1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4
5 #include <linux/mm_types_task.h>
6
7 #include <linux/auxvec.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/rwsem.h>
13 #include <linux/completion.h>
14 #include <linux/cpumask.h>
15 #include <linux/uprobes.h>
16 #include <linux/rcupdate.h>
17 #include <linux/page-flags-layout.h>
18 #include <linux/workqueue.h>
19 #include <linux/seqlock.h>
20
21 #include <asm/mmu.h>
22
23 #ifndef AT_VECTOR_SIZE_ARCH
24 #define AT_VECTOR_SIZE_ARCH 0
25 #endif
26 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
27
28 #define INIT_PASID 0
29
30 struct address_space;
31 struct mem_cgroup;
32
33 /*
34 * Each physical page in the system has a struct page associated with
35 * it to keep track of whatever it is we are using the page for at the
36 * moment. Note that we have no way to track which tasks are using
37 * a page, though if it is a pagecache page, rmap structures can tell us
38 * who is mapping it.
39 *
40 * If you allocate the page using alloc_pages(), you can use some of the
41 * space in struct page for your own purposes. The five words in the main
42 * union are available, except for bit 0 of the first word which must be
43 * kept clear. Many users use this word to store a pointer to an object
44 * which is guaranteed to be aligned. If you use the same storage as
45 * page->mapping, you must restore it to NULL before freeing the page.
46 *
47 * If your page will not be mapped to userspace, you can also use the four
48 * bytes in the mapcount union, but you must call page_mapcount_reset()
49 * before freeing it.
50 *
51 * If you want to use the refcount field, it must be used in such a way
52 * that other CPUs temporarily incrementing and then decrementing the
53 * refcount does not cause problems. On receiving the page from
54 * alloc_pages(), the refcount will be positive.
55 *
56 * If you allocate pages of order > 0, you can use some of the fields
57 * in each subpage, but you may need to restore some of their values
58 * afterwards.
59 *
60 * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
61 * That requires that freelist & counters in struct slab be adjacent and
62 * double-word aligned. Because struct slab currently just reinterprets the
63 * bits of struct page, we align all struct pages to double-word boundaries,
64 * and ensure that 'freelist' is aligned within struct slab.
65 */
66 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
67 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long))
68 #else
69 #define _struct_page_alignment
70 #endif
71
72 struct page {
73 unsigned long flags; /* Atomic flags, some possibly
74 * updated asynchronously */
75 /*
76 * Five words (20/40 bytes) are available in this union.
77 * WARNING: bit 0 of the first word is used for PageTail(). That
78 * means the other users of this union MUST NOT use the bit to
79 * avoid collision and false-positive PageTail().
80 */
81 union {
82 struct { /* Page cache and anonymous pages */
83 /**
84 * @lru: Pageout list, eg. active_list protected by
85 * lruvec->lru_lock. Sometimes used as a generic list
86 * by the page owner.
87 */
88 union {
89 struct list_head lru;
90 /* Or, for the Unevictable "LRU list" slot */
91 struct {
92 /* Always even, to negate PageTail */
93 void *__filler;
94 /* Count page's or folio's mlocks */
95 unsigned int mlock_count;
96 };
97 };
98 /* See page-flags.h for PAGE_MAPPING_FLAGS */
99 struct address_space *mapping;
100 pgoff_t index; /* Our offset within mapping. */
101 /**
102 * @private: Mapping-private opaque data.
103 * Usually used for buffer_heads if PagePrivate.
104 * Used for swp_entry_t if PageSwapCache.
105 * Indicates order in the buddy system if PageBuddy.
106 */
107 unsigned long private;
108 };
109 struct { /* page_pool used by netstack */
110 /**
111 * @pp_magic: magic value to avoid recycling non
112 * page_pool allocated pages.
113 */
114 unsigned long pp_magic;
115 struct page_pool *pp;
116 unsigned long _pp_mapping_pad;
117 unsigned long dma_addr;
118 union {
119 /**
120 * dma_addr_upper: might require a 64-bit
121 * value on 32-bit architectures.
122 */
123 unsigned long dma_addr_upper;
124 /**
125 * For frag page support, not supported in
126 * 32-bit architectures with 64-bit DMA.
127 */
128 atomic_long_t pp_frag_count;
129 };
130 };
131 struct { /* Tail pages of compound page */
132 unsigned long compound_head; /* Bit zero is set */
133
134 /* First tail page only */
135 unsigned char compound_dtor;
136 unsigned char compound_order;
137 atomic_t compound_mapcount;
138 atomic_t compound_pincount;
139 #ifdef CONFIG_64BIT
140 unsigned int compound_nr; /* 1 << compound_order */
141 #endif
142 };
143 struct { /* Second tail page of compound page */
144 unsigned long _compound_pad_1; /* compound_head */
145 unsigned long _compound_pad_2;
146 /* For both global and memcg */
147 struct list_head deferred_list;
148 };
149 struct { /* Page table pages */
150 unsigned long _pt_pad_1; /* compound_head */
151 pgtable_t pmd_huge_pte; /* protected by page->ptl */
152 unsigned long _pt_pad_2; /* mapping */
153 union {
154 struct mm_struct *pt_mm; /* x86 pgds only */
155 atomic_t pt_frag_refcount; /* powerpc */
156 };
157 #if ALLOC_SPLIT_PTLOCKS
158 spinlock_t *ptl;
159 #else
160 spinlock_t ptl;
161 #endif
162 };
163 struct { /* ZONE_DEVICE pages */
164 /** @pgmap: Points to the hosting device page map. */
165 struct dev_pagemap *pgmap;
166 void *zone_device_data;
167 /*
168 * ZONE_DEVICE private pages are counted as being
169 * mapped so the next 3 words hold the mapping, index,
170 * and private fields from the source anonymous or
171 * page cache page while the page is migrated to device
172 * private memory.
173 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
174 * use the mapping, index, and private fields when
175 * pmem backed DAX files are mapped.
176 */
177 };
178
179 /** @rcu_head: You can use this to free a page by RCU. */
180 struct rcu_head rcu_head;
181 };
182
183 union { /* This union is 4 bytes in size. */
184 /*
185 * If the page can be mapped to userspace, encodes the number
186 * of times this page is referenced by a page table.
187 */
188 atomic_t _mapcount;
189
190 /*
191 * If the page is neither PageSlab nor mappable to userspace,
192 * the value stored here may help determine what this page
193 * is used for. See page-flags.h for a list of page types
194 * which are currently stored here.
195 */
196 unsigned int page_type;
197 };
198
199 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
200 atomic_t _refcount;
201
202 #ifdef CONFIG_MEMCG
203 unsigned long memcg_data;
204 #endif
205
206 /*
207 * On machines where all RAM is mapped into kernel address space,
208 * we can simply calculate the virtual address. On machines with
209 * highmem some memory is mapped into kernel virtual memory
210 * dynamically, so we need a place to store that address.
211 * Note that this field could be 16 bits on x86 ... ;)
212 *
213 * Architectures with slow multiplication can define
214 * WANT_PAGE_VIRTUAL in asm/page.h
215 */
216 #if defined(WANT_PAGE_VIRTUAL)
217 void *virtual; /* Kernel virtual address (NULL if
218 not kmapped, ie. highmem) */
219 #endif /* WANT_PAGE_VIRTUAL */
220
221 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
222 int _last_cpupid;
223 #endif
224 } _struct_page_alignment;
225
226 /**
227 * struct folio - Represents a contiguous set of bytes.
228 * @flags: Identical to the page flags.
229 * @lru: Least Recently Used list; tracks how recently this folio was used.
230 * @mlock_count: Number of times this folio has been pinned by mlock().
231 * @mapping: The file this page belongs to, or refers to the anon_vma for
232 * anonymous memory.
233 * @index: Offset within the file, in units of pages. For anonymous memory,
234 * this is the index from the beginning of the mmap.
235 * @private: Filesystem per-folio data (see folio_attach_private()).
236 * Used for swp_entry_t if folio_test_swapcache().
237 * @_mapcount: Do not access this member directly. Use folio_mapcount() to
238 * find out how many times this folio is mapped by userspace.
239 * @_refcount: Do not access this member directly. Use folio_ref_count()
240 * to find how many references there are to this folio.
241 * @memcg_data: Memory Control Group data.
242 *
243 * A folio is a physically, virtually and logically contiguous set
244 * of bytes. It is a power-of-two in size, and it is aligned to that
245 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is
246 * in the page cache, it is at a file offset which is a multiple of that
247 * power-of-two. It may be mapped into userspace at an address which is
248 * at an arbitrary page offset, but its kernel virtual address is aligned
249 * to its size.
250 */
251 struct folio {
252 /* private: don't document the anon union */
253 union {
254 struct {
255 /* public: */
256 unsigned long flags;
257 union {
258 struct list_head lru;
259 /* private: avoid cluttering the output */
260 struct {
261 void *__filler;
262 /* public: */
263 unsigned int mlock_count;
264 /* private: */
265 };
266 /* public: */
267 };
268 struct address_space *mapping;
269 pgoff_t index;
270 void *private;
271 atomic_t _mapcount;
272 atomic_t _refcount;
273 #ifdef CONFIG_MEMCG
274 unsigned long memcg_data;
275 #endif
276 /* private: the union with struct page is transitional */
277 };
278 struct page page;
279 };
280 };
281
282 static_assert(sizeof(struct page) == sizeof(struct folio));
283 #define FOLIO_MATCH(pg, fl) \
284 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
285 FOLIO_MATCH(flags, flags);
286 FOLIO_MATCH(lru, lru);
287 FOLIO_MATCH(mapping, mapping);
288 FOLIO_MATCH(compound_head, lru);
289 FOLIO_MATCH(index, index);
290 FOLIO_MATCH(private, private);
291 FOLIO_MATCH(_mapcount, _mapcount);
292 FOLIO_MATCH(_refcount, _refcount);
293 #ifdef CONFIG_MEMCG
294 FOLIO_MATCH(memcg_data, memcg_data);
295 #endif
296 #undef FOLIO_MATCH
297
folio_mapcount_ptr(struct folio * folio)298 static inline atomic_t *folio_mapcount_ptr(struct folio *folio)
299 {
300 struct page *tail = &folio->page + 1;
301 return &tail->compound_mapcount;
302 }
303
compound_mapcount_ptr(struct page * page)304 static inline atomic_t *compound_mapcount_ptr(struct page *page)
305 {
306 return &page[1].compound_mapcount;
307 }
308
compound_pincount_ptr(struct page * page)309 static inline atomic_t *compound_pincount_ptr(struct page *page)
310 {
311 return &page[1].compound_pincount;
312 }
313
314 /*
315 * Used for sizing the vmemmap region on some architectures
316 */
317 #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page)))
318
319 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK)
320 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE)
321
322 /*
323 * page_private can be used on tail pages. However, PagePrivate is only
324 * checked by the VM on the head page. So page_private on the tail pages
325 * should be used for data that's ancillary to the head page (eg attaching
326 * buffer heads to tail pages after attaching buffer heads to the head page)
327 */
328 #define page_private(page) ((page)->private)
329
set_page_private(struct page * page,unsigned long private)330 static inline void set_page_private(struct page *page, unsigned long private)
331 {
332 page->private = private;
333 }
334
folio_get_private(struct folio * folio)335 static inline void *folio_get_private(struct folio *folio)
336 {
337 return folio->private;
338 }
339
340 struct page_frag_cache {
341 void * va;
342 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
343 __u16 offset;
344 __u16 size;
345 #else
346 __u32 offset;
347 #endif
348 /* we maintain a pagecount bias, so that we dont dirty cache line
349 * containing page->_refcount every time we allocate a fragment.
350 */
351 unsigned int pagecnt_bias;
352 bool pfmemalloc;
353 };
354
355 typedef unsigned long vm_flags_t;
356
357 /*
358 * A region containing a mapping of a non-memory backed file under NOMMU
359 * conditions. These are held in a global tree and are pinned by the VMAs that
360 * map parts of them.
361 */
362 struct vm_region {
363 struct rb_node vm_rb; /* link in global region tree */
364 vm_flags_t vm_flags; /* VMA vm_flags */
365 unsigned long vm_start; /* start address of region */
366 unsigned long vm_end; /* region initialised to here */
367 unsigned long vm_top; /* region allocated to here */
368 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
369 struct file *vm_file; /* the backing file or NULL */
370
371 int vm_usage; /* region usage count (access under nommu_region_sem) */
372 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
373 * this region */
374 };
375
376 #ifdef CONFIG_USERFAULTFD
377 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
378 struct vm_userfaultfd_ctx {
379 struct userfaultfd_ctx *ctx;
380 };
381 #else /* CONFIG_USERFAULTFD */
382 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
383 struct vm_userfaultfd_ctx {};
384 #endif /* CONFIG_USERFAULTFD */
385
386 struct anon_vma_name {
387 struct kref kref;
388 /* The name needs to be at the end because it is dynamically sized. */
389 char name[];
390 };
391
392 /*
393 * This struct describes a virtual memory area. There is one of these
394 * per VM-area/task. A VM area is any part of the process virtual memory
395 * space that has a special rule for the page-fault handlers (ie a shared
396 * library, the executable area etc).
397 */
398 struct vm_area_struct {
399 /* The first cache line has the info for VMA tree walking. */
400
401 unsigned long vm_start; /* Our start address within vm_mm. */
402 unsigned long vm_end; /* The first byte after our end address
403 within vm_mm. */
404
405 /* linked list of VM areas per task, sorted by address */
406 struct vm_area_struct *vm_next, *vm_prev;
407
408 struct rb_node vm_rb;
409
410 /*
411 * Largest free memory gap in bytes to the left of this VMA.
412 * Either between this VMA and vma->vm_prev, or between one of the
413 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
414 * get_unmapped_area find a free area of the right size.
415 */
416 unsigned long rb_subtree_gap;
417
418 /* Second cache line starts here. */
419
420 struct mm_struct *vm_mm; /* The address space we belong to. */
421
422 /*
423 * Access permissions of this VMA.
424 * See vmf_insert_mixed_prot() for discussion.
425 */
426 pgprot_t vm_page_prot;
427 unsigned long vm_flags; /* Flags, see mm.h. */
428
429 /*
430 * For areas with an address space and backing store,
431 * linkage into the address_space->i_mmap interval tree.
432 *
433 * For private anonymous mappings, a pointer to a null terminated string
434 * containing the name given to the vma, or NULL if unnamed.
435 */
436
437 union {
438 struct {
439 struct rb_node rb;
440 unsigned long rb_subtree_last;
441 } shared;
442 /*
443 * Serialized by mmap_sem. Never use directly because it is
444 * valid only when vm_file is NULL. Use anon_vma_name instead.
445 */
446 struct anon_vma_name *anon_name;
447 };
448
449 /*
450 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
451 * list, after a COW of one of the file pages. A MAP_SHARED vma
452 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
453 * or brk vma (with NULL file) can only be in an anon_vma list.
454 */
455 struct list_head anon_vma_chain; /* Serialized by mmap_lock &
456 * page_table_lock */
457 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
458
459 /* Function pointers to deal with this struct. */
460 const struct vm_operations_struct *vm_ops;
461
462 /* Information about our backing store: */
463 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
464 units */
465 struct file * vm_file; /* File we map to (can be NULL). */
466 void * vm_private_data; /* was vm_pte (shared mem) */
467
468 #ifdef CONFIG_SWAP
469 atomic_long_t swap_readahead_info;
470 #endif
471 #ifndef CONFIG_MMU
472 struct vm_region *vm_region; /* NOMMU mapping region */
473 #endif
474 #ifdef CONFIG_NUMA
475 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
476 #endif
477 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
478 } __randomize_layout;
479
480 struct kioctx_table;
481 struct mm_struct {
482 struct {
483 struct vm_area_struct *mmap; /* list of VMAs */
484 struct rb_root mm_rb;
485 u64 vmacache_seqnum; /* per-thread vmacache */
486 #ifdef CONFIG_MMU
487 unsigned long (*get_unmapped_area) (struct file *filp,
488 unsigned long addr, unsigned long len,
489 unsigned long pgoff, unsigned long flags);
490 #endif
491 unsigned long mmap_base; /* base of mmap area */
492 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
493 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
494 /* Base addresses for compatible mmap() */
495 unsigned long mmap_compat_base;
496 unsigned long mmap_compat_legacy_base;
497 #endif
498 unsigned long task_size; /* size of task vm space */
499 unsigned long highest_vm_end; /* highest vma end address */
500 pgd_t * pgd;
501
502 #ifdef CONFIG_MEMBARRIER
503 /**
504 * @membarrier_state: Flags controlling membarrier behavior.
505 *
506 * This field is close to @pgd to hopefully fit in the same
507 * cache-line, which needs to be touched by switch_mm().
508 */
509 atomic_t membarrier_state;
510 #endif
511
512 /**
513 * @mm_users: The number of users including userspace.
514 *
515 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
516 * drops to 0 (i.e. when the task exits and there are no other
517 * temporary reference holders), we also release a reference on
518 * @mm_count (which may then free the &struct mm_struct if
519 * @mm_count also drops to 0).
520 */
521 atomic_t mm_users;
522
523 /**
524 * @mm_count: The number of references to &struct mm_struct
525 * (@mm_users count as 1).
526 *
527 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
528 * &struct mm_struct is freed.
529 */
530 atomic_t mm_count;
531
532 #ifdef CONFIG_MMU
533 atomic_long_t pgtables_bytes; /* PTE page table pages */
534 #endif
535 int map_count; /* number of VMAs */
536
537 spinlock_t page_table_lock; /* Protects page tables and some
538 * counters
539 */
540 /*
541 * With some kernel config, the current mmap_lock's offset
542 * inside 'mm_struct' is at 0x120, which is very optimal, as
543 * its two hot fields 'count' and 'owner' sit in 2 different
544 * cachelines, and when mmap_lock is highly contended, both
545 * of the 2 fields will be accessed frequently, current layout
546 * will help to reduce cache bouncing.
547 *
548 * So please be careful with adding new fields before
549 * mmap_lock, which can easily push the 2 fields into one
550 * cacheline.
551 */
552 struct rw_semaphore mmap_lock;
553
554 struct list_head mmlist; /* List of maybe swapped mm's. These
555 * are globally strung together off
556 * init_mm.mmlist, and are protected
557 * by mmlist_lock
558 */
559
560
561 unsigned long hiwater_rss; /* High-watermark of RSS usage */
562 unsigned long hiwater_vm; /* High-water virtual memory usage */
563
564 unsigned long total_vm; /* Total pages mapped */
565 unsigned long locked_vm; /* Pages that have PG_mlocked set */
566 atomic64_t pinned_vm; /* Refcount permanently increased */
567 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
568 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
569 unsigned long stack_vm; /* VM_STACK */
570 unsigned long def_flags;
571
572 /**
573 * @write_protect_seq: Locked when any thread is write
574 * protecting pages mapped by this mm to enforce a later COW,
575 * for instance during page table copying for fork().
576 */
577 seqcount_t write_protect_seq;
578
579 spinlock_t arg_lock; /* protect the below fields */
580
581 unsigned long start_code, end_code, start_data, end_data;
582 unsigned long start_brk, brk, start_stack;
583 unsigned long arg_start, arg_end, env_start, env_end;
584
585 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
586
587 /*
588 * Special counters, in some configurations protected by the
589 * page_table_lock, in other configurations by being atomic.
590 */
591 struct mm_rss_stat rss_stat;
592
593 struct linux_binfmt *binfmt;
594
595 /* Architecture-specific MM context */
596 mm_context_t context;
597
598 unsigned long flags; /* Must use atomic bitops to access */
599
600 #ifdef CONFIG_AIO
601 spinlock_t ioctx_lock;
602 struct kioctx_table __rcu *ioctx_table;
603 #endif
604 #ifdef CONFIG_MEMCG
605 /*
606 * "owner" points to a task that is regarded as the canonical
607 * user/owner of this mm. All of the following must be true in
608 * order for it to be changed:
609 *
610 * current == mm->owner
611 * current->mm != mm
612 * new_owner->mm == mm
613 * new_owner->alloc_lock is held
614 */
615 struct task_struct __rcu *owner;
616 #endif
617 struct user_namespace *user_ns;
618
619 /* store ref to file /proc/<pid>/exe symlink points to */
620 struct file __rcu *exe_file;
621 #ifdef CONFIG_MMU_NOTIFIER
622 struct mmu_notifier_subscriptions *notifier_subscriptions;
623 #endif
624 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
625 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
626 #endif
627 #ifdef CONFIG_NUMA_BALANCING
628 /*
629 * numa_next_scan is the next time that the PTEs will be marked
630 * pte_numa. NUMA hinting faults will gather statistics and
631 * migrate pages to new nodes if necessary.
632 */
633 unsigned long numa_next_scan;
634
635 /* Restart point for scanning and setting pte_numa */
636 unsigned long numa_scan_offset;
637
638 /* numa_scan_seq prevents two threads setting pte_numa */
639 int numa_scan_seq;
640 #endif
641 /*
642 * An operation with batched TLB flushing is going on. Anything
643 * that can move process memory needs to flush the TLB when
644 * moving a PROT_NONE or PROT_NUMA mapped page.
645 */
646 atomic_t tlb_flush_pending;
647 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
648 /* See flush_tlb_batched_pending() */
649 atomic_t tlb_flush_batched;
650 #endif
651 struct uprobes_state uprobes_state;
652 #ifdef CONFIG_PREEMPT_RT
653 struct rcu_head delayed_drop;
654 #endif
655 #ifdef CONFIG_HUGETLB_PAGE
656 atomic_long_t hugetlb_usage;
657 #endif
658 struct work_struct async_put_work;
659
660 #ifdef CONFIG_IOMMU_SVA
661 u32 pasid;
662 #endif
663 #ifdef CONFIG_KSM
664 /*
665 * Represent how many pages of this process are involved in KSM
666 * merging.
667 */
668 unsigned long ksm_merging_pages;
669 #endif
670 } __randomize_layout;
671
672 /*
673 * The mm_cpumask needs to be at the end of mm_struct, because it
674 * is dynamically sized based on nr_cpu_ids.
675 */
676 unsigned long cpu_bitmap[];
677 };
678
679 extern struct mm_struct init_mm;
680
681 /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)682 static inline void mm_init_cpumask(struct mm_struct *mm)
683 {
684 unsigned long cpu_bitmap = (unsigned long)mm;
685
686 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
687 cpumask_clear((struct cpumask *)cpu_bitmap);
688 }
689
690 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)691 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
692 {
693 return (struct cpumask *)&mm->cpu_bitmap;
694 }
695
696 struct mmu_gather;
697 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
698 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
699 extern void tlb_finish_mmu(struct mmu_gather *tlb);
700
701 struct vm_fault;
702
703 /**
704 * typedef vm_fault_t - Return type for page fault handlers.
705 *
706 * Page fault handlers return a bitmask of %VM_FAULT values.
707 */
708 typedef __bitwise unsigned int vm_fault_t;
709
710 /**
711 * enum vm_fault_reason - Page fault handlers return a bitmask of
712 * these values to tell the core VM what happened when handling the
713 * fault. Used to decide whether a process gets delivered SIGBUS or
714 * just gets major/minor fault counters bumped up.
715 *
716 * @VM_FAULT_OOM: Out Of Memory
717 * @VM_FAULT_SIGBUS: Bad access
718 * @VM_FAULT_MAJOR: Page read from storage
719 * @VM_FAULT_WRITE: Special case for get_user_pages
720 * @VM_FAULT_HWPOISON: Hit poisoned small page
721 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded
722 * in upper bits
723 * @VM_FAULT_SIGSEGV: segmentation fault
724 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page
725 * @VM_FAULT_LOCKED: ->fault locked the returned page
726 * @VM_FAULT_RETRY: ->fault blocked, must retry
727 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small
728 * @VM_FAULT_DONE_COW: ->fault has fully handled COW
729 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs
730 * fsync() to complete (for synchronous page faults
731 * in DAX)
732 * @VM_FAULT_HINDEX_MASK: mask HINDEX value
733 *
734 */
735 enum vm_fault_reason {
736 VM_FAULT_OOM = (__force vm_fault_t)0x000001,
737 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002,
738 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004,
739 VM_FAULT_WRITE = (__force vm_fault_t)0x000008,
740 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010,
741 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
742 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040,
743 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100,
744 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200,
745 VM_FAULT_RETRY = (__force vm_fault_t)0x000400,
746 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800,
747 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000,
748 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000,
749 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000,
750 };
751
752 /* Encode hstate index for a hwpoisoned large page */
753 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
754 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
755
756 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \
757 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \
758 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
759
760 #define VM_FAULT_RESULT_TRACE \
761 { VM_FAULT_OOM, "OOM" }, \
762 { VM_FAULT_SIGBUS, "SIGBUS" }, \
763 { VM_FAULT_MAJOR, "MAJOR" }, \
764 { VM_FAULT_WRITE, "WRITE" }, \
765 { VM_FAULT_HWPOISON, "HWPOISON" }, \
766 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
767 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
768 { VM_FAULT_NOPAGE, "NOPAGE" }, \
769 { VM_FAULT_LOCKED, "LOCKED" }, \
770 { VM_FAULT_RETRY, "RETRY" }, \
771 { VM_FAULT_FALLBACK, "FALLBACK" }, \
772 { VM_FAULT_DONE_COW, "DONE_COW" }, \
773 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
774
775 struct vm_special_mapping {
776 const char *name; /* The name, e.g. "[vdso]". */
777
778 /*
779 * If .fault is not provided, this points to a
780 * NULL-terminated array of pages that back the special mapping.
781 *
782 * This must not be NULL unless .fault is provided.
783 */
784 struct page **pages;
785
786 /*
787 * If non-NULL, then this is called to resolve page faults
788 * on the special mapping. If used, .pages is not checked.
789 */
790 vm_fault_t (*fault)(const struct vm_special_mapping *sm,
791 struct vm_area_struct *vma,
792 struct vm_fault *vmf);
793
794 int (*mremap)(const struct vm_special_mapping *sm,
795 struct vm_area_struct *new_vma);
796 };
797
798 enum tlb_flush_reason {
799 TLB_FLUSH_ON_TASK_SWITCH,
800 TLB_REMOTE_SHOOTDOWN,
801 TLB_LOCAL_SHOOTDOWN,
802 TLB_LOCAL_MM_SHOOTDOWN,
803 TLB_REMOTE_SEND_IPI,
804 NR_TLB_FLUSH_REASONS,
805 };
806
807 /*
808 * A swap entry has to fit into a "unsigned long", as the entry is hidden
809 * in the "index" field of the swapper address space.
810 */
811 typedef struct {
812 unsigned long val;
813 } swp_entry_t;
814
815 /**
816 * enum fault_flag - Fault flag definitions.
817 * @FAULT_FLAG_WRITE: Fault was a write fault.
818 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
819 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
820 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
821 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
822 * @FAULT_FLAG_TRIED: The fault has been tried once.
823 * @FAULT_FLAG_USER: The fault originated in userspace.
824 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
825 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
826 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
827 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to unshare (and mark
828 * exclusive) a possibly shared anonymous page that is
829 * mapped R/O.
830 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
831 * We should only access orig_pte if this flag set.
832 *
833 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
834 * whether we would allow page faults to retry by specifying these two
835 * fault flags correctly. Currently there can be three legal combinations:
836 *
837 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
838 * this is the first try
839 *
840 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
841 * we've already tried at least once
842 *
843 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
844 *
845 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
846 * be used. Note that page faults can be allowed to retry for multiple times,
847 * in which case we'll have an initial fault with flags (a) then later on
848 * continuous faults with flags (b). We should always try to detect pending
849 * signals before a retry to make sure the continuous page faults can still be
850 * interrupted if necessary.
851 *
852 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
853 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
854 * no existing R/O-mapped anonymous page is encountered.
855 */
856 enum fault_flag {
857 FAULT_FLAG_WRITE = 1 << 0,
858 FAULT_FLAG_MKWRITE = 1 << 1,
859 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
860 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
861 FAULT_FLAG_KILLABLE = 1 << 4,
862 FAULT_FLAG_TRIED = 1 << 5,
863 FAULT_FLAG_USER = 1 << 6,
864 FAULT_FLAG_REMOTE = 1 << 7,
865 FAULT_FLAG_INSTRUCTION = 1 << 8,
866 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
867 FAULT_FLAG_UNSHARE = 1 << 10,
868 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11,
869 };
870
871 typedef unsigned int __bitwise zap_flags_t;
872
873 #endif /* _LINUX_MM_TYPES_H */
874