16 mask)1239 static int pmbus_add_boolean(struct pmbus_data *data,
1240 const char *name, const char *type, int seq,
1241 struct pmbus_sensor *s1,
1242 struct pmbus_sensor *s2,
1243 u8 page, u16 reg, u16 mask)
1244 {
1245 struct pmbus_boolean *boolean;
1246 struct sensor_device_attribute *a;
1247
1248 if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1249 return -EINVAL;
1250
1251 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1252 if (!boolean)
1253 return -ENOMEM;
1254
1255 a = &boolean->attribute;
1256
1257 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1258 name, seq, type);
1259 boolean->s1 = s1;
1260 boolean->s2 = s2;
1261 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1262 pb_reg_to_index(page, reg, mask));
1263
1264 return pmbus_add_attribute(data, &a->dev_attr.attr);
1265 }
1266
1267 /* of thermal for pmbus temperature sensors */
1268 struct pmbus_thermal_data {
1269 struct pmbus_data *pmbus_data;
1270 struct pmbus_sensor *sensor;
1271 };
1272
pmbus_thermal_get_temp(struct thermal_zone_device * tz,int * temp)1273 static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
1274 {
1275 struct pmbus_thermal_data *tdata = tz->devdata;
1276 struct pmbus_sensor *sensor = tdata->sensor;
1277 struct pmbus_data *pmbus_data = tdata->pmbus_data;
1278 struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1279 struct device *dev = pmbus_data->hwmon_dev;
1280 int ret = 0;
1281
1282 if (!dev) {
1283 /* May not even get to hwmon yet */
1284 *temp = 0;
1285 return 0;
1286 }
1287
1288 mutex_lock(&pmbus_data->update_lock);
1289 pmbus_update_sensor_data(client, sensor);
1290 if (sensor->data < 0)
1291 ret = sensor->data;
1292 else
1293 *temp = (int)pmbus_reg2data(pmbus_data, sensor);
1294 mutex_unlock(&pmbus_data->update_lock);
1295
1296 return ret;
1297 }
1298
1299 static const struct thermal_zone_device_ops pmbus_thermal_ops = {
1300 .get_temp = pmbus_thermal_get_temp,
1301 };
1302
pmbus_thermal_add_sensor(struct pmbus_data * pmbus_data,struct pmbus_sensor * sensor,int index)1303 static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1304 struct pmbus_sensor *sensor, int index)
1305 {
1306 struct device *dev = pmbus_data->dev;
1307 struct pmbus_thermal_data *tdata;
1308 struct thermal_zone_device *tzd;
1309
1310 tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
1311 if (!tdata)
1312 return -ENOMEM;
1313
1314 tdata->sensor = sensor;
1315 tdata->pmbus_data = pmbus_data;
1316
1317 tzd = devm_thermal_of_zone_register(dev, index, tdata,
1318 &pmbus_thermal_ops);
1319 /*
1320 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1321 * so ignore that error but forward any other error.
1322 */
1323 if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
1324 return PTR_ERR(tzd);
1325
1326 return 0;
1327 }
1328
pmbus_add_sensor(struct pmbus_data * data,const char * name,const char * type,int seq,int page,int phase,int reg,enum pmbus_sensor_classes class,bool update,bool readonly,bool convert)1329 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1330 const char *name, const char *type,
1331 int seq, int page, int phase,
1332 int reg,
1333 enum pmbus_sensor_classes class,
1334 bool update, bool readonly,
1335 bool convert)
1336 {
1337 struct pmbus_sensor *sensor;
1338 struct device_attribute *a;
1339
1340 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1341 if (!sensor)
1342 return NULL;
1343 a = &sensor->attribute;
1344
1345 if (type)
1346 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1347 name, seq, type);
1348 else
1349 snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1350 name, seq);
1351
1352 if (data->flags & PMBUS_WRITE_PROTECTED)
1353 readonly = true;
1354
1355 sensor->page = page;
1356 sensor->phase = phase;
1357 sensor->reg = reg;
1358 sensor->class = class;
1359 sensor->update = update;
1360 sensor->convert = convert;
1361 sensor->data = -ENODATA;
1362 pmbus_dev_attr_init(a, sensor->name,
1363 readonly ? 0444 : 0644,
1364 pmbus_show_sensor, pmbus_set_sensor);
1365
1366 if (pmbus_add_attribute(data, &a->attr))
1367 return NULL;
1368
1369 sensor->next = data->sensors;
1370 data->sensors = sensor;
1371
1372 /* temperature sensors with _input values are registered with thermal */
1373 if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1374 pmbus_thermal_add_sensor(data, sensor, seq);
1375
1376 return sensor;
1377 }
1378
pmbus_add_label(struct pmbus_data * data,const char * name,int seq,const char * lstring,int index,int phase)1379 static int pmbus_add_label(struct pmbus_data *data,
1380 const char *name, int seq,
1381 const char *lstring, int index, int phase)
1382 {
1383 struct pmbus_label *label;
1384 struct device_attribute *a;
1385
1386 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1387 if (!label)
1388 return -ENOMEM;
1389
1390 a = &label->attribute;
1391
1392 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1393 if (!index) {
1394 if (phase == 0xff)
1395 strncpy(label->label, lstring,
1396 sizeof(label->label) - 1);
1397 else
1398 snprintf(label->label, sizeof(label->label), "%s.%d",
1399 lstring, phase);
1400 } else {
1401 if (phase == 0xff)
1402 snprintf(label->label, sizeof(label->label), "%s%d",
1403 lstring, index);
1404 else
1405 snprintf(label->label, sizeof(label->label), "%s%d.%d",
1406 lstring, index, phase);
1407 }
1408
1409 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1410 return pmbus_add_attribute(data, &a->attr);
1411 }
1412
1413 /*
1414 * Search for attributes. Allocate sensors, booleans, and labels as needed.
1415 */
1416
1417 /*
1418 * The pmbus_limit_attr structure describes a single limit attribute
1419 * and its associated alarm attribute.
1420 */
1421 struct pmbus_limit_attr {
1422 u16 reg; /* Limit register */
1423 u16 sbit; /* Alarm attribute status bit */
1424 bool update; /* True if register needs updates */
1425 bool low; /* True if low limit; for limits with compare
1426 functions only */
1427 const char *attr; /* Attribute name */
1428 const char *alarm; /* Alarm attribute name */
1429 };
1430
1431 /*
1432 * The pmbus_sensor_attr structure describes one sensor attribute. This
1433 * description includes a reference to the associated limit attributes.
1434 */
1435 struct pmbus_sensor_attr {
1436 u16 reg; /* sensor register */
1437 u16 gbit; /* generic status bit */
1438 u8 nlimit; /* # of limit registers */
1439 enum pmbus_sensor_classes class;/* sensor class */
1440 const char *label; /* sensor label */
1441 bool paged; /* true if paged sensor */
1442 bool update; /* true if update needed */
1443 bool compare; /* true if compare function needed */
1444 u32 func; /* sensor mask */
1445 u32 sfunc; /* sensor status mask */
1446 int sreg; /* status register */
1447 const struct pmbus_limit_attr *limit;/* limit registers */
1448 };
1449
1450 /*
1451 * Add a set of limit attributes and, if supported, the associated
1452 * alarm attributes.
1453 * returns 0 if no alarm register found, 1 if an alarm register was found,
1454 * < 0 on errors.
1455 */
pmbus_add_limit_attrs(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,struct pmbus_sensor * base,const struct pmbus_sensor_attr * attr)1456 static int pmbus_add_limit_attrs(struct i2c_client *client,
1457 struct pmbus_data *data,
1458 const struct pmbus_driver_info *info,
1459 const char *name, int index, int page,
1460 struct pmbus_sensor *base,
1461 const struct pmbus_sensor_attr *attr)
1462 {
1463 const struct pmbus_limit_attr *l = attr->limit;
1464 int nlimit = attr->nlimit;
1465 int have_alarm = 0;
1466 int i, ret;
1467 struct pmbus_sensor *curr;
1468
1469 for (i = 0; i < nlimit; i++) {
1470 if (pmbus_check_word_register(client, page, l->reg)) {
1471 curr = pmbus_add_sensor(data, name, l->attr, index,
1472 page, 0xff, l->reg, attr->class,
1473 attr->update || l->update,
1474 false, true);
1475 if (!curr)
1476 return -ENOMEM;
1477 if (l->sbit && (info->func[page] & attr->sfunc)) {
1478 ret = pmbus_add_boolean(data, name,
1479 l->alarm, index,
1480 attr->compare ? l->low ? curr : base
1481 : NULL,
1482 attr->compare ? l->low ? base : curr
1483 : NULL,
1484 page, attr->sreg, l->sbit);
1485 if (ret)
1486 return ret;
1487 have_alarm = 1;
1488 }
1489 }
1490 l++;
1491 }
1492 return have_alarm;
1493 }
1494
pmbus_add_sensor_attrs_one(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,int phase,const struct pmbus_sensor_attr * attr,bool paged)1495 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1496 struct pmbus_data *data,
1497 const struct pmbus_driver_info *info,
1498 const char *name,
1499 int index, int page, int phase,
1500 const struct pmbus_sensor_attr *attr,
1501 bool paged)
1502 {
1503 struct pmbus_sensor *base;
1504 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */
1505 int ret;
1506
1507 if (attr->label) {
1508 ret = pmbus_add_label(data, name, index, attr->label,
1509 paged ? page + 1 : 0, phase);
1510 if (ret)
1511 return ret;
1512 }
1513 base = pmbus_add_sensor(data, name, "input", index, page, phase,
1514 attr->reg, attr->class, true, true, true);
1515 if (!base)
1516 return -ENOMEM;
1517 /* No limit and alarm attributes for phase specific sensors */
1518 if (attr->sfunc && phase == 0xff) {
1519 ret = pmbus_add_limit_attrs(client, data, info, name,
1520 index, page, base, attr);
1521 if (ret < 0)
1522 return ret;
1523 /*
1524 * Add generic alarm attribute only if there are no individual
1525 * alarm attributes, if there is a global alarm bit, and if
1526 * the generic status register (word or byte, depending on
1527 * which global bit is set) for this page is accessible.
1528 */
1529 if (!ret && attr->gbit &&
1530 (!upper || data->has_status_word) &&
1531 pmbus_check_status_register(client, page)) {
1532 ret = pmbus_add_boolean(data, name, "alarm", index,
1533 NULL, NULL,
1534 page, PMBUS_STATUS_WORD,
1535 attr->gbit);
1536 if (ret)
1537 return ret;
1538 }
1539 }
1540 return 0;
1541 }
1542
pmbus_sensor_is_paged(const struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)1543 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1544 const struct pmbus_sensor_attr *attr)
1545 {
1546 int p;
1547
1548 if (attr->paged)
1549 return true;
1550
1551 /*
1552 * Some attributes may be present on more than one page despite
1553 * not being marked with the paged attribute. If that is the case,
1554 * then treat the sensor as being paged and add the page suffix to the
1555 * attribute name.
1556 * We don't just add the paged attribute to all such attributes, in
1557 * order to maintain the un-suffixed labels in the case where the
1558 * attribute is only on page 0.
1559 */
1560 for (p = 1; p < info->pages; p++) {
1561 if (info->func[p] & attr->func)
1562 return true;
1563 }
1564 return false;
1565 }
1566
pmbus_add_sensor_attrs(struct i2c_client * client,struct pmbus_data * data,const char * name,const struct pmbus_sensor_attr * attrs,int nattrs)1567 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1568 struct pmbus_data *data,
1569 const char *name,
1570 const struct pmbus_sensor_attr *attrs,
1571 int nattrs)
1572 {
1573 const struct pmbus_driver_info *info = data->info;
1574 int index, i;
1575 int ret;
1576
1577 index = 1;
1578 for (i = 0; i < nattrs; i++) {
1579 int page, pages;
1580 bool paged = pmbus_sensor_is_paged(info, attrs);
1581
1582 pages = paged ? info->pages : 1;
1583 for (page = 0; page < pages; page++) {
1584 if (info->func[page] & attrs->func) {
1585 ret = pmbus_add_sensor_attrs_one(client, data, info,
1586 name, index, page,
1587 0xff, attrs, paged);
1588 if (ret)
1589 return ret;
1590 index++;
1591 }
1592 if (info->phases[page]) {
1593 int phase;
1594
1595 for (phase = 0; phase < info->phases[page];
1596 phase++) {
1597 if (!(info->pfunc[phase] & attrs->func))
1598 continue;
1599 ret = pmbus_add_sensor_attrs_one(client,
1600 data, info, name, index, page,
1601 phase, attrs, paged);
1602 if (ret)
1603 return ret;
1604 index++;
1605 }
1606 }
1607 }
1608 attrs++;
1609 }
1610 return 0;
1611 }
1612
1613 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1614 {
1615 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1616 .attr = "min",
1617 .alarm = "min_alarm",
1618 .sbit = PB_VOLTAGE_UV_WARNING,
1619 }, {
1620 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1621 .attr = "lcrit",
1622 .alarm = "lcrit_alarm",
1623 .sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1624 }, {
1625 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1626 .attr = "max",
1627 .alarm = "max_alarm",
1628 .sbit = PB_VOLTAGE_OV_WARNING,
1629 }, {
1630 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1631 .attr = "crit",
1632 .alarm = "crit_alarm",
1633 .sbit = PB_VOLTAGE_OV_FAULT,
1634 }, {
1635 .reg = PMBUS_VIRT_READ_VIN_AVG,
1636 .update = true,
1637 .attr = "average",
1638 }, {
1639 .reg = PMBUS_VIRT_READ_VIN_MIN,
1640 .update = true,
1641 .attr = "lowest",
1642 }, {
1643 .reg = PMBUS_VIRT_READ_VIN_MAX,
1644 .update = true,
1645 .attr = "highest",
1646 }, {
1647 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1648 .attr = "reset_history",
1649 }, {
1650 .reg = PMBUS_MFR_VIN_MIN,
1651 .attr = "rated_min",
1652 }, {
1653 .reg = PMBUS_MFR_VIN_MAX,
1654 .attr = "rated_max",
1655 },
1656 };
1657
1658 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1659 {
1660 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1661 .attr = "min",
1662 .alarm = "min_alarm",
1663 .sbit = PB_VOLTAGE_UV_WARNING,
1664 }, {
1665 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1666 .attr = "lcrit",
1667 .alarm = "lcrit_alarm",
1668 .sbit = PB_VOLTAGE_UV_FAULT,
1669 }, {
1670 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1671 .attr = "max",
1672 .alarm = "max_alarm",
1673 .sbit = PB_VOLTAGE_OV_WARNING,
1674 }, {
1675 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1676 .attr = "crit",
1677 .alarm = "crit_alarm",
1678 .sbit = PB_VOLTAGE_OV_FAULT,
1679 }
1680 };
1681
1682 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1683 {
1684 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1685 .attr = "min",
1686 .alarm = "min_alarm",
1687 .sbit = PB_VOLTAGE_UV_WARNING,
1688 }, {
1689 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1690 .attr = "lcrit",
1691 .alarm = "lcrit_alarm",
1692 .sbit = PB_VOLTAGE_UV_FAULT,
1693 }, {
1694 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1695 .attr = "max",
1696 .alarm = "max_alarm",
1697 .sbit = PB_VOLTAGE_OV_WARNING,
1698 }, {
1699 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1700 .attr = "crit",
1701 .alarm = "crit_alarm",
1702 .sbit = PB_VOLTAGE_OV_FAULT,
1703 }, {
1704 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1705 .update = true,
1706 .attr = "average",
1707 }, {
1708 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1709 .update = true,
1710 .attr = "lowest",
1711 }, {
1712 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1713 .update = true,
1714 .attr = "highest",
1715 }, {
1716 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1717 .attr = "reset_history",
1718 }, {
1719 .reg = PMBUS_MFR_VOUT_MIN,
1720 .attr = "rated_min",
1721 }, {
1722 .reg = PMBUS_MFR_VOUT_MAX,
1723 .attr = "rated_max",
1724 },
1725 };
1726
1727 static const struct pmbus_sensor_attr voltage_attributes[] = {
1728 {
1729 .reg = PMBUS_READ_VIN,
1730 .class = PSC_VOLTAGE_IN,
1731 .label = "vin",
1732 .func = PMBUS_HAVE_VIN,
1733 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1734 .sreg = PMBUS_STATUS_INPUT,
1735 .gbit = PB_STATUS_VIN_UV,
1736 .limit = vin_limit_attrs,
1737 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1738 }, {
1739 .reg = PMBUS_VIRT_READ_VMON,
1740 .class = PSC_VOLTAGE_IN,
1741 .label = "vmon",
1742 .func = PMBUS_HAVE_VMON,
1743 .sfunc = PMBUS_HAVE_STATUS_VMON,
1744 .sreg = PMBUS_VIRT_STATUS_VMON,
1745 .limit = vmon_limit_attrs,
1746 .nlimit = ARRAY_SIZE(vmon_limit_attrs),
1747 }, {
1748 .reg = PMBUS_READ_VCAP,
1749 .class = PSC_VOLTAGE_IN,
1750 .label = "vcap",
1751 .func = PMBUS_HAVE_VCAP,
1752 }, {
1753 .reg = PMBUS_READ_VOUT,
1754 .class = PSC_VOLTAGE_OUT,
1755 .label = "vout",
1756 .paged = true,
1757 .func = PMBUS_HAVE_VOUT,
1758 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1759 .sreg = PMBUS_STATUS_VOUT,
1760 .gbit = PB_STATUS_VOUT_OV,
1761 .limit = vout_limit_attrs,
1762 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1763 }
1764 };
1765
1766 /* Current attributes */
1767
1768 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1769 {
1770 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1771 .attr = "max",
1772 .alarm = "max_alarm",
1773 .sbit = PB_IIN_OC_WARNING,
1774 }, {
1775 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1776 .attr = "crit",
1777 .alarm = "crit_alarm",
1778 .sbit = PB_IIN_OC_FAULT,
1779 }, {
1780 .reg = PMBUS_VIRT_READ_IIN_AVG,
1781 .update = true,
1782 .attr = "average",
1783 }, {
1784 .reg = PMBUS_VIRT_READ_IIN_MIN,
1785 .update = true,
1786 .attr = "lowest",
1787 }, {
1788 .reg = PMBUS_VIRT_READ_IIN_MAX,
1789 .update = true,
1790 .attr = "highest",
1791 }, {
1792 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1793 .attr = "reset_history",
1794 }, {
1795 .reg = PMBUS_MFR_IIN_MAX,
1796 .attr = "rated_max",
1797 },
1798 };
1799
1800 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1801 {
1802 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1803 .attr = "max",
1804 .alarm = "max_alarm",
1805 .sbit = PB_IOUT_OC_WARNING,
1806 }, {
1807 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1808 .attr = "lcrit",
1809 .alarm = "lcrit_alarm",
1810 .sbit = PB_IOUT_UC_FAULT,
1811 }, {
1812 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1813 .attr = "crit",
1814 .alarm = "crit_alarm",
1815 .sbit = PB_IOUT_OC_FAULT,
1816 }, {
1817 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1818 .update = true,
1819 .attr = "average",
1820 }, {
1821 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1822 .update = true,
1823 .attr = "lowest",
1824 }, {
1825 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1826 .update = true,
1827 .attr = "highest",
1828 }, {
1829 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1830 .attr = "reset_history",
1831 }, {
1832 .reg = PMBUS_MFR_IOUT_MAX,
1833 .attr = "rated_max",
1834 },
1835 };
1836
1837 static const struct pmbus_sensor_attr current_attributes[] = {
1838 {
1839 .reg = PMBUS_READ_IIN,
1840 .class = PSC_CURRENT_IN,
1841 .label = "iin",
1842 .func = PMBUS_HAVE_IIN,
1843 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1844 .sreg = PMBUS_STATUS_INPUT,
1845 .gbit = PB_STATUS_INPUT,
1846 .limit = iin_limit_attrs,
1847 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1848 }, {
1849 .reg = PMBUS_READ_IOUT,
1850 .class = PSC_CURRENT_OUT,
1851 .label = "iout",
1852 .paged = true,
1853 .func = PMBUS_HAVE_IOUT,
1854 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1855 .sreg = PMBUS_STATUS_IOUT,
1856 .gbit = PB_STATUS_IOUT_OC,
1857 .limit = iout_limit_attrs,
1858 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1859 }
1860 };
1861
1862 /* Power attributes */
1863
1864 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1865 {
1866 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1867 .attr = "max",
1868 .alarm = "alarm",
1869 .sbit = PB_PIN_OP_WARNING,
1870 }, {
1871 .reg = PMBUS_VIRT_READ_PIN_AVG,
1872 .update = true,
1873 .attr = "average",
1874 }, {
1875 .reg = PMBUS_VIRT_READ_PIN_MIN,
1876 .update = true,
1877 .attr = "input_lowest",
1878 }, {
1879 .reg = PMBUS_VIRT_READ_PIN_MAX,
1880 .update = true,
1881 .attr = "input_highest",
1882 }, {
1883 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1884 .attr = "reset_history",
1885 }, {
1886 .reg = PMBUS_MFR_PIN_MAX,
1887 .attr = "rated_max",
1888 },
1889 };
1890
1891 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1892 {
1893 .reg = PMBUS_POUT_MAX,
1894 .attr = "cap",
1895 .alarm = "cap_alarm",
1896 .sbit = PB_POWER_LIMITING,
1897 }, {
1898 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1899 .attr = "max",
1900 .alarm = "max_alarm",
1901 .sbit = PB_POUT_OP_WARNING,
1902 }, {
1903 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1904 .attr = "crit",
1905 .alarm = "crit_alarm",
1906 .sbit = PB_POUT_OP_FAULT,
1907 }, {
1908 .reg = PMBUS_VIRT_READ_POUT_AVG,
1909 .update = true,
1910 .attr = "average",
1911 }, {
1912 .reg = PMBUS_VIRT_READ_POUT_MIN,
1913 .update = true,
1914 .attr = "input_lowest",
1915 }, {
1916 .reg = PMBUS_VIRT_READ_POUT_MAX,
1917 .update = true,
1918 .attr = "input_highest",
1919 }, {
1920 .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1921 .attr = "reset_history",
1922 }, {
1923 .reg = PMBUS_MFR_POUT_MAX,
1924 .attr = "rated_max",
1925 },
1926 };
1927
1928 static const struct pmbus_sensor_attr power_attributes[] = {
1929 {
1930 .reg = PMBUS_READ_PIN,
1931 .class = PSC_POWER,
1932 .label = "pin",
1933 .func = PMBUS_HAVE_PIN,
1934 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1935 .sreg = PMBUS_STATUS_INPUT,
1936 .gbit = PB_STATUS_INPUT,
1937 .limit = pin_limit_attrs,
1938 .nlimit = ARRAY_SIZE(pin_limit_attrs),
1939 }, {
1940 .reg = PMBUS_READ_POUT,
1941 .class = PSC_POWER,
1942 .label = "pout",
1943 .paged = true,
1944 .func = PMBUS_HAVE_POUT,
1945 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1946 .sreg = PMBUS_STATUS_IOUT,
1947 .limit = pout_limit_attrs,
1948 .nlimit = ARRAY_SIZE(pout_limit_attrs),
1949 }
1950 };
1951
1952 /* Temperature atributes */
1953
1954 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1955 {
1956 .reg = PMBUS_UT_WARN_LIMIT,
1957 .low = true,
1958 .attr = "min",
1959 .alarm = "min_alarm",
1960 .sbit = PB_TEMP_UT_WARNING,
1961 }, {
1962 .reg = PMBUS_UT_FAULT_LIMIT,
1963 .low = true,
1964 .attr = "lcrit",
1965 .alarm = "lcrit_alarm",
1966 .sbit = PB_TEMP_UT_FAULT,
1967 }, {
1968 .reg = PMBUS_OT_WARN_LIMIT,
1969 .attr = "max",
1970 .alarm = "max_alarm",
1971 .sbit = PB_TEMP_OT_WARNING,
1972 }, {
1973 .reg = PMBUS_OT_FAULT_LIMIT,
1974 .attr = "crit",
1975 .alarm = "crit_alarm",
1976 .sbit = PB_TEMP_OT_FAULT,
1977 }, {
1978 .reg = PMBUS_VIRT_READ_TEMP_MIN,
1979 .attr = "lowest",
1980 }, {
1981 .reg = PMBUS_VIRT_READ_TEMP_AVG,
1982 .attr = "average",
1983 }, {
1984 .reg = PMBUS_VIRT_READ_TEMP_MAX,
1985 .attr = "highest",
1986 }, {
1987 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1988 .attr = "reset_history",
1989 }, {
1990 .reg = PMBUS_MFR_MAX_TEMP_1,
1991 .attr = "rated_max",
1992 },
1993 };
1994
1995 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1996 {
1997 .reg = PMBUS_UT_WARN_LIMIT,
1998 .low = true,
1999 .attr = "min",
2000 .alarm = "min_alarm",
2001 .sbit = PB_TEMP_UT_WARNING,
2002 }, {
2003 .reg = PMBUS_UT_FAULT_LIMIT,
2004 .low = true,
2005 .attr = "lcrit",
2006 .alarm = "lcrit_alarm",
2007 .sbit = PB_TEMP_UT_FAULT,
2008 }, {
2009 .reg = PMBUS_OT_WARN_LIMIT,
2010 .attr = "max",
2011 .alarm = "max_alarm",
2012 .sbit = PB_TEMP_OT_WARNING,
2013 }, {
2014 .reg = PMBUS_OT_FAULT_LIMIT,
2015 .attr = "crit",
2016 .alarm = "crit_alarm",
2017 .sbit = PB_TEMP_OT_FAULT,
2018 }, {
2019 .reg = PMBUS_VIRT_READ_TEMP2_MIN,
2020 .attr = "lowest",
2021 }, {
2022 .reg = PMBUS_VIRT_READ_TEMP2_AVG,
2023 .attr = "average",
2024 }, {
2025 .reg = PMBUS_VIRT_READ_TEMP2_MAX,
2026 .attr = "highest",
2027 }, {
2028 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
2029 .attr = "reset_history",
2030 }, {
2031 .reg = PMBUS_MFR_MAX_TEMP_2,
2032 .attr = "rated_max",
2033 },
2034 };
2035
2036 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
2037 {
2038 .reg = PMBUS_UT_WARN_LIMIT,
2039 .low = true,
2040 .attr = "min",
2041 .alarm = "min_alarm",
2042 .sbit = PB_TEMP_UT_WARNING,
2043 }, {
2044 .reg = PMBUS_UT_FAULT_LIMIT,
2045 .low = true,
2046 .attr = "lcrit",
2047 .alarm = "lcrit_alarm",
2048 .sbit = PB_TEMP_UT_FAULT,
2049 }, {
2050 .reg = PMBUS_OT_WARN_LIMIT,
2051 .attr = "max",
2052 .alarm = "max_alarm",
2053 .sbit = PB_TEMP_OT_WARNING,
2054 }, {
2055 .reg = PMBUS_OT_FAULT_LIMIT,
2056 .attr = "crit",
2057 .alarm = "crit_alarm",
2058 .sbit = PB_TEMP_OT_FAULT,
2059 }, {
2060 .reg = PMBUS_MFR_MAX_TEMP_3,
2061 .attr = "rated_max",
2062 },
2063 };
2064
2065 static const struct pmbus_sensor_attr temp_attributes[] = {
2066 {
2067 .reg = PMBUS_READ_TEMPERATURE_1,
2068 .class = PSC_TEMPERATURE,
2069 .paged = true,
2070 .update = true,
2071 .compare = true,
2072 .func = PMBUS_HAVE_TEMP,
2073 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2074 .sreg = PMBUS_STATUS_TEMPERATURE,
2075 .gbit = PB_STATUS_TEMPERATURE,
2076 .limit = temp_limit_attrs,
2077 .nlimit = ARRAY_SIZE(temp_limit_attrs),
2078 }, {
2079 .reg = PMBUS_READ_TEMPERATURE_2,
2080 .class = PSC_TEMPERATURE,
2081 .paged = true,
2082 .update = true,
2083 .compare = true,
2084 .func = PMBUS_HAVE_TEMP2,
2085 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2086 .sreg = PMBUS_STATUS_TEMPERATURE,
2087 .gbit = PB_STATUS_TEMPERATURE,
2088 .limit = temp_limit_attrs2,
2089 .nlimit = ARRAY_SIZE(temp_limit_attrs2),
2090 }, {
2091 .reg = PMBUS_READ_TEMPERATURE_3,
2092 .class = PSC_TEMPERATURE,
2093 .paged = true,
2094 .update = true,
2095 .compare = true,
2096 .func = PMBUS_HAVE_TEMP3,
2097 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2098 .sreg = PMBUS_STATUS_TEMPERATURE,
2099 .gbit = PB_STATUS_TEMPERATURE,
2100 .limit = temp_limit_attrs3,
2101 .nlimit = ARRAY_SIZE(temp_limit_attrs3),
2102 }
2103 };
2104
2105 static const int pmbus_fan_registers[] = {
2106 PMBUS_READ_FAN_SPEED_1,
2107 PMBUS_READ_FAN_SPEED_2,
2108 PMBUS_READ_FAN_SPEED_3,
2109 PMBUS_READ_FAN_SPEED_4
2110 };
2111
2112 static const int pmbus_fan_status_registers[] = {
2113 PMBUS_STATUS_FAN_12,
2114 PMBUS_STATUS_FAN_12,
2115 PMBUS_STATUS_FAN_34,
2116 PMBUS_STATUS_FAN_34
2117 };
2118
2119 static const u32 pmbus_fan_flags[] = {
2120 PMBUS_HAVE_FAN12,
2121 PMBUS_HAVE_FAN12,
2122 PMBUS_HAVE_FAN34,
2123 PMBUS_HAVE_FAN34
2124 };
2125
2126 static const u32 pmbus_fan_status_flags[] = {
2127 PMBUS_HAVE_STATUS_FAN12,
2128 PMBUS_HAVE_STATUS_FAN12,
2129 PMBUS_HAVE_STATUS_FAN34,
2130 PMBUS_HAVE_STATUS_FAN34
2131 };
2132
2133 /* Fans */
2134
2135 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
pmbus_add_fan_ctrl(struct i2c_client * client,struct pmbus_data * data,int index,int page,int id,u8 config)2136 static int pmbus_add_fan_ctrl(struct i2c_client *client,
2137 struct pmbus_data *data, int index, int page, int id,
2138 u8 config)
2139 {
2140 struct pmbus_sensor *sensor;
2141
2142 sensor = pmbus_add_sensor(data, "fan", "target", index, page,
2143 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
2144 false, false, true);
2145
2146 if (!sensor)
2147 return -ENOMEM;
2148
2149 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
2150 (data->info->func[page] & PMBUS_HAVE_PWM34)))
2151 return 0;
2152
2153 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
2154 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
2155 false, false, true);
2156
2157 if (!sensor)
2158 return -ENOMEM;
2159
2160 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
2161 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
2162 true, false, false);
2163
2164 if (!sensor)
2165 return -ENOMEM;
2166
2167 return 0;
2168 }
2169
pmbus_add_fan_attributes(struct i2c_client * client,struct pmbus_data * data)2170 static int pmbus_add_fan_attributes(struct i2c_client *client,
2171 struct pmbus_data *data)
2172 {
2173 const struct pmbus_driver_info *info = data->info;
2174 int index = 1;
2175 int page;
2176 int ret;
2177
2178 for (page = 0; page < info->pages; page++) {
2179 int f;
2180
2181 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2182 int regval;
2183
2184 if (!(info->func[page] & pmbus_fan_flags[f]))
2185 break;
2186
2187 if (!pmbus_check_word_register(client, page,
2188 pmbus_fan_registers[f]))
2189 break;
2190
2191 /*
2192 * Skip fan if not installed.
2193 * Each fan configuration register covers multiple fans,
2194 * so we have to do some magic.
2195 */
2196 regval = _pmbus_read_byte_data(client, page,
2197 pmbus_fan_config_registers[f]);
2198 if (regval < 0 ||
2199 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2200 continue;
2201
2202 if (pmbus_add_sensor(data, "fan", "input", index,
2203 page, 0xff, pmbus_fan_registers[f],
2204 PSC_FAN, true, true, true) == NULL)
2205 return -ENOMEM;
2206
2207 /* Fan control */
2208 if (pmbus_check_word_register(client, page,
2209 pmbus_fan_command_registers[f])) {
2210 ret = pmbus_add_fan_ctrl(client, data, index,
2211 page, f, regval);
2212 if (ret < 0)
2213 return ret;
2214 }
2215
2216 /*
2217 * Each fan status register covers multiple fans,
2218 * so we have to do some magic.
2219 */
2220 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2221 pmbus_check_byte_register(client,
2222 page, pmbus_fan_status_registers[f])) {
2223 int reg;
2224
2225 if (f > 1) /* fan 3, 4 */
2226 reg = PMBUS_STATUS_FAN_34;
2227 else
2228 reg = PMBUS_STATUS_FAN_12;
2229 ret = pmbus_add_boolean(data, "fan",
2230 "alarm", index, NULL, NULL, page, reg,
2231 PB_FAN_FAN1_WARNING >> (f & 1));
2232 if (ret)
2233 return ret;
2234 ret = pmbus_add_boolean(data, "fan",
2235 "fault", index, NULL, NULL, page, reg,
2236 PB_FAN_FAN1_FAULT >> (f & 1));
2237 if (ret)
2238 return ret;
2239 }
2240 index++;
2241 }
2242 }
2243 return 0;
2244 }
2245
2246 struct pmbus_samples_attr {
2247 int reg;
2248 char *name;
2249 };
2250
2251 struct pmbus_samples_reg {
2252 int page;
2253 struct pmbus_samples_attr *attr;
2254 struct device_attribute dev_attr;
2255 };
2256
2257 static struct pmbus_samples_attr pmbus_samples_registers[] = {
2258 {
2259 .reg = PMBUS_VIRT_SAMPLES,
2260 .name = "samples",
2261 }, {
2262 .reg = PMBUS_VIRT_IN_SAMPLES,
2263 .name = "in_samples",
2264 }, {
2265 .reg = PMBUS_VIRT_CURR_SAMPLES,
2266 .name = "curr_samples",
2267 }, {
2268 .reg = PMBUS_VIRT_POWER_SAMPLES,
2269 .name = "power_samples",
2270 }, {
2271 .reg = PMBUS_VIRT_TEMP_SAMPLES,
2272 .name = "temp_samples",
2273 }
2274 };
2275
2276 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2277
pmbus_show_samples(struct device * dev,struct device_attribute * devattr,char * buf)2278 static ssize_t pmbus_show_samples(struct device *dev,
2279 struct device_attribute *devattr, char *buf)
2280 {
2281 int val;
2282 struct i2c_client *client = to_i2c_client(dev->parent);
2283 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2284 struct pmbus_data *data = i2c_get_clientdata(client);
2285
2286 mutex_lock(&data->update_lock);
2287 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2288 mutex_unlock(&data->update_lock);
2289 if (val < 0)
2290 return val;
2291
2292 return sysfs_emit(buf, "%d\n", val);
2293 }
2294
pmbus_set_samples(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)2295 static ssize_t pmbus_set_samples(struct device *dev,
2296 struct device_attribute *devattr,
2297 const char *buf, size_t count)
2298 {
2299 int ret;
2300 long val;
2301 struct i2c_client *client = to_i2c_client(dev->parent);
2302 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2303 struct pmbus_data *data = i2c_get_clientdata(client);
2304
2305 if (kstrtol(buf, 0, &val) < 0)
2306 return -EINVAL;
2307
2308 mutex_lock(&data->update_lock);
2309 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2310 mutex_unlock(&data->update_lock);
2311
2312 return ret ? : count;
2313 }
2314
pmbus_add_samples_attr(struct pmbus_data * data,int page,struct pmbus_samples_attr * attr)2315 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2316 struct pmbus_samples_attr *attr)
2317 {
2318 struct pmbus_samples_reg *reg;
2319
2320 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2321 if (!reg)
2322 return -ENOMEM;
2323
2324 reg->attr = attr;
2325 reg->page = page;
2326
2327 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644,
2328 pmbus_show_samples, pmbus_set_samples);
2329
2330 return pmbus_add_attribute(data, ®->dev_attr.attr);
2331 }
2332
pmbus_add_samples_attributes(struct i2c_client * client,struct pmbus_data * data)2333 static int pmbus_add_samples_attributes(struct i2c_client *client,
2334 struct pmbus_data *data)
2335 {
2336 const struct pmbus_driver_info *info = data->info;
2337 int s;
2338
2339 if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2340 return 0;
2341
2342 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2343 struct pmbus_samples_attr *attr;
2344 int ret;
2345
2346 attr = &pmbus_samples_registers[s];
2347 if (!pmbus_check_word_register(client, 0, attr->reg))
2348 continue;
2349
2350 ret = pmbus_add_samples_attr(data, 0, attr);
2351 if (ret)
2352 return ret;
2353 }
2354
2355 return 0;
2356 }
2357
pmbus_find_attributes(struct i2c_client * client,struct pmbus_data * data)2358 static int pmbus_find_attributes(struct i2c_client *client,
2359 struct pmbus_data *data)
2360 {
2361 int ret;
2362
2363 /* Voltage sensors */
2364 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2365 ARRAY_SIZE(voltage_attributes));
2366 if (ret)
2367 return ret;
2368
2369 /* Current sensors */
2370 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2371 ARRAY_SIZE(current_attributes));
2372 if (ret)
2373 return ret;
2374
2375 /* Power sensors */
2376 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2377 ARRAY_SIZE(power_attributes));
2378 if (ret)
2379 return ret;
2380
2381 /* Temperature sensors */
2382 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2383 ARRAY_SIZE(temp_attributes));
2384 if (ret)
2385 return ret;
2386
2387 /* Fans */
2388 ret = pmbus_add_fan_attributes(client, data);
2389 if (ret)
2390 return ret;
2391
2392 ret = pmbus_add_samples_attributes(client, data);
2393 return ret;
2394 }
2395
2396 /*
2397 * The pmbus_class_attr_map structure maps one sensor class to
2398 * it's corresponding sensor attributes array.
2399 */
2400 struct pmbus_class_attr_map {
2401 enum pmbus_sensor_classes class;
2402 int nattr;
2403 const struct pmbus_sensor_attr *attr;
2404 };
2405
2406 static const struct pmbus_class_attr_map class_attr_map[] = {
2407 {
2408 .class = PSC_VOLTAGE_IN,
2409 .attr = voltage_attributes,
2410 .nattr = ARRAY_SIZE(voltage_attributes),
2411 }, {
2412 .class = PSC_VOLTAGE_OUT,
2413 .attr = voltage_attributes,
2414 .nattr = ARRAY_SIZE(voltage_attributes),
2415 }, {
2416 .class = PSC_CURRENT_IN,
2417 .attr = current_attributes,
2418 .nattr = ARRAY_SIZE(current_attributes),
2419 }, {
2420 .class = PSC_CURRENT_OUT,
2421 .attr = current_attributes,
2422 .nattr = ARRAY_SIZE(current_attributes),
2423 }, {
2424 .class = PSC_POWER,
2425 .attr = power_attributes,
2426 .nattr = ARRAY_SIZE(power_attributes),
2427 }, {
2428 .class = PSC_TEMPERATURE,
2429 .attr = temp_attributes,
2430 .nattr = ARRAY_SIZE(temp_attributes),
2431 }
2432 };
2433
2434 /*
2435 * Read the coefficients for direct mode.
2436 */
pmbus_read_coefficients(struct i2c_client * client,struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)2437 static int pmbus_read_coefficients(struct i2c_client *client,
2438 struct pmbus_driver_info *info,
2439 const struct pmbus_sensor_attr *attr)
2440 {
2441 int rv;
2442 union i2c_smbus_data data;
2443 enum pmbus_sensor_classes class = attr->class;
2444 s8 R;
2445 s16 m, b;
2446
2447 data.block[0] = 2;
2448 data.block[1] = attr->reg;
2449 data.block[2] = 0x01;
2450
2451 rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2452 I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2453 I2C_SMBUS_BLOCK_PROC_CALL, &data);
2454
2455 if (rv < 0)
2456 return rv;
2457
2458 if (data.block[0] != 5)
2459 return -EIO;
2460
2461 m = data.block[1] | (data.block[2] << 8);
2462 b = data.block[3] | (data.block[4] << 8);
2463 R = data.block[5];
2464 info->m[class] = m;
2465 info->b[class] = b;
2466 info->R[class] = R;
2467
2468 return rv;
2469 }
2470
pmbus_init_coefficients(struct i2c_client * client,struct pmbus_driver_info * info)2471 static int pmbus_init_coefficients(struct i2c_client *client,
2472 struct pmbus_driver_info *info)
2473 {
2474 int i, n, ret = -EINVAL;
2475 const struct pmbus_class_attr_map *map;
2476 const struct pmbus_sensor_attr *attr;
2477
2478 for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2479 map = &class_attr_map[i];
2480 if (info->format[map->class] != direct)
2481 continue;
2482 for (n = 0; n < map->nattr; n++) {
2483 attr = &map->attr[n];
2484 if (map->class != attr->class)
2485 continue;
2486 ret = pmbus_read_coefficients(client, info, attr);
2487 if (ret >= 0)
2488 break;
2489 }
2490 if (ret < 0) {
2491 dev_err(&client->dev,
2492 "No coefficients found for sensor class %d\n",
2493 map->class);
2494 return -EINVAL;
2495 }
2496 }
2497
2498 return 0;
2499 }
2500
2501 /*
2502 * Identify chip parameters.
2503 * This function is called for all chips.
2504 */
pmbus_identify_common(struct i2c_client * client,struct pmbus_data * data,int page)2505 static int pmbus_identify_common(struct i2c_client *client,
2506 struct pmbus_data *data, int page)
2507 {
2508 int vout_mode = -1;
2509
2510 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2511 vout_mode = _pmbus_read_byte_data(client, page,
2512 PMBUS_VOUT_MODE);
2513 if (vout_mode >= 0 && vout_mode != 0xff) {
2514 /*
2515 * Not all chips support the VOUT_MODE command,
2516 * so a failure to read it is not an error.
2517 */
2518 switch (vout_mode >> 5) {
2519 case 0: /* linear mode */
2520 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2521 return -ENODEV;
2522
2523 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2524 break;
2525 case 1: /* VID mode */
2526 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2527 return -ENODEV;
2528 break;
2529 case 2: /* direct mode */
2530 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2531 return -ENODEV;
2532 break;
2533 case 3: /* ieee 754 half precision */
2534 if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
2535 return -ENODEV;
2536 break;
2537 default:
2538 return -ENODEV;
2539 }
2540 }
2541
2542 pmbus_clear_fault_page(client, page);
2543 return 0;
2544 }
2545
pmbus_read_status_byte(struct i2c_client * client,int page)2546 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2547 {
2548 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2549 }
2550
pmbus_read_status_word(struct i2c_client * client,int page)2551 static int pmbus_read_status_word(struct i2c_client *client, int page)
2552 {
2553 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2554 }
2555
2556 /* PEC attribute support */
2557
pec_show(struct device * dev,struct device_attribute * dummy,char * buf)2558 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
2559 char *buf)
2560 {
2561 struct i2c_client *client = to_i2c_client(dev);
2562
2563 return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
2564 }
2565
pec_store(struct device * dev,struct device_attribute * dummy,const char * buf,size_t count)2566 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
2567 const char *buf, size_t count)
2568 {
2569 struct i2c_client *client = to_i2c_client(dev);
2570 bool enable;
2571 int err;
2572
2573 err = kstrtobool(buf, &enable);
2574 if (err < 0)
2575 return err;
2576
2577 if (enable)
2578 client->flags |= I2C_CLIENT_PEC;
2579 else
2580 client->flags &= ~I2C_CLIENT_PEC;
2581
2582 return count;
2583 }
2584
2585 static DEVICE_ATTR_RW(pec);
2586
pmbus_remove_pec(void * dev)2587 static void pmbus_remove_pec(void *dev)
2588 {
2589 device_remove_file(dev, &dev_attr_pec);
2590 }
2591
pmbus_init_common(struct i2c_client * client,struct pmbus_data * data,struct pmbus_driver_info * info)2592 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2593 struct pmbus_driver_info *info)
2594 {
2595 struct device *dev = &client->dev;
2596 int page, ret;
2597
2598 /*
2599 * Figure out if PEC is enabled before accessing any other register.
2600 * Make sure PEC is disabled, will be enabled later if needed.
2601 */
2602 client->flags &= ~I2C_CLIENT_PEC;
2603
2604 /* Enable PEC if the controller and bus supports it */
2605 if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2606 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2607 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2608 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2609 client->flags |= I2C_CLIENT_PEC;
2610 }
2611 }
2612
2613 /*
2614 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2615 * to use PMBUS_STATUS_BYTE instead if that is the case.
2616 * Bail out if both registers are not supported.
2617 */
2618 data->read_status = pmbus_read_status_word;
2619 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2620 if (ret < 0 || ret == 0xffff) {
2621 data->read_status = pmbus_read_status_byte;
2622 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2623 if (ret < 0 || ret == 0xff) {
2624 dev_err(dev, "PMBus status register not found\n");
2625 return -ENODEV;
2626 }
2627 } else {
2628 data->has_status_word = true;
2629 }
2630
2631 /*
2632 * Check if the chip is write protected. If it is, we can not clear
2633 * faults, and we should not try it. Also, in that case, writes into
2634 * limit registers need to be disabled.
2635 */
2636 if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) {
2637 ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
2638 if (ret > 0 && (ret & PB_WP_ANY))
2639 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2640 }
2641
2642 if (data->info->pages)
2643 pmbus_clear_faults(client);
2644 else
2645 pmbus_clear_fault_page(client, -1);
2646
2647 if (info->identify) {
2648 ret = (*info->identify)(client, info);
2649 if (ret < 0) {
2650 dev_err(dev, "Chip identification failed\n");
2651 return ret;
2652 }
2653 }
2654
2655 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2656 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2657 return -ENODEV;
2658 }
2659
2660 for (page = 0; page < info->pages; page++) {
2661 ret = pmbus_identify_common(client, data, page);
2662 if (ret < 0) {
2663 dev_err(dev, "Failed to identify chip capabilities\n");
2664 return ret;
2665 }
2666 }
2667
2668 if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2669 if (!i2c_check_functionality(client->adapter,
2670 I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2671 return -ENODEV;
2672
2673 ret = pmbus_init_coefficients(client, info);
2674 if (ret < 0)
2675 return ret;
2676 }
2677
2678 if (client->flags & I2C_CLIENT_PEC) {
2679 /*
2680 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the
2681 * chip support PEC. Add 'pec' attribute to client device to let
2682 * the user control it.
2683 */
2684 ret = device_create_file(dev, &dev_attr_pec);
2685 if (ret)
2686 return ret;
2687 ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
2688 if (ret)
2689 return ret;
2690 }
2691
2692 return 0;
2693 }
2694
2695 #if IS_ENABLED(CONFIG_REGULATOR)
pmbus_regulator_is_enabled(struct regulator_dev * rdev)2696 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2697 {
2698 struct device *dev = rdev_get_dev(rdev);
2699 struct i2c_client *client = to_i2c_client(dev->parent);
2700 struct pmbus_data *data = i2c_get_clientdata(client);
2701 u8 page = rdev_get_id(rdev);
2702 int ret;
2703
2704 mutex_lock(&data->update_lock);
2705 ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2706 mutex_unlock(&data->update_lock);
2707
2708 if (ret < 0)
2709 return ret;
2710
2711 return !!(ret & PB_OPERATION_CONTROL_ON);
2712 }
2713
_pmbus_regulator_on_off(struct regulator_dev * rdev,bool enable)2714 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2715 {
2716 struct device *dev = rdev_get_dev(rdev);
2717 struct i2c_client *client = to_i2c_client(dev->parent);
2718 struct pmbus_data *data = i2c_get_clientdata(client);
2719 u8 page = rdev_get_id(rdev);
2720 int ret;
2721
2722 mutex_lock(&data->update_lock);
2723 ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
2724 PB_OPERATION_CONTROL_ON,
2725 enable ? PB_OPERATION_CONTROL_ON : 0);
2726 mutex_unlock(&data->update_lock);
2727
2728 return ret;
2729 }
2730
pmbus_regulator_enable(struct regulator_dev * rdev)2731 static int pmbus_regulator_enable(struct regulator_dev *rdev)
2732 {
2733 return _pmbus_regulator_on_off(rdev, 1);
2734 }
2735
pmbus_regulator_disable(struct regulator_dev * rdev)2736 static int pmbus_regulator_disable(struct regulator_dev *rdev)
2737 {
2738 return _pmbus_regulator_on_off(rdev, 0);
2739 }
2740
2741 /* A PMBus status flag and the corresponding REGULATOR_ERROR_* flag */
2742 struct pmbus_regulator_status_assoc {
2743 int pflag, rflag;
2744 };
2745
2746 /* PMBus->regulator bit mappings for a PMBus status register */
2747 struct pmbus_regulator_status_category {
2748 int func;
2749 int reg;
2750 const struct pmbus_regulator_status_assoc *bits; /* zero-terminated */
2751 };
2752
2753 static const struct pmbus_regulator_status_category pmbus_regulator_flag_map[] = {
2754 {
2755 .func = PMBUS_HAVE_STATUS_VOUT,
2756 .reg = PMBUS_STATUS_VOUT,
2757 .bits = (const struct pmbus_regulator_status_assoc[]) {
2758 { PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN },
2759 { PB_VOLTAGE_UV_FAULT, REGULATOR_ERROR_UNDER_VOLTAGE },
2760 { PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN },
2761 { PB_VOLTAGE_OV_FAULT, REGULATOR_ERROR_REGULATION_OUT },
2762 { },
2763 },
2764 }, {
2765 .func = PMBUS_HAVE_STATUS_IOUT,
2766 .reg = PMBUS_STATUS_IOUT,
2767 .bits = (const struct pmbus_regulator_status_assoc[]) {
2768 { PB_IOUT_OC_WARNING, REGULATOR_ERROR_OVER_CURRENT_WARN },
2769 { PB_IOUT_OC_FAULT, REGULATOR_ERROR_OVER_CURRENT },
2770 { PB_IOUT_OC_LV_FAULT, REGULATOR_ERROR_OVER_CURRENT },
2771 { },
2772 },
2773 }, {
2774 .func = PMBUS_HAVE_STATUS_TEMP,
2775 .reg = PMBUS_STATUS_TEMPERATURE,
2776 .bits = (const struct pmbus_regulator_status_assoc[]) {
2777 { PB_TEMP_OT_WARNING, REGULATOR_ERROR_OVER_TEMP_WARN },
2778 { PB_TEMP_OT_FAULT, REGULATOR_ERROR_OVER_TEMP },
2779 { },
2780 },
2781 },
2782 };
2783
pmbus_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)2784 static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
2785 {
2786 int i, status;
2787 const struct pmbus_regulator_status_category *cat;
2788 const struct pmbus_regulator_status_assoc *bit;
2789 struct device *dev = rdev_get_dev(rdev);
2790 struct i2c_client *client = to_i2c_client(dev->parent);
2791 struct pmbus_data *data = i2c_get_clientdata(client);
2792 u8 page = rdev_get_id(rdev);
2793 int func = data->info->func[page];
2794
2795 *flags = 0;
2796
2797 mutex_lock(&data->update_lock);
2798
2799 for (i = 0; i < ARRAY_SIZE(pmbus_regulator_flag_map); i++) {
2800 cat = &pmbus_regulator_flag_map[i];
2801 if (!(func & cat->func))
2802 continue;
2803
2804 status = _pmbus_read_byte_data(client, page, cat->reg);
2805 if (status < 0) {
2806 mutex_unlock(&data->update_lock);
2807 return status;
2808 }
2809
2810 for (bit = cat->bits; bit->pflag; bit++) {
2811 if (status & bit->pflag)
2812 *flags |= bit->rflag;
2813 }
2814 }
2815
2816 /*
2817 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2818 * bits. Some of the other bits are tempting (especially for cases
2819 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2820 * functionality), but there's an unfortunate ambiguity in that
2821 * they're defined as indicating a fault *or* a warning, so we can't
2822 * easily determine whether to report REGULATOR_ERROR_<foo> or
2823 * REGULATOR_ERROR_<foo>_WARN.
2824 */
2825 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2826 mutex_unlock(&data->update_lock);
2827 if (status < 0)
2828 return status;
2829
2830 if (pmbus_regulator_is_enabled(rdev) && (status & PB_STATUS_OFF))
2831 *flags |= REGULATOR_ERROR_FAIL;
2832
2833 /*
2834 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2835 * defined strictly as fault indicators (not warnings).
2836 */
2837 if (status & PB_STATUS_IOUT_OC)
2838 *flags |= REGULATOR_ERROR_OVER_CURRENT;
2839 if (status & PB_STATUS_VOUT_OV)
2840 *flags |= REGULATOR_ERROR_REGULATION_OUT;
2841
2842 /*
2843 * If we haven't discovered any thermal faults or warnings via
2844 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
2845 * a (conservative) best-effort interpretation.
2846 */
2847 if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
2848 (status & PB_STATUS_TEMPERATURE))
2849 *flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
2850
2851 return 0;
2852 }
2853
pmbus_regulator_get_low_margin(struct i2c_client * client,int page)2854 static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
2855 {
2856 struct pmbus_data *data = i2c_get_clientdata(client);
2857 struct pmbus_sensor s = {
2858 .page = page,
2859 .class = PSC_VOLTAGE_OUT,
2860 .convert = true,
2861 .data = -1,
2862 };
2863
2864 if (data->vout_low[page] < 0) {
2865 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
2866 s.data = _pmbus_read_word_data(client, page, 0xff,
2867 PMBUS_MFR_VOUT_MIN);
2868 if (s.data < 0) {
2869 s.data = _pmbus_read_word_data(client, page, 0xff,
2870 PMBUS_VOUT_MARGIN_LOW);
2871 if (s.data < 0)
2872 return s.data;
2873 }
2874 data->vout_low[page] = pmbus_reg2data(data, &s);
2875 }
2876
2877 return data->vout_low[page];
2878 }
2879
pmbus_regulator_get_high_margin(struct i2c_client * client,int page)2880 static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
2881 {
2882 struct pmbus_data *data = i2c_get_clientdata(client);
2883 struct pmbus_sensor s = {
2884 .page = page,
2885 .class = PSC_VOLTAGE_OUT,
2886 .convert = true,
2887 .data = -1,
2888 };
2889
2890 if (data->vout_high[page] < 0) {
2891 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
2892 s.data = _pmbus_read_word_data(client, page, 0xff,
2893 PMBUS_MFR_VOUT_MAX);
2894 if (s.data < 0) {
2895 s.data = _pmbus_read_word_data(client, page, 0xff,
2896 PMBUS_VOUT_MARGIN_HIGH);
2897 if (s.data < 0)
2898 return s.data;
2899 }
2900 data->vout_high[page] = pmbus_reg2data(data, &s);
2901 }
2902
2903 return data->vout_high[page];
2904 }
2905
pmbus_regulator_get_voltage(struct regulator_dev * rdev)2906 static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
2907 {
2908 struct device *dev = rdev_get_dev(rdev);
2909 struct i2c_client *client = to_i2c_client(dev->parent);
2910 struct pmbus_data *data = i2c_get_clientdata(client);
2911 struct pmbus_sensor s = {
2912 .page = rdev_get_id(rdev),
2913 .class = PSC_VOLTAGE_OUT,
2914 .convert = true,
2915 };
2916
2917 s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
2918 if (s.data < 0)
2919 return s.data;
2920
2921 return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
2922 }
2923
pmbus_regulator_set_voltage(struct regulator_dev * rdev,int min_uv,int max_uv,unsigned int * selector)2924 static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
2925 int max_uv, unsigned int *selector)
2926 {
2927 struct device *dev = rdev_get_dev(rdev);
2928 struct i2c_client *client = to_i2c_client(dev->parent);
2929 struct pmbus_data *data = i2c_get_clientdata(client);
2930 struct pmbus_sensor s = {
2931 .page = rdev_get_id(rdev),
2932 .class = PSC_VOLTAGE_OUT,
2933 .convert = true,
2934 .data = -1,
2935 };
2936 int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
2937 int low, high;
2938
2939 *selector = 0;
2940
2941 low = pmbus_regulator_get_low_margin(client, s.page);
2942 if (low < 0)
2943 return low;
2944
2945 high = pmbus_regulator_get_high_margin(client, s.page);
2946 if (high < 0)
2947 return high;
2948
2949 /* Make sure we are within margins */
2950 if (low > val)
2951 val = low;
2952 if (high < val)
2953 val = high;
2954
2955 val = pmbus_data2reg(data, &s, val);
2956
2957 return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
2958 }
2959
pmbus_regulator_list_voltage(struct regulator_dev * rdev,unsigned int selector)2960 static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
2961 unsigned int selector)
2962 {
2963 struct device *dev = rdev_get_dev(rdev);
2964 struct i2c_client *client = to_i2c_client(dev->parent);
2965 int val, low, high;
2966
2967 if (selector >= rdev->desc->n_voltages ||
2968 selector < rdev->desc->linear_min_sel)
2969 return -EINVAL;
2970
2971 selector -= rdev->desc->linear_min_sel;
2972 val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
2973 (rdev->desc->uV_step * selector), 1000); /* convert to mV */
2974
2975 low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev));
2976 if (low < 0)
2977 return low;
2978
2979 high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev));
2980 if (high < 0)
2981 return high;
2982
2983 if (val >= low && val <= high)
2984 return val * 1000; /* unit is uV */
2985
2986 return 0;
2987 }
2988
2989 const struct regulator_ops pmbus_regulator_ops = {
2990 .enable = pmbus_regulator_enable,
2991 .disable = pmbus_regulator_disable,
2992 .is_enabled = pmbus_regulator_is_enabled,
2993 .get_error_flags = pmbus_regulator_get_error_flags,
2994 .get_voltage = pmbus_regulator_get_voltage,
2995 .set_voltage = pmbus_regulator_set_voltage,
2996 .list_voltage = pmbus_regulator_list_voltage,
2997 };
2998 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS);
2999
pmbus_regulator_register(struct pmbus_data * data)3000 static int pmbus_regulator_register(struct pmbus_data *data)
3001 {
3002 struct device *dev = data->dev;
3003 const struct pmbus_driver_info *info = data->info;
3004 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3005 struct regulator_dev *rdev;
3006 int i;
3007
3008 for (i = 0; i < info->num_regulators; i++) {
3009 struct regulator_config config = { };
3010
3011 config.dev = dev;
3012 config.driver_data = data;
3013
3014 if (pdata && pdata->reg_init_data)
3015 config.init_data = &pdata->reg_init_data[i];
3016
3017 rdev = devm_regulator_register(dev, &info->reg_desc[i],
3018 &config);
3019 if (IS_ERR(rdev))
3020 return dev_err_probe(dev, PTR_ERR(rdev),
3021 "Failed to register %s regulator\n",
3022 info->reg_desc[i].name);
3023 }
3024
3025 return 0;
3026 }
3027 #else
pmbus_regulator_register(struct pmbus_data * data)3028 static int pmbus_regulator_register(struct pmbus_data *data)
3029 {
3030 return 0;
3031 }
3032 #endif
3033
3034 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */
3035
3036 #if IS_ENABLED(CONFIG_DEBUG_FS)
pmbus_debugfs_get(void * data,u64 * val)3037 static int pmbus_debugfs_get(void *data, u64 *val)
3038 {
3039 int rc;
3040 struct pmbus_debugfs_entry *entry = data;
3041
3042 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
3043 if (rc < 0)
3044 return rc;
3045
3046 *val = rc;
3047
3048 return 0;
3049 }
3050 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
3051 "0x%02llx\n");
3052
pmbus_debugfs_get_status(void * data,u64 * val)3053 static int pmbus_debugfs_get_status(void *data, u64 *val)
3054 {
3055 int rc;
3056 struct pmbus_debugfs_entry *entry = data;
3057 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3058
3059 rc = pdata->read_status(entry->client, entry->page);
3060 if (rc < 0)
3061 return rc;
3062
3063 *val = rc;
3064
3065 return 0;
3066 }
3067 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
3068 NULL, "0x%04llx\n");
3069
pmbus_debugfs_mfr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3070 static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf,
3071 size_t count, loff_t *ppos)
3072 {
3073 int rc;
3074 struct pmbus_debugfs_entry *entry = file->private_data;
3075 char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
3076
3077 rc = pmbus_read_block_data(entry->client, entry->page, entry->reg,
3078 data);
3079 if (rc < 0)
3080 return rc;
3081
3082 /* Add newline at the end of a read data */
3083 data[rc] = '\n';
3084
3085 /* Include newline into the length */
3086 rc += 1;
3087
3088 return simple_read_from_buffer(buf, count, ppos, data, rc);
3089 }
3090
3091 static const struct file_operations pmbus_debugfs_ops_mfr = {
3092 .llseek = noop_llseek,
3093 .read = pmbus_debugfs_mfr_read,
3094 .write = NULL,
3095 .open = simple_open,
3096 };
3097
pmbus_remove_debugfs(void * data)3098 static void pmbus_remove_debugfs(void *data)
3099 {
3100 struct dentry *entry = data;
3101
3102 debugfs_remove_recursive(entry);
3103 }
3104
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)3105 static int pmbus_init_debugfs(struct i2c_client *client,
3106 struct pmbus_data *data)
3107 {
3108 int i, idx = 0;
3109 char name[PMBUS_NAME_SIZE];
3110 struct pmbus_debugfs_entry *entries;
3111
3112 if (!pmbus_debugfs_dir)
3113 return -ENODEV;
3114
3115 /*
3116 * Create the debugfs directory for this device. Use the hwmon device
3117 * name to avoid conflicts (hwmon numbers are globally unique).
3118 */
3119 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
3120 pmbus_debugfs_dir);
3121 if (IS_ERR_OR_NULL(data->debugfs)) {
3122 data->debugfs = NULL;
3123 return -ENODEV;
3124 }
3125
3126 /*
3127 * Allocate the max possible entries we need.
3128 * 6 entries device-specific
3129 * 10 entries page-specific
3130 */
3131 entries = devm_kcalloc(data->dev,
3132 6 + data->info->pages * 10, sizeof(*entries),
3133 GFP_KERNEL);
3134 if (!entries)
3135 return -ENOMEM;
3136
3137 /*
3138 * Add device-specific entries.
3139 * Please note that the PMBUS standard allows all registers to be
3140 * page-specific.
3141 * To reduce the number of debugfs entries for devices with many pages
3142 * assume that values of the following registers are the same for all
3143 * pages and report values only for page 0.
3144 */
3145 if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) {
3146 entries[idx].client = client;
3147 entries[idx].page = 0;
3148 entries[idx].reg = PMBUS_MFR_ID;
3149 debugfs_create_file("mfr_id", 0444, data->debugfs,
3150 &entries[idx++],
3151 &pmbus_debugfs_ops_mfr);
3152 }
3153
3154 if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) {
3155 entries[idx].client = client;
3156 entries[idx].page = 0;
3157 entries[idx].reg = PMBUS_MFR_MODEL;
3158 debugfs_create_file("mfr_model", 0444, data->debugfs,
3159 &entries[idx++],
3160 &pmbus_debugfs_ops_mfr);
3161 }
3162
3163 if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) {
3164 entries[idx].client = client;
3165 entries[idx].page = 0;
3166 entries[idx].reg = PMBUS_MFR_REVISION;
3167 debugfs_create_file("mfr_revision", 0444, data->debugfs,
3168 &entries[idx++],
3169 &pmbus_debugfs_ops_mfr);
3170 }
3171
3172 if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) {
3173 entries[idx].client = client;
3174 entries[idx].page = 0;
3175 entries[idx].reg = PMBUS_MFR_LOCATION;
3176 debugfs_create_file("mfr_location", 0444, data->debugfs,
3177 &entries[idx++],
3178 &pmbus_debugfs_ops_mfr);
3179 }
3180
3181 if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) {
3182 entries[idx].client = client;
3183 entries[idx].page = 0;
3184 entries[idx].reg = PMBUS_MFR_DATE;
3185 debugfs_create_file("mfr_date", 0444, data->debugfs,
3186 &entries[idx++],
3187 &pmbus_debugfs_ops_mfr);
3188 }
3189
3190 if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) {
3191 entries[idx].client = client;
3192 entries[idx].page = 0;
3193 entries[idx].reg = PMBUS_MFR_SERIAL;
3194 debugfs_create_file("mfr_serial", 0444, data->debugfs,
3195 &entries[idx++],
3196 &pmbus_debugfs_ops_mfr);
3197 }
3198
3199 /* Add page specific entries */
3200 for (i = 0; i < data->info->pages; ++i) {
3201 /* Check accessibility of status register if it's not page 0 */
3202 if (!i || pmbus_check_status_register(client, i)) {
3203 /* No need to set reg as we have special read op. */
3204 entries[idx].client = client;
3205 entries[idx].page = i;
3206 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
3207 debugfs_create_file(name, 0444, data->debugfs,
3208 &entries[idx++],
3209 &pmbus_debugfs_ops_status);
3210 }
3211
3212 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
3213 entries[idx].client = client;
3214 entries[idx].page = i;
3215 entries[idx].reg = PMBUS_STATUS_VOUT;
3216 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
3217 debugfs_create_file(name, 0444, data->debugfs,
3218 &entries[idx++],
3219 &pmbus_debugfs_ops);
3220 }
3221
3222 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
3223 entries[idx].client = client;
3224 entries[idx].page = i;
3225 entries[idx].reg = PMBUS_STATUS_IOUT;
3226 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
3227 debugfs_create_file(name, 0444, data->debugfs,
3228 &entries[idx++],
3229 &pmbus_debugfs_ops);
3230 }
3231
3232 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
3233 entries[idx].client = client;
3234 entries[idx].page = i;
3235 entries[idx].reg = PMBUS_STATUS_INPUT;
3236 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
3237 debugfs_create_file(name, 0444, data->debugfs,
3238 &entries[idx++],
3239 &pmbus_debugfs_ops);
3240 }
3241
3242 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
3243 entries[idx].client = client;
3244 entries[idx].page = i;
3245 entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
3246 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
3247 debugfs_create_file(name, 0444, data->debugfs,
3248 &entries[idx++],
3249 &pmbus_debugfs_ops);
3250 }
3251
3252 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
3253 entries[idx].client = client;
3254 entries[idx].page = i;
3255 entries[idx].reg = PMBUS_STATUS_CML;
3256 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
3257 debugfs_create_file(name, 0444, data->debugfs,
3258 &entries[idx++],
3259 &pmbus_debugfs_ops);
3260 }
3261
3262 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
3263 entries[idx].client = client;
3264 entries[idx].page = i;
3265 entries[idx].reg = PMBUS_STATUS_OTHER;
3266 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
3267 debugfs_create_file(name, 0444, data->debugfs,
3268 &entries[idx++],
3269 &pmbus_debugfs_ops);
3270 }
3271
3272 if (pmbus_check_byte_register(client, i,
3273 PMBUS_STATUS_MFR_SPECIFIC)) {
3274 entries[idx].client = client;
3275 entries[idx].page = i;
3276 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
3277 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
3278 debugfs_create_file(name, 0444, data->debugfs,
3279 &entries[idx++],
3280 &pmbus_debugfs_ops);
3281 }
3282
3283 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
3284 entries[idx].client = client;
3285 entries[idx].page = i;
3286 entries[idx].reg = PMBUS_STATUS_FAN_12;
3287 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
3288 debugfs_create_file(name, 0444, data->debugfs,
3289 &entries[idx++],
3290 &pmbus_debugfs_ops);
3291 }
3292
3293 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
3294 entries[idx].client = client;
3295 entries[idx].page = i;
3296 entries[idx].reg = PMBUS_STATUS_FAN_34;
3297 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
3298 debugfs_create_file(name, 0444, data->debugfs,
3299 &entries[idx++],
3300 &pmbus_debugfs_ops);
3301 }
3302 }
3303
3304 return devm_add_action_or_reset(data->dev,
3305 pmbus_remove_debugfs, data->debugfs);
3306 }
3307 #else
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)3308 static int pmbus_init_debugfs(struct i2c_client *client,
3309 struct pmbus_data *data)
3310 {
3311 return 0;
3312 }
3313 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */
3314
pmbus_do_probe(struct i2c_client * client,struct pmbus_driver_info * info)3315 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
3316 {
3317 struct device *dev = &client->dev;
3318 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3319 struct pmbus_data *data;
3320 size_t groups_num = 0;
3321 int ret;
3322 int i;
3323 char *name;
3324
3325 if (!info)
3326 return -ENODEV;
3327
3328 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
3329 | I2C_FUNC_SMBUS_BYTE_DATA
3330 | I2C_FUNC_SMBUS_WORD_DATA))
3331 return -ENODEV;
3332
3333 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
3334 if (!data)
3335 return -ENOMEM;
3336
3337 if (info->groups)
3338 while (info->groups[groups_num])
3339 groups_num++;
3340
3341 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
3342 GFP_KERNEL);
3343 if (!data->groups)
3344 return -ENOMEM;
3345
3346 i2c_set_clientdata(client, data);
3347 mutex_init(&data->update_lock);
3348 data->dev = dev;
3349
3350 if (pdata)
3351 data->flags = pdata->flags;
3352 data->info = info;
3353 data->currpage = -1;
3354 data->currphase = -1;
3355
3356 for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
3357 data->vout_low[i] = -1;
3358 data->vout_high[i] = -1;
3359 }
3360
3361 ret = pmbus_init_common(client, data, info);
3362 if (ret < 0)
3363 return ret;
3364
3365 ret = pmbus_find_attributes(client, data);
3366 if (ret)
3367 return ret;
3368
3369 /*
3370 * If there are no attributes, something is wrong.
3371 * Bail out instead of trying to register nothing.
3372 */
3373 if (!data->num_attributes) {
3374 dev_err(dev, "No attributes found\n");
3375 return -ENODEV;
3376 }
3377
3378 name = devm_kstrdup(dev, client->name, GFP_KERNEL);
3379 if (!name)
3380 return -ENOMEM;
3381 strreplace(name, '-', '_');
3382
3383 data->groups[0] = &data->group;
3384 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3385 data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
3386 name, data, data->groups);
3387 if (IS_ERR(data->hwmon_dev)) {
3388 dev_err(dev, "Failed to register hwmon device\n");
3389 return PTR_ERR(data->hwmon_dev);
3390 }
3391
3392 ret = pmbus_regulator_register(data);
3393 if (ret)
3394 return ret;
3395
3396 ret = pmbus_init_debugfs(client, data);
3397 if (ret)
3398 dev_warn(dev, "Failed to register debugfs\n");
3399
3400 return 0;
3401 }
3402 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS);
3403
pmbus_get_debugfs_dir(struct i2c_client * client)3404 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3405 {
3406 struct pmbus_data *data = i2c_get_clientdata(client);
3407
3408 return data->debugfs;
3409 }
3410 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS);
3411
pmbus_core_init(void)3412 static int __init pmbus_core_init(void)
3413 {
3414 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
3415 if (IS_ERR(pmbus_debugfs_dir))
3416 pmbus_debugfs_dir = NULL;
3417
3418 return 0;
3419 }
3420
pmbus_core_exit(void)3421 static void __exit pmbus_core_exit(void)
3422 {
3423 debugfs_remove_recursive(pmbus_debugfs_dir);
3424 }
3425
3426 module_init(pmbus_core_init);
3427 module_exit(pmbus_core_exit);
3428
3429 MODULE_AUTHOR("Guenter Roeck");
3430 MODULE_DESCRIPTION("PMBus core driver");
3431 MODULE_LICENSE("GPL");
3432