1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
sanity_check_pinned_pages(struct page ** pages,unsigned long npages)32 static inline void sanity_check_pinned_pages(struct page **pages,
33 					     unsigned long npages)
34 {
35 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 		return;
37 
38 	/*
39 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 	 * can no longer turn them possibly shared and PageAnonExclusive() will
41 	 * stick around until the page is freed.
42 	 *
43 	 * We'd like to verify that our pinned anonymous pages are still mapped
44 	 * exclusively. The issue with anon THP is that we don't know how
45 	 * they are/were mapped when pinning them. However, for anon
46 	 * THP we can assume that either the given page (PTE-mapped THP) or
47 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 	 * neither is the case, there is certainly something wrong.
49 	 */
50 	for (; npages; npages--, pages++) {
51 		struct page *page = *pages;
52 		struct folio *folio = page_folio(page);
53 
54 		if (!folio_test_anon(folio))
55 			continue;
56 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 		else
59 			/* Either a PTE-mapped or a PMD-mapped THP. */
60 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 				       !PageAnonExclusive(page), page);
62 	}
63 }
64 
65 /*
66  * Return the folio with ref appropriately incremented,
67  * or NULL if that failed.
68  */
try_get_folio(struct page * page,int refs)69 static inline struct folio *try_get_folio(struct page *page, int refs)
70 {
71 	struct folio *folio;
72 
73 retry:
74 	folio = page_folio(page);
75 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76 		return NULL;
77 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78 		return NULL;
79 
80 	/*
81 	 * At this point we have a stable reference to the folio; but it
82 	 * could be that between calling page_folio() and the refcount
83 	 * increment, the folio was split, in which case we'd end up
84 	 * holding a reference on a folio that has nothing to do with the page
85 	 * we were given anymore.
86 	 * So now that the folio is stable, recheck that the page still
87 	 * belongs to this folio.
88 	 */
89 	if (unlikely(page_folio(page) != folio)) {
90 		if (!put_devmap_managed_page_refs(&folio->page, refs))
91 			folio_put_refs(folio, refs);
92 		goto retry;
93 	}
94 
95 	return folio;
96 }
97 
98 /**
99  * try_grab_folio() - Attempt to get or pin a folio.
100  * @page:  pointer to page to be grabbed
101  * @refs:  the value to (effectively) add to the folio's refcount
102  * @flags: gup flags: these are the FOLL_* flag values.
103  *
104  * "grab" names in this file mean, "look at flags to decide whether to use
105  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
106  *
107  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108  * same time. (That's true throughout the get_user_pages*() and
109  * pin_user_pages*() APIs.) Cases:
110  *
111  *    FOLL_GET: folio's refcount will be incremented by @refs.
112  *
113  *    FOLL_PIN on large folios: folio's refcount will be incremented by
114  *    @refs, and its compound_pincount will be incremented by @refs.
115  *
116  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
117  *    @refs * GUP_PIN_COUNTING_BIAS.
118  *
119  * Return: The folio containing @page (with refcount appropriately
120  * incremented) for success, or NULL upon failure. If neither FOLL_GET
121  * nor FOLL_PIN was set, that's considered failure, and furthermore,
122  * a likely bug in the caller, so a warning is also emitted.
123  */
try_grab_folio(struct page * page,int refs,unsigned int flags)124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
125 {
126 	if (flags & FOLL_GET)
127 		return try_get_folio(page, refs);
128 	else if (flags & FOLL_PIN) {
129 		struct folio *folio;
130 
131 		/*
132 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
133 		 * right zone, so fail and let the caller fall back to the slow
134 		 * path.
135 		 */
136 		if (unlikely((flags & FOLL_LONGTERM) &&
137 			     !is_pinnable_page(page)))
138 			return NULL;
139 
140 		/*
141 		 * CAUTION: Don't use compound_head() on the page before this
142 		 * point, the result won't be stable.
143 		 */
144 		folio = try_get_folio(page, refs);
145 		if (!folio)
146 			return NULL;
147 
148 		/*
149 		 * When pinning a large folio, use an exact count to track it.
150 		 *
151 		 * However, be sure to *also* increment the normal folio
152 		 * refcount field at least once, so that the folio really
153 		 * is pinned.  That's why the refcount from the earlier
154 		 * try_get_folio() is left intact.
155 		 */
156 		if (folio_test_large(folio))
157 			atomic_add(refs, folio_pincount_ptr(folio));
158 		else
159 			folio_ref_add(folio,
160 					refs * (GUP_PIN_COUNTING_BIAS - 1));
161 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
162 
163 		return folio;
164 	}
165 
166 	WARN_ON_ONCE(1);
167 	return NULL;
168 }
169 
gup_put_folio(struct folio * folio,int refs,unsigned int flags)170 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
171 {
172 	if (flags & FOLL_PIN) {
173 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
174 		if (folio_test_large(folio))
175 			atomic_sub(refs, folio_pincount_ptr(folio));
176 		else
177 			refs *= GUP_PIN_COUNTING_BIAS;
178 	}
179 
180 	if (!put_devmap_managed_page_refs(&folio->page, refs))
181 		folio_put_refs(folio, refs);
182 }
183 
184 /**
185  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
186  * @page:    pointer to page to be grabbed
187  * @flags:   gup flags: these are the FOLL_* flag values.
188  *
189  * This might not do anything at all, depending on the flags argument.
190  *
191  * "grab" names in this file mean, "look at flags to decide whether to use
192  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
193  *
194  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
195  * time. Cases: please see the try_grab_folio() documentation, with
196  * "refs=1".
197  *
198  * Return: true for success, or if no action was required (if neither FOLL_PIN
199  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
200  * FOLL_PIN was set, but the page could not be grabbed.
201  */
try_grab_page(struct page * page,unsigned int flags)202 bool __must_check try_grab_page(struct page *page, unsigned int flags)
203 {
204 	struct folio *folio = page_folio(page);
205 
206 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
207 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
208 		return false;
209 
210 	if (flags & FOLL_GET)
211 		folio_ref_inc(folio);
212 	else if (flags & FOLL_PIN) {
213 		/*
214 		 * Similar to try_grab_folio(): be sure to *also*
215 		 * increment the normal page refcount field at least once,
216 		 * so that the page really is pinned.
217 		 */
218 		if (folio_test_large(folio)) {
219 			folio_ref_add(folio, 1);
220 			atomic_add(1, folio_pincount_ptr(folio));
221 		} else {
222 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
223 		}
224 
225 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
226 	}
227 
228 	return true;
229 }
230 
231 /**
232  * unpin_user_page() - release a dma-pinned page
233  * @page:            pointer to page to be released
234  *
235  * Pages that were pinned via pin_user_pages*() must be released via either
236  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
237  * that such pages can be separately tracked and uniquely handled. In
238  * particular, interactions with RDMA and filesystems need special handling.
239  */
unpin_user_page(struct page * page)240 void unpin_user_page(struct page *page)
241 {
242 	sanity_check_pinned_pages(&page, 1);
243 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
244 }
245 EXPORT_SYMBOL(unpin_user_page);
246 
gup_folio_range_next(struct page * start,unsigned long npages,unsigned long i,unsigned int * ntails)247 static inline struct folio *gup_folio_range_next(struct page *start,
248 		unsigned long npages, unsigned long i, unsigned int *ntails)
249 {
250 	struct page *next = nth_page(start, i);
251 	struct folio *folio = page_folio(next);
252 	unsigned int nr = 1;
253 
254 	if (folio_test_large(folio))
255 		nr = min_t(unsigned int, npages - i,
256 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
257 
258 	*ntails = nr;
259 	return folio;
260 }
261 
gup_folio_next(struct page ** list,unsigned long npages,unsigned long i,unsigned int * ntails)262 static inline struct folio *gup_folio_next(struct page **list,
263 		unsigned long npages, unsigned long i, unsigned int *ntails)
264 {
265 	struct folio *folio = page_folio(list[i]);
266 	unsigned int nr;
267 
268 	for (nr = i + 1; nr < npages; nr++) {
269 		if (page_folio(list[nr]) != folio)
270 			break;
271 	}
272 
273 	*ntails = nr - i;
274 	return folio;
275 }
276 
277 /**
278  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
279  * @pages:  array of pages to be maybe marked dirty, and definitely released.
280  * @npages: number of pages in the @pages array.
281  * @make_dirty: whether to mark the pages dirty
282  *
283  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
284  * variants called on that page.
285  *
286  * For each page in the @pages array, make that page (or its head page, if a
287  * compound page) dirty, if @make_dirty is true, and if the page was previously
288  * listed as clean. In any case, releases all pages using unpin_user_page(),
289  * possibly via unpin_user_pages(), for the non-dirty case.
290  *
291  * Please see the unpin_user_page() documentation for details.
292  *
293  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
294  * required, then the caller should a) verify that this is really correct,
295  * because _lock() is usually required, and b) hand code it:
296  * set_page_dirty_lock(), unpin_user_page().
297  *
298  */
unpin_user_pages_dirty_lock(struct page ** pages,unsigned long npages,bool make_dirty)299 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
300 				 bool make_dirty)
301 {
302 	unsigned long i;
303 	struct folio *folio;
304 	unsigned int nr;
305 
306 	if (!make_dirty) {
307 		unpin_user_pages(pages, npages);
308 		return;
309 	}
310 
311 	sanity_check_pinned_pages(pages, npages);
312 	for (i = 0; i < npages; i += nr) {
313 		folio = gup_folio_next(pages, npages, i, &nr);
314 		/*
315 		 * Checking PageDirty at this point may race with
316 		 * clear_page_dirty_for_io(), but that's OK. Two key
317 		 * cases:
318 		 *
319 		 * 1) This code sees the page as already dirty, so it
320 		 * skips the call to set_page_dirty(). That could happen
321 		 * because clear_page_dirty_for_io() called
322 		 * page_mkclean(), followed by set_page_dirty().
323 		 * However, now the page is going to get written back,
324 		 * which meets the original intention of setting it
325 		 * dirty, so all is well: clear_page_dirty_for_io() goes
326 		 * on to call TestClearPageDirty(), and write the page
327 		 * back.
328 		 *
329 		 * 2) This code sees the page as clean, so it calls
330 		 * set_page_dirty(). The page stays dirty, despite being
331 		 * written back, so it gets written back again in the
332 		 * next writeback cycle. This is harmless.
333 		 */
334 		if (!folio_test_dirty(folio)) {
335 			folio_lock(folio);
336 			folio_mark_dirty(folio);
337 			folio_unlock(folio);
338 		}
339 		gup_put_folio(folio, nr, FOLL_PIN);
340 	}
341 }
342 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
343 
344 /**
345  * unpin_user_page_range_dirty_lock() - release and optionally dirty
346  * gup-pinned page range
347  *
348  * @page:  the starting page of a range maybe marked dirty, and definitely released.
349  * @npages: number of consecutive pages to release.
350  * @make_dirty: whether to mark the pages dirty
351  *
352  * "gup-pinned page range" refers to a range of pages that has had one of the
353  * pin_user_pages() variants called on that page.
354  *
355  * For the page ranges defined by [page .. page+npages], make that range (or
356  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
357  * page range was previously listed as clean.
358  *
359  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
360  * required, then the caller should a) verify that this is really correct,
361  * because _lock() is usually required, and b) hand code it:
362  * set_page_dirty_lock(), unpin_user_page().
363  *
364  */
unpin_user_page_range_dirty_lock(struct page * page,unsigned long npages,bool make_dirty)365 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
366 				      bool make_dirty)
367 {
368 	unsigned long i;
369 	struct folio *folio;
370 	unsigned int nr;
371 
372 	for (i = 0; i < npages; i += nr) {
373 		folio = gup_folio_range_next(page, npages, i, &nr);
374 		if (make_dirty && !folio_test_dirty(folio)) {
375 			folio_lock(folio);
376 			folio_mark_dirty(folio);
377 			folio_unlock(folio);
378 		}
379 		gup_put_folio(folio, nr, FOLL_PIN);
380 	}
381 }
382 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
383 
unpin_user_pages_lockless(struct page ** pages,unsigned long npages)384 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
385 {
386 	unsigned long i;
387 	struct folio *folio;
388 	unsigned int nr;
389 
390 	/*
391 	 * Don't perform any sanity checks because we might have raced with
392 	 * fork() and some anonymous pages might now actually be shared --
393 	 * which is why we're unpinning after all.
394 	 */
395 	for (i = 0; i < npages; i += nr) {
396 		folio = gup_folio_next(pages, npages, i, &nr);
397 		gup_put_folio(folio, nr, FOLL_PIN);
398 	}
399 }
400 
401 /**
402  * unpin_user_pages() - release an array of gup-pinned pages.
403  * @pages:  array of pages to be marked dirty and released.
404  * @npages: number of pages in the @pages array.
405  *
406  * For each page in the @pages array, release the page using unpin_user_page().
407  *
408  * Please see the unpin_user_page() documentation for details.
409  */
unpin_user_pages(struct page ** pages,unsigned long npages)410 void unpin_user_pages(struct page **pages, unsigned long npages)
411 {
412 	unsigned long i;
413 	struct folio *folio;
414 	unsigned int nr;
415 
416 	/*
417 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
418 	 * leaving them pinned), but probably not. More likely, gup/pup returned
419 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
420 	 */
421 	if (WARN_ON(IS_ERR_VALUE(npages)))
422 		return;
423 
424 	sanity_check_pinned_pages(pages, npages);
425 	for (i = 0; i < npages; i += nr) {
426 		folio = gup_folio_next(pages, npages, i, &nr);
427 		gup_put_folio(folio, nr, FOLL_PIN);
428 	}
429 }
430 EXPORT_SYMBOL(unpin_user_pages);
431 
432 /*
433  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
434  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
435  * cache bouncing on large SMP machines for concurrent pinned gups.
436  */
mm_set_has_pinned_flag(unsigned long * mm_flags)437 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
438 {
439 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
440 		set_bit(MMF_HAS_PINNED, mm_flags);
441 }
442 
443 #ifdef CONFIG_MMU
no_page_table(struct vm_area_struct * vma,unsigned int flags)444 static struct page *no_page_table(struct vm_area_struct *vma,
445 		unsigned int flags)
446 {
447 	/*
448 	 * When core dumping an enormous anonymous area that nobody
449 	 * has touched so far, we don't want to allocate unnecessary pages or
450 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
451 	 * then get_dump_page() will return NULL to leave a hole in the dump.
452 	 * But we can only make this optimization where a hole would surely
453 	 * be zero-filled if handle_mm_fault() actually did handle it.
454 	 */
455 	if ((flags & FOLL_DUMP) &&
456 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
457 		return ERR_PTR(-EFAULT);
458 	return NULL;
459 }
460 
follow_pfn_pte(struct vm_area_struct * vma,unsigned long address,pte_t * pte,unsigned int flags)461 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
462 		pte_t *pte, unsigned int flags)
463 {
464 	if (flags & FOLL_TOUCH) {
465 		pte_t entry = *pte;
466 
467 		if (flags & FOLL_WRITE)
468 			entry = pte_mkdirty(entry);
469 		entry = pte_mkyoung(entry);
470 
471 		if (!pte_same(*pte, entry)) {
472 			set_pte_at(vma->vm_mm, address, pte, entry);
473 			update_mmu_cache(vma, address, pte);
474 		}
475 	}
476 
477 	/* Proper page table entry exists, but no corresponding struct page */
478 	return -EEXIST;
479 }
480 
481 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
can_follow_write_pte(pte_t pte,struct page * page,struct vm_area_struct * vma,unsigned int flags)482 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
483 					struct vm_area_struct *vma,
484 					unsigned int flags)
485 {
486 	/* If the pte is writable, we can write to the page. */
487 	if (pte_write(pte))
488 		return true;
489 
490 	/* Maybe FOLL_FORCE is set to override it? */
491 	if (!(flags & FOLL_FORCE))
492 		return false;
493 
494 	/* But FOLL_FORCE has no effect on shared mappings */
495 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
496 		return false;
497 
498 	/* ... or read-only private ones */
499 	if (!(vma->vm_flags & VM_MAYWRITE))
500 		return false;
501 
502 	/* ... or already writable ones that just need to take a write fault */
503 	if (vma->vm_flags & VM_WRITE)
504 		return false;
505 
506 	/*
507 	 * See can_change_pte_writable(): we broke COW and could map the page
508 	 * writable if we have an exclusive anonymous page ...
509 	 */
510 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
511 		return false;
512 
513 	/* ... and a write-fault isn't required for other reasons. */
514 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) &&
515 	    !(vma->vm_flags & VM_SOFTDIRTY) && !pte_soft_dirty(pte))
516 		return false;
517 	return !userfaultfd_pte_wp(vma, pte);
518 }
519 
follow_page_pte(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags,struct dev_pagemap ** pgmap)520 static struct page *follow_page_pte(struct vm_area_struct *vma,
521 		unsigned long address, pmd_t *pmd, unsigned int flags,
522 		struct dev_pagemap **pgmap)
523 {
524 	struct mm_struct *mm = vma->vm_mm;
525 	struct page *page;
526 	spinlock_t *ptl;
527 	pte_t *ptep, pte;
528 	int ret;
529 
530 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
531 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
532 			 (FOLL_PIN | FOLL_GET)))
533 		return ERR_PTR(-EINVAL);
534 retry:
535 	if (unlikely(pmd_bad(*pmd)))
536 		return no_page_table(vma, flags);
537 
538 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
539 	pte = *ptep;
540 	if (!pte_present(pte)) {
541 		swp_entry_t entry;
542 		/*
543 		 * KSM's break_ksm() relies upon recognizing a ksm page
544 		 * even while it is being migrated, so for that case we
545 		 * need migration_entry_wait().
546 		 */
547 		if (likely(!(flags & FOLL_MIGRATION)))
548 			goto no_page;
549 		if (pte_none(pte))
550 			goto no_page;
551 		entry = pte_to_swp_entry(pte);
552 		if (!is_migration_entry(entry))
553 			goto no_page;
554 		pte_unmap_unlock(ptep, ptl);
555 		migration_entry_wait(mm, pmd, address);
556 		goto retry;
557 	}
558 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
559 		goto no_page;
560 
561 	page = vm_normal_page(vma, address, pte);
562 
563 	/*
564 	 * We only care about anon pages in can_follow_write_pte() and don't
565 	 * have to worry about pte_devmap() because they are never anon.
566 	 */
567 	if ((flags & FOLL_WRITE) &&
568 	    !can_follow_write_pte(pte, page, vma, flags)) {
569 		page = NULL;
570 		goto out;
571 	}
572 
573 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
574 		/*
575 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
576 		 * case since they are only valid while holding the pgmap
577 		 * reference.
578 		 */
579 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
580 		if (*pgmap)
581 			page = pte_page(pte);
582 		else
583 			goto no_page;
584 	} else if (unlikely(!page)) {
585 		if (flags & FOLL_DUMP) {
586 			/* Avoid special (like zero) pages in core dumps */
587 			page = ERR_PTR(-EFAULT);
588 			goto out;
589 		}
590 
591 		if (is_zero_pfn(pte_pfn(pte))) {
592 			page = pte_page(pte);
593 		} else {
594 			ret = follow_pfn_pte(vma, address, ptep, flags);
595 			page = ERR_PTR(ret);
596 			goto out;
597 		}
598 	}
599 
600 	if (!pte_write(pte) && gup_must_unshare(flags, page)) {
601 		page = ERR_PTR(-EMLINK);
602 		goto out;
603 	}
604 
605 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
606 		       !PageAnonExclusive(page), page);
607 
608 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
609 	if (unlikely(!try_grab_page(page, flags))) {
610 		page = ERR_PTR(-ENOMEM);
611 		goto out;
612 	}
613 	/*
614 	 * We need to make the page accessible if and only if we are going
615 	 * to access its content (the FOLL_PIN case).  Please see
616 	 * Documentation/core-api/pin_user_pages.rst for details.
617 	 */
618 	if (flags & FOLL_PIN) {
619 		ret = arch_make_page_accessible(page);
620 		if (ret) {
621 			unpin_user_page(page);
622 			page = ERR_PTR(ret);
623 			goto out;
624 		}
625 	}
626 	if (flags & FOLL_TOUCH) {
627 		if ((flags & FOLL_WRITE) &&
628 		    !pte_dirty(pte) && !PageDirty(page))
629 			set_page_dirty(page);
630 		/*
631 		 * pte_mkyoung() would be more correct here, but atomic care
632 		 * is needed to avoid losing the dirty bit: it is easier to use
633 		 * mark_page_accessed().
634 		 */
635 		mark_page_accessed(page);
636 	}
637 out:
638 	pte_unmap_unlock(ptep, ptl);
639 	return page;
640 no_page:
641 	pte_unmap_unlock(ptep, ptl);
642 	if (!pte_none(pte))
643 		return NULL;
644 	return no_page_table(vma, flags);
645 }
646 
follow_pmd_mask(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,unsigned int flags,struct follow_page_context * ctx)647 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
648 				    unsigned long address, pud_t *pudp,
649 				    unsigned int flags,
650 				    struct follow_page_context *ctx)
651 {
652 	pmd_t *pmd, pmdval;
653 	spinlock_t *ptl;
654 	struct page *page;
655 	struct mm_struct *mm = vma->vm_mm;
656 
657 	pmd = pmd_offset(pudp, address);
658 	/*
659 	 * The READ_ONCE() will stabilize the pmdval in a register or
660 	 * on the stack so that it will stop changing under the code.
661 	 */
662 	pmdval = READ_ONCE(*pmd);
663 	if (pmd_none(pmdval))
664 		return no_page_table(vma, flags);
665 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
666 		page = follow_huge_pmd(mm, address, pmd, flags);
667 		if (page)
668 			return page;
669 		return no_page_table(vma, flags);
670 	}
671 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
672 		page = follow_huge_pd(vma, address,
673 				      __hugepd(pmd_val(pmdval)), flags,
674 				      PMD_SHIFT);
675 		if (page)
676 			return page;
677 		return no_page_table(vma, flags);
678 	}
679 retry:
680 	if (!pmd_present(pmdval)) {
681 		/*
682 		 * Should never reach here, if thp migration is not supported;
683 		 * Otherwise, it must be a thp migration entry.
684 		 */
685 		VM_BUG_ON(!thp_migration_supported() ||
686 				  !is_pmd_migration_entry(pmdval));
687 
688 		if (likely(!(flags & FOLL_MIGRATION)))
689 			return no_page_table(vma, flags);
690 
691 		pmd_migration_entry_wait(mm, pmd);
692 		pmdval = READ_ONCE(*pmd);
693 		/*
694 		 * MADV_DONTNEED may convert the pmd to null because
695 		 * mmap_lock is held in read mode
696 		 */
697 		if (pmd_none(pmdval))
698 			return no_page_table(vma, flags);
699 		goto retry;
700 	}
701 	if (pmd_devmap(pmdval)) {
702 		ptl = pmd_lock(mm, pmd);
703 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
704 		spin_unlock(ptl);
705 		if (page)
706 			return page;
707 	}
708 	if (likely(!pmd_trans_huge(pmdval)))
709 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
710 
711 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
712 		return no_page_table(vma, flags);
713 
714 retry_locked:
715 	ptl = pmd_lock(mm, pmd);
716 	if (unlikely(pmd_none(*pmd))) {
717 		spin_unlock(ptl);
718 		return no_page_table(vma, flags);
719 	}
720 	if (unlikely(!pmd_present(*pmd))) {
721 		spin_unlock(ptl);
722 		if (likely(!(flags & FOLL_MIGRATION)))
723 			return no_page_table(vma, flags);
724 		pmd_migration_entry_wait(mm, pmd);
725 		goto retry_locked;
726 	}
727 	if (unlikely(!pmd_trans_huge(*pmd))) {
728 		spin_unlock(ptl);
729 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
730 	}
731 	if (flags & FOLL_SPLIT_PMD) {
732 		int ret;
733 		page = pmd_page(*pmd);
734 		if (is_huge_zero_page(page)) {
735 			spin_unlock(ptl);
736 			ret = 0;
737 			split_huge_pmd(vma, pmd, address);
738 			if (pmd_trans_unstable(pmd))
739 				ret = -EBUSY;
740 		} else {
741 			spin_unlock(ptl);
742 			split_huge_pmd(vma, pmd, address);
743 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
744 		}
745 
746 		return ret ? ERR_PTR(ret) :
747 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
748 	}
749 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
750 	spin_unlock(ptl);
751 	ctx->page_mask = HPAGE_PMD_NR - 1;
752 	return page;
753 }
754 
follow_pud_mask(struct vm_area_struct * vma,unsigned long address,p4d_t * p4dp,unsigned int flags,struct follow_page_context * ctx)755 static struct page *follow_pud_mask(struct vm_area_struct *vma,
756 				    unsigned long address, p4d_t *p4dp,
757 				    unsigned int flags,
758 				    struct follow_page_context *ctx)
759 {
760 	pud_t *pud;
761 	spinlock_t *ptl;
762 	struct page *page;
763 	struct mm_struct *mm = vma->vm_mm;
764 
765 	pud = pud_offset(p4dp, address);
766 	if (pud_none(*pud))
767 		return no_page_table(vma, flags);
768 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
769 		page = follow_huge_pud(mm, address, pud, flags);
770 		if (page)
771 			return page;
772 		return no_page_table(vma, flags);
773 	}
774 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
775 		page = follow_huge_pd(vma, address,
776 				      __hugepd(pud_val(*pud)), flags,
777 				      PUD_SHIFT);
778 		if (page)
779 			return page;
780 		return no_page_table(vma, flags);
781 	}
782 	if (pud_devmap(*pud)) {
783 		ptl = pud_lock(mm, pud);
784 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
785 		spin_unlock(ptl);
786 		if (page)
787 			return page;
788 	}
789 	if (unlikely(pud_bad(*pud)))
790 		return no_page_table(vma, flags);
791 
792 	return follow_pmd_mask(vma, address, pud, flags, ctx);
793 }
794 
follow_p4d_mask(struct vm_area_struct * vma,unsigned long address,pgd_t * pgdp,unsigned int flags,struct follow_page_context * ctx)795 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
796 				    unsigned long address, pgd_t *pgdp,
797 				    unsigned int flags,
798 				    struct follow_page_context *ctx)
799 {
800 	p4d_t *p4d;
801 	struct page *page;
802 
803 	p4d = p4d_offset(pgdp, address);
804 	if (p4d_none(*p4d))
805 		return no_page_table(vma, flags);
806 	BUILD_BUG_ON(p4d_huge(*p4d));
807 	if (unlikely(p4d_bad(*p4d)))
808 		return no_page_table(vma, flags);
809 
810 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
811 		page = follow_huge_pd(vma, address,
812 				      __hugepd(p4d_val(*p4d)), flags,
813 				      P4D_SHIFT);
814 		if (page)
815 			return page;
816 		return no_page_table(vma, flags);
817 	}
818 	return follow_pud_mask(vma, address, p4d, flags, ctx);
819 }
820 
821 /**
822  * follow_page_mask - look up a page descriptor from a user-virtual address
823  * @vma: vm_area_struct mapping @address
824  * @address: virtual address to look up
825  * @flags: flags modifying lookup behaviour
826  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
827  *       pointer to output page_mask
828  *
829  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
830  *
831  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
832  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
833  *
834  * When getting an anonymous page and the caller has to trigger unsharing
835  * of a shared anonymous page first, -EMLINK is returned. The caller should
836  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
837  * relevant with FOLL_PIN and !FOLL_WRITE.
838  *
839  * On output, the @ctx->page_mask is set according to the size of the page.
840  *
841  * Return: the mapped (struct page *), %NULL if no mapping exists, or
842  * an error pointer if there is a mapping to something not represented
843  * by a page descriptor (see also vm_normal_page()).
844  */
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct follow_page_context * ctx)845 static struct page *follow_page_mask(struct vm_area_struct *vma,
846 			      unsigned long address, unsigned int flags,
847 			      struct follow_page_context *ctx)
848 {
849 	pgd_t *pgd;
850 	struct page *page;
851 	struct mm_struct *mm = vma->vm_mm;
852 
853 	ctx->page_mask = 0;
854 
855 	/* make this handle hugepd */
856 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
857 	if (!IS_ERR(page)) {
858 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
859 		return page;
860 	}
861 
862 	pgd = pgd_offset(mm, address);
863 
864 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
865 		return no_page_table(vma, flags);
866 
867 	if (pgd_huge(*pgd)) {
868 		page = follow_huge_pgd(mm, address, pgd, flags);
869 		if (page)
870 			return page;
871 		return no_page_table(vma, flags);
872 	}
873 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
874 		page = follow_huge_pd(vma, address,
875 				      __hugepd(pgd_val(*pgd)), flags,
876 				      PGDIR_SHIFT);
877 		if (page)
878 			return page;
879 		return no_page_table(vma, flags);
880 	}
881 
882 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
883 }
884 
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)885 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
886 			 unsigned int foll_flags)
887 {
888 	struct follow_page_context ctx = { NULL };
889 	struct page *page;
890 
891 	if (vma_is_secretmem(vma))
892 		return NULL;
893 
894 	if (foll_flags & FOLL_PIN)
895 		return NULL;
896 
897 	page = follow_page_mask(vma, address, foll_flags, &ctx);
898 	if (ctx.pgmap)
899 		put_dev_pagemap(ctx.pgmap);
900 	return page;
901 }
902 
get_gate_page(struct mm_struct * mm,unsigned long address,unsigned int gup_flags,struct vm_area_struct ** vma,struct page ** page)903 static int get_gate_page(struct mm_struct *mm, unsigned long address,
904 		unsigned int gup_flags, struct vm_area_struct **vma,
905 		struct page **page)
906 {
907 	pgd_t *pgd;
908 	p4d_t *p4d;
909 	pud_t *pud;
910 	pmd_t *pmd;
911 	pte_t *pte;
912 	int ret = -EFAULT;
913 
914 	/* user gate pages are read-only */
915 	if (gup_flags & FOLL_WRITE)
916 		return -EFAULT;
917 	if (address > TASK_SIZE)
918 		pgd = pgd_offset_k(address);
919 	else
920 		pgd = pgd_offset_gate(mm, address);
921 	if (pgd_none(*pgd))
922 		return -EFAULT;
923 	p4d = p4d_offset(pgd, address);
924 	if (p4d_none(*p4d))
925 		return -EFAULT;
926 	pud = pud_offset(p4d, address);
927 	if (pud_none(*pud))
928 		return -EFAULT;
929 	pmd = pmd_offset(pud, address);
930 	if (!pmd_present(*pmd))
931 		return -EFAULT;
932 	VM_BUG_ON(pmd_trans_huge(*pmd));
933 	pte = pte_offset_map(pmd, address);
934 	if (pte_none(*pte))
935 		goto unmap;
936 	*vma = get_gate_vma(mm);
937 	if (!page)
938 		goto out;
939 	*page = vm_normal_page(*vma, address, *pte);
940 	if (!*page) {
941 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
942 			goto unmap;
943 		*page = pte_page(*pte);
944 	}
945 	if (unlikely(!try_grab_page(*page, gup_flags))) {
946 		ret = -ENOMEM;
947 		goto unmap;
948 	}
949 out:
950 	ret = 0;
951 unmap:
952 	pte_unmap(pte);
953 	return ret;
954 }
955 
956 /*
957  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
958  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
959  * is, *@locked will be set to 0 and -EBUSY returned.
960  */
faultin_page(struct vm_area_struct * vma,unsigned long address,unsigned int * flags,bool unshare,int * locked)961 static int faultin_page(struct vm_area_struct *vma,
962 		unsigned long address, unsigned int *flags, bool unshare,
963 		int *locked)
964 {
965 	unsigned int fault_flags = 0;
966 	vm_fault_t ret;
967 
968 	if (*flags & FOLL_NOFAULT)
969 		return -EFAULT;
970 	if (*flags & FOLL_WRITE)
971 		fault_flags |= FAULT_FLAG_WRITE;
972 	if (*flags & FOLL_REMOTE)
973 		fault_flags |= FAULT_FLAG_REMOTE;
974 	if (locked)
975 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
976 	if (*flags & FOLL_NOWAIT)
977 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
978 	if (*flags & FOLL_TRIED) {
979 		/*
980 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
981 		 * can co-exist
982 		 */
983 		fault_flags |= FAULT_FLAG_TRIED;
984 	}
985 	if (unshare) {
986 		fault_flags |= FAULT_FLAG_UNSHARE;
987 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
988 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
989 	}
990 
991 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
992 	if (ret & VM_FAULT_ERROR) {
993 		int err = vm_fault_to_errno(ret, *flags);
994 
995 		if (err)
996 			return err;
997 		BUG();
998 	}
999 
1000 	if (ret & VM_FAULT_RETRY) {
1001 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1002 			*locked = 0;
1003 		return -EBUSY;
1004 	}
1005 
1006 	return 0;
1007 }
1008 
check_vma_flags(struct vm_area_struct * vma,unsigned long gup_flags)1009 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1010 {
1011 	vm_flags_t vm_flags = vma->vm_flags;
1012 	int write = (gup_flags & FOLL_WRITE);
1013 	int foreign = (gup_flags & FOLL_REMOTE);
1014 
1015 	if (vm_flags & (VM_IO | VM_PFNMAP))
1016 		return -EFAULT;
1017 
1018 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1019 		return -EFAULT;
1020 
1021 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1022 		return -EOPNOTSUPP;
1023 
1024 	if (vma_is_secretmem(vma))
1025 		return -EFAULT;
1026 
1027 	if (write) {
1028 		if (!(vm_flags & VM_WRITE)) {
1029 			if (!(gup_flags & FOLL_FORCE))
1030 				return -EFAULT;
1031 			/*
1032 			 * We used to let the write,force case do COW in a
1033 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1034 			 * set a breakpoint in a read-only mapping of an
1035 			 * executable, without corrupting the file (yet only
1036 			 * when that file had been opened for writing!).
1037 			 * Anon pages in shared mappings are surprising: now
1038 			 * just reject it.
1039 			 */
1040 			if (!is_cow_mapping(vm_flags))
1041 				return -EFAULT;
1042 		}
1043 	} else if (!(vm_flags & VM_READ)) {
1044 		if (!(gup_flags & FOLL_FORCE))
1045 			return -EFAULT;
1046 		/*
1047 		 * Is there actually any vma we can reach here which does not
1048 		 * have VM_MAYREAD set?
1049 		 */
1050 		if (!(vm_flags & VM_MAYREAD))
1051 			return -EFAULT;
1052 	}
1053 	/*
1054 	 * gups are always data accesses, not instruction
1055 	 * fetches, so execute=false here
1056 	 */
1057 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1058 		return -EFAULT;
1059 	return 0;
1060 }
1061 
1062 /**
1063  * __get_user_pages() - pin user pages in memory
1064  * @mm:		mm_struct of target mm
1065  * @start:	starting user address
1066  * @nr_pages:	number of pages from start to pin
1067  * @gup_flags:	flags modifying pin behaviour
1068  * @pages:	array that receives pointers to the pages pinned.
1069  *		Should be at least nr_pages long. Or NULL, if caller
1070  *		only intends to ensure the pages are faulted in.
1071  * @vmas:	array of pointers to vmas corresponding to each page.
1072  *		Or NULL if the caller does not require them.
1073  * @locked:     whether we're still with the mmap_lock held
1074  *
1075  * Returns either number of pages pinned (which may be less than the
1076  * number requested), or an error. Details about the return value:
1077  *
1078  * -- If nr_pages is 0, returns 0.
1079  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1080  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1081  *    pages pinned. Again, this may be less than nr_pages.
1082  * -- 0 return value is possible when the fault would need to be retried.
1083  *
1084  * The caller is responsible for releasing returned @pages, via put_page().
1085  *
1086  * @vmas are valid only as long as mmap_lock is held.
1087  *
1088  * Must be called with mmap_lock held.  It may be released.  See below.
1089  *
1090  * __get_user_pages walks a process's page tables and takes a reference to
1091  * each struct page that each user address corresponds to at a given
1092  * instant. That is, it takes the page that would be accessed if a user
1093  * thread accesses the given user virtual address at that instant.
1094  *
1095  * This does not guarantee that the page exists in the user mappings when
1096  * __get_user_pages returns, and there may even be a completely different
1097  * page there in some cases (eg. if mmapped pagecache has been invalidated
1098  * and subsequently re faulted). However it does guarantee that the page
1099  * won't be freed completely. And mostly callers simply care that the page
1100  * contains data that was valid *at some point in time*. Typically, an IO
1101  * or similar operation cannot guarantee anything stronger anyway because
1102  * locks can't be held over the syscall boundary.
1103  *
1104  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1105  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1106  * appropriate) must be called after the page is finished with, and
1107  * before put_page is called.
1108  *
1109  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1110  * released by an up_read().  That can happen if @gup_flags does not
1111  * have FOLL_NOWAIT.
1112  *
1113  * A caller using such a combination of @locked and @gup_flags
1114  * must therefore hold the mmap_lock for reading only, and recognize
1115  * when it's been released.  Otherwise, it must be held for either
1116  * reading or writing and will not be released.
1117  *
1118  * In most cases, get_user_pages or get_user_pages_fast should be used
1119  * instead of __get_user_pages. __get_user_pages should be used only if
1120  * you need some special @gup_flags.
1121  */
__get_user_pages(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1122 static long __get_user_pages(struct mm_struct *mm,
1123 		unsigned long start, unsigned long nr_pages,
1124 		unsigned int gup_flags, struct page **pages,
1125 		struct vm_area_struct **vmas, int *locked)
1126 {
1127 	long ret = 0, i = 0;
1128 	struct vm_area_struct *vma = NULL;
1129 	struct follow_page_context ctx = { NULL };
1130 
1131 	if (!nr_pages)
1132 		return 0;
1133 
1134 	start = untagged_addr(start);
1135 
1136 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1137 
1138 	/*
1139 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1140 	 * fault information is unrelated to the reference behaviour of a task
1141 	 * using the address space
1142 	 */
1143 	if (!(gup_flags & FOLL_FORCE))
1144 		gup_flags |= FOLL_NUMA;
1145 
1146 	do {
1147 		struct page *page;
1148 		unsigned int foll_flags = gup_flags;
1149 		unsigned int page_increm;
1150 
1151 		/* first iteration or cross vma bound */
1152 		if (!vma || start >= vma->vm_end) {
1153 			vma = find_extend_vma(mm, start);
1154 			if (!vma && in_gate_area(mm, start)) {
1155 				ret = get_gate_page(mm, start & PAGE_MASK,
1156 						gup_flags, &vma,
1157 						pages ? &pages[i] : NULL);
1158 				if (ret)
1159 					goto out;
1160 				ctx.page_mask = 0;
1161 				goto next_page;
1162 			}
1163 
1164 			if (!vma) {
1165 				ret = -EFAULT;
1166 				goto out;
1167 			}
1168 			ret = check_vma_flags(vma, gup_flags);
1169 			if (ret)
1170 				goto out;
1171 
1172 			if (is_vm_hugetlb_page(vma)) {
1173 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1174 						&start, &nr_pages, i,
1175 						gup_flags, locked);
1176 				if (locked && *locked == 0) {
1177 					/*
1178 					 * We've got a VM_FAULT_RETRY
1179 					 * and we've lost mmap_lock.
1180 					 * We must stop here.
1181 					 */
1182 					BUG_ON(gup_flags & FOLL_NOWAIT);
1183 					goto out;
1184 				}
1185 				continue;
1186 			}
1187 		}
1188 retry:
1189 		/*
1190 		 * If we have a pending SIGKILL, don't keep faulting pages and
1191 		 * potentially allocating memory.
1192 		 */
1193 		if (fatal_signal_pending(current)) {
1194 			ret = -EINTR;
1195 			goto out;
1196 		}
1197 		cond_resched();
1198 
1199 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1200 		if (!page || PTR_ERR(page) == -EMLINK) {
1201 			ret = faultin_page(vma, start, &foll_flags,
1202 					   PTR_ERR(page) == -EMLINK, locked);
1203 			switch (ret) {
1204 			case 0:
1205 				goto retry;
1206 			case -EBUSY:
1207 				ret = 0;
1208 				fallthrough;
1209 			case -EFAULT:
1210 			case -ENOMEM:
1211 			case -EHWPOISON:
1212 				goto out;
1213 			}
1214 			BUG();
1215 		} else if (PTR_ERR(page) == -EEXIST) {
1216 			/*
1217 			 * Proper page table entry exists, but no corresponding
1218 			 * struct page. If the caller expects **pages to be
1219 			 * filled in, bail out now, because that can't be done
1220 			 * for this page.
1221 			 */
1222 			if (pages) {
1223 				ret = PTR_ERR(page);
1224 				goto out;
1225 			}
1226 
1227 			goto next_page;
1228 		} else if (IS_ERR(page)) {
1229 			ret = PTR_ERR(page);
1230 			goto out;
1231 		}
1232 		if (pages) {
1233 			pages[i] = page;
1234 			flush_anon_page(vma, page, start);
1235 			flush_dcache_page(page);
1236 			ctx.page_mask = 0;
1237 		}
1238 next_page:
1239 		if (vmas) {
1240 			vmas[i] = vma;
1241 			ctx.page_mask = 0;
1242 		}
1243 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1244 		if (page_increm > nr_pages)
1245 			page_increm = nr_pages;
1246 		i += page_increm;
1247 		start += page_increm * PAGE_SIZE;
1248 		nr_pages -= page_increm;
1249 	} while (nr_pages);
1250 out:
1251 	if (ctx.pgmap)
1252 		put_dev_pagemap(ctx.pgmap);
1253 	return i ? i : ret;
1254 }
1255 
vma_permits_fault(struct vm_area_struct * vma,unsigned int fault_flags)1256 static bool vma_permits_fault(struct vm_area_struct *vma,
1257 			      unsigned int fault_flags)
1258 {
1259 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1260 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1261 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1262 
1263 	if (!(vm_flags & vma->vm_flags))
1264 		return false;
1265 
1266 	/*
1267 	 * The architecture might have a hardware protection
1268 	 * mechanism other than read/write that can deny access.
1269 	 *
1270 	 * gup always represents data access, not instruction
1271 	 * fetches, so execute=false here:
1272 	 */
1273 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1274 		return false;
1275 
1276 	return true;
1277 }
1278 
1279 /**
1280  * fixup_user_fault() - manually resolve a user page fault
1281  * @mm:		mm_struct of target mm
1282  * @address:	user address
1283  * @fault_flags:flags to pass down to handle_mm_fault()
1284  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1285  *		does not allow retry. If NULL, the caller must guarantee
1286  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1287  *
1288  * This is meant to be called in the specific scenario where for locking reasons
1289  * we try to access user memory in atomic context (within a pagefault_disable()
1290  * section), this returns -EFAULT, and we want to resolve the user fault before
1291  * trying again.
1292  *
1293  * Typically this is meant to be used by the futex code.
1294  *
1295  * The main difference with get_user_pages() is that this function will
1296  * unconditionally call handle_mm_fault() which will in turn perform all the
1297  * necessary SW fixup of the dirty and young bits in the PTE, while
1298  * get_user_pages() only guarantees to update these in the struct page.
1299  *
1300  * This is important for some architectures where those bits also gate the
1301  * access permission to the page because they are maintained in software.  On
1302  * such architectures, gup() will not be enough to make a subsequent access
1303  * succeed.
1304  *
1305  * This function will not return with an unlocked mmap_lock. So it has not the
1306  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1307  */
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1308 int fixup_user_fault(struct mm_struct *mm,
1309 		     unsigned long address, unsigned int fault_flags,
1310 		     bool *unlocked)
1311 {
1312 	struct vm_area_struct *vma;
1313 	vm_fault_t ret;
1314 
1315 	address = untagged_addr(address);
1316 
1317 	if (unlocked)
1318 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1319 
1320 retry:
1321 	vma = find_extend_vma(mm, address);
1322 	if (!vma || address < vma->vm_start)
1323 		return -EFAULT;
1324 
1325 	if (!vma_permits_fault(vma, fault_flags))
1326 		return -EFAULT;
1327 
1328 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1329 	    fatal_signal_pending(current))
1330 		return -EINTR;
1331 
1332 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1333 	if (ret & VM_FAULT_ERROR) {
1334 		int err = vm_fault_to_errno(ret, 0);
1335 
1336 		if (err)
1337 			return err;
1338 		BUG();
1339 	}
1340 
1341 	if (ret & VM_FAULT_RETRY) {
1342 		mmap_read_lock(mm);
1343 		*unlocked = true;
1344 		fault_flags |= FAULT_FLAG_TRIED;
1345 		goto retry;
1346 	}
1347 
1348 	return 0;
1349 }
1350 EXPORT_SYMBOL_GPL(fixup_user_fault);
1351 
1352 /*
1353  * Please note that this function, unlike __get_user_pages will not
1354  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1355  */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int flags)1356 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1357 						unsigned long start,
1358 						unsigned long nr_pages,
1359 						struct page **pages,
1360 						struct vm_area_struct **vmas,
1361 						int *locked,
1362 						unsigned int flags)
1363 {
1364 	long ret, pages_done;
1365 	bool lock_dropped;
1366 
1367 	if (locked) {
1368 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1369 		BUG_ON(vmas);
1370 		/* check caller initialized locked */
1371 		BUG_ON(*locked != 1);
1372 	}
1373 
1374 	if (flags & FOLL_PIN)
1375 		mm_set_has_pinned_flag(&mm->flags);
1376 
1377 	/*
1378 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1379 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1380 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1381 	 * for FOLL_GET, not for the newer FOLL_PIN.
1382 	 *
1383 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1384 	 * that here, as any failures will be obvious enough.
1385 	 */
1386 	if (pages && !(flags & FOLL_PIN))
1387 		flags |= FOLL_GET;
1388 
1389 	pages_done = 0;
1390 	lock_dropped = false;
1391 	for (;;) {
1392 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1393 				       vmas, locked);
1394 		if (!locked)
1395 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1396 			return ret;
1397 
1398 		/* VM_FAULT_RETRY cannot return errors */
1399 		if (!*locked) {
1400 			BUG_ON(ret < 0);
1401 			BUG_ON(ret >= nr_pages);
1402 		}
1403 
1404 		if (ret > 0) {
1405 			nr_pages -= ret;
1406 			pages_done += ret;
1407 			if (!nr_pages)
1408 				break;
1409 		}
1410 		if (*locked) {
1411 			/*
1412 			 * VM_FAULT_RETRY didn't trigger or it was a
1413 			 * FOLL_NOWAIT.
1414 			 */
1415 			if (!pages_done)
1416 				pages_done = ret;
1417 			break;
1418 		}
1419 		/*
1420 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1421 		 * For the prefault case (!pages) we only update counts.
1422 		 */
1423 		if (likely(pages))
1424 			pages += ret;
1425 		start += ret << PAGE_SHIFT;
1426 		lock_dropped = true;
1427 
1428 retry:
1429 		/*
1430 		 * Repeat on the address that fired VM_FAULT_RETRY
1431 		 * with both FAULT_FLAG_ALLOW_RETRY and
1432 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1433 		 * by fatal signals, so we need to check it before we
1434 		 * start trying again otherwise it can loop forever.
1435 		 */
1436 
1437 		if (fatal_signal_pending(current)) {
1438 			if (!pages_done)
1439 				pages_done = -EINTR;
1440 			break;
1441 		}
1442 
1443 		ret = mmap_read_lock_killable(mm);
1444 		if (ret) {
1445 			BUG_ON(ret > 0);
1446 			if (!pages_done)
1447 				pages_done = ret;
1448 			break;
1449 		}
1450 
1451 		*locked = 1;
1452 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1453 				       pages, NULL, locked);
1454 		if (!*locked) {
1455 			/* Continue to retry until we succeeded */
1456 			BUG_ON(ret != 0);
1457 			goto retry;
1458 		}
1459 		if (ret != 1) {
1460 			BUG_ON(ret > 1);
1461 			if (!pages_done)
1462 				pages_done = ret;
1463 			break;
1464 		}
1465 		nr_pages--;
1466 		pages_done++;
1467 		if (!nr_pages)
1468 			break;
1469 		if (likely(pages))
1470 			pages++;
1471 		start += PAGE_SIZE;
1472 	}
1473 	if (lock_dropped && *locked) {
1474 		/*
1475 		 * We must let the caller know we temporarily dropped the lock
1476 		 * and so the critical section protected by it was lost.
1477 		 */
1478 		mmap_read_unlock(mm);
1479 		*locked = 0;
1480 	}
1481 	return pages_done;
1482 }
1483 
1484 /**
1485  * populate_vma_page_range() -  populate a range of pages in the vma.
1486  * @vma:   target vma
1487  * @start: start address
1488  * @end:   end address
1489  * @locked: whether the mmap_lock is still held
1490  *
1491  * This takes care of mlocking the pages too if VM_LOCKED is set.
1492  *
1493  * Return either number of pages pinned in the vma, or a negative error
1494  * code on error.
1495  *
1496  * vma->vm_mm->mmap_lock must be held.
1497  *
1498  * If @locked is NULL, it may be held for read or write and will
1499  * be unperturbed.
1500  *
1501  * If @locked is non-NULL, it must held for read only and may be
1502  * released.  If it's released, *@locked will be set to 0.
1503  */
populate_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int * locked)1504 long populate_vma_page_range(struct vm_area_struct *vma,
1505 		unsigned long start, unsigned long end, int *locked)
1506 {
1507 	struct mm_struct *mm = vma->vm_mm;
1508 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1509 	int gup_flags;
1510 	long ret;
1511 
1512 	VM_BUG_ON(!PAGE_ALIGNED(start));
1513 	VM_BUG_ON(!PAGE_ALIGNED(end));
1514 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1515 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1516 	mmap_assert_locked(mm);
1517 
1518 	/*
1519 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1520 	 * faultin_page() to break COW, so it has no work to do here.
1521 	 */
1522 	if (vma->vm_flags & VM_LOCKONFAULT)
1523 		return nr_pages;
1524 
1525 	gup_flags = FOLL_TOUCH;
1526 	/*
1527 	 * We want to touch writable mappings with a write fault in order
1528 	 * to break COW, except for shared mappings because these don't COW
1529 	 * and we would not want to dirty them for nothing.
1530 	 */
1531 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1532 		gup_flags |= FOLL_WRITE;
1533 
1534 	/*
1535 	 * We want mlock to succeed for regions that have any permissions
1536 	 * other than PROT_NONE.
1537 	 */
1538 	if (vma_is_accessible(vma))
1539 		gup_flags |= FOLL_FORCE;
1540 
1541 	/*
1542 	 * We made sure addr is within a VMA, so the following will
1543 	 * not result in a stack expansion that recurses back here.
1544 	 */
1545 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1546 				NULL, NULL, locked);
1547 	lru_add_drain();
1548 	return ret;
1549 }
1550 
1551 /*
1552  * faultin_vma_page_range() - populate (prefault) page tables inside the
1553  *			      given VMA range readable/writable
1554  *
1555  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1556  *
1557  * @vma: target vma
1558  * @start: start address
1559  * @end: end address
1560  * @write: whether to prefault readable or writable
1561  * @locked: whether the mmap_lock is still held
1562  *
1563  * Returns either number of processed pages in the vma, or a negative error
1564  * code on error (see __get_user_pages()).
1565  *
1566  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1567  * covered by the VMA.
1568  *
1569  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1570  *
1571  * If @locked is non-NULL, it must held for read only and may be released.  If
1572  * it's released, *@locked will be set to 0.
1573  */
faultin_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool write,int * locked)1574 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1575 			    unsigned long end, bool write, int *locked)
1576 {
1577 	struct mm_struct *mm = vma->vm_mm;
1578 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1579 	int gup_flags;
1580 	long ret;
1581 
1582 	VM_BUG_ON(!PAGE_ALIGNED(start));
1583 	VM_BUG_ON(!PAGE_ALIGNED(end));
1584 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1585 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1586 	mmap_assert_locked(mm);
1587 
1588 	/*
1589 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1590 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1591 	 *	       difference with !FOLL_FORCE, because the page is writable
1592 	 *	       in the page table.
1593 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1594 	 *		  a poisoned page.
1595 	 * !FOLL_FORCE: Require proper access permissions.
1596 	 */
1597 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1598 	if (write)
1599 		gup_flags |= FOLL_WRITE;
1600 
1601 	/*
1602 	 * We want to report -EINVAL instead of -EFAULT for any permission
1603 	 * problems or incompatible mappings.
1604 	 */
1605 	if (check_vma_flags(vma, gup_flags))
1606 		return -EINVAL;
1607 
1608 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1609 				NULL, NULL, locked);
1610 	lru_add_drain();
1611 	return ret;
1612 }
1613 
1614 /*
1615  * __mm_populate - populate and/or mlock pages within a range of address space.
1616  *
1617  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1618  * flags. VMAs must be already marked with the desired vm_flags, and
1619  * mmap_lock must not be held.
1620  */
__mm_populate(unsigned long start,unsigned long len,int ignore_errors)1621 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1622 {
1623 	struct mm_struct *mm = current->mm;
1624 	unsigned long end, nstart, nend;
1625 	struct vm_area_struct *vma = NULL;
1626 	int locked = 0;
1627 	long ret = 0;
1628 
1629 	end = start + len;
1630 
1631 	for (nstart = start; nstart < end; nstart = nend) {
1632 		/*
1633 		 * We want to fault in pages for [nstart; end) address range.
1634 		 * Find first corresponding VMA.
1635 		 */
1636 		if (!locked) {
1637 			locked = 1;
1638 			mmap_read_lock(mm);
1639 			vma = find_vma(mm, nstart);
1640 		} else if (nstart >= vma->vm_end)
1641 			vma = vma->vm_next;
1642 		if (!vma || vma->vm_start >= end)
1643 			break;
1644 		/*
1645 		 * Set [nstart; nend) to intersection of desired address
1646 		 * range with the first VMA. Also, skip undesirable VMA types.
1647 		 */
1648 		nend = min(end, vma->vm_end);
1649 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1650 			continue;
1651 		if (nstart < vma->vm_start)
1652 			nstart = vma->vm_start;
1653 		/*
1654 		 * Now fault in a range of pages. populate_vma_page_range()
1655 		 * double checks the vma flags, so that it won't mlock pages
1656 		 * if the vma was already munlocked.
1657 		 */
1658 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1659 		if (ret < 0) {
1660 			if (ignore_errors) {
1661 				ret = 0;
1662 				continue;	/* continue at next VMA */
1663 			}
1664 			break;
1665 		}
1666 		nend = nstart + ret * PAGE_SIZE;
1667 		ret = 0;
1668 	}
1669 	if (locked)
1670 		mmap_read_unlock(mm);
1671 	return ret;	/* 0 or negative error code */
1672 }
1673 #else /* CONFIG_MMU */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int foll_flags)1674 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1675 		unsigned long nr_pages, struct page **pages,
1676 		struct vm_area_struct **vmas, int *locked,
1677 		unsigned int foll_flags)
1678 {
1679 	struct vm_area_struct *vma;
1680 	unsigned long vm_flags;
1681 	long i;
1682 
1683 	/* calculate required read or write permissions.
1684 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1685 	 */
1686 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1687 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1688 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1689 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1690 
1691 	for (i = 0; i < nr_pages; i++) {
1692 		vma = find_vma(mm, start);
1693 		if (!vma)
1694 			goto finish_or_fault;
1695 
1696 		/* protect what we can, including chardevs */
1697 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1698 		    !(vm_flags & vma->vm_flags))
1699 			goto finish_or_fault;
1700 
1701 		if (pages) {
1702 			pages[i] = virt_to_page(start);
1703 			if (pages[i])
1704 				get_page(pages[i]);
1705 		}
1706 		if (vmas)
1707 			vmas[i] = vma;
1708 		start = (start + PAGE_SIZE) & PAGE_MASK;
1709 	}
1710 
1711 	return i;
1712 
1713 finish_or_fault:
1714 	return i ? : -EFAULT;
1715 }
1716 #endif /* !CONFIG_MMU */
1717 
1718 /**
1719  * fault_in_writeable - fault in userspace address range for writing
1720  * @uaddr: start of address range
1721  * @size: size of address range
1722  *
1723  * Returns the number of bytes not faulted in (like copy_to_user() and
1724  * copy_from_user()).
1725  */
fault_in_writeable(char __user * uaddr,size_t size)1726 size_t fault_in_writeable(char __user *uaddr, size_t size)
1727 {
1728 	char __user *start = uaddr, *end;
1729 
1730 	if (unlikely(size == 0))
1731 		return 0;
1732 	if (!user_write_access_begin(uaddr, size))
1733 		return size;
1734 	if (!PAGE_ALIGNED(uaddr)) {
1735 		unsafe_put_user(0, uaddr, out);
1736 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1737 	}
1738 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1739 	if (unlikely(end < start))
1740 		end = NULL;
1741 	while (uaddr != end) {
1742 		unsafe_put_user(0, uaddr, out);
1743 		uaddr += PAGE_SIZE;
1744 	}
1745 
1746 out:
1747 	user_write_access_end();
1748 	if (size > uaddr - start)
1749 		return size - (uaddr - start);
1750 	return 0;
1751 }
1752 EXPORT_SYMBOL(fault_in_writeable);
1753 
1754 /**
1755  * fault_in_subpage_writeable - fault in an address range for writing
1756  * @uaddr: start of address range
1757  * @size: size of address range
1758  *
1759  * Fault in a user address range for writing while checking for permissions at
1760  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1761  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1762  *
1763  * Returns the number of bytes not faulted in (like copy_to_user() and
1764  * copy_from_user()).
1765  */
fault_in_subpage_writeable(char __user * uaddr,size_t size)1766 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1767 {
1768 	size_t faulted_in;
1769 
1770 	/*
1771 	 * Attempt faulting in at page granularity first for page table
1772 	 * permission checking. The arch-specific probe_subpage_writeable()
1773 	 * functions may not check for this.
1774 	 */
1775 	faulted_in = size - fault_in_writeable(uaddr, size);
1776 	if (faulted_in)
1777 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1778 
1779 	return size - faulted_in;
1780 }
1781 EXPORT_SYMBOL(fault_in_subpage_writeable);
1782 
1783 /*
1784  * fault_in_safe_writeable - fault in an address range for writing
1785  * @uaddr: start of address range
1786  * @size: length of address range
1787  *
1788  * Faults in an address range for writing.  This is primarily useful when we
1789  * already know that some or all of the pages in the address range aren't in
1790  * memory.
1791  *
1792  * Unlike fault_in_writeable(), this function is non-destructive.
1793  *
1794  * Note that we don't pin or otherwise hold the pages referenced that we fault
1795  * in.  There's no guarantee that they'll stay in memory for any duration of
1796  * time.
1797  *
1798  * Returns the number of bytes not faulted in, like copy_to_user() and
1799  * copy_from_user().
1800  */
fault_in_safe_writeable(const char __user * uaddr,size_t size)1801 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1802 {
1803 	unsigned long start = (unsigned long)uaddr, end;
1804 	struct mm_struct *mm = current->mm;
1805 	bool unlocked = false;
1806 
1807 	if (unlikely(size == 0))
1808 		return 0;
1809 	end = PAGE_ALIGN(start + size);
1810 	if (end < start)
1811 		end = 0;
1812 
1813 	mmap_read_lock(mm);
1814 	do {
1815 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1816 			break;
1817 		start = (start + PAGE_SIZE) & PAGE_MASK;
1818 	} while (start != end);
1819 	mmap_read_unlock(mm);
1820 
1821 	if (size > (unsigned long)uaddr - start)
1822 		return size - ((unsigned long)uaddr - start);
1823 	return 0;
1824 }
1825 EXPORT_SYMBOL(fault_in_safe_writeable);
1826 
1827 /**
1828  * fault_in_readable - fault in userspace address range for reading
1829  * @uaddr: start of user address range
1830  * @size: size of user address range
1831  *
1832  * Returns the number of bytes not faulted in (like copy_to_user() and
1833  * copy_from_user()).
1834  */
fault_in_readable(const char __user * uaddr,size_t size)1835 size_t fault_in_readable(const char __user *uaddr, size_t size)
1836 {
1837 	const char __user *start = uaddr, *end;
1838 	volatile char c;
1839 
1840 	if (unlikely(size == 0))
1841 		return 0;
1842 	if (!user_read_access_begin(uaddr, size))
1843 		return size;
1844 	if (!PAGE_ALIGNED(uaddr)) {
1845 		unsafe_get_user(c, uaddr, out);
1846 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1847 	}
1848 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1849 	if (unlikely(end < start))
1850 		end = NULL;
1851 	while (uaddr != end) {
1852 		unsafe_get_user(c, uaddr, out);
1853 		uaddr += PAGE_SIZE;
1854 	}
1855 
1856 out:
1857 	user_read_access_end();
1858 	(void)c;
1859 	if (size > uaddr - start)
1860 		return size - (uaddr - start);
1861 	return 0;
1862 }
1863 EXPORT_SYMBOL(fault_in_readable);
1864 
1865 /**
1866  * get_dump_page() - pin user page in memory while writing it to core dump
1867  * @addr: user address
1868  *
1869  * Returns struct page pointer of user page pinned for dump,
1870  * to be freed afterwards by put_page().
1871  *
1872  * Returns NULL on any kind of failure - a hole must then be inserted into
1873  * the corefile, to preserve alignment with its headers; and also returns
1874  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1875  * allowing a hole to be left in the corefile to save disk space.
1876  *
1877  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1878  */
1879 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr)1880 struct page *get_dump_page(unsigned long addr)
1881 {
1882 	struct mm_struct *mm = current->mm;
1883 	struct page *page;
1884 	int locked = 1;
1885 	int ret;
1886 
1887 	if (mmap_read_lock_killable(mm))
1888 		return NULL;
1889 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1890 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1891 	if (locked)
1892 		mmap_read_unlock(mm);
1893 	return (ret == 1) ? page : NULL;
1894 }
1895 #endif /* CONFIG_ELF_CORE */
1896 
1897 #ifdef CONFIG_MIGRATION
1898 /*
1899  * Check whether all pages are pinnable, if so return number of pages.  If some
1900  * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1901  * pages were migrated, or if some pages were not successfully isolated.
1902  * Return negative error if migration fails.
1903  */
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)1904 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1905 					    struct page **pages,
1906 					    unsigned int gup_flags)
1907 {
1908 	unsigned long isolation_error_count = 0, i;
1909 	struct folio *prev_folio = NULL;
1910 	LIST_HEAD(movable_page_list);
1911 	bool drain_allow = true;
1912 	int ret = 0;
1913 
1914 	for (i = 0; i < nr_pages; i++) {
1915 		struct folio *folio = page_folio(pages[i]);
1916 
1917 		if (folio == prev_folio)
1918 			continue;
1919 		prev_folio = folio;
1920 
1921 		if (folio_is_pinnable(folio))
1922 			continue;
1923 
1924 		/*
1925 		 * Try to move out any movable page before pinning the range.
1926 		 */
1927 		if (folio_test_hugetlb(folio)) {
1928 			if (isolate_hugetlb(&folio->page,
1929 						&movable_page_list))
1930 				isolation_error_count++;
1931 			continue;
1932 		}
1933 
1934 		if (!folio_test_lru(folio) && drain_allow) {
1935 			lru_add_drain_all();
1936 			drain_allow = false;
1937 		}
1938 
1939 		if (folio_isolate_lru(folio)) {
1940 			isolation_error_count++;
1941 			continue;
1942 		}
1943 		list_add_tail(&folio->lru, &movable_page_list);
1944 		node_stat_mod_folio(folio,
1945 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1946 				    folio_nr_pages(folio));
1947 	}
1948 
1949 	if (!list_empty(&movable_page_list) || isolation_error_count)
1950 		goto unpin_pages;
1951 
1952 	/*
1953 	 * If list is empty, and no isolation errors, means that all pages are
1954 	 * in the correct zone.
1955 	 */
1956 	return nr_pages;
1957 
1958 unpin_pages:
1959 	if (gup_flags & FOLL_PIN) {
1960 		unpin_user_pages(pages, nr_pages);
1961 	} else {
1962 		for (i = 0; i < nr_pages; i++)
1963 			put_page(pages[i]);
1964 	}
1965 
1966 	if (!list_empty(&movable_page_list)) {
1967 		struct migration_target_control mtc = {
1968 			.nid = NUMA_NO_NODE,
1969 			.gfp_mask = GFP_USER | __GFP_NOWARN,
1970 		};
1971 
1972 		ret = migrate_pages(&movable_page_list, alloc_migration_target,
1973 				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1974 				    MR_LONGTERM_PIN, NULL);
1975 		if (ret > 0) /* number of pages not migrated */
1976 			ret = -ENOMEM;
1977 	}
1978 
1979 	if (ret && !list_empty(&movable_page_list))
1980 		putback_movable_pages(&movable_page_list);
1981 	return ret;
1982 }
1983 #else
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)1984 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1985 					    struct page **pages,
1986 					    unsigned int gup_flags)
1987 {
1988 	return nr_pages;
1989 }
1990 #endif /* CONFIG_MIGRATION */
1991 
1992 /*
1993  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1994  * allows us to process the FOLL_LONGTERM flag.
1995  */
__gup_longterm_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,unsigned int gup_flags)1996 static long __gup_longterm_locked(struct mm_struct *mm,
1997 				  unsigned long start,
1998 				  unsigned long nr_pages,
1999 				  struct page **pages,
2000 				  struct vm_area_struct **vmas,
2001 				  unsigned int gup_flags)
2002 {
2003 	unsigned int flags;
2004 	long rc;
2005 
2006 	if (!(gup_flags & FOLL_LONGTERM))
2007 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2008 					       NULL, gup_flags);
2009 	flags = memalloc_pin_save();
2010 	do {
2011 		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2012 					     NULL, gup_flags);
2013 		if (rc <= 0)
2014 			break;
2015 		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
2016 	} while (!rc);
2017 	memalloc_pin_restore(flags);
2018 
2019 	return rc;
2020 }
2021 
is_valid_gup_flags(unsigned int gup_flags)2022 static bool is_valid_gup_flags(unsigned int gup_flags)
2023 {
2024 	/*
2025 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2026 	 * never directly by the caller, so enforce that with an assertion:
2027 	 */
2028 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2029 		return false;
2030 	/*
2031 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2032 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2033 	 * FOLL_PIN.
2034 	 */
2035 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2036 		return false;
2037 
2038 	return true;
2039 }
2040 
2041 #ifdef CONFIG_MMU
__get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2042 static long __get_user_pages_remote(struct mm_struct *mm,
2043 				    unsigned long start, unsigned long nr_pages,
2044 				    unsigned int gup_flags, struct page **pages,
2045 				    struct vm_area_struct **vmas, int *locked)
2046 {
2047 	/*
2048 	 * Parts of FOLL_LONGTERM behavior are incompatible with
2049 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2050 	 * vmas. However, this only comes up if locked is set, and there are
2051 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2052 	 * allow what we can.
2053 	 */
2054 	if (gup_flags & FOLL_LONGTERM) {
2055 		if (WARN_ON_ONCE(locked))
2056 			return -EINVAL;
2057 		/*
2058 		 * This will check the vmas (even if our vmas arg is NULL)
2059 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
2060 		 */
2061 		return __gup_longterm_locked(mm, start, nr_pages, pages,
2062 					     vmas, gup_flags | FOLL_TOUCH |
2063 					     FOLL_REMOTE);
2064 	}
2065 
2066 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2067 				       locked,
2068 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2069 }
2070 
2071 /**
2072  * get_user_pages_remote() - pin user pages in memory
2073  * @mm:		mm_struct of target mm
2074  * @start:	starting user address
2075  * @nr_pages:	number of pages from start to pin
2076  * @gup_flags:	flags modifying lookup behaviour
2077  * @pages:	array that receives pointers to the pages pinned.
2078  *		Should be at least nr_pages long. Or NULL, if caller
2079  *		only intends to ensure the pages are faulted in.
2080  * @vmas:	array of pointers to vmas corresponding to each page.
2081  *		Or NULL if the caller does not require them.
2082  * @locked:	pointer to lock flag indicating whether lock is held and
2083  *		subsequently whether VM_FAULT_RETRY functionality can be
2084  *		utilised. Lock must initially be held.
2085  *
2086  * Returns either number of pages pinned (which may be less than the
2087  * number requested), or an error. Details about the return value:
2088  *
2089  * -- If nr_pages is 0, returns 0.
2090  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2091  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2092  *    pages pinned. Again, this may be less than nr_pages.
2093  *
2094  * The caller is responsible for releasing returned @pages, via put_page().
2095  *
2096  * @vmas are valid only as long as mmap_lock is held.
2097  *
2098  * Must be called with mmap_lock held for read or write.
2099  *
2100  * get_user_pages_remote walks a process's page tables and takes a reference
2101  * to each struct page that each user address corresponds to at a given
2102  * instant. That is, it takes the page that would be accessed if a user
2103  * thread accesses the given user virtual address at that instant.
2104  *
2105  * This does not guarantee that the page exists in the user mappings when
2106  * get_user_pages_remote returns, and there may even be a completely different
2107  * page there in some cases (eg. if mmapped pagecache has been invalidated
2108  * and subsequently re faulted). However it does guarantee that the page
2109  * won't be freed completely. And mostly callers simply care that the page
2110  * contains data that was valid *at some point in time*. Typically, an IO
2111  * or similar operation cannot guarantee anything stronger anyway because
2112  * locks can't be held over the syscall boundary.
2113  *
2114  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2115  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2116  * be called after the page is finished with, and before put_page is called.
2117  *
2118  * get_user_pages_remote is typically used for fewer-copy IO operations,
2119  * to get a handle on the memory by some means other than accesses
2120  * via the user virtual addresses. The pages may be submitted for
2121  * DMA to devices or accessed via their kernel linear mapping (via the
2122  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2123  *
2124  * See also get_user_pages_fast, for performance critical applications.
2125  *
2126  * get_user_pages_remote should be phased out in favor of
2127  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2128  * should use get_user_pages_remote because it cannot pass
2129  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2130  */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2131 long get_user_pages_remote(struct mm_struct *mm,
2132 		unsigned long start, unsigned long nr_pages,
2133 		unsigned int gup_flags, struct page **pages,
2134 		struct vm_area_struct **vmas, int *locked)
2135 {
2136 	if (!is_valid_gup_flags(gup_flags))
2137 		return -EINVAL;
2138 
2139 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2140 				       pages, vmas, locked);
2141 }
2142 EXPORT_SYMBOL(get_user_pages_remote);
2143 
2144 #else /* CONFIG_MMU */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2145 long get_user_pages_remote(struct mm_struct *mm,
2146 			   unsigned long start, unsigned long nr_pages,
2147 			   unsigned int gup_flags, struct page **pages,
2148 			   struct vm_area_struct **vmas, int *locked)
2149 {
2150 	return 0;
2151 }
2152 
__get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2153 static long __get_user_pages_remote(struct mm_struct *mm,
2154 				    unsigned long start, unsigned long nr_pages,
2155 				    unsigned int gup_flags, struct page **pages,
2156 				    struct vm_area_struct **vmas, int *locked)
2157 {
2158 	return 0;
2159 }
2160 #endif /* !CONFIG_MMU */
2161 
2162 /**
2163  * get_user_pages() - pin user pages in memory
2164  * @start:      starting user address
2165  * @nr_pages:   number of pages from start to pin
2166  * @gup_flags:  flags modifying lookup behaviour
2167  * @pages:      array that receives pointers to the pages pinned.
2168  *              Should be at least nr_pages long. Or NULL, if caller
2169  *              only intends to ensure the pages are faulted in.
2170  * @vmas:       array of pointers to vmas corresponding to each page.
2171  *              Or NULL if the caller does not require them.
2172  *
2173  * This is the same as get_user_pages_remote(), just with a less-flexible
2174  * calling convention where we assume that the mm being operated on belongs to
2175  * the current task, and doesn't allow passing of a locked parameter.  We also
2176  * obviously don't pass FOLL_REMOTE in here.
2177  */
get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)2178 long get_user_pages(unsigned long start, unsigned long nr_pages,
2179 		unsigned int gup_flags, struct page **pages,
2180 		struct vm_area_struct **vmas)
2181 {
2182 	if (!is_valid_gup_flags(gup_flags))
2183 		return -EINVAL;
2184 
2185 	return __gup_longterm_locked(current->mm, start, nr_pages,
2186 				     pages, vmas, gup_flags | FOLL_TOUCH);
2187 }
2188 EXPORT_SYMBOL(get_user_pages);
2189 
2190 /*
2191  * get_user_pages_unlocked() is suitable to replace the form:
2192  *
2193  *      mmap_read_lock(mm);
2194  *      get_user_pages(mm, ..., pages, NULL);
2195  *      mmap_read_unlock(mm);
2196  *
2197  *  with:
2198  *
2199  *      get_user_pages_unlocked(mm, ..., pages);
2200  *
2201  * It is functionally equivalent to get_user_pages_fast so
2202  * get_user_pages_fast should be used instead if specific gup_flags
2203  * (e.g. FOLL_FORCE) are not required.
2204  */
get_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)2205 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2206 			     struct page **pages, unsigned int gup_flags)
2207 {
2208 	struct mm_struct *mm = current->mm;
2209 	int locked = 1;
2210 	long ret;
2211 
2212 	/*
2213 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2214 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2215 	 * vmas.  As there are no users of this flag in this call we simply
2216 	 * disallow this option for now.
2217 	 */
2218 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2219 		return -EINVAL;
2220 
2221 	mmap_read_lock(mm);
2222 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2223 				      &locked, gup_flags | FOLL_TOUCH);
2224 	if (locked)
2225 		mmap_read_unlock(mm);
2226 	return ret;
2227 }
2228 EXPORT_SYMBOL(get_user_pages_unlocked);
2229 
2230 /*
2231  * Fast GUP
2232  *
2233  * get_user_pages_fast attempts to pin user pages by walking the page
2234  * tables directly and avoids taking locks. Thus the walker needs to be
2235  * protected from page table pages being freed from under it, and should
2236  * block any THP splits.
2237  *
2238  * One way to achieve this is to have the walker disable interrupts, and
2239  * rely on IPIs from the TLB flushing code blocking before the page table
2240  * pages are freed. This is unsuitable for architectures that do not need
2241  * to broadcast an IPI when invalidating TLBs.
2242  *
2243  * Another way to achieve this is to batch up page table containing pages
2244  * belonging to more than one mm_user, then rcu_sched a callback to free those
2245  * pages. Disabling interrupts will allow the fast_gup walker to both block
2246  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2247  * (which is a relatively rare event). The code below adopts this strategy.
2248  *
2249  * Before activating this code, please be aware that the following assumptions
2250  * are currently made:
2251  *
2252  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2253  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2254  *
2255  *  *) ptes can be read atomically by the architecture.
2256  *
2257  *  *) access_ok is sufficient to validate userspace address ranges.
2258  *
2259  * The last two assumptions can be relaxed by the addition of helper functions.
2260  *
2261  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2262  */
2263 #ifdef CONFIG_HAVE_FAST_GUP
2264 
undo_dev_pagemap(int * nr,int nr_start,unsigned int flags,struct page ** pages)2265 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2266 					    unsigned int flags,
2267 					    struct page **pages)
2268 {
2269 	while ((*nr) - nr_start) {
2270 		struct page *page = pages[--(*nr)];
2271 
2272 		ClearPageReferenced(page);
2273 		if (flags & FOLL_PIN)
2274 			unpin_user_page(page);
2275 		else
2276 			put_page(page);
2277 	}
2278 }
2279 
2280 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
gup_pte_range(pmd_t pmd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2281 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2282 			 unsigned int flags, struct page **pages, int *nr)
2283 {
2284 	struct dev_pagemap *pgmap = NULL;
2285 	int nr_start = *nr, ret = 0;
2286 	pte_t *ptep, *ptem;
2287 
2288 	ptem = ptep = pte_offset_map(&pmd, addr);
2289 	do {
2290 		pte_t pte = ptep_get_lockless(ptep);
2291 		struct page *page;
2292 		struct folio *folio;
2293 
2294 		/*
2295 		 * Similar to the PMD case below, NUMA hinting must take slow
2296 		 * path using the pte_protnone check.
2297 		 */
2298 		if (pte_protnone(pte))
2299 			goto pte_unmap;
2300 
2301 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2302 			goto pte_unmap;
2303 
2304 		if (pte_devmap(pte)) {
2305 			if (unlikely(flags & FOLL_LONGTERM))
2306 				goto pte_unmap;
2307 
2308 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2309 			if (unlikely(!pgmap)) {
2310 				undo_dev_pagemap(nr, nr_start, flags, pages);
2311 				goto pte_unmap;
2312 			}
2313 		} else if (pte_special(pte))
2314 			goto pte_unmap;
2315 
2316 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2317 		page = pte_page(pte);
2318 
2319 		folio = try_grab_folio(page, 1, flags);
2320 		if (!folio)
2321 			goto pte_unmap;
2322 
2323 		if (unlikely(page_is_secretmem(page))) {
2324 			gup_put_folio(folio, 1, flags);
2325 			goto pte_unmap;
2326 		}
2327 
2328 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2329 			gup_put_folio(folio, 1, flags);
2330 			goto pte_unmap;
2331 		}
2332 
2333 		if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2334 			gup_put_folio(folio, 1, flags);
2335 			goto pte_unmap;
2336 		}
2337 
2338 		/*
2339 		 * We need to make the page accessible if and only if we are
2340 		 * going to access its content (the FOLL_PIN case).  Please
2341 		 * see Documentation/core-api/pin_user_pages.rst for
2342 		 * details.
2343 		 */
2344 		if (flags & FOLL_PIN) {
2345 			ret = arch_make_page_accessible(page);
2346 			if (ret) {
2347 				gup_put_folio(folio, 1, flags);
2348 				goto pte_unmap;
2349 			}
2350 		}
2351 		folio_set_referenced(folio);
2352 		pages[*nr] = page;
2353 		(*nr)++;
2354 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2355 
2356 	ret = 1;
2357 
2358 pte_unmap:
2359 	if (pgmap)
2360 		put_dev_pagemap(pgmap);
2361 	pte_unmap(ptem);
2362 	return ret;
2363 }
2364 #else
2365 
2366 /*
2367  * If we can't determine whether or not a pte is special, then fail immediately
2368  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2369  * to be special.
2370  *
2371  * For a futex to be placed on a THP tail page, get_futex_key requires a
2372  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2373  * useful to have gup_huge_pmd even if we can't operate on ptes.
2374  */
gup_pte_range(pmd_t pmd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2375 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2376 			 unsigned int flags, struct page **pages, int *nr)
2377 {
2378 	return 0;
2379 }
2380 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2381 
2382 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
__gup_device_huge(unsigned long pfn,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2383 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2384 			     unsigned long end, unsigned int flags,
2385 			     struct page **pages, int *nr)
2386 {
2387 	int nr_start = *nr;
2388 	struct dev_pagemap *pgmap = NULL;
2389 
2390 	do {
2391 		struct page *page = pfn_to_page(pfn);
2392 
2393 		pgmap = get_dev_pagemap(pfn, pgmap);
2394 		if (unlikely(!pgmap)) {
2395 			undo_dev_pagemap(nr, nr_start, flags, pages);
2396 			break;
2397 		}
2398 		SetPageReferenced(page);
2399 		pages[*nr] = page;
2400 		if (unlikely(!try_grab_page(page, flags))) {
2401 			undo_dev_pagemap(nr, nr_start, flags, pages);
2402 			break;
2403 		}
2404 		(*nr)++;
2405 		pfn++;
2406 	} while (addr += PAGE_SIZE, addr != end);
2407 
2408 	put_dev_pagemap(pgmap);
2409 	return addr == end;
2410 }
2411 
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2412 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2413 				 unsigned long end, unsigned int flags,
2414 				 struct page **pages, int *nr)
2415 {
2416 	unsigned long fault_pfn;
2417 	int nr_start = *nr;
2418 
2419 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2420 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2421 		return 0;
2422 
2423 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2424 		undo_dev_pagemap(nr, nr_start, flags, pages);
2425 		return 0;
2426 	}
2427 	return 1;
2428 }
2429 
__gup_device_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2430 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2431 				 unsigned long end, unsigned int flags,
2432 				 struct page **pages, int *nr)
2433 {
2434 	unsigned long fault_pfn;
2435 	int nr_start = *nr;
2436 
2437 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2438 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2439 		return 0;
2440 
2441 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2442 		undo_dev_pagemap(nr, nr_start, flags, pages);
2443 		return 0;
2444 	}
2445 	return 1;
2446 }
2447 #else
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2448 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2449 				 unsigned long end, unsigned int flags,
2450 				 struct page **pages, int *nr)
2451 {
2452 	BUILD_BUG();
2453 	return 0;
2454 }
2455 
__gup_device_huge_pud(pud_t pud,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2456 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2457 				 unsigned long end, unsigned int flags,
2458 				 struct page **pages, int *nr)
2459 {
2460 	BUILD_BUG();
2461 	return 0;
2462 }
2463 #endif
2464 
record_subpages(struct page * page,unsigned long addr,unsigned long end,struct page ** pages)2465 static int record_subpages(struct page *page, unsigned long addr,
2466 			   unsigned long end, struct page **pages)
2467 {
2468 	int nr;
2469 
2470 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2471 		pages[nr] = nth_page(page, nr);
2472 
2473 	return nr;
2474 }
2475 
2476 #ifdef CONFIG_ARCH_HAS_HUGEPD
hugepte_addr_end(unsigned long addr,unsigned long end,unsigned long sz)2477 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2478 				      unsigned long sz)
2479 {
2480 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2481 	return (__boundary - 1 < end - 1) ? __boundary : end;
2482 }
2483 
gup_hugepte(pte_t * ptep,unsigned long sz,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2484 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2485 		       unsigned long end, unsigned int flags,
2486 		       struct page **pages, int *nr)
2487 {
2488 	unsigned long pte_end;
2489 	struct page *page;
2490 	struct folio *folio;
2491 	pte_t pte;
2492 	int refs;
2493 
2494 	pte_end = (addr + sz) & ~(sz-1);
2495 	if (pte_end < end)
2496 		end = pte_end;
2497 
2498 	pte = huge_ptep_get(ptep);
2499 
2500 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2501 		return 0;
2502 
2503 	/* hugepages are never "special" */
2504 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2505 
2506 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2507 	refs = record_subpages(page, addr, end, pages + *nr);
2508 
2509 	folio = try_grab_folio(page, refs, flags);
2510 	if (!folio)
2511 		return 0;
2512 
2513 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2514 		gup_put_folio(folio, refs, flags);
2515 		return 0;
2516 	}
2517 
2518 	if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2519 		gup_put_folio(folio, refs, flags);
2520 		return 0;
2521 	}
2522 
2523 	*nr += refs;
2524 	folio_set_referenced(folio);
2525 	return 1;
2526 }
2527 
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned int pdshift,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2528 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2529 		unsigned int pdshift, unsigned long end, unsigned int flags,
2530 		struct page **pages, int *nr)
2531 {
2532 	pte_t *ptep;
2533 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2534 	unsigned long next;
2535 
2536 	ptep = hugepte_offset(hugepd, addr, pdshift);
2537 	do {
2538 		next = hugepte_addr_end(addr, end, sz);
2539 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2540 			return 0;
2541 	} while (ptep++, addr = next, addr != end);
2542 
2543 	return 1;
2544 }
2545 #else
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned int pdshift,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2546 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2547 		unsigned int pdshift, unsigned long end, unsigned int flags,
2548 		struct page **pages, int *nr)
2549 {
2550 	return 0;
2551 }
2552 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2553 
gup_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2554 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2555 			unsigned long end, unsigned int flags,
2556 			struct page **pages, int *nr)
2557 {
2558 	struct page *page;
2559 	struct folio *folio;
2560 	int refs;
2561 
2562 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2563 		return 0;
2564 
2565 	if (pmd_devmap(orig)) {
2566 		if (unlikely(flags & FOLL_LONGTERM))
2567 			return 0;
2568 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2569 					     pages, nr);
2570 	}
2571 
2572 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2573 	refs = record_subpages(page, addr, end, pages + *nr);
2574 
2575 	folio = try_grab_folio(page, refs, flags);
2576 	if (!folio)
2577 		return 0;
2578 
2579 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2580 		gup_put_folio(folio, refs, flags);
2581 		return 0;
2582 	}
2583 
2584 	if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2585 		gup_put_folio(folio, refs, flags);
2586 		return 0;
2587 	}
2588 
2589 	*nr += refs;
2590 	folio_set_referenced(folio);
2591 	return 1;
2592 }
2593 
gup_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2594 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2595 			unsigned long end, unsigned int flags,
2596 			struct page **pages, int *nr)
2597 {
2598 	struct page *page;
2599 	struct folio *folio;
2600 	int refs;
2601 
2602 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2603 		return 0;
2604 
2605 	if (pud_devmap(orig)) {
2606 		if (unlikely(flags & FOLL_LONGTERM))
2607 			return 0;
2608 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2609 					     pages, nr);
2610 	}
2611 
2612 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2613 	refs = record_subpages(page, addr, end, pages + *nr);
2614 
2615 	folio = try_grab_folio(page, refs, flags);
2616 	if (!folio)
2617 		return 0;
2618 
2619 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2620 		gup_put_folio(folio, refs, flags);
2621 		return 0;
2622 	}
2623 
2624 	if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2625 		gup_put_folio(folio, refs, flags);
2626 		return 0;
2627 	}
2628 
2629 	*nr += refs;
2630 	folio_set_referenced(folio);
2631 	return 1;
2632 }
2633 
gup_huge_pgd(pgd_t orig,pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2634 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2635 			unsigned long end, unsigned int flags,
2636 			struct page **pages, int *nr)
2637 {
2638 	int refs;
2639 	struct page *page;
2640 	struct folio *folio;
2641 
2642 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2643 		return 0;
2644 
2645 	BUILD_BUG_ON(pgd_devmap(orig));
2646 
2647 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2648 	refs = record_subpages(page, addr, end, pages + *nr);
2649 
2650 	folio = try_grab_folio(page, refs, flags);
2651 	if (!folio)
2652 		return 0;
2653 
2654 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2655 		gup_put_folio(folio, refs, flags);
2656 		return 0;
2657 	}
2658 
2659 	*nr += refs;
2660 	folio_set_referenced(folio);
2661 	return 1;
2662 }
2663 
gup_pmd_range(pud_t * pudp,pud_t pud,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2664 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2665 		unsigned int flags, struct page **pages, int *nr)
2666 {
2667 	unsigned long next;
2668 	pmd_t *pmdp;
2669 
2670 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2671 	do {
2672 		pmd_t pmd = READ_ONCE(*pmdp);
2673 
2674 		next = pmd_addr_end(addr, end);
2675 		if (!pmd_present(pmd))
2676 			return 0;
2677 
2678 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2679 			     pmd_devmap(pmd))) {
2680 			/*
2681 			 * NUMA hinting faults need to be handled in the GUP
2682 			 * slowpath for accounting purposes and so that they
2683 			 * can be serialised against THP migration.
2684 			 */
2685 			if (pmd_protnone(pmd))
2686 				return 0;
2687 
2688 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2689 				pages, nr))
2690 				return 0;
2691 
2692 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2693 			/*
2694 			 * architecture have different format for hugetlbfs
2695 			 * pmd format and THP pmd format
2696 			 */
2697 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2698 					 PMD_SHIFT, next, flags, pages, nr))
2699 				return 0;
2700 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2701 			return 0;
2702 	} while (pmdp++, addr = next, addr != end);
2703 
2704 	return 1;
2705 }
2706 
gup_pud_range(p4d_t * p4dp,p4d_t p4d,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2707 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2708 			 unsigned int flags, struct page **pages, int *nr)
2709 {
2710 	unsigned long next;
2711 	pud_t *pudp;
2712 
2713 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2714 	do {
2715 		pud_t pud = READ_ONCE(*pudp);
2716 
2717 		next = pud_addr_end(addr, end);
2718 		if (unlikely(!pud_present(pud)))
2719 			return 0;
2720 		if (unlikely(pud_huge(pud))) {
2721 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2722 					  pages, nr))
2723 				return 0;
2724 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2725 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2726 					 PUD_SHIFT, next, flags, pages, nr))
2727 				return 0;
2728 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2729 			return 0;
2730 	} while (pudp++, addr = next, addr != end);
2731 
2732 	return 1;
2733 }
2734 
gup_p4d_range(pgd_t * pgdp,pgd_t pgd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2735 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2736 			 unsigned int flags, struct page **pages, int *nr)
2737 {
2738 	unsigned long next;
2739 	p4d_t *p4dp;
2740 
2741 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2742 	do {
2743 		p4d_t p4d = READ_ONCE(*p4dp);
2744 
2745 		next = p4d_addr_end(addr, end);
2746 		if (p4d_none(p4d))
2747 			return 0;
2748 		BUILD_BUG_ON(p4d_huge(p4d));
2749 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2750 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2751 					 P4D_SHIFT, next, flags, pages, nr))
2752 				return 0;
2753 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2754 			return 0;
2755 	} while (p4dp++, addr = next, addr != end);
2756 
2757 	return 1;
2758 }
2759 
gup_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2760 static void gup_pgd_range(unsigned long addr, unsigned long end,
2761 		unsigned int flags, struct page **pages, int *nr)
2762 {
2763 	unsigned long next;
2764 	pgd_t *pgdp;
2765 
2766 	pgdp = pgd_offset(current->mm, addr);
2767 	do {
2768 		pgd_t pgd = READ_ONCE(*pgdp);
2769 
2770 		next = pgd_addr_end(addr, end);
2771 		if (pgd_none(pgd))
2772 			return;
2773 		if (unlikely(pgd_huge(pgd))) {
2774 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2775 					  pages, nr))
2776 				return;
2777 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2778 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2779 					 PGDIR_SHIFT, next, flags, pages, nr))
2780 				return;
2781 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2782 			return;
2783 	} while (pgdp++, addr = next, addr != end);
2784 }
2785 #else
gup_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2786 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2787 		unsigned int flags, struct page **pages, int *nr)
2788 {
2789 }
2790 #endif /* CONFIG_HAVE_FAST_GUP */
2791 
2792 #ifndef gup_fast_permitted
2793 /*
2794  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2795  * we need to fall back to the slow version:
2796  */
gup_fast_permitted(unsigned long start,unsigned long end)2797 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2798 {
2799 	return true;
2800 }
2801 #endif
2802 
__gup_longterm_unlocked(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2803 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2804 				   unsigned int gup_flags, struct page **pages)
2805 {
2806 	int ret;
2807 
2808 	/*
2809 	 * FIXME: FOLL_LONGTERM does not work with
2810 	 * get_user_pages_unlocked() (see comments in that function)
2811 	 */
2812 	if (gup_flags & FOLL_LONGTERM) {
2813 		mmap_read_lock(current->mm);
2814 		ret = __gup_longterm_locked(current->mm,
2815 					    start, nr_pages,
2816 					    pages, NULL, gup_flags);
2817 		mmap_read_unlock(current->mm);
2818 	} else {
2819 		ret = get_user_pages_unlocked(start, nr_pages,
2820 					      pages, gup_flags);
2821 	}
2822 
2823 	return ret;
2824 }
2825 
lockless_pages_from_mm(unsigned long start,unsigned long end,unsigned int gup_flags,struct page ** pages)2826 static unsigned long lockless_pages_from_mm(unsigned long start,
2827 					    unsigned long end,
2828 					    unsigned int gup_flags,
2829 					    struct page **pages)
2830 {
2831 	unsigned long flags;
2832 	int nr_pinned = 0;
2833 	unsigned seq;
2834 
2835 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2836 	    !gup_fast_permitted(start, end))
2837 		return 0;
2838 
2839 	if (gup_flags & FOLL_PIN) {
2840 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2841 		if (seq & 1)
2842 			return 0;
2843 	}
2844 
2845 	/*
2846 	 * Disable interrupts. The nested form is used, in order to allow full,
2847 	 * general purpose use of this routine.
2848 	 *
2849 	 * With interrupts disabled, we block page table pages from being freed
2850 	 * from under us. See struct mmu_table_batch comments in
2851 	 * include/asm-generic/tlb.h for more details.
2852 	 *
2853 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2854 	 * that come from THPs splitting.
2855 	 */
2856 	local_irq_save(flags);
2857 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2858 	local_irq_restore(flags);
2859 
2860 	/*
2861 	 * When pinning pages for DMA there could be a concurrent write protect
2862 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2863 	 */
2864 	if (gup_flags & FOLL_PIN) {
2865 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2866 			unpin_user_pages_lockless(pages, nr_pinned);
2867 			return 0;
2868 		} else {
2869 			sanity_check_pinned_pages(pages, nr_pinned);
2870 		}
2871 	}
2872 	return nr_pinned;
2873 }
2874 
internal_get_user_pages_fast(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)2875 static int internal_get_user_pages_fast(unsigned long start,
2876 					unsigned long nr_pages,
2877 					unsigned int gup_flags,
2878 					struct page **pages)
2879 {
2880 	unsigned long len, end;
2881 	unsigned long nr_pinned;
2882 	int ret;
2883 
2884 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2885 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2886 				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
2887 		return -EINVAL;
2888 
2889 	if (gup_flags & FOLL_PIN)
2890 		mm_set_has_pinned_flag(&current->mm->flags);
2891 
2892 	if (!(gup_flags & FOLL_FAST_ONLY))
2893 		might_lock_read(&current->mm->mmap_lock);
2894 
2895 	start = untagged_addr(start) & PAGE_MASK;
2896 	len = nr_pages << PAGE_SHIFT;
2897 	if (check_add_overflow(start, len, &end))
2898 		return 0;
2899 	if (unlikely(!access_ok((void __user *)start, len)))
2900 		return -EFAULT;
2901 
2902 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2903 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2904 		return nr_pinned;
2905 
2906 	/* Slow path: try to get the remaining pages with get_user_pages */
2907 	start += nr_pinned << PAGE_SHIFT;
2908 	pages += nr_pinned;
2909 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2910 				      pages);
2911 	if (ret < 0) {
2912 		/*
2913 		 * The caller has to unpin the pages we already pinned so
2914 		 * returning -errno is not an option
2915 		 */
2916 		if (nr_pinned)
2917 			return nr_pinned;
2918 		return ret;
2919 	}
2920 	return ret + nr_pinned;
2921 }
2922 
2923 /**
2924  * get_user_pages_fast_only() - pin user pages in memory
2925  * @start:      starting user address
2926  * @nr_pages:   number of pages from start to pin
2927  * @gup_flags:  flags modifying pin behaviour
2928  * @pages:      array that receives pointers to the pages pinned.
2929  *              Should be at least nr_pages long.
2930  *
2931  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2932  * the regular GUP.
2933  * Note a difference with get_user_pages_fast: this always returns the
2934  * number of pages pinned, 0 if no pages were pinned.
2935  *
2936  * If the architecture does not support this function, simply return with no
2937  * pages pinned.
2938  *
2939  * Careful, careful! COW breaking can go either way, so a non-write
2940  * access can get ambiguous page results. If you call this function without
2941  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2942  */
get_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2943 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2944 			     unsigned int gup_flags, struct page **pages)
2945 {
2946 	int nr_pinned;
2947 	/*
2948 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2949 	 * because gup fast is always a "pin with a +1 page refcount" request.
2950 	 *
2951 	 * FOLL_FAST_ONLY is required in order to match the API description of
2952 	 * this routine: no fall back to regular ("slow") GUP.
2953 	 */
2954 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2955 
2956 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2957 						 pages);
2958 
2959 	/*
2960 	 * As specified in the API description above, this routine is not
2961 	 * allowed to return negative values. However, the common core
2962 	 * routine internal_get_user_pages_fast() *can* return -errno.
2963 	 * Therefore, correct for that here:
2964 	 */
2965 	if (nr_pinned < 0)
2966 		nr_pinned = 0;
2967 
2968 	return nr_pinned;
2969 }
2970 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2971 
2972 /**
2973  * get_user_pages_fast() - pin user pages in memory
2974  * @start:      starting user address
2975  * @nr_pages:   number of pages from start to pin
2976  * @gup_flags:  flags modifying pin behaviour
2977  * @pages:      array that receives pointers to the pages pinned.
2978  *              Should be at least nr_pages long.
2979  *
2980  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2981  * If not successful, it will fall back to taking the lock and
2982  * calling get_user_pages().
2983  *
2984  * Returns number of pages pinned. This may be fewer than the number requested.
2985  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2986  * -errno.
2987  */
get_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2988 int get_user_pages_fast(unsigned long start, int nr_pages,
2989 			unsigned int gup_flags, struct page **pages)
2990 {
2991 	if (!is_valid_gup_flags(gup_flags))
2992 		return -EINVAL;
2993 
2994 	/*
2995 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2996 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2997 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2998 	 * request.
2999 	 */
3000 	gup_flags |= FOLL_GET;
3001 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3002 }
3003 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3004 
3005 /**
3006  * pin_user_pages_fast() - pin user pages in memory without taking locks
3007  *
3008  * @start:      starting user address
3009  * @nr_pages:   number of pages from start to pin
3010  * @gup_flags:  flags modifying pin behaviour
3011  * @pages:      array that receives pointers to the pages pinned.
3012  *              Should be at least nr_pages long.
3013  *
3014  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3015  * get_user_pages_fast() for documentation on the function arguments, because
3016  * the arguments here are identical.
3017  *
3018  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3019  * see Documentation/core-api/pin_user_pages.rst for further details.
3020  */
pin_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3021 int pin_user_pages_fast(unsigned long start, int nr_pages,
3022 			unsigned int gup_flags, struct page **pages)
3023 {
3024 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3025 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3026 		return -EINVAL;
3027 
3028 	if (WARN_ON_ONCE(!pages))
3029 		return -EINVAL;
3030 
3031 	gup_flags |= FOLL_PIN;
3032 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3033 }
3034 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3035 
3036 /*
3037  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3038  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3039  *
3040  * The API rules are the same, too: no negative values may be returned.
3041  */
pin_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3042 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3043 			     unsigned int gup_flags, struct page **pages)
3044 {
3045 	int nr_pinned;
3046 
3047 	/*
3048 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3049 	 * rules require returning 0, rather than -errno:
3050 	 */
3051 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3052 		return 0;
3053 
3054 	if (WARN_ON_ONCE(!pages))
3055 		return 0;
3056 	/*
3057 	 * FOLL_FAST_ONLY is required in order to match the API description of
3058 	 * this routine: no fall back to regular ("slow") GUP.
3059 	 */
3060 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3061 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3062 						 pages);
3063 	/*
3064 	 * This routine is not allowed to return negative values. However,
3065 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3066 	 * correct for that here:
3067 	 */
3068 	if (nr_pinned < 0)
3069 		nr_pinned = 0;
3070 
3071 	return nr_pinned;
3072 }
3073 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3074 
3075 /**
3076  * pin_user_pages_remote() - pin pages of a remote process
3077  *
3078  * @mm:		mm_struct of target mm
3079  * @start:	starting user address
3080  * @nr_pages:	number of pages from start to pin
3081  * @gup_flags:	flags modifying lookup behaviour
3082  * @pages:	array that receives pointers to the pages pinned.
3083  *		Should be at least nr_pages long.
3084  * @vmas:	array of pointers to vmas corresponding to each page.
3085  *		Or NULL if the caller does not require them.
3086  * @locked:	pointer to lock flag indicating whether lock is held and
3087  *		subsequently whether VM_FAULT_RETRY functionality can be
3088  *		utilised. Lock must initially be held.
3089  *
3090  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3091  * get_user_pages_remote() for documentation on the function arguments, because
3092  * the arguments here are identical.
3093  *
3094  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3095  * see Documentation/core-api/pin_user_pages.rst for details.
3096  */
pin_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)3097 long pin_user_pages_remote(struct mm_struct *mm,
3098 			   unsigned long start, unsigned long nr_pages,
3099 			   unsigned int gup_flags, struct page **pages,
3100 			   struct vm_area_struct **vmas, int *locked)
3101 {
3102 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3103 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3104 		return -EINVAL;
3105 
3106 	if (WARN_ON_ONCE(!pages))
3107 		return -EINVAL;
3108 
3109 	gup_flags |= FOLL_PIN;
3110 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3111 				       pages, vmas, locked);
3112 }
3113 EXPORT_SYMBOL(pin_user_pages_remote);
3114 
3115 /**
3116  * pin_user_pages() - pin user pages in memory for use by other devices
3117  *
3118  * @start:	starting user address
3119  * @nr_pages:	number of pages from start to pin
3120  * @gup_flags:	flags modifying lookup behaviour
3121  * @pages:	array that receives pointers to the pages pinned.
3122  *		Should be at least nr_pages long.
3123  * @vmas:	array of pointers to vmas corresponding to each page.
3124  *		Or NULL if the caller does not require them.
3125  *
3126  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3127  * FOLL_PIN is set.
3128  *
3129  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3130  * see Documentation/core-api/pin_user_pages.rst for details.
3131  */
pin_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)3132 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3133 		    unsigned int gup_flags, struct page **pages,
3134 		    struct vm_area_struct **vmas)
3135 {
3136 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3137 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3138 		return -EINVAL;
3139 
3140 	if (WARN_ON_ONCE(!pages))
3141 		return -EINVAL;
3142 
3143 	gup_flags |= FOLL_PIN;
3144 	return __gup_longterm_locked(current->mm, start, nr_pages,
3145 				     pages, vmas, gup_flags);
3146 }
3147 EXPORT_SYMBOL(pin_user_pages);
3148 
3149 /*
3150  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3151  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3152  * FOLL_PIN and rejects FOLL_GET.
3153  */
pin_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)3154 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3155 			     struct page **pages, unsigned int gup_flags)
3156 {
3157 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3158 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3159 		return -EINVAL;
3160 
3161 	if (WARN_ON_ONCE(!pages))
3162 		return -EINVAL;
3163 
3164 	gup_flags |= FOLL_PIN;
3165 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3166 }
3167 EXPORT_SYMBOL(pin_user_pages_unlocked);
3168