1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/pipe.c
4 *
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
29
30 #include <linux/uaccess.h>
31 #include <asm/ioctls.h>
32
33 #include "internal.h"
34
35 /*
36 * New pipe buffers will be restricted to this size while the user is exceeding
37 * their pipe buffer quota. The general pipe use case needs at least two
38 * buffers: one for data yet to be read, and one for new data. If this is less
39 * than two, then a write to a non-empty pipe may block even if the pipe is not
40 * full. This can occur with GNU make jobserver or similar uses of pipes as
41 * semaphores: multiple processes may be waiting to write tokens back to the
42 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43 *
44 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45 * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46 * emptied.
47 */
48 #define PIPE_MIN_DEF_BUFFERS 2
49
50 /*
51 * The max size that a non-root user is allowed to grow the pipe. Can
52 * be set by root in /proc/sys/fs/pipe-max-size
53 */
54 static unsigned int pipe_max_size = 1048576;
55
56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57 * matches default values.
58 */
59 static unsigned long pipe_user_pages_hard;
60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61
62 /*
63 * We use head and tail indices that aren't masked off, except at the point of
64 * dereference, but rather they're allowed to wrap naturally. This means there
65 * isn't a dead spot in the buffer, but the ring has to be a power of two and
66 * <= 2^31.
67 * -- David Howells 2019-09-23.
68 *
69 * Reads with count = 0 should always return 0.
70 * -- Julian Bradfield 1999-06-07.
71 *
72 * FIFOs and Pipes now generate SIGIO for both readers and writers.
73 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74 *
75 * pipe_read & write cleanup
76 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77 */
78
pipe_lock_nested(struct pipe_inode_info * pipe,int subclass)79 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
80 {
81 if (pipe->files)
82 mutex_lock_nested(&pipe->mutex, subclass);
83 }
84
pipe_lock(struct pipe_inode_info * pipe)85 void pipe_lock(struct pipe_inode_info *pipe)
86 {
87 /*
88 * pipe_lock() nests non-pipe inode locks (for writing to a file)
89 */
90 pipe_lock_nested(pipe, I_MUTEX_PARENT);
91 }
92 EXPORT_SYMBOL(pipe_lock);
93
pipe_unlock(struct pipe_inode_info * pipe)94 void pipe_unlock(struct pipe_inode_info *pipe)
95 {
96 if (pipe->files)
97 mutex_unlock(&pipe->mutex);
98 }
99 EXPORT_SYMBOL(pipe_unlock);
100
__pipe_lock(struct pipe_inode_info * pipe)101 static inline void __pipe_lock(struct pipe_inode_info *pipe)
102 {
103 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
104 }
105
__pipe_unlock(struct pipe_inode_info * pipe)106 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
107 {
108 mutex_unlock(&pipe->mutex);
109 }
110
pipe_double_lock(struct pipe_inode_info * pipe1,struct pipe_inode_info * pipe2)111 void pipe_double_lock(struct pipe_inode_info *pipe1,
112 struct pipe_inode_info *pipe2)
113 {
114 BUG_ON(pipe1 == pipe2);
115
116 if (pipe1 < pipe2) {
117 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
118 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
119 } else {
120 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
121 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
122 }
123 }
124
anon_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)125 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126 struct pipe_buffer *buf)
127 {
128 struct page *page = buf->page;
129
130 /*
131 * If nobody else uses this page, and we don't already have a
132 * temporary page, let's keep track of it as a one-deep
133 * allocation cache. (Otherwise just release our reference to it)
134 */
135 if (page_count(page) == 1 && !pipe->tmp_page)
136 pipe->tmp_page = page;
137 else
138 put_page(page);
139 }
140
anon_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)141 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
142 struct pipe_buffer *buf)
143 {
144 struct page *page = buf->page;
145
146 if (page_count(page) != 1)
147 return false;
148 memcg_kmem_uncharge_page(page, 0);
149 __SetPageLocked(page);
150 return true;
151 }
152
153 /**
154 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
155 * @pipe: the pipe that the buffer belongs to
156 * @buf: the buffer to attempt to steal
157 *
158 * Description:
159 * This function attempts to steal the &struct page attached to
160 * @buf. If successful, this function returns 0 and returns with
161 * the page locked. The caller may then reuse the page for whatever
162 * he wishes; the typical use is insertion into a different file
163 * page cache.
164 */
generic_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)165 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166 struct pipe_buffer *buf)
167 {
168 struct page *page = buf->page;
169
170 /*
171 * A reference of one is golden, that means that the owner of this
172 * page is the only one holding a reference to it. lock the page
173 * and return OK.
174 */
175 if (page_count(page) == 1) {
176 lock_page(page);
177 return true;
178 }
179 return false;
180 }
181 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
182
183 /**
184 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
185 * @pipe: the pipe that the buffer belongs to
186 * @buf: the buffer to get a reference to
187 *
188 * Description:
189 * This function grabs an extra reference to @buf. It's used in
190 * the tee() system call, when we duplicate the buffers in one
191 * pipe into another.
192 */
generic_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)193 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
194 {
195 return try_get_page(buf->page);
196 }
197 EXPORT_SYMBOL(generic_pipe_buf_get);
198
199 /**
200 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
201 * @pipe: the pipe that the buffer belongs to
202 * @buf: the buffer to put a reference to
203 *
204 * Description:
205 * This function releases a reference to @buf.
206 */
generic_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)207 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
208 struct pipe_buffer *buf)
209 {
210 put_page(buf->page);
211 }
212 EXPORT_SYMBOL(generic_pipe_buf_release);
213
214 static const struct pipe_buf_operations anon_pipe_buf_ops = {
215 .release = anon_pipe_buf_release,
216 .try_steal = anon_pipe_buf_try_steal,
217 .get = generic_pipe_buf_get,
218 };
219
220 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_readable(const struct pipe_inode_info * pipe)221 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
222 {
223 unsigned int head = READ_ONCE(pipe->head);
224 unsigned int tail = READ_ONCE(pipe->tail);
225 unsigned int writers = READ_ONCE(pipe->writers);
226
227 return !pipe_empty(head, tail) || !writers;
228 }
229
230 static ssize_t
pipe_read(struct kiocb * iocb,struct iov_iter * to)231 pipe_read(struct kiocb *iocb, struct iov_iter *to)
232 {
233 size_t total_len = iov_iter_count(to);
234 struct file *filp = iocb->ki_filp;
235 struct pipe_inode_info *pipe = filp->private_data;
236 bool was_full, wake_next_reader = false;
237 ssize_t ret;
238
239 /* Null read succeeds. */
240 if (unlikely(total_len == 0))
241 return 0;
242
243 ret = 0;
244 __pipe_lock(pipe);
245
246 /*
247 * We only wake up writers if the pipe was full when we started
248 * reading in order to avoid unnecessary wakeups.
249 *
250 * But when we do wake up writers, we do so using a sync wakeup
251 * (WF_SYNC), because we want them to get going and generate more
252 * data for us.
253 */
254 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
255 for (;;) {
256 /* Read ->head with a barrier vs post_one_notification() */
257 unsigned int head = smp_load_acquire(&pipe->head);
258 unsigned int tail = pipe->tail;
259 unsigned int mask = pipe->ring_size - 1;
260
261 #ifdef CONFIG_WATCH_QUEUE
262 if (pipe->note_loss) {
263 struct watch_notification n;
264
265 if (total_len < 8) {
266 if (ret == 0)
267 ret = -ENOBUFS;
268 break;
269 }
270
271 n.type = WATCH_TYPE_META;
272 n.subtype = WATCH_META_LOSS_NOTIFICATION;
273 n.info = watch_sizeof(n);
274 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
275 if (ret == 0)
276 ret = -EFAULT;
277 break;
278 }
279 ret += sizeof(n);
280 total_len -= sizeof(n);
281 pipe->note_loss = false;
282 }
283 #endif
284
285 if (!pipe_empty(head, tail)) {
286 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
287 size_t chars = buf->len;
288 size_t written;
289 int error;
290
291 if (chars > total_len) {
292 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
293 if (ret == 0)
294 ret = -ENOBUFS;
295 break;
296 }
297 chars = total_len;
298 }
299
300 error = pipe_buf_confirm(pipe, buf);
301 if (error) {
302 if (!ret)
303 ret = error;
304 break;
305 }
306
307 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
308 if (unlikely(written < chars)) {
309 if (!ret)
310 ret = -EFAULT;
311 break;
312 }
313 ret += chars;
314 buf->offset += chars;
315 buf->len -= chars;
316
317 /* Was it a packet buffer? Clean up and exit */
318 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
319 total_len = chars;
320 buf->len = 0;
321 }
322
323 if (!buf->len) {
324 pipe_buf_release(pipe, buf);
325 spin_lock_irq(&pipe->rd_wait.lock);
326 #ifdef CONFIG_WATCH_QUEUE
327 if (buf->flags & PIPE_BUF_FLAG_LOSS)
328 pipe->note_loss = true;
329 #endif
330 tail++;
331 pipe->tail = tail;
332 spin_unlock_irq(&pipe->rd_wait.lock);
333 }
334 total_len -= chars;
335 if (!total_len)
336 break; /* common path: read succeeded */
337 if (!pipe_empty(head, tail)) /* More to do? */
338 continue;
339 }
340
341 if (!pipe->writers)
342 break;
343 if (ret)
344 break;
345 if ((filp->f_flags & O_NONBLOCK) ||
346 (iocb->ki_flags & IOCB_NOWAIT)) {
347 ret = -EAGAIN;
348 break;
349 }
350 __pipe_unlock(pipe);
351
352 /*
353 * We only get here if we didn't actually read anything.
354 *
355 * However, we could have seen (and removed) a zero-sized
356 * pipe buffer, and might have made space in the buffers
357 * that way.
358 *
359 * You can't make zero-sized pipe buffers by doing an empty
360 * write (not even in packet mode), but they can happen if
361 * the writer gets an EFAULT when trying to fill a buffer
362 * that already got allocated and inserted in the buffer
363 * array.
364 *
365 * So we still need to wake up any pending writers in the
366 * _very_ unlikely case that the pipe was full, but we got
367 * no data.
368 */
369 if (unlikely(was_full))
370 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
371 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
372
373 /*
374 * But because we didn't read anything, at this point we can
375 * just return directly with -ERESTARTSYS if we're interrupted,
376 * since we've done any required wakeups and there's no need
377 * to mark anything accessed. And we've dropped the lock.
378 */
379 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
380 return -ERESTARTSYS;
381
382 __pipe_lock(pipe);
383 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
384 wake_next_reader = true;
385 }
386 if (pipe_empty(pipe->head, pipe->tail))
387 wake_next_reader = false;
388 __pipe_unlock(pipe);
389
390 if (was_full)
391 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
392 if (wake_next_reader)
393 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
394 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
395 if (ret > 0)
396 file_accessed(filp);
397 return ret;
398 }
399
is_packetized(struct file * file)400 static inline int is_packetized(struct file *file)
401 {
402 return (file->f_flags & O_DIRECT) != 0;
403 }
404
405 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_writable(const struct pipe_inode_info * pipe)406 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
407 {
408 unsigned int head = READ_ONCE(pipe->head);
409 unsigned int tail = READ_ONCE(pipe->tail);
410 unsigned int max_usage = READ_ONCE(pipe->max_usage);
411
412 return !pipe_full(head, tail, max_usage) ||
413 !READ_ONCE(pipe->readers);
414 }
415
416 static ssize_t
pipe_write(struct kiocb * iocb,struct iov_iter * from)417 pipe_write(struct kiocb *iocb, struct iov_iter *from)
418 {
419 struct file *filp = iocb->ki_filp;
420 struct pipe_inode_info *pipe = filp->private_data;
421 unsigned int head;
422 ssize_t ret = 0;
423 size_t total_len = iov_iter_count(from);
424 ssize_t chars;
425 bool was_empty = false;
426 bool wake_next_writer = false;
427
428 /* Null write succeeds. */
429 if (unlikely(total_len == 0))
430 return 0;
431
432 __pipe_lock(pipe);
433
434 if (!pipe->readers) {
435 send_sig(SIGPIPE, current, 0);
436 ret = -EPIPE;
437 goto out;
438 }
439
440 if (pipe_has_watch_queue(pipe)) {
441 ret = -EXDEV;
442 goto out;
443 }
444
445 /*
446 * If it wasn't empty we try to merge new data into
447 * the last buffer.
448 *
449 * That naturally merges small writes, but it also
450 * page-aligns the rest of the writes for large writes
451 * spanning multiple pages.
452 */
453 head = pipe->head;
454 was_empty = pipe_empty(head, pipe->tail);
455 chars = total_len & (PAGE_SIZE-1);
456 if (chars && !was_empty) {
457 unsigned int mask = pipe->ring_size - 1;
458 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
459 int offset = buf->offset + buf->len;
460
461 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
462 offset + chars <= PAGE_SIZE) {
463 ret = pipe_buf_confirm(pipe, buf);
464 if (ret)
465 goto out;
466
467 ret = copy_page_from_iter(buf->page, offset, chars, from);
468 if (unlikely(ret < chars)) {
469 ret = -EFAULT;
470 goto out;
471 }
472
473 buf->len += ret;
474 if (!iov_iter_count(from))
475 goto out;
476 }
477 }
478
479 for (;;) {
480 if (!pipe->readers) {
481 send_sig(SIGPIPE, current, 0);
482 if (!ret)
483 ret = -EPIPE;
484 break;
485 }
486
487 head = pipe->head;
488 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
489 unsigned int mask = pipe->ring_size - 1;
490 struct pipe_buffer *buf;
491 struct page *page = pipe->tmp_page;
492 int copied;
493
494 if (!page) {
495 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
496 if (unlikely(!page)) {
497 ret = ret ? : -ENOMEM;
498 break;
499 }
500 pipe->tmp_page = page;
501 }
502
503 /* Allocate a slot in the ring in advance and attach an
504 * empty buffer. If we fault or otherwise fail to use
505 * it, either the reader will consume it or it'll still
506 * be there for the next write.
507 */
508 spin_lock_irq(&pipe->rd_wait.lock);
509
510 head = pipe->head;
511 if (pipe_full(head, pipe->tail, pipe->max_usage)) {
512 spin_unlock_irq(&pipe->rd_wait.lock);
513 continue;
514 }
515
516 pipe->head = head + 1;
517 spin_unlock_irq(&pipe->rd_wait.lock);
518
519 /* Insert it into the buffer array */
520 buf = &pipe->bufs[head & mask];
521 buf->page = page;
522 buf->ops = &anon_pipe_buf_ops;
523 buf->offset = 0;
524 buf->len = 0;
525 if (is_packetized(filp))
526 buf->flags = PIPE_BUF_FLAG_PACKET;
527 else
528 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
529 pipe->tmp_page = NULL;
530
531 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
532 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
533 if (!ret)
534 ret = -EFAULT;
535 break;
536 }
537 ret += copied;
538 buf->len = copied;
539
540 if (!iov_iter_count(from))
541 break;
542 }
543
544 if (!pipe_full(head, pipe->tail, pipe->max_usage))
545 continue;
546
547 /* Wait for buffer space to become available. */
548 if ((filp->f_flags & O_NONBLOCK) ||
549 (iocb->ki_flags & IOCB_NOWAIT)) {
550 if (!ret)
551 ret = -EAGAIN;
552 break;
553 }
554 if (signal_pending(current)) {
555 if (!ret)
556 ret = -ERESTARTSYS;
557 break;
558 }
559
560 /*
561 * We're going to release the pipe lock and wait for more
562 * space. We wake up any readers if necessary, and then
563 * after waiting we need to re-check whether the pipe
564 * become empty while we dropped the lock.
565 */
566 __pipe_unlock(pipe);
567 if (was_empty)
568 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
569 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
570 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
571 __pipe_lock(pipe);
572 was_empty = pipe_empty(pipe->head, pipe->tail);
573 wake_next_writer = true;
574 }
575 out:
576 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
577 wake_next_writer = false;
578 __pipe_unlock(pipe);
579
580 /*
581 * If we do do a wakeup event, we do a 'sync' wakeup, because we
582 * want the reader to start processing things asap, rather than
583 * leave the data pending.
584 *
585 * This is particularly important for small writes, because of
586 * how (for example) the GNU make jobserver uses small writes to
587 * wake up pending jobs
588 *
589 * Epoll nonsensically wants a wakeup whether the pipe
590 * was already empty or not.
591 */
592 if (was_empty || pipe->poll_usage)
593 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
594 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
595 if (wake_next_writer)
596 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
597 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
598 int err = file_update_time(filp);
599 if (err)
600 ret = err;
601 sb_end_write(file_inode(filp)->i_sb);
602 }
603 return ret;
604 }
605
pipe_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)606 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
607 {
608 struct pipe_inode_info *pipe = filp->private_data;
609 unsigned int count, head, tail, mask;
610
611 switch (cmd) {
612 case FIONREAD:
613 __pipe_lock(pipe);
614 count = 0;
615 head = pipe->head;
616 tail = pipe->tail;
617 mask = pipe->ring_size - 1;
618
619 while (tail != head) {
620 count += pipe->bufs[tail & mask].len;
621 tail++;
622 }
623 __pipe_unlock(pipe);
624
625 return put_user(count, (int __user *)arg);
626
627 #ifdef CONFIG_WATCH_QUEUE
628 case IOC_WATCH_QUEUE_SET_SIZE: {
629 int ret;
630 __pipe_lock(pipe);
631 ret = watch_queue_set_size(pipe, arg);
632 __pipe_unlock(pipe);
633 return ret;
634 }
635
636 case IOC_WATCH_QUEUE_SET_FILTER:
637 return watch_queue_set_filter(
638 pipe, (struct watch_notification_filter __user *)arg);
639 #endif
640
641 default:
642 return -ENOIOCTLCMD;
643 }
644 }
645
646 /* No kernel lock held - fine */
647 static __poll_t
pipe_poll(struct file * filp,poll_table * wait)648 pipe_poll(struct file *filp, poll_table *wait)
649 {
650 __poll_t mask;
651 struct pipe_inode_info *pipe = filp->private_data;
652 unsigned int head, tail;
653
654 /* Epoll has some historical nasty semantics, this enables them */
655 WRITE_ONCE(pipe->poll_usage, true);
656
657 /*
658 * Reading pipe state only -- no need for acquiring the semaphore.
659 *
660 * But because this is racy, the code has to add the
661 * entry to the poll table _first_ ..
662 */
663 if (filp->f_mode & FMODE_READ)
664 poll_wait(filp, &pipe->rd_wait, wait);
665 if (filp->f_mode & FMODE_WRITE)
666 poll_wait(filp, &pipe->wr_wait, wait);
667
668 /*
669 * .. and only then can you do the racy tests. That way,
670 * if something changes and you got it wrong, the poll
671 * table entry will wake you up and fix it.
672 */
673 head = READ_ONCE(pipe->head);
674 tail = READ_ONCE(pipe->tail);
675
676 mask = 0;
677 if (filp->f_mode & FMODE_READ) {
678 if (!pipe_empty(head, tail))
679 mask |= EPOLLIN | EPOLLRDNORM;
680 if (!pipe->writers && filp->f_version != pipe->w_counter)
681 mask |= EPOLLHUP;
682 }
683
684 if (filp->f_mode & FMODE_WRITE) {
685 if (!pipe_full(head, tail, pipe->max_usage))
686 mask |= EPOLLOUT | EPOLLWRNORM;
687 /*
688 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
689 * behave exactly like pipes for poll().
690 */
691 if (!pipe->readers)
692 mask |= EPOLLERR;
693 }
694
695 return mask;
696 }
697
put_pipe_info(struct inode * inode,struct pipe_inode_info * pipe)698 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
699 {
700 int kill = 0;
701
702 spin_lock(&inode->i_lock);
703 if (!--pipe->files) {
704 inode->i_pipe = NULL;
705 kill = 1;
706 }
707 spin_unlock(&inode->i_lock);
708
709 if (kill)
710 free_pipe_info(pipe);
711 }
712
713 static int
pipe_release(struct inode * inode,struct file * file)714 pipe_release(struct inode *inode, struct file *file)
715 {
716 struct pipe_inode_info *pipe = file->private_data;
717
718 __pipe_lock(pipe);
719 if (file->f_mode & FMODE_READ)
720 pipe->readers--;
721 if (file->f_mode & FMODE_WRITE)
722 pipe->writers--;
723
724 /* Was that the last reader or writer, but not the other side? */
725 if (!pipe->readers != !pipe->writers) {
726 wake_up_interruptible_all(&pipe->rd_wait);
727 wake_up_interruptible_all(&pipe->wr_wait);
728 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
729 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
730 }
731 __pipe_unlock(pipe);
732
733 put_pipe_info(inode, pipe);
734 return 0;
735 }
736
737 static int
pipe_fasync(int fd,struct file * filp,int on)738 pipe_fasync(int fd, struct file *filp, int on)
739 {
740 struct pipe_inode_info *pipe = filp->private_data;
741 int retval = 0;
742
743 __pipe_lock(pipe);
744 if (filp->f_mode & FMODE_READ)
745 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
746 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
747 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
748 if (retval < 0 && (filp->f_mode & FMODE_READ))
749 /* this can happen only if on == T */
750 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
751 }
752 __pipe_unlock(pipe);
753 return retval;
754 }
755
account_pipe_buffers(struct user_struct * user,unsigned long old,unsigned long new)756 unsigned long account_pipe_buffers(struct user_struct *user,
757 unsigned long old, unsigned long new)
758 {
759 return atomic_long_add_return(new - old, &user->pipe_bufs);
760 }
761
too_many_pipe_buffers_soft(unsigned long user_bufs)762 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
763 {
764 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
765
766 return soft_limit && user_bufs > soft_limit;
767 }
768
too_many_pipe_buffers_hard(unsigned long user_bufs)769 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
770 {
771 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
772
773 return hard_limit && user_bufs > hard_limit;
774 }
775
pipe_is_unprivileged_user(void)776 bool pipe_is_unprivileged_user(void)
777 {
778 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
779 }
780
alloc_pipe_info(void)781 struct pipe_inode_info *alloc_pipe_info(void)
782 {
783 struct pipe_inode_info *pipe;
784 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
785 struct user_struct *user = get_current_user();
786 unsigned long user_bufs;
787 unsigned int max_size = READ_ONCE(pipe_max_size);
788
789 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
790 if (pipe == NULL)
791 goto out_free_uid;
792
793 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
794 pipe_bufs = max_size >> PAGE_SHIFT;
795
796 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
797
798 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
799 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
800 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
801 }
802
803 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
804 goto out_revert_acct;
805
806 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
807 GFP_KERNEL_ACCOUNT);
808
809 if (pipe->bufs) {
810 init_waitqueue_head(&pipe->rd_wait);
811 init_waitqueue_head(&pipe->wr_wait);
812 pipe->r_counter = pipe->w_counter = 1;
813 pipe->max_usage = pipe_bufs;
814 pipe->ring_size = pipe_bufs;
815 pipe->nr_accounted = pipe_bufs;
816 pipe->user = user;
817 mutex_init(&pipe->mutex);
818 return pipe;
819 }
820
821 out_revert_acct:
822 (void) account_pipe_buffers(user, pipe_bufs, 0);
823 kfree(pipe);
824 out_free_uid:
825 free_uid(user);
826 return NULL;
827 }
828
free_pipe_info(struct pipe_inode_info * pipe)829 void free_pipe_info(struct pipe_inode_info *pipe)
830 {
831 unsigned int i;
832
833 #ifdef CONFIG_WATCH_QUEUE
834 if (pipe->watch_queue)
835 watch_queue_clear(pipe->watch_queue);
836 #endif
837
838 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
839 free_uid(pipe->user);
840 for (i = 0; i < pipe->ring_size; i++) {
841 struct pipe_buffer *buf = pipe->bufs + i;
842 if (buf->ops)
843 pipe_buf_release(pipe, buf);
844 }
845 #ifdef CONFIG_WATCH_QUEUE
846 if (pipe->watch_queue)
847 put_watch_queue(pipe->watch_queue);
848 #endif
849 if (pipe->tmp_page)
850 __free_page(pipe->tmp_page);
851 kfree(pipe->bufs);
852 kfree(pipe);
853 }
854
855 static struct vfsmount *pipe_mnt __read_mostly;
856
857 /*
858 * pipefs_dname() is called from d_path().
859 */
pipefs_dname(struct dentry * dentry,char * buffer,int buflen)860 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
861 {
862 return dynamic_dname(buffer, buflen, "pipe:[%lu]",
863 d_inode(dentry)->i_ino);
864 }
865
866 static const struct dentry_operations pipefs_dentry_operations = {
867 .d_dname = pipefs_dname,
868 };
869
get_pipe_inode(void)870 static struct inode * get_pipe_inode(void)
871 {
872 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
873 struct pipe_inode_info *pipe;
874
875 if (!inode)
876 goto fail_inode;
877
878 inode->i_ino = get_next_ino();
879
880 pipe = alloc_pipe_info();
881 if (!pipe)
882 goto fail_iput;
883
884 inode->i_pipe = pipe;
885 pipe->files = 2;
886 pipe->readers = pipe->writers = 1;
887 inode->i_fop = &pipefifo_fops;
888
889 /*
890 * Mark the inode dirty from the very beginning,
891 * that way it will never be moved to the dirty
892 * list because "mark_inode_dirty()" will think
893 * that it already _is_ on the dirty list.
894 */
895 inode->i_state = I_DIRTY;
896 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
897 inode->i_uid = current_fsuid();
898 inode->i_gid = current_fsgid();
899 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
900
901 return inode;
902
903 fail_iput:
904 iput(inode);
905
906 fail_inode:
907 return NULL;
908 }
909
create_pipe_files(struct file ** res,int flags)910 int create_pipe_files(struct file **res, int flags)
911 {
912 struct inode *inode = get_pipe_inode();
913 struct file *f;
914 int error;
915
916 if (!inode)
917 return -ENFILE;
918
919 if (flags & O_NOTIFICATION_PIPE) {
920 error = watch_queue_init(inode->i_pipe);
921 if (error) {
922 free_pipe_info(inode->i_pipe);
923 iput(inode);
924 return error;
925 }
926 }
927
928 f = alloc_file_pseudo(inode, pipe_mnt, "",
929 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
930 &pipefifo_fops);
931 if (IS_ERR(f)) {
932 free_pipe_info(inode->i_pipe);
933 iput(inode);
934 return PTR_ERR(f);
935 }
936
937 f->private_data = inode->i_pipe;
938
939 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
940 &pipefifo_fops);
941 if (IS_ERR(res[0])) {
942 put_pipe_info(inode, inode->i_pipe);
943 fput(f);
944 return PTR_ERR(res[0]);
945 }
946 res[0]->private_data = inode->i_pipe;
947 res[1] = f;
948 stream_open(inode, res[0]);
949 stream_open(inode, res[1]);
950 return 0;
951 }
952
__do_pipe_flags(int * fd,struct file ** files,int flags)953 static int __do_pipe_flags(int *fd, struct file **files, int flags)
954 {
955 int error;
956 int fdw, fdr;
957
958 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
959 return -EINVAL;
960
961 error = create_pipe_files(files, flags);
962 if (error)
963 return error;
964
965 error = get_unused_fd_flags(flags);
966 if (error < 0)
967 goto err_read_pipe;
968 fdr = error;
969
970 error = get_unused_fd_flags(flags);
971 if (error < 0)
972 goto err_fdr;
973 fdw = error;
974
975 audit_fd_pair(fdr, fdw);
976 fd[0] = fdr;
977 fd[1] = fdw;
978 /* pipe groks IOCB_NOWAIT */
979 files[0]->f_mode |= FMODE_NOWAIT;
980 files[1]->f_mode |= FMODE_NOWAIT;
981 return 0;
982
983 err_fdr:
984 put_unused_fd(fdr);
985 err_read_pipe:
986 fput(files[0]);
987 fput(files[1]);
988 return error;
989 }
990
do_pipe_flags(int * fd,int flags)991 int do_pipe_flags(int *fd, int flags)
992 {
993 struct file *files[2];
994 int error = __do_pipe_flags(fd, files, flags);
995 if (!error) {
996 fd_install(fd[0], files[0]);
997 fd_install(fd[1], files[1]);
998 }
999 return error;
1000 }
1001
1002 /*
1003 * sys_pipe() is the normal C calling standard for creating
1004 * a pipe. It's not the way Unix traditionally does this, though.
1005 */
do_pipe2(int __user * fildes,int flags)1006 static int do_pipe2(int __user *fildes, int flags)
1007 {
1008 struct file *files[2];
1009 int fd[2];
1010 int error;
1011
1012 error = __do_pipe_flags(fd, files, flags);
1013 if (!error) {
1014 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1015 fput(files[0]);
1016 fput(files[1]);
1017 put_unused_fd(fd[0]);
1018 put_unused_fd(fd[1]);
1019 error = -EFAULT;
1020 } else {
1021 fd_install(fd[0], files[0]);
1022 fd_install(fd[1], files[1]);
1023 }
1024 }
1025 return error;
1026 }
1027
SYSCALL_DEFINE2(pipe2,int __user *,fildes,int,flags)1028 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1029 {
1030 return do_pipe2(fildes, flags);
1031 }
1032
SYSCALL_DEFINE1(pipe,int __user *,fildes)1033 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1034 {
1035 return do_pipe2(fildes, 0);
1036 }
1037
1038 /*
1039 * This is the stupid "wait for pipe to be readable or writable"
1040 * model.
1041 *
1042 * See pipe_read/write() for the proper kind of exclusive wait,
1043 * but that requires that we wake up any other readers/writers
1044 * if we then do not end up reading everything (ie the whole
1045 * "wake_next_reader/writer" logic in pipe_read/write()).
1046 */
pipe_wait_readable(struct pipe_inode_info * pipe)1047 void pipe_wait_readable(struct pipe_inode_info *pipe)
1048 {
1049 pipe_unlock(pipe);
1050 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1051 pipe_lock(pipe);
1052 }
1053
pipe_wait_writable(struct pipe_inode_info * pipe)1054 void pipe_wait_writable(struct pipe_inode_info *pipe)
1055 {
1056 pipe_unlock(pipe);
1057 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1058 pipe_lock(pipe);
1059 }
1060
1061 /*
1062 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1063 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1064 * race with the count check and waitqueue prep.
1065 *
1066 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1067 * then check the condition you're waiting for, and only then sleep. But
1068 * because of the pipe lock, we can check the condition before being on
1069 * the wait queue.
1070 *
1071 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1072 */
wait_for_partner(struct pipe_inode_info * pipe,unsigned int * cnt)1073 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1074 {
1075 DEFINE_WAIT(rdwait);
1076 int cur = *cnt;
1077
1078 while (cur == *cnt) {
1079 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1080 pipe_unlock(pipe);
1081 schedule();
1082 finish_wait(&pipe->rd_wait, &rdwait);
1083 pipe_lock(pipe);
1084 if (signal_pending(current))
1085 break;
1086 }
1087 return cur == *cnt ? -ERESTARTSYS : 0;
1088 }
1089
wake_up_partner(struct pipe_inode_info * pipe)1090 static void wake_up_partner(struct pipe_inode_info *pipe)
1091 {
1092 wake_up_interruptible_all(&pipe->rd_wait);
1093 }
1094
fifo_open(struct inode * inode,struct file * filp)1095 static int fifo_open(struct inode *inode, struct file *filp)
1096 {
1097 struct pipe_inode_info *pipe;
1098 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1099 int ret;
1100
1101 filp->f_version = 0;
1102
1103 spin_lock(&inode->i_lock);
1104 if (inode->i_pipe) {
1105 pipe = inode->i_pipe;
1106 pipe->files++;
1107 spin_unlock(&inode->i_lock);
1108 } else {
1109 spin_unlock(&inode->i_lock);
1110 pipe = alloc_pipe_info();
1111 if (!pipe)
1112 return -ENOMEM;
1113 pipe->files = 1;
1114 spin_lock(&inode->i_lock);
1115 if (unlikely(inode->i_pipe)) {
1116 inode->i_pipe->files++;
1117 spin_unlock(&inode->i_lock);
1118 free_pipe_info(pipe);
1119 pipe = inode->i_pipe;
1120 } else {
1121 inode->i_pipe = pipe;
1122 spin_unlock(&inode->i_lock);
1123 }
1124 }
1125 filp->private_data = pipe;
1126 /* OK, we have a pipe and it's pinned down */
1127
1128 __pipe_lock(pipe);
1129
1130 /* We can only do regular read/write on fifos */
1131 stream_open(inode, filp);
1132
1133 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1134 case FMODE_READ:
1135 /*
1136 * O_RDONLY
1137 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1138 * opened, even when there is no process writing the FIFO.
1139 */
1140 pipe->r_counter++;
1141 if (pipe->readers++ == 0)
1142 wake_up_partner(pipe);
1143
1144 if (!is_pipe && !pipe->writers) {
1145 if ((filp->f_flags & O_NONBLOCK)) {
1146 /* suppress EPOLLHUP until we have
1147 * seen a writer */
1148 filp->f_version = pipe->w_counter;
1149 } else {
1150 if (wait_for_partner(pipe, &pipe->w_counter))
1151 goto err_rd;
1152 }
1153 }
1154 break;
1155
1156 case FMODE_WRITE:
1157 /*
1158 * O_WRONLY
1159 * POSIX.1 says that O_NONBLOCK means return -1 with
1160 * errno=ENXIO when there is no process reading the FIFO.
1161 */
1162 ret = -ENXIO;
1163 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1164 goto err;
1165
1166 pipe->w_counter++;
1167 if (!pipe->writers++)
1168 wake_up_partner(pipe);
1169
1170 if (!is_pipe && !pipe->readers) {
1171 if (wait_for_partner(pipe, &pipe->r_counter))
1172 goto err_wr;
1173 }
1174 break;
1175
1176 case FMODE_READ | FMODE_WRITE:
1177 /*
1178 * O_RDWR
1179 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1180 * This implementation will NEVER block on a O_RDWR open, since
1181 * the process can at least talk to itself.
1182 */
1183
1184 pipe->readers++;
1185 pipe->writers++;
1186 pipe->r_counter++;
1187 pipe->w_counter++;
1188 if (pipe->readers == 1 || pipe->writers == 1)
1189 wake_up_partner(pipe);
1190 break;
1191
1192 default:
1193 ret = -EINVAL;
1194 goto err;
1195 }
1196
1197 /* Ok! */
1198 __pipe_unlock(pipe);
1199 return 0;
1200
1201 err_rd:
1202 if (!--pipe->readers)
1203 wake_up_interruptible(&pipe->wr_wait);
1204 ret = -ERESTARTSYS;
1205 goto err;
1206
1207 err_wr:
1208 if (!--pipe->writers)
1209 wake_up_interruptible_all(&pipe->rd_wait);
1210 ret = -ERESTARTSYS;
1211 goto err;
1212
1213 err:
1214 __pipe_unlock(pipe);
1215
1216 put_pipe_info(inode, pipe);
1217 return ret;
1218 }
1219
1220 const struct file_operations pipefifo_fops = {
1221 .open = fifo_open,
1222 .llseek = no_llseek,
1223 .read_iter = pipe_read,
1224 .write_iter = pipe_write,
1225 .poll = pipe_poll,
1226 .unlocked_ioctl = pipe_ioctl,
1227 .release = pipe_release,
1228 .fasync = pipe_fasync,
1229 .splice_write = iter_file_splice_write,
1230 };
1231
1232 /*
1233 * Currently we rely on the pipe array holding a power-of-2 number
1234 * of pages. Returns 0 on error.
1235 */
round_pipe_size(unsigned int size)1236 unsigned int round_pipe_size(unsigned int size)
1237 {
1238 if (size > (1U << 31))
1239 return 0;
1240
1241 /* Minimum pipe size, as required by POSIX */
1242 if (size < PAGE_SIZE)
1243 return PAGE_SIZE;
1244
1245 return roundup_pow_of_two(size);
1246 }
1247
1248 /*
1249 * Resize the pipe ring to a number of slots.
1250 *
1251 * Note the pipe can be reduced in capacity, but only if the current
1252 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1253 * returned instead.
1254 */
pipe_resize_ring(struct pipe_inode_info * pipe,unsigned int nr_slots)1255 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1256 {
1257 struct pipe_buffer *bufs;
1258 unsigned int head, tail, mask, n;
1259
1260 bufs = kcalloc(nr_slots, sizeof(*bufs),
1261 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1262 if (unlikely(!bufs))
1263 return -ENOMEM;
1264
1265 spin_lock_irq(&pipe->rd_wait.lock);
1266 mask = pipe->ring_size - 1;
1267 head = pipe->head;
1268 tail = pipe->tail;
1269
1270 n = pipe_occupancy(head, tail);
1271 if (nr_slots < n) {
1272 spin_unlock_irq(&pipe->rd_wait.lock);
1273 kfree(bufs);
1274 return -EBUSY;
1275 }
1276
1277 /*
1278 * The pipe array wraps around, so just start the new one at zero
1279 * and adjust the indices.
1280 */
1281 if (n > 0) {
1282 unsigned int h = head & mask;
1283 unsigned int t = tail & mask;
1284 if (h > t) {
1285 memcpy(bufs, pipe->bufs + t,
1286 n * sizeof(struct pipe_buffer));
1287 } else {
1288 unsigned int tsize = pipe->ring_size - t;
1289 if (h > 0)
1290 memcpy(bufs + tsize, pipe->bufs,
1291 h * sizeof(struct pipe_buffer));
1292 memcpy(bufs, pipe->bufs + t,
1293 tsize * sizeof(struct pipe_buffer));
1294 }
1295 }
1296
1297 head = n;
1298 tail = 0;
1299
1300 kfree(pipe->bufs);
1301 pipe->bufs = bufs;
1302 pipe->ring_size = nr_slots;
1303 if (pipe->max_usage > nr_slots)
1304 pipe->max_usage = nr_slots;
1305 pipe->tail = tail;
1306 pipe->head = head;
1307
1308 if (!pipe_has_watch_queue(pipe)) {
1309 pipe->max_usage = nr_slots;
1310 pipe->nr_accounted = nr_slots;
1311 }
1312
1313 spin_unlock_irq(&pipe->rd_wait.lock);
1314
1315 /* This might have made more room for writers */
1316 wake_up_interruptible(&pipe->wr_wait);
1317 return 0;
1318 }
1319
1320 /*
1321 * Allocate a new array of pipe buffers and copy the info over. Returns the
1322 * pipe size if successful, or return -ERROR on error.
1323 */
pipe_set_size(struct pipe_inode_info * pipe,unsigned int arg)1324 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg)
1325 {
1326 unsigned long user_bufs;
1327 unsigned int nr_slots, size;
1328 long ret = 0;
1329
1330 if (pipe_has_watch_queue(pipe))
1331 return -EBUSY;
1332
1333 size = round_pipe_size(arg);
1334 nr_slots = size >> PAGE_SHIFT;
1335
1336 if (!nr_slots)
1337 return -EINVAL;
1338
1339 /*
1340 * If trying to increase the pipe capacity, check that an
1341 * unprivileged user is not trying to exceed various limits
1342 * (soft limit check here, hard limit check just below).
1343 * Decreasing the pipe capacity is always permitted, even
1344 * if the user is currently over a limit.
1345 */
1346 if (nr_slots > pipe->max_usage &&
1347 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1348 return -EPERM;
1349
1350 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1351
1352 if (nr_slots > pipe->max_usage &&
1353 (too_many_pipe_buffers_hard(user_bufs) ||
1354 too_many_pipe_buffers_soft(user_bufs)) &&
1355 pipe_is_unprivileged_user()) {
1356 ret = -EPERM;
1357 goto out_revert_acct;
1358 }
1359
1360 ret = pipe_resize_ring(pipe, nr_slots);
1361 if (ret < 0)
1362 goto out_revert_acct;
1363
1364 return pipe->max_usage * PAGE_SIZE;
1365
1366 out_revert_acct:
1367 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1368 return ret;
1369 }
1370
1371 /*
1372 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1373 * not enough to verify that this is a pipe.
1374 */
get_pipe_info(struct file * file,bool for_splice)1375 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1376 {
1377 struct pipe_inode_info *pipe = file->private_data;
1378
1379 if (file->f_op != &pipefifo_fops || !pipe)
1380 return NULL;
1381 if (for_splice && pipe_has_watch_queue(pipe))
1382 return NULL;
1383 return pipe;
1384 }
1385
pipe_fcntl(struct file * file,unsigned int cmd,unsigned int arg)1386 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
1387 {
1388 struct pipe_inode_info *pipe;
1389 long ret;
1390
1391 pipe = get_pipe_info(file, false);
1392 if (!pipe)
1393 return -EBADF;
1394
1395 __pipe_lock(pipe);
1396
1397 switch (cmd) {
1398 case F_SETPIPE_SZ:
1399 ret = pipe_set_size(pipe, arg);
1400 break;
1401 case F_GETPIPE_SZ:
1402 ret = pipe->max_usage * PAGE_SIZE;
1403 break;
1404 default:
1405 ret = -EINVAL;
1406 break;
1407 }
1408
1409 __pipe_unlock(pipe);
1410 return ret;
1411 }
1412
1413 static const struct super_operations pipefs_ops = {
1414 .destroy_inode = free_inode_nonrcu,
1415 .statfs = simple_statfs,
1416 };
1417
1418 /*
1419 * pipefs should _never_ be mounted by userland - too much of security hassle,
1420 * no real gain from having the whole whorehouse mounted. So we don't need
1421 * any operations on the root directory. However, we need a non-trivial
1422 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1423 */
1424
pipefs_init_fs_context(struct fs_context * fc)1425 static int pipefs_init_fs_context(struct fs_context *fc)
1426 {
1427 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1428 if (!ctx)
1429 return -ENOMEM;
1430 ctx->ops = &pipefs_ops;
1431 ctx->dops = &pipefs_dentry_operations;
1432 return 0;
1433 }
1434
1435 static struct file_system_type pipe_fs_type = {
1436 .name = "pipefs",
1437 .init_fs_context = pipefs_init_fs_context,
1438 .kill_sb = kill_anon_super,
1439 };
1440
1441 #ifdef CONFIG_SYSCTL
do_proc_dopipe_max_size_conv(unsigned long * lvalp,unsigned int * valp,int write,void * data)1442 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1443 unsigned int *valp,
1444 int write, void *data)
1445 {
1446 if (write) {
1447 unsigned int val;
1448
1449 val = round_pipe_size(*lvalp);
1450 if (val == 0)
1451 return -EINVAL;
1452
1453 *valp = val;
1454 } else {
1455 unsigned int val = *valp;
1456 *lvalp = (unsigned long) val;
1457 }
1458
1459 return 0;
1460 }
1461
proc_dopipe_max_size(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1462 static int proc_dopipe_max_size(struct ctl_table *table, int write,
1463 void *buffer, size_t *lenp, loff_t *ppos)
1464 {
1465 return do_proc_douintvec(table, write, buffer, lenp, ppos,
1466 do_proc_dopipe_max_size_conv, NULL);
1467 }
1468
1469 static struct ctl_table fs_pipe_sysctls[] = {
1470 {
1471 .procname = "pipe-max-size",
1472 .data = &pipe_max_size,
1473 .maxlen = sizeof(pipe_max_size),
1474 .mode = 0644,
1475 .proc_handler = proc_dopipe_max_size,
1476 },
1477 {
1478 .procname = "pipe-user-pages-hard",
1479 .data = &pipe_user_pages_hard,
1480 .maxlen = sizeof(pipe_user_pages_hard),
1481 .mode = 0644,
1482 .proc_handler = proc_doulongvec_minmax,
1483 },
1484 {
1485 .procname = "pipe-user-pages-soft",
1486 .data = &pipe_user_pages_soft,
1487 .maxlen = sizeof(pipe_user_pages_soft),
1488 .mode = 0644,
1489 .proc_handler = proc_doulongvec_minmax,
1490 },
1491 { }
1492 };
1493 #endif
1494
init_pipe_fs(void)1495 static int __init init_pipe_fs(void)
1496 {
1497 int err = register_filesystem(&pipe_fs_type);
1498
1499 if (!err) {
1500 pipe_mnt = kern_mount(&pipe_fs_type);
1501 if (IS_ERR(pipe_mnt)) {
1502 err = PTR_ERR(pipe_mnt);
1503 unregister_filesystem(&pipe_fs_type);
1504 }
1505 }
1506 #ifdef CONFIG_SYSCTL
1507 register_sysctl_init("fs", fs_pipe_sysctls);
1508 #endif
1509 return err;
1510 }
1511
1512 fs_initcall(init_pipe_fs);
1513