1 /*
2 * kernel/power/main.c - PM subsystem core functionality.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 */
10
11 #include <linux/export.h>
12 #include <linux/kobject.h>
13 #include <linux/string.h>
14 #include <linux/resume-trace.h>
15 #include <linux/workqueue.h>
16 #include <linux/debugfs.h>
17 #include <linux/seq_file.h>
18
19 #include "power.h"
20
21 DEFINE_MUTEX(pm_mutex);
22
23 #ifdef CONFIG_PM_SLEEP
24
25 /* Routines for PM-transition notifications */
26
27 static BLOCKING_NOTIFIER_HEAD(pm_chain_head);
28
register_pm_notifier(struct notifier_block * nb)29 int register_pm_notifier(struct notifier_block *nb)
30 {
31 return blocking_notifier_chain_register(&pm_chain_head, nb);
32 }
33 EXPORT_SYMBOL_GPL(register_pm_notifier);
34
unregister_pm_notifier(struct notifier_block * nb)35 int unregister_pm_notifier(struct notifier_block *nb)
36 {
37 return blocking_notifier_chain_unregister(&pm_chain_head, nb);
38 }
39 EXPORT_SYMBOL_GPL(unregister_pm_notifier);
40
pm_notifier_call_chain(unsigned long val)41 int pm_notifier_call_chain(unsigned long val)
42 {
43 int ret = blocking_notifier_call_chain(&pm_chain_head, val, NULL);
44
45 return notifier_to_errno(ret);
46 }
47
48 /* If set, devices may be suspended and resumed asynchronously. */
49 int pm_async_enabled = 1;
50
pm_async_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)51 static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr,
52 char *buf)
53 {
54 return sprintf(buf, "%d\n", pm_async_enabled);
55 }
56
pm_async_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t n)57 static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr,
58 const char *buf, size_t n)
59 {
60 unsigned long val;
61
62 if (strict_strtoul(buf, 10, &val))
63 return -EINVAL;
64
65 if (val > 1)
66 return -EINVAL;
67
68 pm_async_enabled = val;
69 return n;
70 }
71
72 power_attr(pm_async);
73
74 #ifdef CONFIG_PM_DEBUG
75 int pm_test_level = TEST_NONE;
76
77 static const char * const pm_tests[__TEST_AFTER_LAST] = {
78 [TEST_NONE] = "none",
79 [TEST_CORE] = "core",
80 [TEST_CPUS] = "processors",
81 [TEST_PLATFORM] = "platform",
82 [TEST_DEVICES] = "devices",
83 [TEST_FREEZER] = "freezer",
84 };
85
pm_test_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)86 static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr,
87 char *buf)
88 {
89 char *s = buf;
90 int level;
91
92 for (level = TEST_FIRST; level <= TEST_MAX; level++)
93 if (pm_tests[level]) {
94 if (level == pm_test_level)
95 s += sprintf(s, "[%s] ", pm_tests[level]);
96 else
97 s += sprintf(s, "%s ", pm_tests[level]);
98 }
99
100 if (s != buf)
101 /* convert the last space to a newline */
102 *(s-1) = '\n';
103
104 return (s - buf);
105 }
106
pm_test_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t n)107 static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr,
108 const char *buf, size_t n)
109 {
110 const char * const *s;
111 int level;
112 char *p;
113 int len;
114 int error = -EINVAL;
115
116 p = memchr(buf, '\n', n);
117 len = p ? p - buf : n;
118
119 lock_system_sleep();
120
121 level = TEST_FIRST;
122 for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++)
123 if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
124 pm_test_level = level;
125 error = 0;
126 break;
127 }
128
129 unlock_system_sleep();
130
131 return error ? error : n;
132 }
133
134 power_attr(pm_test);
135 #endif /* CONFIG_PM_DEBUG */
136
137 #ifdef CONFIG_DEBUG_FS
suspend_step_name(enum suspend_stat_step step)138 static char *suspend_step_name(enum suspend_stat_step step)
139 {
140 switch (step) {
141 case SUSPEND_FREEZE:
142 return "freeze";
143 case SUSPEND_PREPARE:
144 return "prepare";
145 case SUSPEND_SUSPEND:
146 return "suspend";
147 case SUSPEND_SUSPEND_NOIRQ:
148 return "suspend_noirq";
149 case SUSPEND_RESUME_NOIRQ:
150 return "resume_noirq";
151 case SUSPEND_RESUME:
152 return "resume";
153 default:
154 return "";
155 }
156 }
157
suspend_stats_show(struct seq_file * s,void * unused)158 static int suspend_stats_show(struct seq_file *s, void *unused)
159 {
160 int i, index, last_dev, last_errno, last_step;
161
162 last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
163 last_dev %= REC_FAILED_NUM;
164 last_errno = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
165 last_errno %= REC_FAILED_NUM;
166 last_step = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
167 last_step %= REC_FAILED_NUM;
168 seq_printf(s, "%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n"
169 "%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n",
170 "success", suspend_stats.success,
171 "fail", suspend_stats.fail,
172 "failed_freeze", suspend_stats.failed_freeze,
173 "failed_prepare", suspend_stats.failed_prepare,
174 "failed_suspend", suspend_stats.failed_suspend,
175 "failed_suspend_late",
176 suspend_stats.failed_suspend_late,
177 "failed_suspend_noirq",
178 suspend_stats.failed_suspend_noirq,
179 "failed_resume", suspend_stats.failed_resume,
180 "failed_resume_early",
181 suspend_stats.failed_resume_early,
182 "failed_resume_noirq",
183 suspend_stats.failed_resume_noirq);
184 seq_printf(s, "failures:\n last_failed_dev:\t%-s\n",
185 suspend_stats.failed_devs[last_dev]);
186 for (i = 1; i < REC_FAILED_NUM; i++) {
187 index = last_dev + REC_FAILED_NUM - i;
188 index %= REC_FAILED_NUM;
189 seq_printf(s, "\t\t\t%-s\n",
190 suspend_stats.failed_devs[index]);
191 }
192 seq_printf(s, " last_failed_errno:\t%-d\n",
193 suspend_stats.errno[last_errno]);
194 for (i = 1; i < REC_FAILED_NUM; i++) {
195 index = last_errno + REC_FAILED_NUM - i;
196 index %= REC_FAILED_NUM;
197 seq_printf(s, "\t\t\t%-d\n",
198 suspend_stats.errno[index]);
199 }
200 seq_printf(s, " last_failed_step:\t%-s\n",
201 suspend_step_name(
202 suspend_stats.failed_steps[last_step]));
203 for (i = 1; i < REC_FAILED_NUM; i++) {
204 index = last_step + REC_FAILED_NUM - i;
205 index %= REC_FAILED_NUM;
206 seq_printf(s, "\t\t\t%-s\n",
207 suspend_step_name(
208 suspend_stats.failed_steps[index]));
209 }
210
211 return 0;
212 }
213
suspend_stats_open(struct inode * inode,struct file * file)214 static int suspend_stats_open(struct inode *inode, struct file *file)
215 {
216 return single_open(file, suspend_stats_show, NULL);
217 }
218
219 static const struct file_operations suspend_stats_operations = {
220 .open = suspend_stats_open,
221 .read = seq_read,
222 .llseek = seq_lseek,
223 .release = single_release,
224 };
225
pm_debugfs_init(void)226 static int __init pm_debugfs_init(void)
227 {
228 debugfs_create_file("suspend_stats", S_IFREG | S_IRUGO,
229 NULL, NULL, &suspend_stats_operations);
230 return 0;
231 }
232
233 late_initcall(pm_debugfs_init);
234 #endif /* CONFIG_DEBUG_FS */
235
236 #endif /* CONFIG_PM_SLEEP */
237
238 struct kobject *power_kobj;
239
240 /**
241 * state - control system power state.
242 *
243 * show() returns what states are supported, which is hard-coded to
244 * 'standby' (Power-On Suspend), 'mem' (Suspend-to-RAM), and
245 * 'disk' (Suspend-to-Disk).
246 *
247 * store() accepts one of those strings, translates it into the
248 * proper enumerated value, and initiates a suspend transition.
249 */
state_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)250 static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
251 char *buf)
252 {
253 char *s = buf;
254 #ifdef CONFIG_SUSPEND
255 int i;
256
257 for (i = 0; i < PM_SUSPEND_MAX; i++) {
258 if (pm_states[i] && valid_state(i))
259 s += sprintf(s,"%s ", pm_states[i]);
260 }
261 #endif
262 #ifdef CONFIG_HIBERNATION
263 s += sprintf(s, "%s\n", "disk");
264 #else
265 if (s != buf)
266 /* convert the last space to a newline */
267 *(s-1) = '\n';
268 #endif
269 return (s - buf);
270 }
271
state_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t n)272 static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
273 const char *buf, size_t n)
274 {
275 #ifdef CONFIG_SUSPEND
276 suspend_state_t state = PM_SUSPEND_STANDBY;
277 const char * const *s;
278 #endif
279 char *p;
280 int len;
281 int error = -EINVAL;
282
283 p = memchr(buf, '\n', n);
284 len = p ? p - buf : n;
285
286 /* First, check if we are requested to hibernate */
287 if (len == 4 && !strncmp(buf, "disk", len)) {
288 error = hibernate();
289 goto Exit;
290 }
291
292 #ifdef CONFIG_SUSPEND
293 for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) {
294 if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
295 error = pm_suspend(state);
296 break;
297 }
298 }
299 #endif
300
301 Exit:
302 return error ? error : n;
303 }
304
305 power_attr(state);
306
307 #ifdef CONFIG_PM_SLEEP
308 /*
309 * The 'wakeup_count' attribute, along with the functions defined in
310 * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
311 * handled in a non-racy way.
312 *
313 * If a wakeup event occurs when the system is in a sleep state, it simply is
314 * woken up. In turn, if an event that would wake the system up from a sleep
315 * state occurs when it is undergoing a transition to that sleep state, the
316 * transition should be aborted. Moreover, if such an event occurs when the
317 * system is in the working state, an attempt to start a transition to the
318 * given sleep state should fail during certain period after the detection of
319 * the event. Using the 'state' attribute alone is not sufficient to satisfy
320 * these requirements, because a wakeup event may occur exactly when 'state'
321 * is being written to and may be delivered to user space right before it is
322 * frozen, so the event will remain only partially processed until the system is
323 * woken up by another event. In particular, it won't cause the transition to
324 * a sleep state to be aborted.
325 *
326 * This difficulty may be overcome if user space uses 'wakeup_count' before
327 * writing to 'state'. It first should read from 'wakeup_count' and store
328 * the read value. Then, after carrying out its own preparations for the system
329 * transition to a sleep state, it should write the stored value to
330 * 'wakeup_count'. If that fails, at least one wakeup event has occurred since
331 * 'wakeup_count' was read and 'state' should not be written to. Otherwise, it
332 * is allowed to write to 'state', but the transition will be aborted if there
333 * are any wakeup events detected after 'wakeup_count' was written to.
334 */
335
wakeup_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)336 static ssize_t wakeup_count_show(struct kobject *kobj,
337 struct kobj_attribute *attr,
338 char *buf)
339 {
340 unsigned int val;
341
342 return pm_get_wakeup_count(&val) ? sprintf(buf, "%u\n", val) : -EINTR;
343 }
344
wakeup_count_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t n)345 static ssize_t wakeup_count_store(struct kobject *kobj,
346 struct kobj_attribute *attr,
347 const char *buf, size_t n)
348 {
349 unsigned int val;
350
351 if (sscanf(buf, "%u", &val) == 1) {
352 if (pm_save_wakeup_count(val))
353 return n;
354 }
355 return -EINVAL;
356 }
357
358 power_attr(wakeup_count);
359 #endif /* CONFIG_PM_SLEEP */
360
361 #ifdef CONFIG_PM_TRACE
362 int pm_trace_enabled;
363
pm_trace_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)364 static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr,
365 char *buf)
366 {
367 return sprintf(buf, "%d\n", pm_trace_enabled);
368 }
369
370 static ssize_t
pm_trace_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t n)371 pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr,
372 const char *buf, size_t n)
373 {
374 int val;
375
376 if (sscanf(buf, "%d", &val) == 1) {
377 pm_trace_enabled = !!val;
378 return n;
379 }
380 return -EINVAL;
381 }
382
383 power_attr(pm_trace);
384
pm_trace_dev_match_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)385 static ssize_t pm_trace_dev_match_show(struct kobject *kobj,
386 struct kobj_attribute *attr,
387 char *buf)
388 {
389 return show_trace_dev_match(buf, PAGE_SIZE);
390 }
391
392 static ssize_t
pm_trace_dev_match_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t n)393 pm_trace_dev_match_store(struct kobject *kobj, struct kobj_attribute *attr,
394 const char *buf, size_t n)
395 {
396 return -EINVAL;
397 }
398
399 power_attr(pm_trace_dev_match);
400
401 #endif /* CONFIG_PM_TRACE */
402
403 static struct attribute * g[] = {
404 &state_attr.attr,
405 #ifdef CONFIG_PM_TRACE
406 &pm_trace_attr.attr,
407 &pm_trace_dev_match_attr.attr,
408 #endif
409 #ifdef CONFIG_PM_SLEEP
410 &pm_async_attr.attr,
411 &wakeup_count_attr.attr,
412 #ifdef CONFIG_PM_DEBUG
413 &pm_test_attr.attr,
414 #endif
415 #endif
416 NULL,
417 };
418
419 static struct attribute_group attr_group = {
420 .attrs = g,
421 };
422
423 #ifdef CONFIG_PM_RUNTIME
424 struct workqueue_struct *pm_wq;
425 EXPORT_SYMBOL_GPL(pm_wq);
426
pm_start_workqueue(void)427 static int __init pm_start_workqueue(void)
428 {
429 pm_wq = alloc_workqueue("pm", WQ_FREEZABLE, 0);
430
431 return pm_wq ? 0 : -ENOMEM;
432 }
433 #else
pm_start_workqueue(void)434 static inline int pm_start_workqueue(void) { return 0; }
435 #endif
436
pm_init(void)437 static int __init pm_init(void)
438 {
439 int error = pm_start_workqueue();
440 if (error)
441 return error;
442 hibernate_image_size_init();
443 hibernate_reserved_size_init();
444 power_kobj = kobject_create_and_add("power", NULL);
445 if (!power_kobj)
446 return -ENOMEM;
447 return sysfs_create_group(power_kobj, &attr_group);
448 }
449
450 core_initcall(pm_init);
451