1 /*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Licensed under the GPL
5 */
6
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/tick.h>
20 #include <linux/threads.h>
21 #include <asm/current.h>
22 #include <asm/pgtable.h>
23 #include <asm/uaccess.h>
24 #include "as-layout.h"
25 #include "kern_util.h"
26 #include "os.h"
27 #include "skas.h"
28 #include "tlb.h"
29
30 /*
31 * This is a per-cpu array. A processor only modifies its entry and it only
32 * cares about its entry, so it's OK if another processor is modifying its
33 * entry.
34 */
35 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
36
external_pid(void)37 static inline int external_pid(void)
38 {
39 /* FIXME: Need to look up userspace_pid by cpu */
40 return userspace_pid[0];
41 }
42
pid_to_processor_id(int pid)43 int pid_to_processor_id(int pid)
44 {
45 int i;
46
47 for (i = 0; i < ncpus; i++) {
48 if (cpu_tasks[i].pid == pid)
49 return i;
50 }
51 return -1;
52 }
53
free_stack(unsigned long stack,int order)54 void free_stack(unsigned long stack, int order)
55 {
56 free_pages(stack, order);
57 }
58
alloc_stack(int order,int atomic)59 unsigned long alloc_stack(int order, int atomic)
60 {
61 unsigned long page;
62 gfp_t flags = GFP_KERNEL;
63
64 if (atomic)
65 flags = GFP_ATOMIC;
66 page = __get_free_pages(flags, order);
67
68 return page;
69 }
70
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)71 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
72 {
73 int pid;
74
75 current->thread.request.u.thread.proc = fn;
76 current->thread.request.u.thread.arg = arg;
77 pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
78 ¤t->thread.regs, 0, NULL, NULL);
79 return pid;
80 }
81
set_current(struct task_struct * task)82 static inline void set_current(struct task_struct *task)
83 {
84 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
85 { external_pid(), task });
86 }
87
88 extern void arch_switch_to(struct task_struct *to);
89
_switch_to(void * prev,void * next,void * last)90 void *_switch_to(void *prev, void *next, void *last)
91 {
92 struct task_struct *from = prev;
93 struct task_struct *to = next;
94
95 to->thread.prev_sched = from;
96 set_current(to);
97
98 do {
99 current->thread.saved_task = NULL;
100
101 switch_threads(&from->thread.switch_buf,
102 &to->thread.switch_buf);
103
104 arch_switch_to(current);
105
106 if (current->thread.saved_task)
107 show_regs(&(current->thread.regs));
108 to = current->thread.saved_task;
109 from = current;
110 } while (current->thread.saved_task);
111
112 return current->thread.prev_sched;
113
114 }
115
interrupt_end(void)116 void interrupt_end(void)
117 {
118 if (need_resched())
119 schedule();
120 if (test_tsk_thread_flag(current, TIF_SIGPENDING))
121 do_signal();
122 }
123
exit_thread(void)124 void exit_thread(void)
125 {
126 }
127
get_current(void)128 void *get_current(void)
129 {
130 return current;
131 }
132
133 /*
134 * This is called magically, by its address being stuffed in a jmp_buf
135 * and being longjmp-d to.
136 */
new_thread_handler(void)137 void new_thread_handler(void)
138 {
139 int (*fn)(void *), n;
140 void *arg;
141
142 if (current->thread.prev_sched != NULL)
143 schedule_tail(current->thread.prev_sched);
144 current->thread.prev_sched = NULL;
145
146 fn = current->thread.request.u.thread.proc;
147 arg = current->thread.request.u.thread.arg;
148
149 /*
150 * The return value is 1 if the kernel thread execs a process,
151 * 0 if it just exits
152 */
153 n = run_kernel_thread(fn, arg, ¤t->thread.exec_buf);
154 if (n == 1) {
155 /* Handle any immediate reschedules or signals */
156 interrupt_end();
157 userspace(¤t->thread.regs.regs);
158 }
159 else do_exit(0);
160 }
161
162 /* Called magically, see new_thread_handler above */
fork_handler(void)163 void fork_handler(void)
164 {
165 force_flush_all();
166
167 schedule_tail(current->thread.prev_sched);
168
169 /*
170 * XXX: if interrupt_end() calls schedule, this call to
171 * arch_switch_to isn't needed. We could want to apply this to
172 * improve performance. -bb
173 */
174 arch_switch_to(current);
175
176 current->thread.prev_sched = NULL;
177
178 /* Handle any immediate reschedules or signals */
179 interrupt_end();
180
181 userspace(¤t->thread.regs.regs);
182 }
183
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long stack_top,struct task_struct * p,struct pt_regs * regs)184 int copy_thread(unsigned long clone_flags, unsigned long sp,
185 unsigned long stack_top, struct task_struct * p,
186 struct pt_regs *regs)
187 {
188 void (*handler)(void);
189 int ret = 0;
190
191 p->thread = (struct thread_struct) INIT_THREAD;
192
193 if (current->thread.forking) {
194 memcpy(&p->thread.regs.regs, ®s->regs,
195 sizeof(p->thread.regs.regs));
196 REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0);
197 if (sp != 0)
198 REGS_SP(p->thread.regs.regs.gp) = sp;
199
200 handler = fork_handler;
201
202 arch_copy_thread(¤t->thread.arch, &p->thread.arch);
203 }
204 else {
205 get_safe_registers(p->thread.regs.regs.gp);
206 p->thread.request.u.thread = current->thread.request.u.thread;
207 handler = new_thread_handler;
208 }
209
210 new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
211
212 if (current->thread.forking) {
213 clear_flushed_tls(p);
214
215 /*
216 * Set a new TLS for the child thread?
217 */
218 if (clone_flags & CLONE_SETTLS)
219 ret = arch_copy_tls(p);
220 }
221
222 return ret;
223 }
224
initial_thread_cb(void (* proc)(void *),void * arg)225 void initial_thread_cb(void (*proc)(void *), void *arg)
226 {
227 int save_kmalloc_ok = kmalloc_ok;
228
229 kmalloc_ok = 0;
230 initial_thread_cb_skas(proc, arg);
231 kmalloc_ok = save_kmalloc_ok;
232 }
233
default_idle(void)234 void default_idle(void)
235 {
236 unsigned long long nsecs;
237
238 while (1) {
239 /* endless idle loop with no priority at all */
240
241 /*
242 * although we are an idle CPU, we do not want to
243 * get into the scheduler unnecessarily.
244 */
245 if (need_resched())
246 schedule();
247
248 tick_nohz_stop_sched_tick(1);
249 nsecs = disable_timer();
250 idle_sleep(nsecs);
251 tick_nohz_restart_sched_tick();
252 }
253 }
254
cpu_idle(void)255 void cpu_idle(void)
256 {
257 cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
258 default_idle();
259 }
260
__cant_sleep(void)261 int __cant_sleep(void) {
262 return in_atomic() || irqs_disabled() || in_interrupt();
263 /* Is in_interrupt() really needed? */
264 }
265
user_context(unsigned long sp)266 int user_context(unsigned long sp)
267 {
268 unsigned long stack;
269
270 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
271 return stack != (unsigned long) current_thread_info();
272 }
273
274 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
275
do_uml_exitcalls(void)276 void do_uml_exitcalls(void)
277 {
278 exitcall_t *call;
279
280 call = &__uml_exitcall_end;
281 while (--call >= &__uml_exitcall_begin)
282 (*call)();
283 }
284
uml_strdup(const char * string)285 char *uml_strdup(const char *string)
286 {
287 return kstrdup(string, GFP_KERNEL);
288 }
289
copy_to_user_proc(void __user * to,void * from,int size)290 int copy_to_user_proc(void __user *to, void *from, int size)
291 {
292 return copy_to_user(to, from, size);
293 }
294
copy_from_user_proc(void * to,void __user * from,int size)295 int copy_from_user_proc(void *to, void __user *from, int size)
296 {
297 return copy_from_user(to, from, size);
298 }
299
clear_user_proc(void __user * buf,int size)300 int clear_user_proc(void __user *buf, int size)
301 {
302 return clear_user(buf, size);
303 }
304
strlen_user_proc(char __user * str)305 int strlen_user_proc(char __user *str)
306 {
307 return strlen_user(str);
308 }
309
smp_sigio_handler(void)310 int smp_sigio_handler(void)
311 {
312 #ifdef CONFIG_SMP
313 int cpu = current_thread_info()->cpu;
314 IPI_handler(cpu);
315 if (cpu != 0)
316 return 1;
317 #endif
318 return 0;
319 }
320
cpu(void)321 int cpu(void)
322 {
323 return current_thread_info()->cpu;
324 }
325
326 static atomic_t using_sysemu = ATOMIC_INIT(0);
327 int sysemu_supported;
328
set_using_sysemu(int value)329 void set_using_sysemu(int value)
330 {
331 if (value > sysemu_supported)
332 return;
333 atomic_set(&using_sysemu, value);
334 }
335
get_using_sysemu(void)336 int get_using_sysemu(void)
337 {
338 return atomic_read(&using_sysemu);
339 }
340
sysemu_proc_show(struct seq_file * m,void * v)341 static int sysemu_proc_show(struct seq_file *m, void *v)
342 {
343 seq_printf(m, "%d\n", get_using_sysemu());
344 return 0;
345 }
346
sysemu_proc_open(struct inode * inode,struct file * file)347 static int sysemu_proc_open(struct inode *inode, struct file *file)
348 {
349 return single_open(file, sysemu_proc_show, NULL);
350 }
351
sysemu_proc_write(struct file * file,const char __user * buf,size_t count,loff_t * pos)352 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
353 size_t count, loff_t *pos)
354 {
355 char tmp[2];
356
357 if (copy_from_user(tmp, buf, 1))
358 return -EFAULT;
359
360 if (tmp[0] >= '0' && tmp[0] <= '2')
361 set_using_sysemu(tmp[0] - '0');
362 /* We use the first char, but pretend to write everything */
363 return count;
364 }
365
366 static const struct file_operations sysemu_proc_fops = {
367 .owner = THIS_MODULE,
368 .open = sysemu_proc_open,
369 .read = seq_read,
370 .llseek = seq_lseek,
371 .release = single_release,
372 .write = sysemu_proc_write,
373 };
374
make_proc_sysemu(void)375 int __init make_proc_sysemu(void)
376 {
377 struct proc_dir_entry *ent;
378 if (!sysemu_supported)
379 return 0;
380
381 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
382
383 if (ent == NULL)
384 {
385 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
386 return 0;
387 }
388
389 return 0;
390 }
391
392 late_initcall(make_proc_sysemu);
393
singlestepping(void * t)394 int singlestepping(void * t)
395 {
396 struct task_struct *task = t ? t : current;
397
398 if (!(task->ptrace & PT_DTRACE))
399 return 0;
400
401 if (task->thread.singlestep_syscall)
402 return 1;
403
404 return 2;
405 }
406
407 /*
408 * Only x86 and x86_64 have an arch_align_stack().
409 * All other arches have "#define arch_align_stack(x) (x)"
410 * in their asm/system.h
411 * As this is included in UML from asm-um/system-generic.h,
412 * we can use it to behave as the subarch does.
413 */
414 #ifndef arch_align_stack
arch_align_stack(unsigned long sp)415 unsigned long arch_align_stack(unsigned long sp)
416 {
417 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
418 sp -= get_random_int() % 8192;
419 return sp & ~0xf;
420 }
421 #endif
422
get_wchan(struct task_struct * p)423 unsigned long get_wchan(struct task_struct *p)
424 {
425 unsigned long stack_page, sp, ip;
426 bool seen_sched = 0;
427
428 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
429 return 0;
430
431 stack_page = (unsigned long) task_stack_page(p);
432 /* Bail if the process has no kernel stack for some reason */
433 if (stack_page == 0)
434 return 0;
435
436 sp = p->thread.switch_buf->JB_SP;
437 /*
438 * Bail if the stack pointer is below the bottom of the kernel
439 * stack for some reason
440 */
441 if (sp < stack_page)
442 return 0;
443
444 while (sp < stack_page + THREAD_SIZE) {
445 ip = *((unsigned long *) sp);
446 if (in_sched_functions(ip))
447 /* Ignore everything until we're above the scheduler */
448 seen_sched = 1;
449 else if (kernel_text_address(ip) && seen_sched)
450 return ip;
451
452 sp += sizeof(unsigned long);
453 }
454
455 return 0;
456 }
457
elf_core_copy_fpregs(struct task_struct * t,elf_fpregset_t * fpu)458 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
459 {
460 int cpu = current_thread_info()->cpu;
461
462 return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
463 }
464
465