1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/segment.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10
11 /* constant macro */
12 #define NULL_SEGNO ((unsigned int)(~0))
13 #define NULL_SECNO ((unsigned int)(~0))
14
15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
17
18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21 /* L: Logical segment # in volume, R: Relative segment # in main area */
22 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
23 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
24
25 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
26 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA))
28
sanity_check_seg_type(struct f2fs_sb_info * sbi,unsigned short seg_type)29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30 unsigned short seg_type)
31 {
32 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
33 }
34
35 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
38
39 #define IS_CURSEG(sbi, seg) \
40 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
41 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
42 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
43 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
44 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
45 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \
46 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \
47 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
48
49 #define IS_CURSEC(sbi, secno) \
50 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
51 (sbi)->segs_per_sec) || \
52 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
53 (sbi)->segs_per_sec) || \
54 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
55 (sbi)->segs_per_sec) || \
56 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
57 (sbi)->segs_per_sec) || \
58 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
59 (sbi)->segs_per_sec) || \
60 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
61 (sbi)->segs_per_sec) || \
62 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \
63 (sbi)->segs_per_sec) || \
64 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \
65 (sbi)->segs_per_sec))
66
67 #define MAIN_BLKADDR(sbi) \
68 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
69 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70 #define SEG0_BLKADDR(sbi) \
71 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
72 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
73
74 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
75 #define MAIN_SECS(sbi) ((sbi)->total_sections)
76
77 #define TOTAL_SEGS(sbi) \
78 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
79 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
81
82 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
84 (sbi)->log_blocks_per_seg))
85
86 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
87 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
88
89 #define NEXT_FREE_BLKADDR(sbi, curseg) \
90 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
91
92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
94 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
96 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
97
98 #define GET_SEGNO(sbi, blk_addr) \
99 ((!__is_valid_data_blkaddr(blk_addr)) ? \
100 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
101 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102 #define BLKS_PER_SEC(sbi) \
103 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
104 #define CAP_BLKS_PER_SEC(sbi) \
105 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg - \
106 (sbi)->unusable_blocks_per_sec)
107 #define GET_SEC_FROM_SEG(sbi, segno) \
108 (((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
109 #define GET_SEG_FROM_SEC(sbi, secno) \
110 ((secno) * (sbi)->segs_per_sec)
111 #define GET_ZONE_FROM_SEC(sbi, secno) \
112 (((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
113 #define GET_ZONE_FROM_SEG(sbi, segno) \
114 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
115
116 #define GET_SUM_BLOCK(sbi, segno) \
117 ((sbi)->sm_info->ssa_blkaddr + (segno))
118
119 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
120 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
121
122 #define SIT_ENTRY_OFFSET(sit_i, segno) \
123 ((segno) % (sit_i)->sents_per_block)
124 #define SIT_BLOCK_OFFSET(segno) \
125 ((segno) / SIT_ENTRY_PER_BLOCK)
126 #define START_SEGNO(segno) \
127 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
128 #define SIT_BLK_CNT(sbi) \
129 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
130 #define f2fs_bitmap_size(nr) \
131 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
132
133 #define SECTOR_FROM_BLOCK(blk_addr) \
134 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
135 #define SECTOR_TO_BLOCK(sectors) \
136 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
137
138 /*
139 * indicate a block allocation direction: RIGHT and LEFT.
140 * RIGHT means allocating new sections towards the end of volume.
141 * LEFT means the opposite direction.
142 */
143 enum {
144 ALLOC_RIGHT = 0,
145 ALLOC_LEFT
146 };
147
148 /*
149 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
150 * LFS writes data sequentially with cleaning operations.
151 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
152 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
153 * fragmented segment which has similar aging degree.
154 */
155 enum {
156 LFS = 0,
157 SSR,
158 AT_SSR,
159 };
160
161 /*
162 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
163 * GC_CB is based on cost-benefit algorithm.
164 * GC_GREEDY is based on greedy algorithm.
165 * GC_AT is based on age-threshold algorithm.
166 */
167 enum {
168 GC_CB = 0,
169 GC_GREEDY,
170 GC_AT,
171 ALLOC_NEXT,
172 FLUSH_DEVICE,
173 MAX_GC_POLICY,
174 };
175
176 /*
177 * BG_GC means the background cleaning job.
178 * FG_GC means the on-demand cleaning job.
179 */
180 enum {
181 BG_GC = 0,
182 FG_GC,
183 };
184
185 /* for a function parameter to select a victim segment */
186 struct victim_sel_policy {
187 int alloc_mode; /* LFS or SSR */
188 int gc_mode; /* GC_CB or GC_GREEDY */
189 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */
190 unsigned int max_search; /*
191 * maximum # of segments/sections
192 * to search
193 */
194 unsigned int offset; /* last scanned bitmap offset */
195 unsigned int ofs_unit; /* bitmap search unit */
196 unsigned int min_cost; /* minimum cost */
197 unsigned long long oldest_age; /* oldest age of segments having the same min cost */
198 unsigned int min_segno; /* segment # having min. cost */
199 unsigned long long age; /* mtime of GCed section*/
200 unsigned long long age_threshold;/* age threshold */
201 };
202
203 struct seg_entry {
204 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
205 unsigned int valid_blocks:10; /* # of valid blocks */
206 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
207 unsigned int padding:6; /* padding */
208 unsigned char *cur_valid_map; /* validity bitmap of blocks */
209 #ifdef CONFIG_F2FS_CHECK_FS
210 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
211 #endif
212 /*
213 * # of valid blocks and the validity bitmap stored in the last
214 * checkpoint pack. This information is used by the SSR mode.
215 */
216 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
217 unsigned char *discard_map;
218 unsigned long long mtime; /* modification time of the segment */
219 };
220
221 struct sec_entry {
222 unsigned int valid_blocks; /* # of valid blocks in a section */
223 };
224
225 struct segment_allocation {
226 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
227 };
228
229 #define MAX_SKIP_GC_COUNT 16
230
231 struct revoke_entry {
232 struct list_head list;
233 block_t old_addr; /* for revoking when fail to commit */
234 pgoff_t index;
235 };
236
237 struct sit_info {
238 const struct segment_allocation *s_ops;
239
240 block_t sit_base_addr; /* start block address of SIT area */
241 block_t sit_blocks; /* # of blocks used by SIT area */
242 block_t written_valid_blocks; /* # of valid blocks in main area */
243 char *bitmap; /* all bitmaps pointer */
244 char *sit_bitmap; /* SIT bitmap pointer */
245 #ifdef CONFIG_F2FS_CHECK_FS
246 char *sit_bitmap_mir; /* SIT bitmap mirror */
247
248 /* bitmap of segments to be ignored by GC in case of errors */
249 unsigned long *invalid_segmap;
250 #endif
251 unsigned int bitmap_size; /* SIT bitmap size */
252
253 unsigned long *tmp_map; /* bitmap for temporal use */
254 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
255 unsigned int dirty_sentries; /* # of dirty sentries */
256 unsigned int sents_per_block; /* # of SIT entries per block */
257 struct rw_semaphore sentry_lock; /* to protect SIT cache */
258 struct seg_entry *sentries; /* SIT segment-level cache */
259 struct sec_entry *sec_entries; /* SIT section-level cache */
260
261 /* for cost-benefit algorithm in cleaning procedure */
262 unsigned long long elapsed_time; /* elapsed time after mount */
263 unsigned long long mounted_time; /* mount time */
264 unsigned long long min_mtime; /* min. modification time */
265 unsigned long long max_mtime; /* max. modification time */
266 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */
267 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */
268
269 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
270 };
271
272 struct free_segmap_info {
273 unsigned int start_segno; /* start segment number logically */
274 unsigned int free_segments; /* # of free segments */
275 unsigned int free_sections; /* # of free sections */
276 spinlock_t segmap_lock; /* free segmap lock */
277 unsigned long *free_segmap; /* free segment bitmap */
278 unsigned long *free_secmap; /* free section bitmap */
279 };
280
281 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
282 enum dirty_type {
283 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
284 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
285 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
286 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
287 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
288 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
289 DIRTY, /* to count # of dirty segments */
290 PRE, /* to count # of entirely obsolete segments */
291 NR_DIRTY_TYPE
292 };
293
294 struct dirty_seglist_info {
295 const struct victim_selection *v_ops; /* victim selction operation */
296 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
297 unsigned long *dirty_secmap;
298 struct mutex seglist_lock; /* lock for segment bitmaps */
299 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
300 unsigned long *victim_secmap; /* background GC victims */
301 unsigned long *pinned_secmap; /* pinned victims from foreground GC */
302 unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */
303 bool enable_pin_section; /* enable pinning section */
304 };
305
306 /* victim selection function for cleaning and SSR */
307 struct victim_selection {
308 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
309 int, int, char, unsigned long long);
310 };
311
312 /* for active log information */
313 struct curseg_info {
314 struct mutex curseg_mutex; /* lock for consistency */
315 struct f2fs_summary_block *sum_blk; /* cached summary block */
316 struct rw_semaphore journal_rwsem; /* protect journal area */
317 struct f2fs_journal *journal; /* cached journal info */
318 unsigned char alloc_type; /* current allocation type */
319 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */
320 unsigned int segno; /* current segment number */
321 unsigned short next_blkoff; /* next block offset to write */
322 unsigned int zone; /* current zone number */
323 unsigned int next_segno; /* preallocated segment */
324 int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */
325 bool inited; /* indicate inmem log is inited */
326 };
327
328 struct sit_entry_set {
329 struct list_head set_list; /* link with all sit sets */
330 unsigned int start_segno; /* start segno of sits in set */
331 unsigned int entry_cnt; /* the # of sit entries in set */
332 };
333
334 /*
335 * inline functions
336 */
CURSEG_I(struct f2fs_sb_info * sbi,int type)337 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
338 {
339 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
340 }
341
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)342 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
343 unsigned int segno)
344 {
345 struct sit_info *sit_i = SIT_I(sbi);
346 return &sit_i->sentries[segno];
347 }
348
get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)349 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
350 unsigned int segno)
351 {
352 struct sit_info *sit_i = SIT_I(sbi);
353 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
354 }
355
get_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)356 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
357 unsigned int segno, bool use_section)
358 {
359 /*
360 * In order to get # of valid blocks in a section instantly from many
361 * segments, f2fs manages two counting structures separately.
362 */
363 if (use_section && __is_large_section(sbi))
364 return get_sec_entry(sbi, segno)->valid_blocks;
365 else
366 return get_seg_entry(sbi, segno)->valid_blocks;
367 }
368
get_ckpt_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)369 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
370 unsigned int segno, bool use_section)
371 {
372 if (use_section && __is_large_section(sbi)) {
373 unsigned int start_segno = START_SEGNO(segno);
374 unsigned int blocks = 0;
375 int i;
376
377 for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
378 struct seg_entry *se = get_seg_entry(sbi, start_segno);
379
380 blocks += se->ckpt_valid_blocks;
381 }
382 return blocks;
383 }
384 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
385 }
386
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)387 static inline void seg_info_from_raw_sit(struct seg_entry *se,
388 struct f2fs_sit_entry *rs)
389 {
390 se->valid_blocks = GET_SIT_VBLOCKS(rs);
391 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
392 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
393 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
394 #ifdef CONFIG_F2FS_CHECK_FS
395 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
396 #endif
397 se->type = GET_SIT_TYPE(rs);
398 se->mtime = le64_to_cpu(rs->mtime);
399 }
400
__seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)401 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
402 struct f2fs_sit_entry *rs)
403 {
404 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
405 se->valid_blocks;
406 rs->vblocks = cpu_to_le16(raw_vblocks);
407 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
408 rs->mtime = cpu_to_le64(se->mtime);
409 }
410
seg_info_to_sit_page(struct f2fs_sb_info * sbi,struct page * page,unsigned int start)411 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
412 struct page *page, unsigned int start)
413 {
414 struct f2fs_sit_block *raw_sit;
415 struct seg_entry *se;
416 struct f2fs_sit_entry *rs;
417 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
418 (unsigned long)MAIN_SEGS(sbi));
419 int i;
420
421 raw_sit = (struct f2fs_sit_block *)page_address(page);
422 memset(raw_sit, 0, PAGE_SIZE);
423 for (i = 0; i < end - start; i++) {
424 rs = &raw_sit->entries[i];
425 se = get_seg_entry(sbi, start + i);
426 __seg_info_to_raw_sit(se, rs);
427 }
428 }
429
seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)430 static inline void seg_info_to_raw_sit(struct seg_entry *se,
431 struct f2fs_sit_entry *rs)
432 {
433 __seg_info_to_raw_sit(se, rs);
434
435 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
436 se->ckpt_valid_blocks = se->valid_blocks;
437 }
438
find_next_inuse(struct free_segmap_info * free_i,unsigned int max,unsigned int segno)439 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
440 unsigned int max, unsigned int segno)
441 {
442 unsigned int ret;
443 spin_lock(&free_i->segmap_lock);
444 ret = find_next_bit(free_i->free_segmap, max, segno);
445 spin_unlock(&free_i->segmap_lock);
446 return ret;
447 }
448
__set_free(struct f2fs_sb_info * sbi,unsigned int segno)449 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
450 {
451 struct free_segmap_info *free_i = FREE_I(sbi);
452 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
453 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
454 unsigned int next;
455 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
456
457 spin_lock(&free_i->segmap_lock);
458 clear_bit(segno, free_i->free_segmap);
459 free_i->free_segments++;
460
461 next = find_next_bit(free_i->free_segmap,
462 start_segno + sbi->segs_per_sec, start_segno);
463 if (next >= start_segno + usable_segs) {
464 clear_bit(secno, free_i->free_secmap);
465 free_i->free_sections++;
466 }
467 spin_unlock(&free_i->segmap_lock);
468 }
469
__set_inuse(struct f2fs_sb_info * sbi,unsigned int segno)470 static inline void __set_inuse(struct f2fs_sb_info *sbi,
471 unsigned int segno)
472 {
473 struct free_segmap_info *free_i = FREE_I(sbi);
474 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
475
476 set_bit(segno, free_i->free_segmap);
477 free_i->free_segments--;
478 if (!test_and_set_bit(secno, free_i->free_secmap))
479 free_i->free_sections--;
480 }
481
__set_test_and_free(struct f2fs_sb_info * sbi,unsigned int segno,bool inmem)482 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
483 unsigned int segno, bool inmem)
484 {
485 struct free_segmap_info *free_i = FREE_I(sbi);
486 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
487 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
488 unsigned int next;
489 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
490
491 spin_lock(&free_i->segmap_lock);
492 if (test_and_clear_bit(segno, free_i->free_segmap)) {
493 free_i->free_segments++;
494
495 if (!inmem && IS_CURSEC(sbi, secno))
496 goto skip_free;
497 next = find_next_bit(free_i->free_segmap,
498 start_segno + sbi->segs_per_sec, start_segno);
499 if (next >= start_segno + usable_segs) {
500 if (test_and_clear_bit(secno, free_i->free_secmap))
501 free_i->free_sections++;
502 }
503 }
504 skip_free:
505 spin_unlock(&free_i->segmap_lock);
506 }
507
__set_test_and_inuse(struct f2fs_sb_info * sbi,unsigned int segno)508 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
509 unsigned int segno)
510 {
511 struct free_segmap_info *free_i = FREE_I(sbi);
512 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
513
514 spin_lock(&free_i->segmap_lock);
515 if (!test_and_set_bit(segno, free_i->free_segmap)) {
516 free_i->free_segments--;
517 if (!test_and_set_bit(secno, free_i->free_secmap))
518 free_i->free_sections--;
519 }
520 spin_unlock(&free_i->segmap_lock);
521 }
522
get_sit_bitmap(struct f2fs_sb_info * sbi,void * dst_addr)523 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
524 void *dst_addr)
525 {
526 struct sit_info *sit_i = SIT_I(sbi);
527
528 #ifdef CONFIG_F2FS_CHECK_FS
529 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
530 sit_i->bitmap_size))
531 f2fs_bug_on(sbi, 1);
532 #endif
533 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
534 }
535
written_block_count(struct f2fs_sb_info * sbi)536 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
537 {
538 return SIT_I(sbi)->written_valid_blocks;
539 }
540
free_segments(struct f2fs_sb_info * sbi)541 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
542 {
543 return FREE_I(sbi)->free_segments;
544 }
545
reserved_segments(struct f2fs_sb_info * sbi)546 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
547 {
548 return SM_I(sbi)->reserved_segments +
549 SM_I(sbi)->additional_reserved_segments;
550 }
551
free_sections(struct f2fs_sb_info * sbi)552 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
553 {
554 return FREE_I(sbi)->free_sections;
555 }
556
prefree_segments(struct f2fs_sb_info * sbi)557 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
558 {
559 return DIRTY_I(sbi)->nr_dirty[PRE];
560 }
561
dirty_segments(struct f2fs_sb_info * sbi)562 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
563 {
564 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
565 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
566 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
567 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
568 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
569 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
570 }
571
overprovision_segments(struct f2fs_sb_info * sbi)572 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
573 {
574 return SM_I(sbi)->ovp_segments;
575 }
576
reserved_sections(struct f2fs_sb_info * sbi)577 static inline int reserved_sections(struct f2fs_sb_info *sbi)
578 {
579 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
580 }
581
has_curseg_enough_space(struct f2fs_sb_info * sbi,unsigned int node_blocks,unsigned int dent_blocks)582 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
583 unsigned int node_blocks, unsigned int dent_blocks)
584 {
585
586 unsigned int segno, left_blocks;
587 int i;
588
589 /* check current node segment */
590 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
591 segno = CURSEG_I(sbi, i)->segno;
592 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
593 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
594
595 if (node_blocks > left_blocks)
596 return false;
597 }
598
599 /* check current data segment */
600 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
601 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
602 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
603 if (dent_blocks > left_blocks)
604 return false;
605 return true;
606 }
607
has_not_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)608 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
609 int freed, int needed)
610 {
611 unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
612 get_pages(sbi, F2FS_DIRTY_DENTS) +
613 get_pages(sbi, F2FS_DIRTY_IMETA);
614 unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
615 unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
616 unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
617 unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
618 unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
619 unsigned int free, need_lower, need_upper;
620
621 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
622 return false;
623
624 free = free_sections(sbi) + freed;
625 need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed;
626 need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
627
628 if (free > need_upper)
629 return false;
630 else if (free <= need_lower)
631 return true;
632 return !has_curseg_enough_space(sbi, node_blocks, dent_blocks);
633 }
634
f2fs_is_checkpoint_ready(struct f2fs_sb_info * sbi)635 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
636 {
637 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
638 return true;
639 if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
640 return true;
641 return false;
642 }
643
excess_prefree_segs(struct f2fs_sb_info * sbi)644 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
645 {
646 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
647 }
648
utilization(struct f2fs_sb_info * sbi)649 static inline int utilization(struct f2fs_sb_info *sbi)
650 {
651 return div_u64((u64)valid_user_blocks(sbi) * 100,
652 sbi->user_block_count);
653 }
654
655 /*
656 * Sometimes f2fs may be better to drop out-of-place update policy.
657 * And, users can control the policy through sysfs entries.
658 * There are five policies with triggering conditions as follows.
659 * F2FS_IPU_FORCE - all the time,
660 * F2FS_IPU_SSR - if SSR mode is activated,
661 * F2FS_IPU_UTIL - if FS utilization is over threashold,
662 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
663 * threashold,
664 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
665 * storages. IPU will be triggered only if the # of dirty
666 * pages over min_fsync_blocks. (=default option)
667 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
668 * F2FS_IPU_NOCACHE - disable IPU bio cache.
669 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
670 * FI_OPU_WRITE flag.
671 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
672 */
673 #define DEF_MIN_IPU_UTIL 70
674 #define DEF_MIN_FSYNC_BLOCKS 8
675 #define DEF_MIN_HOT_BLOCKS 16
676
677 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
678
679 enum {
680 F2FS_IPU_FORCE,
681 F2FS_IPU_SSR,
682 F2FS_IPU_UTIL,
683 F2FS_IPU_SSR_UTIL,
684 F2FS_IPU_FSYNC,
685 F2FS_IPU_ASYNC,
686 F2FS_IPU_NOCACHE,
687 F2FS_IPU_HONOR_OPU_WRITE,
688 };
689
curseg_segno(struct f2fs_sb_info * sbi,int type)690 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
691 int type)
692 {
693 struct curseg_info *curseg = CURSEG_I(sbi, type);
694 return curseg->segno;
695 }
696
curseg_alloc_type(struct f2fs_sb_info * sbi,int type)697 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
698 int type)
699 {
700 struct curseg_info *curseg = CURSEG_I(sbi, type);
701 return curseg->alloc_type;
702 }
703
curseg_blkoff(struct f2fs_sb_info * sbi,int type)704 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
705 {
706 struct curseg_info *curseg = CURSEG_I(sbi, type);
707 return curseg->next_blkoff;
708 }
709
check_seg_range(struct f2fs_sb_info * sbi,unsigned int segno)710 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
711 {
712 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
713 }
714
verify_fio_blkaddr(struct f2fs_io_info * fio)715 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
716 {
717 struct f2fs_sb_info *sbi = fio->sbi;
718
719 if (__is_valid_data_blkaddr(fio->old_blkaddr))
720 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
721 META_GENERIC : DATA_GENERIC);
722 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
723 META_GENERIC : DATA_GENERIC_ENHANCE);
724 }
725
726 /*
727 * Summary block is always treated as an invalid block
728 */
check_block_count(struct f2fs_sb_info * sbi,int segno,struct f2fs_sit_entry * raw_sit)729 static inline int check_block_count(struct f2fs_sb_info *sbi,
730 int segno, struct f2fs_sit_entry *raw_sit)
731 {
732 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
733 int valid_blocks = 0;
734 int cur_pos = 0, next_pos;
735 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
736
737 /* check bitmap with valid block count */
738 do {
739 if (is_valid) {
740 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
741 usable_blks_per_seg,
742 cur_pos);
743 valid_blocks += next_pos - cur_pos;
744 } else
745 next_pos = find_next_bit_le(&raw_sit->valid_map,
746 usable_blks_per_seg,
747 cur_pos);
748 cur_pos = next_pos;
749 is_valid = !is_valid;
750 } while (cur_pos < usable_blks_per_seg);
751
752 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
753 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
754 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
755 set_sbi_flag(sbi, SBI_NEED_FSCK);
756 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
757 return -EFSCORRUPTED;
758 }
759
760 if (usable_blks_per_seg < sbi->blocks_per_seg)
761 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
762 sbi->blocks_per_seg,
763 usable_blks_per_seg) != sbi->blocks_per_seg);
764
765 /* check segment usage, and check boundary of a given segment number */
766 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
767 || segno > TOTAL_SEGS(sbi) - 1)) {
768 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
769 GET_SIT_VBLOCKS(raw_sit), segno);
770 set_sbi_flag(sbi, SBI_NEED_FSCK);
771 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
772 return -EFSCORRUPTED;
773 }
774 return 0;
775 }
776
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int start)777 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
778 unsigned int start)
779 {
780 struct sit_info *sit_i = SIT_I(sbi);
781 unsigned int offset = SIT_BLOCK_OFFSET(start);
782 block_t blk_addr = sit_i->sit_base_addr + offset;
783
784 check_seg_range(sbi, start);
785
786 #ifdef CONFIG_F2FS_CHECK_FS
787 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
788 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
789 f2fs_bug_on(sbi, 1);
790 #endif
791
792 /* calculate sit block address */
793 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
794 blk_addr += sit_i->sit_blocks;
795
796 return blk_addr;
797 }
798
next_sit_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)799 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
800 pgoff_t block_addr)
801 {
802 struct sit_info *sit_i = SIT_I(sbi);
803 block_addr -= sit_i->sit_base_addr;
804 if (block_addr < sit_i->sit_blocks)
805 block_addr += sit_i->sit_blocks;
806 else
807 block_addr -= sit_i->sit_blocks;
808
809 return block_addr + sit_i->sit_base_addr;
810 }
811
set_to_next_sit(struct sit_info * sit_i,unsigned int start)812 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
813 {
814 unsigned int block_off = SIT_BLOCK_OFFSET(start);
815
816 f2fs_change_bit(block_off, sit_i->sit_bitmap);
817 #ifdef CONFIG_F2FS_CHECK_FS
818 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
819 #endif
820 }
821
get_mtime(struct f2fs_sb_info * sbi,bool base_time)822 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
823 bool base_time)
824 {
825 struct sit_info *sit_i = SIT_I(sbi);
826 time64_t diff, now = ktime_get_boottime_seconds();
827
828 if (now >= sit_i->mounted_time)
829 return sit_i->elapsed_time + now - sit_i->mounted_time;
830
831 /* system time is set to the past */
832 if (!base_time) {
833 diff = sit_i->mounted_time - now;
834 if (sit_i->elapsed_time >= diff)
835 return sit_i->elapsed_time - diff;
836 return 0;
837 }
838 return sit_i->elapsed_time;
839 }
840
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)841 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
842 unsigned int ofs_in_node, unsigned char version)
843 {
844 sum->nid = cpu_to_le32(nid);
845 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
846 sum->version = version;
847 }
848
start_sum_block(struct f2fs_sb_info * sbi)849 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
850 {
851 return __start_cp_addr(sbi) +
852 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
853 }
854
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)855 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
856 {
857 return __start_cp_addr(sbi) +
858 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
859 - (base + 1) + type;
860 }
861
sec_usage_check(struct f2fs_sb_info * sbi,unsigned int secno)862 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
863 {
864 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
865 return true;
866 return false;
867 }
868
869 /*
870 * It is very important to gather dirty pages and write at once, so that we can
871 * submit a big bio without interfering other data writes.
872 * By default, 512 pages for directory data,
873 * 512 pages (2MB) * 8 for nodes, and
874 * 256 pages * 8 for meta are set.
875 */
nr_pages_to_skip(struct f2fs_sb_info * sbi,int type)876 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
877 {
878 if (sbi->sb->s_bdi->wb.dirty_exceeded)
879 return 0;
880
881 if (type == DATA)
882 return sbi->blocks_per_seg;
883 else if (type == NODE)
884 return 8 * sbi->blocks_per_seg;
885 else if (type == META)
886 return 8 * BIO_MAX_VECS;
887 else
888 return 0;
889 }
890
891 /*
892 * When writing pages, it'd better align nr_to_write for segment size.
893 */
nr_pages_to_write(struct f2fs_sb_info * sbi,int type,struct writeback_control * wbc)894 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
895 struct writeback_control *wbc)
896 {
897 long nr_to_write, desired;
898
899 if (wbc->sync_mode != WB_SYNC_NONE)
900 return 0;
901
902 nr_to_write = wbc->nr_to_write;
903 desired = BIO_MAX_VECS;
904 if (type == NODE)
905 desired <<= 1;
906
907 wbc->nr_to_write = desired;
908 return desired - nr_to_write;
909 }
910
wake_up_discard_thread(struct f2fs_sb_info * sbi,bool force)911 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
912 {
913 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
914 bool wakeup = false;
915 int i;
916
917 if (force)
918 goto wake_up;
919
920 mutex_lock(&dcc->cmd_lock);
921 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
922 if (i + 1 < dcc->discard_granularity)
923 break;
924 if (!list_empty(&dcc->pend_list[i])) {
925 wakeup = true;
926 break;
927 }
928 }
929 mutex_unlock(&dcc->cmd_lock);
930 if (!wakeup || !is_idle(sbi, DISCARD_TIME))
931 return;
932 wake_up:
933 dcc->discard_wake = 1;
934 wake_up_interruptible_all(&dcc->discard_wait_queue);
935 }
936