1 /* sun4c.c: Doing in software what should be done in hardware.
2 *
3 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1996 Andrew Tridgell (Andrew.Tridgell@anu.edu.au)
6 * Copyright (C) 1997-2000 Anton Blanchard (anton@samba.org)
7 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 */
9
10 #define NR_TASK_BUCKETS 512
11
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/bootmem.h>
17 #include <linux/highmem.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/scatterlist.h>
21 #include <linux/bitmap.h>
22
23 #include <asm/sections.h>
24 #include <asm/page.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/vaddrs.h>
28 #include <asm/idprom.h>
29 #include <asm/machines.h>
30 #include <asm/memreg.h>
31 #include <asm/processor.h>
32 #include <asm/auxio.h>
33 #include <asm/io.h>
34 #include <asm/oplib.h>
35 #include <asm/openprom.h>
36 #include <asm/mmu_context.h>
37 #include <asm/highmem.h>
38 #include <asm/btfixup.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41
42 /* Because of our dynamic kernel TLB miss strategy, and how
43 * our DVMA mapping allocation works, you _MUST_:
44 *
45 * 1) Disable interrupts _and_ not touch any dynamic kernel
46 * memory while messing with kernel MMU state. By
47 * dynamic memory I mean any object which is not in
48 * the kernel image itself or a thread_union (both of
49 * which are locked into the MMU).
50 * 2) Disable interrupts while messing with user MMU state.
51 */
52
53 extern int num_segmaps, num_contexts;
54
55 extern unsigned long page_kernel;
56
57 /* That's it, we prom_halt() on sun4c if the cache size is something other than 65536.
58 * So let's save some cycles and just use that everywhere except for that bootup
59 * sanity check.
60 */
61 #define SUN4C_VAC_SIZE 65536
62
63 #define SUN4C_KERNEL_BUCKETS 32
64
65 /* Flushing the cache. */
66 struct sun4c_vac_props sun4c_vacinfo;
67 unsigned long sun4c_kernel_faults;
68
69 /* Invalidate every sun4c cache line tag. */
sun4c_flush_all(void)70 static void __init sun4c_flush_all(void)
71 {
72 unsigned long begin, end;
73
74 if (sun4c_vacinfo.on)
75 panic("SUN4C: AIEEE, trying to invalidate vac while it is on.");
76
77 /* Clear 'valid' bit in all cache line tags */
78 begin = AC_CACHETAGS;
79 end = (AC_CACHETAGS + SUN4C_VAC_SIZE);
80 while (begin < end) {
81 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
82 "r" (begin), "i" (ASI_CONTROL));
83 begin += sun4c_vacinfo.linesize;
84 }
85 }
86
sun4c_flush_context_hw(void)87 static void sun4c_flush_context_hw(void)
88 {
89 unsigned long end = SUN4C_VAC_SIZE;
90
91 __asm__ __volatile__(
92 "1: addcc %0, -4096, %0\n\t"
93 " bne 1b\n\t"
94 " sta %%g0, [%0] %2"
95 : "=&r" (end)
96 : "0" (end), "i" (ASI_HWFLUSHCONTEXT)
97 : "cc");
98 }
99
100 /* Must be called minimally with IRQs disabled. */
sun4c_flush_segment_hw(unsigned long addr)101 static void sun4c_flush_segment_hw(unsigned long addr)
102 {
103 if (sun4c_get_segmap(addr) != invalid_segment) {
104 unsigned long vac_size = SUN4C_VAC_SIZE;
105
106 __asm__ __volatile__(
107 "1: addcc %0, -4096, %0\n\t"
108 " bne 1b\n\t"
109 " sta %%g0, [%2 + %0] %3"
110 : "=&r" (vac_size)
111 : "0" (vac_size), "r" (addr), "i" (ASI_HWFLUSHSEG)
112 : "cc");
113 }
114 }
115
116 /* File local boot time fixups. */
BTFIXUPDEF_CALL(void,sun4c_flush_page,unsigned long)117 BTFIXUPDEF_CALL(void, sun4c_flush_page, unsigned long)
118 BTFIXUPDEF_CALL(void, sun4c_flush_segment, unsigned long)
119 BTFIXUPDEF_CALL(void, sun4c_flush_context, void)
120
121 #define sun4c_flush_page(addr) BTFIXUP_CALL(sun4c_flush_page)(addr)
122 #define sun4c_flush_segment(addr) BTFIXUP_CALL(sun4c_flush_segment)(addr)
123 #define sun4c_flush_context() BTFIXUP_CALL(sun4c_flush_context)()
124
125 /* Must be called minimally with interrupts disabled. */
126 static void sun4c_flush_page_hw(unsigned long addr)
127 {
128 addr &= PAGE_MASK;
129 if ((int)sun4c_get_pte(addr) < 0)
130 __asm__ __volatile__("sta %%g0, [%0] %1"
131 : : "r" (addr), "i" (ASI_HWFLUSHPAGE));
132 }
133
134 /* Don't inline the software version as it eats too many cache lines if expanded. */
sun4c_flush_context_sw(void)135 static void sun4c_flush_context_sw(void)
136 {
137 unsigned long nbytes = SUN4C_VAC_SIZE;
138 unsigned long lsize = sun4c_vacinfo.linesize;
139
140 __asm__ __volatile__(
141 "add %2, %2, %%g1\n\t"
142 "add %2, %%g1, %%g2\n\t"
143 "add %2, %%g2, %%g3\n\t"
144 "add %2, %%g3, %%g4\n\t"
145 "add %2, %%g4, %%g5\n\t"
146 "add %2, %%g5, %%o4\n\t"
147 "add %2, %%o4, %%o5\n"
148 "1:\n\t"
149 "subcc %0, %%o5, %0\n\t"
150 "sta %%g0, [%0] %3\n\t"
151 "sta %%g0, [%0 + %2] %3\n\t"
152 "sta %%g0, [%0 + %%g1] %3\n\t"
153 "sta %%g0, [%0 + %%g2] %3\n\t"
154 "sta %%g0, [%0 + %%g3] %3\n\t"
155 "sta %%g0, [%0 + %%g4] %3\n\t"
156 "sta %%g0, [%0 + %%g5] %3\n\t"
157 "bg 1b\n\t"
158 " sta %%g0, [%1 + %%o4] %3\n"
159 : "=&r" (nbytes)
160 : "0" (nbytes), "r" (lsize), "i" (ASI_FLUSHCTX)
161 : "g1", "g2", "g3", "g4", "g5", "o4", "o5", "cc");
162 }
163
164 /* Don't inline the software version as it eats too many cache lines if expanded. */
sun4c_flush_segment_sw(unsigned long addr)165 static void sun4c_flush_segment_sw(unsigned long addr)
166 {
167 if (sun4c_get_segmap(addr) != invalid_segment) {
168 unsigned long nbytes = SUN4C_VAC_SIZE;
169 unsigned long lsize = sun4c_vacinfo.linesize;
170
171 __asm__ __volatile__(
172 "add %2, %2, %%g1\n\t"
173 "add %2, %%g1, %%g2\n\t"
174 "add %2, %%g2, %%g3\n\t"
175 "add %2, %%g3, %%g4\n\t"
176 "add %2, %%g4, %%g5\n\t"
177 "add %2, %%g5, %%o4\n\t"
178 "add %2, %%o4, %%o5\n"
179 "1:\n\t"
180 "subcc %1, %%o5, %1\n\t"
181 "sta %%g0, [%0] %6\n\t"
182 "sta %%g0, [%0 + %2] %6\n\t"
183 "sta %%g0, [%0 + %%g1] %6\n\t"
184 "sta %%g0, [%0 + %%g2] %6\n\t"
185 "sta %%g0, [%0 + %%g3] %6\n\t"
186 "sta %%g0, [%0 + %%g4] %6\n\t"
187 "sta %%g0, [%0 + %%g5] %6\n\t"
188 "sta %%g0, [%0 + %%o4] %6\n\t"
189 "bg 1b\n\t"
190 " add %0, %%o5, %0\n"
191 : "=&r" (addr), "=&r" (nbytes), "=&r" (lsize)
192 : "0" (addr), "1" (nbytes), "2" (lsize),
193 "i" (ASI_FLUSHSEG)
194 : "g1", "g2", "g3", "g4", "g5", "o4", "o5", "cc");
195 }
196 }
197
198 /* Don't inline the software version as it eats too many cache lines if expanded. */
sun4c_flush_page_sw(unsigned long addr)199 static void sun4c_flush_page_sw(unsigned long addr)
200 {
201 addr &= PAGE_MASK;
202 if ((sun4c_get_pte(addr) & (_SUN4C_PAGE_NOCACHE | _SUN4C_PAGE_VALID)) ==
203 _SUN4C_PAGE_VALID) {
204 unsigned long left = PAGE_SIZE;
205 unsigned long lsize = sun4c_vacinfo.linesize;
206
207 __asm__ __volatile__(
208 "add %2, %2, %%g1\n\t"
209 "add %2, %%g1, %%g2\n\t"
210 "add %2, %%g2, %%g3\n\t"
211 "add %2, %%g3, %%g4\n\t"
212 "add %2, %%g4, %%g5\n\t"
213 "add %2, %%g5, %%o4\n\t"
214 "add %2, %%o4, %%o5\n"
215 "1:\n\t"
216 "subcc %1, %%o5, %1\n\t"
217 "sta %%g0, [%0] %6\n\t"
218 "sta %%g0, [%0 + %2] %6\n\t"
219 "sta %%g0, [%0 + %%g1] %6\n\t"
220 "sta %%g0, [%0 + %%g2] %6\n\t"
221 "sta %%g0, [%0 + %%g3] %6\n\t"
222 "sta %%g0, [%0 + %%g4] %6\n\t"
223 "sta %%g0, [%0 + %%g5] %6\n\t"
224 "sta %%g0, [%0 + %%o4] %6\n\t"
225 "bg 1b\n\t"
226 " add %0, %%o5, %0\n"
227 : "=&r" (addr), "=&r" (left), "=&r" (lsize)
228 : "0" (addr), "1" (left), "2" (lsize),
229 "i" (ASI_FLUSHPG)
230 : "g1", "g2", "g3", "g4", "g5", "o4", "o5", "cc");
231 }
232 }
233
234 /* The sun4c's do have an on chip store buffer. And the way you
235 * clear them out isn't so obvious. The only way I can think of
236 * to accomplish this is to read the current context register,
237 * store the same value there, then read an external hardware
238 * register.
239 */
sun4c_complete_all_stores(void)240 void sun4c_complete_all_stores(void)
241 {
242 volatile int _unused;
243
244 _unused = sun4c_get_context();
245 sun4c_set_context(_unused);
246 _unused = get_auxio();
247 }
248
249 /* Bootup utility functions. */
sun4c_init_clean_segmap(unsigned char pseg)250 static inline void sun4c_init_clean_segmap(unsigned char pseg)
251 {
252 unsigned long vaddr;
253
254 sun4c_put_segmap(0, pseg);
255 for (vaddr = 0; vaddr < SUN4C_REAL_PGDIR_SIZE; vaddr += PAGE_SIZE)
256 sun4c_put_pte(vaddr, 0);
257 sun4c_put_segmap(0, invalid_segment);
258 }
259
sun4c_init_clean_mmu(unsigned long kernel_end)260 static inline void sun4c_init_clean_mmu(unsigned long kernel_end)
261 {
262 unsigned long vaddr;
263 unsigned char savectx, ctx;
264
265 savectx = sun4c_get_context();
266 for (ctx = 0; ctx < num_contexts; ctx++) {
267 sun4c_set_context(ctx);
268 for (vaddr = 0; vaddr < 0x20000000; vaddr += SUN4C_REAL_PGDIR_SIZE)
269 sun4c_put_segmap(vaddr, invalid_segment);
270 for (vaddr = 0xe0000000; vaddr < KERNBASE; vaddr += SUN4C_REAL_PGDIR_SIZE)
271 sun4c_put_segmap(vaddr, invalid_segment);
272 for (vaddr = kernel_end; vaddr < KADB_DEBUGGER_BEGVM; vaddr += SUN4C_REAL_PGDIR_SIZE)
273 sun4c_put_segmap(vaddr, invalid_segment);
274 for (vaddr = LINUX_OPPROM_ENDVM; vaddr; vaddr += SUN4C_REAL_PGDIR_SIZE)
275 sun4c_put_segmap(vaddr, invalid_segment);
276 }
277 sun4c_set_context(savectx);
278 }
279
sun4c_probe_vac(void)280 void __init sun4c_probe_vac(void)
281 {
282 sun4c_disable_vac();
283
284 if ((idprom->id_machtype == (SM_SUN4C | SM_4C_SS1)) ||
285 (idprom->id_machtype == (SM_SUN4C | SM_4C_SS1PLUS))) {
286 /* PROM on SS1 lacks this info, to be super safe we
287 * hard code it here since this arch is cast in stone.
288 */
289 sun4c_vacinfo.num_bytes = 65536;
290 sun4c_vacinfo.linesize = 16;
291 } else {
292 sun4c_vacinfo.num_bytes =
293 prom_getintdefault(prom_root_node, "vac-size", 65536);
294 sun4c_vacinfo.linesize =
295 prom_getintdefault(prom_root_node, "vac-linesize", 16);
296 }
297 sun4c_vacinfo.do_hwflushes =
298 prom_getintdefault(prom_root_node, "vac-hwflush", 0);
299
300 if (sun4c_vacinfo.do_hwflushes == 0)
301 sun4c_vacinfo.do_hwflushes =
302 prom_getintdefault(prom_root_node, "vac_hwflush", 0);
303
304 if (sun4c_vacinfo.num_bytes != 65536) {
305 prom_printf("WEIRD Sun4C VAC cache size, "
306 "tell sparclinux@vger.kernel.org");
307 prom_halt();
308 }
309
310 switch (sun4c_vacinfo.linesize) {
311 case 16:
312 sun4c_vacinfo.log2lsize = 4;
313 break;
314 case 32:
315 sun4c_vacinfo.log2lsize = 5;
316 break;
317 default:
318 prom_printf("probe_vac: Didn't expect vac-linesize of %d, halting\n",
319 sun4c_vacinfo.linesize);
320 prom_halt();
321 }
322
323 sun4c_flush_all();
324 sun4c_enable_vac();
325 }
326
327 /* Patch instructions for the low level kernel fault handler. */
328 extern unsigned long invalid_segment_patch1, invalid_segment_patch1_ff;
329 extern unsigned long invalid_segment_patch2, invalid_segment_patch2_ff;
330 extern unsigned long invalid_segment_patch1_1ff, invalid_segment_patch2_1ff;
331 extern unsigned long num_context_patch1, num_context_patch1_16;
332 extern unsigned long num_context_patch2_16;
333 extern unsigned long vac_linesize_patch, vac_linesize_patch_32;
334 extern unsigned long vac_hwflush_patch1, vac_hwflush_patch1_on;
335 extern unsigned long vac_hwflush_patch2, vac_hwflush_patch2_on;
336
337 #define PATCH_INSN(src, dst) do { \
338 daddr = &(dst); \
339 iaddr = &(src); \
340 *daddr = *iaddr; \
341 } while (0)
342
patch_kernel_fault_handler(void)343 static void __init patch_kernel_fault_handler(void)
344 {
345 unsigned long *iaddr, *daddr;
346
347 switch (num_segmaps) {
348 case 128:
349 /* Default, nothing to do. */
350 break;
351 case 256:
352 PATCH_INSN(invalid_segment_patch1_ff,
353 invalid_segment_patch1);
354 PATCH_INSN(invalid_segment_patch2_ff,
355 invalid_segment_patch2);
356 break;
357 case 512:
358 PATCH_INSN(invalid_segment_patch1_1ff,
359 invalid_segment_patch1);
360 PATCH_INSN(invalid_segment_patch2_1ff,
361 invalid_segment_patch2);
362 break;
363 default:
364 prom_printf("Unhandled number of segmaps: %d\n",
365 num_segmaps);
366 prom_halt();
367 }
368 switch (num_contexts) {
369 case 8:
370 /* Default, nothing to do. */
371 break;
372 case 16:
373 PATCH_INSN(num_context_patch1_16,
374 num_context_patch1);
375 break;
376 default:
377 prom_printf("Unhandled number of contexts: %d\n",
378 num_contexts);
379 prom_halt();
380 }
381
382 if (sun4c_vacinfo.do_hwflushes != 0) {
383 PATCH_INSN(vac_hwflush_patch1_on, vac_hwflush_patch1);
384 PATCH_INSN(vac_hwflush_patch2_on, vac_hwflush_patch2);
385 } else {
386 switch (sun4c_vacinfo.linesize) {
387 case 16:
388 /* Default, nothing to do. */
389 break;
390 case 32:
391 PATCH_INSN(vac_linesize_patch_32, vac_linesize_patch);
392 break;
393 default:
394 prom_printf("Impossible VAC linesize %d, halting...\n",
395 sun4c_vacinfo.linesize);
396 prom_halt();
397 }
398 }
399 }
400
sun4c_probe_mmu(void)401 static void __init sun4c_probe_mmu(void)
402 {
403 if ((idprom->id_machtype == (SM_SUN4C | SM_4C_SS1)) ||
404 (idprom->id_machtype == (SM_SUN4C | SM_4C_SS1PLUS))) {
405 /* Hardcode these just to be safe, PROM on SS1 does
406 * not have this info available in the root node.
407 */
408 num_segmaps = 128;
409 num_contexts = 8;
410 } else {
411 num_segmaps =
412 prom_getintdefault(prom_root_node, "mmu-npmg", 128);
413 num_contexts =
414 prom_getintdefault(prom_root_node, "mmu-nctx", 0x8);
415 }
416 patch_kernel_fault_handler();
417 }
418
419 volatile unsigned long __iomem *sun4c_memerr_reg = NULL;
420
sun4c_probe_memerr_reg(void)421 void __init sun4c_probe_memerr_reg(void)
422 {
423 phandle node;
424 struct linux_prom_registers regs[1];
425
426 node = prom_getchild(prom_root_node);
427 node = prom_searchsiblings(prom_root_node, "memory-error");
428 if (!node)
429 return;
430 if (prom_getproperty(node, "reg", (char *)regs, sizeof(regs)) <= 0)
431 return;
432 /* hmm I think regs[0].which_io is zero here anyways */
433 sun4c_memerr_reg = ioremap(regs[0].phys_addr, regs[0].reg_size);
434 }
435
sun4c_init_ss2_cache_bug(void)436 static inline void sun4c_init_ss2_cache_bug(void)
437 {
438 if ((idprom->id_machtype == (SM_SUN4C | SM_4C_SS2)) ||
439 (idprom->id_machtype == (SM_SUN4C | SM_4C_IPX)) ||
440 (idprom->id_machtype == (SM_SUN4C | SM_4C_ELC))) {
441 /* Whee.. */
442 printk("SS2 cache bug detected, uncaching trap table page\n");
443 sun4c_flush_page((unsigned int) &_start);
444 sun4c_put_pte(((unsigned long) &_start),
445 (sun4c_get_pte((unsigned long) &_start) | _SUN4C_PAGE_NOCACHE));
446 }
447 }
448
449 /* Addr is always aligned on a page boundary for us already. */
sun4c_map_dma_area(struct device * dev,dma_addr_t * pba,unsigned long va,unsigned long addr,int len)450 static int sun4c_map_dma_area(struct device *dev, dma_addr_t *pba, unsigned long va,
451 unsigned long addr, int len)
452 {
453 unsigned long page, end;
454
455 *pba = addr;
456
457 end = PAGE_ALIGN((addr + len));
458 while (addr < end) {
459 page = va;
460 sun4c_flush_page(page);
461 page -= PAGE_OFFSET;
462 page >>= PAGE_SHIFT;
463 page |= (_SUN4C_PAGE_VALID | _SUN4C_PAGE_DIRTY |
464 _SUN4C_PAGE_NOCACHE | _SUN4C_PAGE_PRIV);
465 sun4c_put_pte(addr, page);
466 addr += PAGE_SIZE;
467 va += PAGE_SIZE;
468 }
469
470 return 0;
471 }
472
sun4c_unmap_dma_area(struct device * dev,unsigned long busa,int len)473 static void sun4c_unmap_dma_area(struct device *dev, unsigned long busa, int len)
474 {
475 /* Fortunately for us, bus_addr == uncached_virt in sun4c. */
476 /* XXX Implement this */
477 }
478
479 /* TLB management. */
480
481 /* Don't change this struct without changing entry.S. This is used
482 * in the in-window kernel fault handler, and you don't want to mess
483 * with that. (See sun4c_fault in entry.S).
484 */
485 struct sun4c_mmu_entry {
486 struct sun4c_mmu_entry *next;
487 struct sun4c_mmu_entry *prev;
488 unsigned long vaddr;
489 unsigned char pseg;
490 unsigned char locked;
491
492 /* For user mappings only, and completely hidden from kernel
493 * TLB miss code.
494 */
495 unsigned char ctx;
496 struct sun4c_mmu_entry *lru_next;
497 struct sun4c_mmu_entry *lru_prev;
498 };
499
500 static struct sun4c_mmu_entry mmu_entry_pool[SUN4C_MAX_SEGMAPS];
501
sun4c_init_mmu_entry_pool(void)502 static void __init sun4c_init_mmu_entry_pool(void)
503 {
504 int i;
505
506 for (i=0; i < SUN4C_MAX_SEGMAPS; i++) {
507 mmu_entry_pool[i].pseg = i;
508 mmu_entry_pool[i].next = NULL;
509 mmu_entry_pool[i].prev = NULL;
510 mmu_entry_pool[i].vaddr = 0;
511 mmu_entry_pool[i].locked = 0;
512 mmu_entry_pool[i].ctx = 0;
513 mmu_entry_pool[i].lru_next = NULL;
514 mmu_entry_pool[i].lru_prev = NULL;
515 }
516 mmu_entry_pool[invalid_segment].locked = 1;
517 }
518
fix_permissions(unsigned long vaddr,unsigned long bits_on,unsigned long bits_off)519 static inline void fix_permissions(unsigned long vaddr, unsigned long bits_on,
520 unsigned long bits_off)
521 {
522 unsigned long start, end;
523
524 end = vaddr + SUN4C_REAL_PGDIR_SIZE;
525 for (start = vaddr; start < end; start += PAGE_SIZE)
526 if (sun4c_get_pte(start) & _SUN4C_PAGE_VALID)
527 sun4c_put_pte(start, (sun4c_get_pte(start) | bits_on) &
528 ~bits_off);
529 }
530
sun4c_init_map_kernelprom(unsigned long kernel_end)531 static inline void sun4c_init_map_kernelprom(unsigned long kernel_end)
532 {
533 unsigned long vaddr;
534 unsigned char pseg, ctx;
535
536 for (vaddr = KADB_DEBUGGER_BEGVM;
537 vaddr < LINUX_OPPROM_ENDVM;
538 vaddr += SUN4C_REAL_PGDIR_SIZE) {
539 pseg = sun4c_get_segmap(vaddr);
540 if (pseg != invalid_segment) {
541 mmu_entry_pool[pseg].locked = 1;
542 for (ctx = 0; ctx < num_contexts; ctx++)
543 prom_putsegment(ctx, vaddr, pseg);
544 fix_permissions(vaddr, _SUN4C_PAGE_PRIV, 0);
545 }
546 }
547
548 for (vaddr = KERNBASE; vaddr < kernel_end; vaddr += SUN4C_REAL_PGDIR_SIZE) {
549 pseg = sun4c_get_segmap(vaddr);
550 mmu_entry_pool[pseg].locked = 1;
551 for (ctx = 0; ctx < num_contexts; ctx++)
552 prom_putsegment(ctx, vaddr, pseg);
553 fix_permissions(vaddr, _SUN4C_PAGE_PRIV, _SUN4C_PAGE_NOCACHE);
554 }
555 }
556
sun4c_init_lock_area(unsigned long start,unsigned long end)557 static void __init sun4c_init_lock_area(unsigned long start, unsigned long end)
558 {
559 int i, ctx;
560
561 while (start < end) {
562 for (i = 0; i < invalid_segment; i++)
563 if (!mmu_entry_pool[i].locked)
564 break;
565 mmu_entry_pool[i].locked = 1;
566 sun4c_init_clean_segmap(i);
567 for (ctx = 0; ctx < num_contexts; ctx++)
568 prom_putsegment(ctx, start, mmu_entry_pool[i].pseg);
569 start += SUN4C_REAL_PGDIR_SIZE;
570 }
571 }
572
573 /* Don't change this struct without changing entry.S. This is used
574 * in the in-window kernel fault handler, and you don't want to mess
575 * with that. (See sun4c_fault in entry.S).
576 */
577 struct sun4c_mmu_ring {
578 struct sun4c_mmu_entry ringhd;
579 int num_entries;
580 };
581
582 static struct sun4c_mmu_ring sun4c_context_ring[SUN4C_MAX_CONTEXTS]; /* used user entries */
583 static struct sun4c_mmu_ring sun4c_ufree_ring; /* free user entries */
584 static struct sun4c_mmu_ring sun4c_ulru_ring; /* LRU user entries */
585 struct sun4c_mmu_ring sun4c_kernel_ring; /* used kernel entries */
586 struct sun4c_mmu_ring sun4c_kfree_ring; /* free kernel entries */
587
sun4c_init_rings(void)588 static inline void sun4c_init_rings(void)
589 {
590 int i;
591
592 for (i = 0; i < SUN4C_MAX_CONTEXTS; i++) {
593 sun4c_context_ring[i].ringhd.next =
594 sun4c_context_ring[i].ringhd.prev =
595 &sun4c_context_ring[i].ringhd;
596 sun4c_context_ring[i].num_entries = 0;
597 }
598 sun4c_ufree_ring.ringhd.next = sun4c_ufree_ring.ringhd.prev =
599 &sun4c_ufree_ring.ringhd;
600 sun4c_ufree_ring.num_entries = 0;
601 sun4c_ulru_ring.ringhd.lru_next = sun4c_ulru_ring.ringhd.lru_prev =
602 &sun4c_ulru_ring.ringhd;
603 sun4c_ulru_ring.num_entries = 0;
604 sun4c_kernel_ring.ringhd.next = sun4c_kernel_ring.ringhd.prev =
605 &sun4c_kernel_ring.ringhd;
606 sun4c_kernel_ring.num_entries = 0;
607 sun4c_kfree_ring.ringhd.next = sun4c_kfree_ring.ringhd.prev =
608 &sun4c_kfree_ring.ringhd;
609 sun4c_kfree_ring.num_entries = 0;
610 }
611
add_ring(struct sun4c_mmu_ring * ring,struct sun4c_mmu_entry * entry)612 static void add_ring(struct sun4c_mmu_ring *ring,
613 struct sun4c_mmu_entry *entry)
614 {
615 struct sun4c_mmu_entry *head = &ring->ringhd;
616
617 entry->prev = head;
618 (entry->next = head->next)->prev = entry;
619 head->next = entry;
620 ring->num_entries++;
621 }
622
add_lru(struct sun4c_mmu_entry * entry)623 static inline void add_lru(struct sun4c_mmu_entry *entry)
624 {
625 struct sun4c_mmu_ring *ring = &sun4c_ulru_ring;
626 struct sun4c_mmu_entry *head = &ring->ringhd;
627
628 entry->lru_next = head;
629 (entry->lru_prev = head->lru_prev)->lru_next = entry;
630 head->lru_prev = entry;
631 }
632
add_ring_ordered(struct sun4c_mmu_ring * ring,struct sun4c_mmu_entry * entry)633 static void add_ring_ordered(struct sun4c_mmu_ring *ring,
634 struct sun4c_mmu_entry *entry)
635 {
636 struct sun4c_mmu_entry *head = &ring->ringhd;
637 unsigned long addr = entry->vaddr;
638
639 while ((head->next != &ring->ringhd) && (head->next->vaddr < addr))
640 head = head->next;
641
642 entry->prev = head;
643 (entry->next = head->next)->prev = entry;
644 head->next = entry;
645 ring->num_entries++;
646
647 add_lru(entry);
648 }
649
remove_ring(struct sun4c_mmu_ring * ring,struct sun4c_mmu_entry * entry)650 static inline void remove_ring(struct sun4c_mmu_ring *ring,
651 struct sun4c_mmu_entry *entry)
652 {
653 struct sun4c_mmu_entry *next = entry->next;
654
655 (next->prev = entry->prev)->next = next;
656 ring->num_entries--;
657 }
658
remove_lru(struct sun4c_mmu_entry * entry)659 static void remove_lru(struct sun4c_mmu_entry *entry)
660 {
661 struct sun4c_mmu_entry *next = entry->lru_next;
662
663 (next->lru_prev = entry->lru_prev)->lru_next = next;
664 }
665
free_user_entry(int ctx,struct sun4c_mmu_entry * entry)666 static void free_user_entry(int ctx, struct sun4c_mmu_entry *entry)
667 {
668 remove_ring(sun4c_context_ring+ctx, entry);
669 remove_lru(entry);
670 add_ring(&sun4c_ufree_ring, entry);
671 }
672
free_kernel_entry(struct sun4c_mmu_entry * entry,struct sun4c_mmu_ring * ring)673 static void free_kernel_entry(struct sun4c_mmu_entry *entry,
674 struct sun4c_mmu_ring *ring)
675 {
676 remove_ring(ring, entry);
677 add_ring(&sun4c_kfree_ring, entry);
678 }
679
sun4c_init_fill_kernel_ring(int howmany)680 static void __init sun4c_init_fill_kernel_ring(int howmany)
681 {
682 int i;
683
684 while (howmany) {
685 for (i = 0; i < invalid_segment; i++)
686 if (!mmu_entry_pool[i].locked)
687 break;
688 mmu_entry_pool[i].locked = 1;
689 sun4c_init_clean_segmap(i);
690 add_ring(&sun4c_kfree_ring, &mmu_entry_pool[i]);
691 howmany--;
692 }
693 }
694
sun4c_init_fill_user_ring(void)695 static void __init sun4c_init_fill_user_ring(void)
696 {
697 int i;
698
699 for (i = 0; i < invalid_segment; i++) {
700 if (mmu_entry_pool[i].locked)
701 continue;
702 sun4c_init_clean_segmap(i);
703 add_ring(&sun4c_ufree_ring, &mmu_entry_pool[i]);
704 }
705 }
706
sun4c_kernel_unmap(struct sun4c_mmu_entry * kentry)707 static void sun4c_kernel_unmap(struct sun4c_mmu_entry *kentry)
708 {
709 int savectx, ctx;
710
711 savectx = sun4c_get_context();
712 for (ctx = 0; ctx < num_contexts; ctx++) {
713 sun4c_set_context(ctx);
714 sun4c_put_segmap(kentry->vaddr, invalid_segment);
715 }
716 sun4c_set_context(savectx);
717 }
718
sun4c_kernel_map(struct sun4c_mmu_entry * kentry)719 static void sun4c_kernel_map(struct sun4c_mmu_entry *kentry)
720 {
721 int savectx, ctx;
722
723 savectx = sun4c_get_context();
724 for (ctx = 0; ctx < num_contexts; ctx++) {
725 sun4c_set_context(ctx);
726 sun4c_put_segmap(kentry->vaddr, kentry->pseg);
727 }
728 sun4c_set_context(savectx);
729 }
730
731 #define sun4c_user_unmap(__entry) \
732 sun4c_put_segmap((__entry)->vaddr, invalid_segment)
733
sun4c_demap_context(struct sun4c_mmu_ring * crp,unsigned char ctx)734 static void sun4c_demap_context(struct sun4c_mmu_ring *crp, unsigned char ctx)
735 {
736 struct sun4c_mmu_entry *head = &crp->ringhd;
737 unsigned long flags;
738
739 local_irq_save(flags);
740 if (head->next != head) {
741 struct sun4c_mmu_entry *entry = head->next;
742 int savectx = sun4c_get_context();
743
744 flush_user_windows();
745 sun4c_set_context(ctx);
746 sun4c_flush_context();
747 do {
748 struct sun4c_mmu_entry *next = entry->next;
749
750 sun4c_user_unmap(entry);
751 free_user_entry(ctx, entry);
752
753 entry = next;
754 } while (entry != head);
755 sun4c_set_context(savectx);
756 }
757 local_irq_restore(flags);
758 }
759
760 static int sun4c_user_taken_entries; /* This is how much we have. */
761 static int max_user_taken_entries; /* This limits us and prevents deadlock. */
762
sun4c_kernel_strategy(void)763 static struct sun4c_mmu_entry *sun4c_kernel_strategy(void)
764 {
765 struct sun4c_mmu_entry *this_entry;
766
767 /* If some are free, return first one. */
768 if (sun4c_kfree_ring.num_entries) {
769 this_entry = sun4c_kfree_ring.ringhd.next;
770 return this_entry;
771 }
772
773 /* Else free one up. */
774 this_entry = sun4c_kernel_ring.ringhd.prev;
775 sun4c_flush_segment(this_entry->vaddr);
776 sun4c_kernel_unmap(this_entry);
777 free_kernel_entry(this_entry, &sun4c_kernel_ring);
778 this_entry = sun4c_kfree_ring.ringhd.next;
779
780 return this_entry;
781 }
782
783 /* Using this method to free up mmu entries eliminates a lot of
784 * potential races since we have a kernel that incurs tlb
785 * replacement faults. There may be performance penalties.
786 *
787 * NOTE: Must be called with interrupts disabled.
788 */
sun4c_user_strategy(void)789 static struct sun4c_mmu_entry *sun4c_user_strategy(void)
790 {
791 struct sun4c_mmu_entry *entry;
792 unsigned char ctx;
793 int savectx;
794
795 /* If some are free, return first one. */
796 if (sun4c_ufree_ring.num_entries) {
797 entry = sun4c_ufree_ring.ringhd.next;
798 goto unlink_out;
799 }
800
801 if (sun4c_user_taken_entries) {
802 entry = sun4c_kernel_strategy();
803 sun4c_user_taken_entries--;
804 goto kunlink_out;
805 }
806
807 /* Grab from the beginning of the LRU list. */
808 entry = sun4c_ulru_ring.ringhd.lru_next;
809 ctx = entry->ctx;
810
811 savectx = sun4c_get_context();
812 flush_user_windows();
813 sun4c_set_context(ctx);
814 sun4c_flush_segment(entry->vaddr);
815 sun4c_user_unmap(entry);
816 remove_ring(sun4c_context_ring + ctx, entry);
817 remove_lru(entry);
818 sun4c_set_context(savectx);
819
820 return entry;
821
822 unlink_out:
823 remove_ring(&sun4c_ufree_ring, entry);
824 return entry;
825 kunlink_out:
826 remove_ring(&sun4c_kfree_ring, entry);
827 return entry;
828 }
829
830 /* NOTE: Must be called with interrupts disabled. */
sun4c_grow_kernel_ring(void)831 void sun4c_grow_kernel_ring(void)
832 {
833 struct sun4c_mmu_entry *entry;
834
835 /* Prevent deadlock condition. */
836 if (sun4c_user_taken_entries >= max_user_taken_entries)
837 return;
838
839 if (sun4c_ufree_ring.num_entries) {
840 entry = sun4c_ufree_ring.ringhd.next;
841 remove_ring(&sun4c_ufree_ring, entry);
842 add_ring(&sun4c_kfree_ring, entry);
843 sun4c_user_taken_entries++;
844 }
845 }
846
847 /* 2 page buckets for task struct and kernel stack allocation.
848 *
849 * TASK_STACK_BEGIN
850 * bucket[0]
851 * bucket[1]
852 * [ ... ]
853 * bucket[NR_TASK_BUCKETS-1]
854 * TASK_STACK_BEGIN + (sizeof(struct task_bucket) * NR_TASK_BUCKETS)
855 *
856 * Each slot looks like:
857 *
858 * page 1 -- task struct + beginning of kernel stack
859 * page 2 -- rest of kernel stack
860 */
861
862 union task_union *sun4c_bucket[NR_TASK_BUCKETS];
863
864 static int sun4c_lowbucket_avail;
865
866 #define BUCKET_EMPTY ((union task_union *) 0)
867 #define BUCKET_SHIFT (PAGE_SHIFT + 1) /* log2(sizeof(struct task_bucket)) */
868 #define BUCKET_SIZE (1 << BUCKET_SHIFT)
869 #define BUCKET_NUM(addr) ((((addr) - SUN4C_LOCK_VADDR) >> BUCKET_SHIFT))
870 #define BUCKET_ADDR(num) (((num) << BUCKET_SHIFT) + SUN4C_LOCK_VADDR)
871 #define BUCKET_PTE(page) \
872 ((((page) - PAGE_OFFSET) >> PAGE_SHIFT) | pgprot_val(SUN4C_PAGE_KERNEL))
873 #define BUCKET_PTE_PAGE(pte) \
874 (PAGE_OFFSET + (((pte) & SUN4C_PFN_MASK) << PAGE_SHIFT))
875
get_locked_segment(unsigned long addr)876 static void get_locked_segment(unsigned long addr)
877 {
878 struct sun4c_mmu_entry *stolen;
879 unsigned long flags;
880
881 local_irq_save(flags);
882 addr &= SUN4C_REAL_PGDIR_MASK;
883 stolen = sun4c_user_strategy();
884 max_user_taken_entries--;
885 stolen->vaddr = addr;
886 flush_user_windows();
887 sun4c_kernel_map(stolen);
888 local_irq_restore(flags);
889 }
890
free_locked_segment(unsigned long addr)891 static void free_locked_segment(unsigned long addr)
892 {
893 struct sun4c_mmu_entry *entry;
894 unsigned long flags;
895 unsigned char pseg;
896
897 local_irq_save(flags);
898 addr &= SUN4C_REAL_PGDIR_MASK;
899 pseg = sun4c_get_segmap(addr);
900 entry = &mmu_entry_pool[pseg];
901
902 flush_user_windows();
903 sun4c_flush_segment(addr);
904 sun4c_kernel_unmap(entry);
905 add_ring(&sun4c_ufree_ring, entry);
906 max_user_taken_entries++;
907 local_irq_restore(flags);
908 }
909
garbage_collect(int entry)910 static inline void garbage_collect(int entry)
911 {
912 int start, end;
913
914 /* 32 buckets per segment... */
915 entry &= ~31;
916 start = entry;
917 for (end = (start + 32); start < end; start++)
918 if (sun4c_bucket[start] != BUCKET_EMPTY)
919 return;
920
921 /* Entire segment empty, release it. */
922 free_locked_segment(BUCKET_ADDR(entry));
923 }
924
sun4c_alloc_thread_info_node(int node)925 static struct thread_info *sun4c_alloc_thread_info_node(int node)
926 {
927 unsigned long addr, pages;
928 int entry;
929
930 pages = __get_free_pages(GFP_KERNEL, THREAD_INFO_ORDER);
931 if (!pages)
932 return NULL;
933
934 for (entry = sun4c_lowbucket_avail; entry < NR_TASK_BUCKETS; entry++)
935 if (sun4c_bucket[entry] == BUCKET_EMPTY)
936 break;
937 if (entry == NR_TASK_BUCKETS) {
938 free_pages(pages, THREAD_INFO_ORDER);
939 return NULL;
940 }
941 if (entry >= sun4c_lowbucket_avail)
942 sun4c_lowbucket_avail = entry + 1;
943
944 addr = BUCKET_ADDR(entry);
945 sun4c_bucket[entry] = (union task_union *) addr;
946 if(sun4c_get_segmap(addr) == invalid_segment)
947 get_locked_segment(addr);
948
949 /* We are changing the virtual color of the page(s)
950 * so we must flush the cache to guarantee consistency.
951 */
952 sun4c_flush_page(pages);
953 sun4c_flush_page(pages + PAGE_SIZE);
954
955 sun4c_put_pte(addr, BUCKET_PTE(pages));
956 sun4c_put_pte(addr + PAGE_SIZE, BUCKET_PTE(pages + PAGE_SIZE));
957
958 #ifdef CONFIG_DEBUG_STACK_USAGE
959 memset((void *)addr, 0, PAGE_SIZE << THREAD_INFO_ORDER);
960 #endif /* DEBUG_STACK_USAGE */
961
962 return (struct thread_info *) addr;
963 }
964
sun4c_free_thread_info(struct thread_info * ti)965 static void sun4c_free_thread_info(struct thread_info *ti)
966 {
967 unsigned long tiaddr = (unsigned long) ti;
968 unsigned long pages = BUCKET_PTE_PAGE(sun4c_get_pte(tiaddr));
969 int entry = BUCKET_NUM(tiaddr);
970
971 /* We are deleting a mapping, so the flush here is mandatory. */
972 sun4c_flush_page(tiaddr);
973 sun4c_flush_page(tiaddr + PAGE_SIZE);
974
975 sun4c_put_pte(tiaddr, 0);
976 sun4c_put_pte(tiaddr + PAGE_SIZE, 0);
977
978 sun4c_bucket[entry] = BUCKET_EMPTY;
979 if (entry < sun4c_lowbucket_avail)
980 sun4c_lowbucket_avail = entry;
981
982 free_pages(pages, THREAD_INFO_ORDER);
983 garbage_collect(entry);
984 }
985
sun4c_init_buckets(void)986 static void __init sun4c_init_buckets(void)
987 {
988 int entry;
989
990 if (sizeof(union thread_union) != (PAGE_SIZE << THREAD_INFO_ORDER)) {
991 extern void thread_info_size_is_bolixed_pete(void);
992 thread_info_size_is_bolixed_pete();
993 }
994
995 for (entry = 0; entry < NR_TASK_BUCKETS; entry++)
996 sun4c_bucket[entry] = BUCKET_EMPTY;
997 sun4c_lowbucket_avail = 0;
998 }
999
1000 static unsigned long sun4c_iobuffer_start;
1001 static unsigned long sun4c_iobuffer_end;
1002 static unsigned long sun4c_iobuffer_high;
1003 static unsigned long *sun4c_iobuffer_map;
1004 static int iobuffer_map_size;
1005
1006 /*
1007 * Alias our pages so they do not cause a trap.
1008 * Also one page may be aliased into several I/O areas and we may
1009 * finish these I/O separately.
1010 */
sun4c_lockarea(char * vaddr,unsigned long size)1011 static char *sun4c_lockarea(char *vaddr, unsigned long size)
1012 {
1013 unsigned long base, scan;
1014 unsigned long npages;
1015 unsigned long vpage;
1016 unsigned long pte;
1017 unsigned long apage;
1018 unsigned long high;
1019 unsigned long flags;
1020
1021 npages = (((unsigned long)vaddr & ~PAGE_MASK) +
1022 size + (PAGE_SIZE-1)) >> PAGE_SHIFT;
1023
1024 local_irq_save(flags);
1025 base = bitmap_find_next_zero_area(sun4c_iobuffer_map, iobuffer_map_size,
1026 0, npages, 0);
1027 if (base >= iobuffer_map_size)
1028 goto abend;
1029
1030 high = ((base + npages) << PAGE_SHIFT) + sun4c_iobuffer_start;
1031 high = SUN4C_REAL_PGDIR_ALIGN(high);
1032 while (high > sun4c_iobuffer_high) {
1033 get_locked_segment(sun4c_iobuffer_high);
1034 sun4c_iobuffer_high += SUN4C_REAL_PGDIR_SIZE;
1035 }
1036
1037 vpage = ((unsigned long) vaddr) & PAGE_MASK;
1038 for (scan = base; scan < base+npages; scan++) {
1039 pte = ((vpage-PAGE_OFFSET) >> PAGE_SHIFT);
1040 pte |= pgprot_val(SUN4C_PAGE_KERNEL);
1041 pte |= _SUN4C_PAGE_NOCACHE;
1042 set_bit(scan, sun4c_iobuffer_map);
1043 apage = (scan << PAGE_SHIFT) + sun4c_iobuffer_start;
1044
1045 /* Flush original mapping so we see the right things later. */
1046 sun4c_flush_page(vpage);
1047
1048 sun4c_put_pte(apage, pte);
1049 vpage += PAGE_SIZE;
1050 }
1051 local_irq_restore(flags);
1052 return (char *) ((base << PAGE_SHIFT) + sun4c_iobuffer_start +
1053 (((unsigned long) vaddr) & ~PAGE_MASK));
1054
1055 abend:
1056 local_irq_restore(flags);
1057 printk("DMA vaddr=0x%p size=%08lx\n", vaddr, size);
1058 panic("Out of iobuffer table");
1059 return NULL;
1060 }
1061
sun4c_unlockarea(char * vaddr,unsigned long size)1062 static void sun4c_unlockarea(char *vaddr, unsigned long size)
1063 {
1064 unsigned long vpage, npages;
1065 unsigned long flags;
1066 int scan, high;
1067
1068 vpage = (unsigned long)vaddr & PAGE_MASK;
1069 npages = (((unsigned long)vaddr & ~PAGE_MASK) +
1070 size + (PAGE_SIZE-1)) >> PAGE_SHIFT;
1071
1072 local_irq_save(flags);
1073 while (npages != 0) {
1074 --npages;
1075
1076 /* This mapping is marked non-cachable, no flush necessary. */
1077 sun4c_put_pte(vpage, 0);
1078 clear_bit((vpage - sun4c_iobuffer_start) >> PAGE_SHIFT,
1079 sun4c_iobuffer_map);
1080 vpage += PAGE_SIZE;
1081 }
1082
1083 /* garbage collect */
1084 scan = (sun4c_iobuffer_high - sun4c_iobuffer_start) >> PAGE_SHIFT;
1085 while (scan >= 0 && !sun4c_iobuffer_map[scan >> 5])
1086 scan -= 32;
1087 scan += 32;
1088 high = sun4c_iobuffer_start + (scan << PAGE_SHIFT);
1089 high = SUN4C_REAL_PGDIR_ALIGN(high) + SUN4C_REAL_PGDIR_SIZE;
1090 while (high < sun4c_iobuffer_high) {
1091 sun4c_iobuffer_high -= SUN4C_REAL_PGDIR_SIZE;
1092 free_locked_segment(sun4c_iobuffer_high);
1093 }
1094 local_irq_restore(flags);
1095 }
1096
1097 /* Note the scsi code at init time passes to here buffers
1098 * which sit on the kernel stack, those are already locked
1099 * by implication and fool the page locking code above
1100 * if passed to by mistake.
1101 */
sun4c_get_scsi_one(struct device * dev,char * bufptr,unsigned long len)1102 static __u32 sun4c_get_scsi_one(struct device *dev, char *bufptr, unsigned long len)
1103 {
1104 unsigned long page;
1105
1106 page = ((unsigned long)bufptr) & PAGE_MASK;
1107 if (!virt_addr_valid(page)) {
1108 sun4c_flush_page(page);
1109 return (__u32)bufptr; /* already locked */
1110 }
1111 return (__u32)sun4c_lockarea(bufptr, len);
1112 }
1113
sun4c_get_scsi_sgl(struct device * dev,struct scatterlist * sg,int sz)1114 static void sun4c_get_scsi_sgl(struct device *dev, struct scatterlist *sg, int sz)
1115 {
1116 while (sz != 0) {
1117 --sz;
1118 sg->dma_address = (__u32)sun4c_lockarea(sg_virt(sg), sg->length);
1119 sg->dma_length = sg->length;
1120 sg = sg_next(sg);
1121 }
1122 }
1123
sun4c_release_scsi_one(struct device * dev,__u32 bufptr,unsigned long len)1124 static void sun4c_release_scsi_one(struct device *dev, __u32 bufptr, unsigned long len)
1125 {
1126 if (bufptr < sun4c_iobuffer_start)
1127 return; /* On kernel stack or similar, see above */
1128 sun4c_unlockarea((char *)bufptr, len);
1129 }
1130
sun4c_release_scsi_sgl(struct device * dev,struct scatterlist * sg,int sz)1131 static void sun4c_release_scsi_sgl(struct device *dev, struct scatterlist *sg, int sz)
1132 {
1133 while (sz != 0) {
1134 --sz;
1135 sun4c_unlockarea((char *)sg->dma_address, sg->length);
1136 sg = sg_next(sg);
1137 }
1138 }
1139
1140 #define TASK_ENTRY_SIZE BUCKET_SIZE /* see above */
1141 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1142
1143 struct vm_area_struct sun4c_kstack_vma;
1144
sun4c_init_lock_areas(void)1145 static void __init sun4c_init_lock_areas(void)
1146 {
1147 unsigned long sun4c_taskstack_start;
1148 unsigned long sun4c_taskstack_end;
1149 int bitmap_size;
1150
1151 sun4c_init_buckets();
1152 sun4c_taskstack_start = SUN4C_LOCK_VADDR;
1153 sun4c_taskstack_end = (sun4c_taskstack_start +
1154 (TASK_ENTRY_SIZE * NR_TASK_BUCKETS));
1155 if (sun4c_taskstack_end >= SUN4C_LOCK_END) {
1156 prom_printf("Too many tasks, decrease NR_TASK_BUCKETS please.\n");
1157 prom_halt();
1158 }
1159
1160 sun4c_iobuffer_start = sun4c_iobuffer_high =
1161 SUN4C_REAL_PGDIR_ALIGN(sun4c_taskstack_end);
1162 sun4c_iobuffer_end = SUN4C_LOCK_END;
1163 bitmap_size = (sun4c_iobuffer_end - sun4c_iobuffer_start) >> PAGE_SHIFT;
1164 bitmap_size = (bitmap_size + 7) >> 3;
1165 bitmap_size = LONG_ALIGN(bitmap_size);
1166 iobuffer_map_size = bitmap_size << 3;
1167 sun4c_iobuffer_map = __alloc_bootmem(bitmap_size, SMP_CACHE_BYTES, 0UL);
1168 memset((void *) sun4c_iobuffer_map, 0, bitmap_size);
1169
1170 sun4c_kstack_vma.vm_mm = &init_mm;
1171 sun4c_kstack_vma.vm_start = sun4c_taskstack_start;
1172 sun4c_kstack_vma.vm_end = sun4c_taskstack_end;
1173 sun4c_kstack_vma.vm_page_prot = PAGE_SHARED;
1174 sun4c_kstack_vma.vm_flags = VM_READ | VM_WRITE | VM_EXEC;
1175 insert_vm_struct(&init_mm, &sun4c_kstack_vma);
1176 }
1177
1178 /* Cache flushing on the sun4c. */
sun4c_flush_cache_all(void)1179 static void sun4c_flush_cache_all(void)
1180 {
1181 unsigned long begin, end;
1182
1183 flush_user_windows();
1184 begin = (KERNBASE + SUN4C_REAL_PGDIR_SIZE);
1185 end = (begin + SUN4C_VAC_SIZE);
1186
1187 if (sun4c_vacinfo.linesize == 32) {
1188 while (begin < end) {
1189 __asm__ __volatile__(
1190 "ld [%0 + 0x00], %%g0\n\t"
1191 "ld [%0 + 0x20], %%g0\n\t"
1192 "ld [%0 + 0x40], %%g0\n\t"
1193 "ld [%0 + 0x60], %%g0\n\t"
1194 "ld [%0 + 0x80], %%g0\n\t"
1195 "ld [%0 + 0xa0], %%g0\n\t"
1196 "ld [%0 + 0xc0], %%g0\n\t"
1197 "ld [%0 + 0xe0], %%g0\n\t"
1198 "ld [%0 + 0x100], %%g0\n\t"
1199 "ld [%0 + 0x120], %%g0\n\t"
1200 "ld [%0 + 0x140], %%g0\n\t"
1201 "ld [%0 + 0x160], %%g0\n\t"
1202 "ld [%0 + 0x180], %%g0\n\t"
1203 "ld [%0 + 0x1a0], %%g0\n\t"
1204 "ld [%0 + 0x1c0], %%g0\n\t"
1205 "ld [%0 + 0x1e0], %%g0\n"
1206 : : "r" (begin));
1207 begin += 512;
1208 }
1209 } else {
1210 while (begin < end) {
1211 __asm__ __volatile__(
1212 "ld [%0 + 0x00], %%g0\n\t"
1213 "ld [%0 + 0x10], %%g0\n\t"
1214 "ld [%0 + 0x20], %%g0\n\t"
1215 "ld [%0 + 0x30], %%g0\n\t"
1216 "ld [%0 + 0x40], %%g0\n\t"
1217 "ld [%0 + 0x50], %%g0\n\t"
1218 "ld [%0 + 0x60], %%g0\n\t"
1219 "ld [%0 + 0x70], %%g0\n\t"
1220 "ld [%0 + 0x80], %%g0\n\t"
1221 "ld [%0 + 0x90], %%g0\n\t"
1222 "ld [%0 + 0xa0], %%g0\n\t"
1223 "ld [%0 + 0xb0], %%g0\n\t"
1224 "ld [%0 + 0xc0], %%g0\n\t"
1225 "ld [%0 + 0xd0], %%g0\n\t"
1226 "ld [%0 + 0xe0], %%g0\n\t"
1227 "ld [%0 + 0xf0], %%g0\n"
1228 : : "r" (begin));
1229 begin += 256;
1230 }
1231 }
1232 }
1233
sun4c_flush_cache_mm(struct mm_struct * mm)1234 static void sun4c_flush_cache_mm(struct mm_struct *mm)
1235 {
1236 int new_ctx = mm->context;
1237
1238 if (new_ctx != NO_CONTEXT) {
1239 flush_user_windows();
1240
1241 if (sun4c_context_ring[new_ctx].num_entries) {
1242 struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd;
1243 unsigned long flags;
1244
1245 local_irq_save(flags);
1246 if (head->next != head) {
1247 struct sun4c_mmu_entry *entry = head->next;
1248 int savectx = sun4c_get_context();
1249
1250 sun4c_set_context(new_ctx);
1251 sun4c_flush_context();
1252 do {
1253 struct sun4c_mmu_entry *next = entry->next;
1254
1255 sun4c_user_unmap(entry);
1256 free_user_entry(new_ctx, entry);
1257
1258 entry = next;
1259 } while (entry != head);
1260 sun4c_set_context(savectx);
1261 }
1262 local_irq_restore(flags);
1263 }
1264 }
1265 }
1266
sun4c_flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)1267 static void sun4c_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1268 {
1269 struct mm_struct *mm = vma->vm_mm;
1270 int new_ctx = mm->context;
1271
1272 if (new_ctx != NO_CONTEXT) {
1273 struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd;
1274 struct sun4c_mmu_entry *entry;
1275 unsigned long flags;
1276
1277 flush_user_windows();
1278
1279 local_irq_save(flags);
1280 /* All user segmap chains are ordered on entry->vaddr. */
1281 for (entry = head->next;
1282 (entry != head) && ((entry->vaddr+SUN4C_REAL_PGDIR_SIZE) < start);
1283 entry = entry->next)
1284 ;
1285
1286 /* Tracing various job mixtures showed that this conditional
1287 * only passes ~35% of the time for most worse case situations,
1288 * therefore we avoid all of this gross overhead ~65% of the time.
1289 */
1290 if ((entry != head) && (entry->vaddr < end)) {
1291 int octx = sun4c_get_context();
1292 sun4c_set_context(new_ctx);
1293
1294 /* At this point, always, (start >= entry->vaddr) and
1295 * (entry->vaddr < end), once the latter condition
1296 * ceases to hold, or we hit the end of the list, we
1297 * exit the loop. The ordering of all user allocated
1298 * segmaps makes this all work out so beautifully.
1299 */
1300 do {
1301 struct sun4c_mmu_entry *next = entry->next;
1302 unsigned long realend;
1303
1304 /* "realstart" is always >= entry->vaddr */
1305 realend = entry->vaddr + SUN4C_REAL_PGDIR_SIZE;
1306 if (end < realend)
1307 realend = end;
1308 if ((realend - entry->vaddr) <= (PAGE_SIZE << 3)) {
1309 unsigned long page = entry->vaddr;
1310 while (page < realend) {
1311 sun4c_flush_page(page);
1312 page += PAGE_SIZE;
1313 }
1314 } else {
1315 sun4c_flush_segment(entry->vaddr);
1316 sun4c_user_unmap(entry);
1317 free_user_entry(new_ctx, entry);
1318 }
1319 entry = next;
1320 } while ((entry != head) && (entry->vaddr < end));
1321 sun4c_set_context(octx);
1322 }
1323 local_irq_restore(flags);
1324 }
1325 }
1326
sun4c_flush_cache_page(struct vm_area_struct * vma,unsigned long page)1327 static void sun4c_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1328 {
1329 struct mm_struct *mm = vma->vm_mm;
1330 int new_ctx = mm->context;
1331
1332 /* Sun4c has no separate I/D caches so cannot optimize for non
1333 * text page flushes.
1334 */
1335 if (new_ctx != NO_CONTEXT) {
1336 int octx = sun4c_get_context();
1337 unsigned long flags;
1338
1339 flush_user_windows();
1340 local_irq_save(flags);
1341 sun4c_set_context(new_ctx);
1342 sun4c_flush_page(page);
1343 sun4c_set_context(octx);
1344 local_irq_restore(flags);
1345 }
1346 }
1347
sun4c_flush_page_to_ram(unsigned long page)1348 static void sun4c_flush_page_to_ram(unsigned long page)
1349 {
1350 unsigned long flags;
1351
1352 local_irq_save(flags);
1353 sun4c_flush_page(page);
1354 local_irq_restore(flags);
1355 }
1356
1357 /* Sun4c cache is unified, both instructions and data live there, so
1358 * no need to flush the on-stack instructions for new signal handlers.
1359 */
sun4c_flush_sig_insns(struct mm_struct * mm,unsigned long insn_addr)1360 static void sun4c_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1361 {
1362 }
1363
1364 /* TLB flushing on the sun4c. These routines count on the cache
1365 * flushing code to flush the user register windows so that we need
1366 * not do so when we get here.
1367 */
1368
sun4c_flush_tlb_all(void)1369 static void sun4c_flush_tlb_all(void)
1370 {
1371 struct sun4c_mmu_entry *this_entry, *next_entry;
1372 unsigned long flags;
1373 int savectx, ctx;
1374
1375 local_irq_save(flags);
1376 this_entry = sun4c_kernel_ring.ringhd.next;
1377 savectx = sun4c_get_context();
1378 flush_user_windows();
1379 while (sun4c_kernel_ring.num_entries) {
1380 next_entry = this_entry->next;
1381 sun4c_flush_segment(this_entry->vaddr);
1382 for (ctx = 0; ctx < num_contexts; ctx++) {
1383 sun4c_set_context(ctx);
1384 sun4c_put_segmap(this_entry->vaddr, invalid_segment);
1385 }
1386 free_kernel_entry(this_entry, &sun4c_kernel_ring);
1387 this_entry = next_entry;
1388 }
1389 sun4c_set_context(savectx);
1390 local_irq_restore(flags);
1391 }
1392
sun4c_flush_tlb_mm(struct mm_struct * mm)1393 static void sun4c_flush_tlb_mm(struct mm_struct *mm)
1394 {
1395 int new_ctx = mm->context;
1396
1397 if (new_ctx != NO_CONTEXT) {
1398 struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd;
1399 unsigned long flags;
1400
1401 local_irq_save(flags);
1402 if (head->next != head) {
1403 struct sun4c_mmu_entry *entry = head->next;
1404 int savectx = sun4c_get_context();
1405
1406 sun4c_set_context(new_ctx);
1407 sun4c_flush_context();
1408 do {
1409 struct sun4c_mmu_entry *next = entry->next;
1410
1411 sun4c_user_unmap(entry);
1412 free_user_entry(new_ctx, entry);
1413
1414 entry = next;
1415 } while (entry != head);
1416 sun4c_set_context(savectx);
1417 }
1418 local_irq_restore(flags);
1419 }
1420 }
1421
sun4c_flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)1422 static void sun4c_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1423 {
1424 struct mm_struct *mm = vma->vm_mm;
1425 int new_ctx = mm->context;
1426
1427 if (new_ctx != NO_CONTEXT) {
1428 struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd;
1429 struct sun4c_mmu_entry *entry;
1430 unsigned long flags;
1431
1432 local_irq_save(flags);
1433 /* See commentary in sun4c_flush_cache_range(). */
1434 for (entry = head->next;
1435 (entry != head) && ((entry->vaddr+SUN4C_REAL_PGDIR_SIZE) < start);
1436 entry = entry->next)
1437 ;
1438
1439 if ((entry != head) && (entry->vaddr < end)) {
1440 int octx = sun4c_get_context();
1441
1442 sun4c_set_context(new_ctx);
1443 do {
1444 struct sun4c_mmu_entry *next = entry->next;
1445
1446 sun4c_flush_segment(entry->vaddr);
1447 sun4c_user_unmap(entry);
1448 free_user_entry(new_ctx, entry);
1449
1450 entry = next;
1451 } while ((entry != head) && (entry->vaddr < end));
1452 sun4c_set_context(octx);
1453 }
1454 local_irq_restore(flags);
1455 }
1456 }
1457
sun4c_flush_tlb_page(struct vm_area_struct * vma,unsigned long page)1458 static void sun4c_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1459 {
1460 struct mm_struct *mm = vma->vm_mm;
1461 int new_ctx = mm->context;
1462
1463 if (new_ctx != NO_CONTEXT) {
1464 int savectx = sun4c_get_context();
1465 unsigned long flags;
1466
1467 local_irq_save(flags);
1468 sun4c_set_context(new_ctx);
1469 page &= PAGE_MASK;
1470 sun4c_flush_page(page);
1471 sun4c_put_pte(page, 0);
1472 sun4c_set_context(savectx);
1473 local_irq_restore(flags);
1474 }
1475 }
1476
sun4c_mapioaddr(unsigned long physaddr,unsigned long virt_addr)1477 static inline void sun4c_mapioaddr(unsigned long physaddr, unsigned long virt_addr)
1478 {
1479 unsigned long page_entry, pg_iobits;
1480
1481 pg_iobits = _SUN4C_PAGE_PRESENT | _SUN4C_READABLE | _SUN4C_WRITEABLE |
1482 _SUN4C_PAGE_IO | _SUN4C_PAGE_NOCACHE;
1483
1484 page_entry = ((physaddr >> PAGE_SHIFT) & SUN4C_PFN_MASK);
1485 page_entry |= ((pg_iobits | _SUN4C_PAGE_PRIV) & ~(_SUN4C_PAGE_PRESENT));
1486 sun4c_put_pte(virt_addr, page_entry);
1487 }
1488
sun4c_mapiorange(unsigned int bus,unsigned long xpa,unsigned long xva,unsigned int len)1489 static void sun4c_mapiorange(unsigned int bus, unsigned long xpa,
1490 unsigned long xva, unsigned int len)
1491 {
1492 while (len != 0) {
1493 len -= PAGE_SIZE;
1494 sun4c_mapioaddr(xpa, xva);
1495 xva += PAGE_SIZE;
1496 xpa += PAGE_SIZE;
1497 }
1498 }
1499
sun4c_unmapiorange(unsigned long virt_addr,unsigned int len)1500 static void sun4c_unmapiorange(unsigned long virt_addr, unsigned int len)
1501 {
1502 while (len != 0) {
1503 len -= PAGE_SIZE;
1504 sun4c_put_pte(virt_addr, 0);
1505 virt_addr += PAGE_SIZE;
1506 }
1507 }
1508
sun4c_alloc_context(struct mm_struct * old_mm,struct mm_struct * mm)1509 static void sun4c_alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
1510 {
1511 struct ctx_list *ctxp;
1512
1513 ctxp = ctx_free.next;
1514 if (ctxp != &ctx_free) {
1515 remove_from_ctx_list(ctxp);
1516 add_to_used_ctxlist(ctxp);
1517 mm->context = ctxp->ctx_number;
1518 ctxp->ctx_mm = mm;
1519 return;
1520 }
1521 ctxp = ctx_used.next;
1522 if (ctxp->ctx_mm == old_mm)
1523 ctxp = ctxp->next;
1524 remove_from_ctx_list(ctxp);
1525 add_to_used_ctxlist(ctxp);
1526 ctxp->ctx_mm->context = NO_CONTEXT;
1527 ctxp->ctx_mm = mm;
1528 mm->context = ctxp->ctx_number;
1529 sun4c_demap_context(&sun4c_context_ring[ctxp->ctx_number],
1530 ctxp->ctx_number);
1531 }
1532
1533 /* Switch the current MM context. */
sun4c_switch_mm(struct mm_struct * old_mm,struct mm_struct * mm,struct task_struct * tsk,int cpu)1534 static void sun4c_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, struct task_struct *tsk, int cpu)
1535 {
1536 struct ctx_list *ctx;
1537 int dirty = 0;
1538
1539 if (mm->context == NO_CONTEXT) {
1540 dirty = 1;
1541 sun4c_alloc_context(old_mm, mm);
1542 } else {
1543 /* Update the LRU ring of contexts. */
1544 ctx = ctx_list_pool + mm->context;
1545 remove_from_ctx_list(ctx);
1546 add_to_used_ctxlist(ctx);
1547 }
1548 if (dirty || old_mm != mm)
1549 sun4c_set_context(mm->context);
1550 }
1551
sun4c_destroy_context(struct mm_struct * mm)1552 static void sun4c_destroy_context(struct mm_struct *mm)
1553 {
1554 struct ctx_list *ctx_old;
1555
1556 if (mm->context != NO_CONTEXT) {
1557 sun4c_demap_context(&sun4c_context_ring[mm->context], mm->context);
1558 ctx_old = ctx_list_pool + mm->context;
1559 remove_from_ctx_list(ctx_old);
1560 add_to_free_ctxlist(ctx_old);
1561 mm->context = NO_CONTEXT;
1562 }
1563 }
1564
sun4c_mmu_info(struct seq_file * m)1565 static void sun4c_mmu_info(struct seq_file *m)
1566 {
1567 int used_user_entries, i;
1568
1569 used_user_entries = 0;
1570 for (i = 0; i < num_contexts; i++)
1571 used_user_entries += sun4c_context_ring[i].num_entries;
1572
1573 seq_printf(m,
1574 "vacsize\t\t: %d bytes\n"
1575 "vachwflush\t: %s\n"
1576 "vaclinesize\t: %d bytes\n"
1577 "mmuctxs\t\t: %d\n"
1578 "mmupsegs\t: %d\n"
1579 "kernelpsegs\t: %d\n"
1580 "kfreepsegs\t: %d\n"
1581 "usedpsegs\t: %d\n"
1582 "ufreepsegs\t: %d\n"
1583 "user_taken\t: %d\n"
1584 "max_taken\t: %d\n",
1585 sun4c_vacinfo.num_bytes,
1586 (sun4c_vacinfo.do_hwflushes ? "yes" : "no"),
1587 sun4c_vacinfo.linesize,
1588 num_contexts,
1589 (invalid_segment + 1),
1590 sun4c_kernel_ring.num_entries,
1591 sun4c_kfree_ring.num_entries,
1592 used_user_entries,
1593 sun4c_ufree_ring.num_entries,
1594 sun4c_user_taken_entries,
1595 max_user_taken_entries);
1596 }
1597
1598 /* Nothing below here should touch the mmu hardware nor the mmu_entry
1599 * data structures.
1600 */
1601
1602 /* First the functions which the mid-level code uses to directly
1603 * manipulate the software page tables. Some defines since we are
1604 * emulating the i386 page directory layout.
1605 */
1606 #define PGD_PRESENT 0x001
1607 #define PGD_RW 0x002
1608 #define PGD_USER 0x004
1609 #define PGD_ACCESSED 0x020
1610 #define PGD_DIRTY 0x040
1611 #define PGD_TABLE (PGD_PRESENT | PGD_RW | PGD_USER | PGD_ACCESSED | PGD_DIRTY)
1612
sun4c_set_pte(pte_t * ptep,pte_t pte)1613 static void sun4c_set_pte(pte_t *ptep, pte_t pte)
1614 {
1615 *ptep = pte;
1616 }
1617
sun4c_pgd_set(pgd_t * pgdp,pmd_t * pmdp)1618 static void sun4c_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
1619 {
1620 }
1621
sun4c_pmd_set(pmd_t * pmdp,pte_t * ptep)1622 static void sun4c_pmd_set(pmd_t * pmdp, pte_t * ptep)
1623 {
1624 pmdp->pmdv[0] = PGD_TABLE | (unsigned long) ptep;
1625 }
1626
sun4c_pmd_populate(pmd_t * pmdp,struct page * ptep)1627 static void sun4c_pmd_populate(pmd_t * pmdp, struct page * ptep)
1628 {
1629 if (page_address(ptep) == NULL) BUG(); /* No highmem on sun4c */
1630 pmdp->pmdv[0] = PGD_TABLE | (unsigned long) page_address(ptep);
1631 }
1632
sun4c_pte_present(pte_t pte)1633 static int sun4c_pte_present(pte_t pte)
1634 {
1635 return ((pte_val(pte) & (_SUN4C_PAGE_PRESENT | _SUN4C_PAGE_PRIV)) != 0);
1636 }
sun4c_pte_clear(pte_t * ptep)1637 static void sun4c_pte_clear(pte_t *ptep) { *ptep = __pte(0); }
1638
sun4c_pmd_bad(pmd_t pmd)1639 static int sun4c_pmd_bad(pmd_t pmd)
1640 {
1641 return (((pmd_val(pmd) & ~PAGE_MASK) != PGD_TABLE) ||
1642 (!virt_addr_valid(pmd_val(pmd))));
1643 }
1644
sun4c_pmd_present(pmd_t pmd)1645 static int sun4c_pmd_present(pmd_t pmd)
1646 {
1647 return ((pmd_val(pmd) & PGD_PRESENT) != 0);
1648 }
1649
1650 #if 0 /* if PMD takes one word */
1651 static void sun4c_pmd_clear(pmd_t *pmdp) { *pmdp = __pmd(0); }
1652 #else /* if pmd_t is a longish aggregate */
sun4c_pmd_clear(pmd_t * pmdp)1653 static void sun4c_pmd_clear(pmd_t *pmdp) {
1654 memset((void *)pmdp, 0, sizeof(pmd_t));
1655 }
1656 #endif
1657
sun4c_pgd_none(pgd_t pgd)1658 static int sun4c_pgd_none(pgd_t pgd) { return 0; }
sun4c_pgd_bad(pgd_t pgd)1659 static int sun4c_pgd_bad(pgd_t pgd) { return 0; }
sun4c_pgd_present(pgd_t pgd)1660 static int sun4c_pgd_present(pgd_t pgd) { return 1; }
sun4c_pgd_clear(pgd_t * pgdp)1661 static void sun4c_pgd_clear(pgd_t * pgdp) { }
1662
1663 /*
1664 * The following only work if pte_present() is true.
1665 * Undefined behaviour if not..
1666 */
sun4c_pte_mkwrite(pte_t pte)1667 static pte_t sun4c_pte_mkwrite(pte_t pte)
1668 {
1669 pte = __pte(pte_val(pte) | _SUN4C_PAGE_WRITE);
1670 if (pte_val(pte) & _SUN4C_PAGE_MODIFIED)
1671 pte = __pte(pte_val(pte) | _SUN4C_PAGE_SILENT_WRITE);
1672 return pte;
1673 }
1674
sun4c_pte_mkdirty(pte_t pte)1675 static pte_t sun4c_pte_mkdirty(pte_t pte)
1676 {
1677 pte = __pte(pte_val(pte) | _SUN4C_PAGE_MODIFIED);
1678 if (pte_val(pte) & _SUN4C_PAGE_WRITE)
1679 pte = __pte(pte_val(pte) | _SUN4C_PAGE_SILENT_WRITE);
1680 return pte;
1681 }
1682
sun4c_pte_mkyoung(pte_t pte)1683 static pte_t sun4c_pte_mkyoung(pte_t pte)
1684 {
1685 pte = __pte(pte_val(pte) | _SUN4C_PAGE_ACCESSED);
1686 if (pte_val(pte) & _SUN4C_PAGE_READ)
1687 pte = __pte(pte_val(pte) | _SUN4C_PAGE_SILENT_READ);
1688 return pte;
1689 }
1690
1691 /*
1692 * Conversion functions: convert a page and protection to a page entry,
1693 * and a page entry and page directory to the page they refer to.
1694 */
sun4c_mk_pte(struct page * page,pgprot_t pgprot)1695 static pte_t sun4c_mk_pte(struct page *page, pgprot_t pgprot)
1696 {
1697 return __pte(page_to_pfn(page) | pgprot_val(pgprot));
1698 }
1699
sun4c_mk_pte_phys(unsigned long phys_page,pgprot_t pgprot)1700 static pte_t sun4c_mk_pte_phys(unsigned long phys_page, pgprot_t pgprot)
1701 {
1702 return __pte((phys_page >> PAGE_SHIFT) | pgprot_val(pgprot));
1703 }
1704
sun4c_mk_pte_io(unsigned long page,pgprot_t pgprot,int space)1705 static pte_t sun4c_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
1706 {
1707 return __pte(((page - PAGE_OFFSET) >> PAGE_SHIFT) | pgprot_val(pgprot));
1708 }
1709
sun4c_pte_pfn(pte_t pte)1710 static unsigned long sun4c_pte_pfn(pte_t pte)
1711 {
1712 return pte_val(pte) & SUN4C_PFN_MASK;
1713 }
1714
sun4c_pgoff_to_pte(unsigned long pgoff)1715 static pte_t sun4c_pgoff_to_pte(unsigned long pgoff)
1716 {
1717 return __pte(pgoff | _SUN4C_PAGE_FILE);
1718 }
1719
sun4c_pte_to_pgoff(pte_t pte)1720 static unsigned long sun4c_pte_to_pgoff(pte_t pte)
1721 {
1722 return pte_val(pte) & ((1UL << PTE_FILE_MAX_BITS) - 1);
1723 }
1724
1725
sun4c_pmd_page_v(pmd_t pmd)1726 static inline unsigned long sun4c_pmd_page_v(pmd_t pmd)
1727 {
1728 return (pmd_val(pmd) & PAGE_MASK);
1729 }
1730
sun4c_pmd_page(pmd_t pmd)1731 static struct page *sun4c_pmd_page(pmd_t pmd)
1732 {
1733 return virt_to_page(sun4c_pmd_page_v(pmd));
1734 }
1735
sun4c_pgd_page(pgd_t pgd)1736 static unsigned long sun4c_pgd_page(pgd_t pgd) { return 0; }
1737
1738 /* to find an entry in a page-table-directory */
sun4c_pgd_offset(struct mm_struct * mm,unsigned long address)1739 static inline pgd_t *sun4c_pgd_offset(struct mm_struct * mm, unsigned long address)
1740 {
1741 return mm->pgd + (address >> SUN4C_PGDIR_SHIFT);
1742 }
1743
1744 /* Find an entry in the second-level page table.. */
sun4c_pmd_offset(pgd_t * dir,unsigned long address)1745 static pmd_t *sun4c_pmd_offset(pgd_t * dir, unsigned long address)
1746 {
1747 return (pmd_t *) dir;
1748 }
1749
1750 /* Find an entry in the third-level page table.. */
sun4c_pte_offset_kernel(pmd_t * dir,unsigned long address)1751 pte_t *sun4c_pte_offset_kernel(pmd_t * dir, unsigned long address)
1752 {
1753 return (pte_t *) sun4c_pmd_page_v(*dir) +
1754 ((address >> PAGE_SHIFT) & (SUN4C_PTRS_PER_PTE - 1));
1755 }
1756
sun4c_swp_type(swp_entry_t entry)1757 static unsigned long sun4c_swp_type(swp_entry_t entry)
1758 {
1759 return (entry.val & SUN4C_SWP_TYPE_MASK);
1760 }
1761
sun4c_swp_offset(swp_entry_t entry)1762 static unsigned long sun4c_swp_offset(swp_entry_t entry)
1763 {
1764 return (entry.val >> SUN4C_SWP_OFF_SHIFT) & SUN4C_SWP_OFF_MASK;
1765 }
1766
sun4c_swp_entry(unsigned long type,unsigned long offset)1767 static swp_entry_t sun4c_swp_entry(unsigned long type, unsigned long offset)
1768 {
1769 return (swp_entry_t) {
1770 (offset & SUN4C_SWP_OFF_MASK) << SUN4C_SWP_OFF_SHIFT
1771 | (type & SUN4C_SWP_TYPE_MASK) };
1772 }
1773
sun4c_free_pte_slow(pte_t * pte)1774 static void sun4c_free_pte_slow(pte_t *pte)
1775 {
1776 free_page((unsigned long)pte);
1777 }
1778
sun4c_free_pgd_slow(pgd_t * pgd)1779 static void sun4c_free_pgd_slow(pgd_t *pgd)
1780 {
1781 free_page((unsigned long)pgd);
1782 }
1783
sun4c_get_pgd_fast(void)1784 static pgd_t *sun4c_get_pgd_fast(void)
1785 {
1786 unsigned long *ret;
1787
1788 if ((ret = pgd_quicklist) != NULL) {
1789 pgd_quicklist = (unsigned long *)(*ret);
1790 ret[0] = ret[1];
1791 pgtable_cache_size--;
1792 } else {
1793 pgd_t *init;
1794
1795 ret = (unsigned long *)__get_free_page(GFP_KERNEL);
1796 memset (ret, 0, (KERNBASE / SUN4C_PGDIR_SIZE) * sizeof(pgd_t));
1797 init = sun4c_pgd_offset(&init_mm, 0);
1798 memcpy (((pgd_t *)ret) + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
1799 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
1800 }
1801 return (pgd_t *)ret;
1802 }
1803
sun4c_free_pgd_fast(pgd_t * pgd)1804 static void sun4c_free_pgd_fast(pgd_t *pgd)
1805 {
1806 *(unsigned long *)pgd = (unsigned long) pgd_quicklist;
1807 pgd_quicklist = (unsigned long *) pgd;
1808 pgtable_cache_size++;
1809 }
1810
1811
1812 static inline pte_t *
sun4c_pte_alloc_one_fast(struct mm_struct * mm,unsigned long address)1813 sun4c_pte_alloc_one_fast(struct mm_struct *mm, unsigned long address)
1814 {
1815 unsigned long *ret;
1816
1817 if ((ret = (unsigned long *)pte_quicklist) != NULL) {
1818 pte_quicklist = (unsigned long *)(*ret);
1819 ret[0] = ret[1];
1820 pgtable_cache_size--;
1821 }
1822 return (pte_t *)ret;
1823 }
1824
sun4c_pte_alloc_one_kernel(struct mm_struct * mm,unsigned long address)1825 static pte_t *sun4c_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
1826 {
1827 pte_t *pte;
1828
1829 if ((pte = sun4c_pte_alloc_one_fast(mm, address)) != NULL)
1830 return pte;
1831
1832 pte = (pte_t *)get_zeroed_page(GFP_KERNEL|__GFP_REPEAT);
1833 return pte;
1834 }
1835
sun4c_pte_alloc_one(struct mm_struct * mm,unsigned long address)1836 static pgtable_t sun4c_pte_alloc_one(struct mm_struct *mm, unsigned long address)
1837 {
1838 pte_t *pte;
1839 struct page *page;
1840
1841 pte = sun4c_pte_alloc_one_kernel(mm, address);
1842 if (pte == NULL)
1843 return NULL;
1844 page = virt_to_page(pte);
1845 pgtable_page_ctor(page);
1846 return page;
1847 }
1848
sun4c_free_pte_fast(pte_t * pte)1849 static inline void sun4c_free_pte_fast(pte_t *pte)
1850 {
1851 *(unsigned long *)pte = (unsigned long) pte_quicklist;
1852 pte_quicklist = (unsigned long *) pte;
1853 pgtable_cache_size++;
1854 }
1855
sun4c_pte_free(pgtable_t pte)1856 static void sun4c_pte_free(pgtable_t pte)
1857 {
1858 pgtable_page_dtor(pte);
1859 sun4c_free_pte_fast(page_address(pte));
1860 }
1861
1862 /*
1863 * allocating and freeing a pmd is trivial: the 1-entry pmd is
1864 * inside the pgd, so has no extra memory associated with it.
1865 */
sun4c_pmd_alloc_one(struct mm_struct * mm,unsigned long address)1866 static pmd_t *sun4c_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
1867 {
1868 BUG();
1869 return NULL;
1870 }
1871
sun4c_free_pmd_fast(pmd_t * pmd)1872 static void sun4c_free_pmd_fast(pmd_t * pmd) { }
1873
sun4c_check_pgt_cache(int low,int high)1874 static void sun4c_check_pgt_cache(int low, int high)
1875 {
1876 if (pgtable_cache_size > high) {
1877 do {
1878 if (pgd_quicklist)
1879 sun4c_free_pgd_slow(sun4c_get_pgd_fast());
1880 if (pte_quicklist)
1881 sun4c_free_pte_slow(sun4c_pte_alloc_one_fast(NULL, 0));
1882 } while (pgtable_cache_size > low);
1883 }
1884 }
1885
1886 /* An experiment, turn off by default for now... -DaveM */
1887 #define SUN4C_PRELOAD_PSEG
1888
sun4c_update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1889 void sun4c_update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
1890 {
1891 unsigned long flags;
1892 int pseg;
1893
1894 if (vma->vm_mm->context == NO_CONTEXT)
1895 return;
1896
1897 local_irq_save(flags);
1898 address &= PAGE_MASK;
1899 if ((pseg = sun4c_get_segmap(address)) == invalid_segment) {
1900 struct sun4c_mmu_entry *entry = sun4c_user_strategy();
1901 struct mm_struct *mm = vma->vm_mm;
1902 unsigned long start, end;
1903
1904 entry->vaddr = start = (address & SUN4C_REAL_PGDIR_MASK);
1905 entry->ctx = mm->context;
1906 add_ring_ordered(sun4c_context_ring + mm->context, entry);
1907 sun4c_put_segmap(entry->vaddr, entry->pseg);
1908 end = start + SUN4C_REAL_PGDIR_SIZE;
1909 while (start < end) {
1910 #ifdef SUN4C_PRELOAD_PSEG
1911 pgd_t *pgdp = sun4c_pgd_offset(mm, start);
1912 pte_t *ptep;
1913
1914 if (!pgdp)
1915 goto no_mapping;
1916 ptep = sun4c_pte_offset_kernel((pmd_t *) pgdp, start);
1917 if (!ptep || !(pte_val(*ptep) & _SUN4C_PAGE_PRESENT))
1918 goto no_mapping;
1919 sun4c_put_pte(start, pte_val(*ptep));
1920 goto next;
1921
1922 no_mapping:
1923 #endif
1924 sun4c_put_pte(start, 0);
1925 #ifdef SUN4C_PRELOAD_PSEG
1926 next:
1927 #endif
1928 start += PAGE_SIZE;
1929 }
1930 #ifndef SUN4C_PRELOAD_PSEG
1931 sun4c_put_pte(address, pte_val(*ptep));
1932 #endif
1933 local_irq_restore(flags);
1934 return;
1935 } else {
1936 struct sun4c_mmu_entry *entry = &mmu_entry_pool[pseg];
1937
1938 remove_lru(entry);
1939 add_lru(entry);
1940 }
1941
1942 sun4c_put_pte(address, pte_val(*ptep));
1943 local_irq_restore(flags);
1944 }
1945
1946 extern void sparc_context_init(int);
1947 extern unsigned long bootmem_init(unsigned long *pages_avail);
1948 extern unsigned long last_valid_pfn;
1949
sun4c_paging_init(void)1950 void __init sun4c_paging_init(void)
1951 {
1952 int i, cnt;
1953 unsigned long kernel_end, vaddr;
1954 extern struct resource sparc_iomap;
1955 unsigned long end_pfn, pages_avail;
1956
1957 kernel_end = (unsigned long) &_end;
1958 kernel_end = SUN4C_REAL_PGDIR_ALIGN(kernel_end);
1959
1960 pages_avail = 0;
1961 last_valid_pfn = bootmem_init(&pages_avail);
1962 end_pfn = last_valid_pfn;
1963
1964 sun4c_probe_mmu();
1965 invalid_segment = (num_segmaps - 1);
1966 sun4c_init_mmu_entry_pool();
1967 sun4c_init_rings();
1968 sun4c_init_map_kernelprom(kernel_end);
1969 sun4c_init_clean_mmu(kernel_end);
1970 sun4c_init_fill_kernel_ring(SUN4C_KERNEL_BUCKETS);
1971 sun4c_init_lock_area(sparc_iomap.start, IOBASE_END);
1972 sun4c_init_lock_area(DVMA_VADDR, DVMA_END);
1973 sun4c_init_lock_areas();
1974 sun4c_init_fill_user_ring();
1975
1976 sun4c_set_context(0);
1977 memset(swapper_pg_dir, 0, PAGE_SIZE);
1978 memset(pg0, 0, PAGE_SIZE);
1979 memset(pg1, 0, PAGE_SIZE);
1980 memset(pg2, 0, PAGE_SIZE);
1981 memset(pg3, 0, PAGE_SIZE);
1982
1983 /* Save work later. */
1984 vaddr = VMALLOC_START;
1985 swapper_pg_dir[vaddr>>SUN4C_PGDIR_SHIFT] = __pgd(PGD_TABLE | (unsigned long) pg0);
1986 vaddr += SUN4C_PGDIR_SIZE;
1987 swapper_pg_dir[vaddr>>SUN4C_PGDIR_SHIFT] = __pgd(PGD_TABLE | (unsigned long) pg1);
1988 vaddr += SUN4C_PGDIR_SIZE;
1989 swapper_pg_dir[vaddr>>SUN4C_PGDIR_SHIFT] = __pgd(PGD_TABLE | (unsigned long) pg2);
1990 vaddr += SUN4C_PGDIR_SIZE;
1991 swapper_pg_dir[vaddr>>SUN4C_PGDIR_SHIFT] = __pgd(PGD_TABLE | (unsigned long) pg3);
1992 sun4c_init_ss2_cache_bug();
1993 sparc_context_init(num_contexts);
1994
1995 {
1996 unsigned long zones_size[MAX_NR_ZONES];
1997 unsigned long zholes_size[MAX_NR_ZONES];
1998 unsigned long npages;
1999 int znum;
2000
2001 for (znum = 0; znum < MAX_NR_ZONES; znum++)
2002 zones_size[znum] = zholes_size[znum] = 0;
2003
2004 npages = max_low_pfn - pfn_base;
2005
2006 zones_size[ZONE_DMA] = npages;
2007 zholes_size[ZONE_DMA] = npages - pages_avail;
2008
2009 npages = highend_pfn - max_low_pfn;
2010 zones_size[ZONE_HIGHMEM] = npages;
2011 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
2012
2013 free_area_init_node(0, zones_size, pfn_base, zholes_size);
2014 }
2015
2016 cnt = 0;
2017 for (i = 0; i < num_segmaps; i++)
2018 if (mmu_entry_pool[i].locked)
2019 cnt++;
2020
2021 max_user_taken_entries = num_segmaps - cnt - 40 - 1;
2022
2023 printk("SUN4C: %d mmu entries for the kernel\n", cnt);
2024 }
2025
sun4c_pgprot_noncached(pgprot_t prot)2026 static pgprot_t sun4c_pgprot_noncached(pgprot_t prot)
2027 {
2028 prot |= __pgprot(_SUN4C_PAGE_IO | _SUN4C_PAGE_NOCACHE);
2029
2030 return prot;
2031 }
2032
2033 /* Load up routines and constants for sun4c mmu */
ld_mmu_sun4c(void)2034 void __init ld_mmu_sun4c(void)
2035 {
2036 extern void ___xchg32_sun4c(void);
2037
2038 printk("Loading sun4c MMU routines\n");
2039
2040 /* First the constants */
2041 BTFIXUPSET_SIMM13(pgdir_shift, SUN4C_PGDIR_SHIFT);
2042 BTFIXUPSET_SETHI(pgdir_size, SUN4C_PGDIR_SIZE);
2043 BTFIXUPSET_SETHI(pgdir_mask, SUN4C_PGDIR_MASK);
2044
2045 BTFIXUPSET_SIMM13(ptrs_per_pmd, SUN4C_PTRS_PER_PMD);
2046 BTFIXUPSET_SIMM13(ptrs_per_pgd, SUN4C_PTRS_PER_PGD);
2047 BTFIXUPSET_SIMM13(user_ptrs_per_pgd, KERNBASE / SUN4C_PGDIR_SIZE);
2048
2049 BTFIXUPSET_INT(page_none, pgprot_val(SUN4C_PAGE_NONE));
2050 PAGE_SHARED = pgprot_val(SUN4C_PAGE_SHARED);
2051 BTFIXUPSET_INT(page_copy, pgprot_val(SUN4C_PAGE_COPY));
2052 BTFIXUPSET_INT(page_readonly, pgprot_val(SUN4C_PAGE_READONLY));
2053 BTFIXUPSET_INT(page_kernel, pgprot_val(SUN4C_PAGE_KERNEL));
2054 page_kernel = pgprot_val(SUN4C_PAGE_KERNEL);
2055
2056 /* Functions */
2057 BTFIXUPSET_CALL(pgprot_noncached, sun4c_pgprot_noncached, BTFIXUPCALL_NORM);
2058 BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4c, BTFIXUPCALL_NORM);
2059 BTFIXUPSET_CALL(do_check_pgt_cache, sun4c_check_pgt_cache, BTFIXUPCALL_NORM);
2060
2061 BTFIXUPSET_CALL(flush_cache_all, sun4c_flush_cache_all, BTFIXUPCALL_NORM);
2062
2063 if (sun4c_vacinfo.do_hwflushes) {
2064 BTFIXUPSET_CALL(sun4c_flush_page, sun4c_flush_page_hw, BTFIXUPCALL_NORM);
2065 BTFIXUPSET_CALL(sun4c_flush_segment, sun4c_flush_segment_hw, BTFIXUPCALL_NORM);
2066 BTFIXUPSET_CALL(sun4c_flush_context, sun4c_flush_context_hw, BTFIXUPCALL_NORM);
2067 } else {
2068 BTFIXUPSET_CALL(sun4c_flush_page, sun4c_flush_page_sw, BTFIXUPCALL_NORM);
2069 BTFIXUPSET_CALL(sun4c_flush_segment, sun4c_flush_segment_sw, BTFIXUPCALL_NORM);
2070 BTFIXUPSET_CALL(sun4c_flush_context, sun4c_flush_context_sw, BTFIXUPCALL_NORM);
2071 }
2072
2073 BTFIXUPSET_CALL(flush_tlb_mm, sun4c_flush_tlb_mm, BTFIXUPCALL_NORM);
2074 BTFIXUPSET_CALL(flush_cache_mm, sun4c_flush_cache_mm, BTFIXUPCALL_NORM);
2075 BTFIXUPSET_CALL(destroy_context, sun4c_destroy_context, BTFIXUPCALL_NORM);
2076 BTFIXUPSET_CALL(switch_mm, sun4c_switch_mm, BTFIXUPCALL_NORM);
2077 BTFIXUPSET_CALL(flush_cache_page, sun4c_flush_cache_page, BTFIXUPCALL_NORM);
2078 BTFIXUPSET_CALL(flush_tlb_page, sun4c_flush_tlb_page, BTFIXUPCALL_NORM);
2079 BTFIXUPSET_CALL(flush_tlb_range, sun4c_flush_tlb_range, BTFIXUPCALL_NORM);
2080 BTFIXUPSET_CALL(flush_cache_range, sun4c_flush_cache_range, BTFIXUPCALL_NORM);
2081 BTFIXUPSET_CALL(__flush_page_to_ram, sun4c_flush_page_to_ram, BTFIXUPCALL_NORM);
2082 BTFIXUPSET_CALL(flush_tlb_all, sun4c_flush_tlb_all, BTFIXUPCALL_NORM);
2083
2084 BTFIXUPSET_CALL(flush_sig_insns, sun4c_flush_sig_insns, BTFIXUPCALL_NOP);
2085
2086 BTFIXUPSET_CALL(set_pte, sun4c_set_pte, BTFIXUPCALL_STO1O0);
2087
2088 BTFIXUPSET_CALL(pte_pfn, sun4c_pte_pfn, BTFIXUPCALL_NORM);
2089 #if 0 /* PAGE_SHIFT <= 12 */ /* Eek. Investigate. XXX */
2090 BTFIXUPSET_CALL(pmd_page, sun4c_pmd_page, BTFIXUPCALL_ANDNINT(PAGE_SIZE - 1));
2091 #else
2092 BTFIXUPSET_CALL(pmd_page, sun4c_pmd_page, BTFIXUPCALL_NORM);
2093 #endif
2094 BTFIXUPSET_CALL(pmd_set, sun4c_pmd_set, BTFIXUPCALL_NORM);
2095 BTFIXUPSET_CALL(pmd_populate, sun4c_pmd_populate, BTFIXUPCALL_NORM);
2096
2097 BTFIXUPSET_CALL(pte_present, sun4c_pte_present, BTFIXUPCALL_NORM);
2098 BTFIXUPSET_CALL(pte_clear, sun4c_pte_clear, BTFIXUPCALL_STG0O0);
2099
2100 BTFIXUPSET_CALL(pmd_bad, sun4c_pmd_bad, BTFIXUPCALL_NORM);
2101 BTFIXUPSET_CALL(pmd_present, sun4c_pmd_present, BTFIXUPCALL_NORM);
2102 BTFIXUPSET_CALL(pmd_clear, sun4c_pmd_clear, BTFIXUPCALL_STG0O0);
2103
2104 BTFIXUPSET_CALL(pgd_none, sun4c_pgd_none, BTFIXUPCALL_RETINT(0));
2105 BTFIXUPSET_CALL(pgd_bad, sun4c_pgd_bad, BTFIXUPCALL_RETINT(0));
2106 BTFIXUPSET_CALL(pgd_present, sun4c_pgd_present, BTFIXUPCALL_RETINT(1));
2107 BTFIXUPSET_CALL(pgd_clear, sun4c_pgd_clear, BTFIXUPCALL_NOP);
2108
2109 BTFIXUPSET_CALL(mk_pte, sun4c_mk_pte, BTFIXUPCALL_NORM);
2110 BTFIXUPSET_CALL(mk_pte_phys, sun4c_mk_pte_phys, BTFIXUPCALL_NORM);
2111 BTFIXUPSET_CALL(mk_pte_io, sun4c_mk_pte_io, BTFIXUPCALL_NORM);
2112
2113 BTFIXUPSET_INT(pte_modify_mask, _SUN4C_PAGE_CHG_MASK);
2114 BTFIXUPSET_CALL(pmd_offset, sun4c_pmd_offset, BTFIXUPCALL_NORM);
2115 BTFIXUPSET_CALL(pte_offset_kernel, sun4c_pte_offset_kernel, BTFIXUPCALL_NORM);
2116 BTFIXUPSET_CALL(free_pte_fast, sun4c_free_pte_fast, BTFIXUPCALL_NORM);
2117 BTFIXUPSET_CALL(pte_free, sun4c_pte_free, BTFIXUPCALL_NORM);
2118 BTFIXUPSET_CALL(pte_alloc_one_kernel, sun4c_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2119 BTFIXUPSET_CALL(pte_alloc_one, sun4c_pte_alloc_one, BTFIXUPCALL_NORM);
2120 BTFIXUPSET_CALL(free_pmd_fast, sun4c_free_pmd_fast, BTFIXUPCALL_NOP);
2121 BTFIXUPSET_CALL(pmd_alloc_one, sun4c_pmd_alloc_one, BTFIXUPCALL_RETO0);
2122 BTFIXUPSET_CALL(free_pgd_fast, sun4c_free_pgd_fast, BTFIXUPCALL_NORM);
2123 BTFIXUPSET_CALL(get_pgd_fast, sun4c_get_pgd_fast, BTFIXUPCALL_NORM);
2124
2125 BTFIXUPSET_HALF(pte_writei, _SUN4C_PAGE_WRITE);
2126 BTFIXUPSET_HALF(pte_dirtyi, _SUN4C_PAGE_MODIFIED);
2127 BTFIXUPSET_HALF(pte_youngi, _SUN4C_PAGE_ACCESSED);
2128 BTFIXUPSET_HALF(pte_filei, _SUN4C_PAGE_FILE);
2129 BTFIXUPSET_HALF(pte_wrprotecti, _SUN4C_PAGE_WRITE|_SUN4C_PAGE_SILENT_WRITE);
2130 BTFIXUPSET_HALF(pte_mkcleani, _SUN4C_PAGE_MODIFIED|_SUN4C_PAGE_SILENT_WRITE);
2131 BTFIXUPSET_HALF(pte_mkoldi, _SUN4C_PAGE_ACCESSED|_SUN4C_PAGE_SILENT_READ);
2132 BTFIXUPSET_CALL(pte_mkwrite, sun4c_pte_mkwrite, BTFIXUPCALL_NORM);
2133 BTFIXUPSET_CALL(pte_mkdirty, sun4c_pte_mkdirty, BTFIXUPCALL_NORM);
2134 BTFIXUPSET_CALL(pte_mkyoung, sun4c_pte_mkyoung, BTFIXUPCALL_NORM);
2135 BTFIXUPSET_CALL(update_mmu_cache, sun4c_update_mmu_cache, BTFIXUPCALL_NORM);
2136
2137 BTFIXUPSET_CALL(pte_to_pgoff, sun4c_pte_to_pgoff, BTFIXUPCALL_NORM);
2138 BTFIXUPSET_CALL(pgoff_to_pte, sun4c_pgoff_to_pte, BTFIXUPCALL_NORM);
2139
2140 BTFIXUPSET_CALL(mmu_lockarea, sun4c_lockarea, BTFIXUPCALL_NORM);
2141 BTFIXUPSET_CALL(mmu_unlockarea, sun4c_unlockarea, BTFIXUPCALL_NORM);
2142
2143 BTFIXUPSET_CALL(mmu_get_scsi_one, sun4c_get_scsi_one, BTFIXUPCALL_NORM);
2144 BTFIXUPSET_CALL(mmu_get_scsi_sgl, sun4c_get_scsi_sgl, BTFIXUPCALL_NORM);
2145 BTFIXUPSET_CALL(mmu_release_scsi_one, sun4c_release_scsi_one, BTFIXUPCALL_NORM);
2146 BTFIXUPSET_CALL(mmu_release_scsi_sgl, sun4c_release_scsi_sgl, BTFIXUPCALL_NORM);
2147
2148 BTFIXUPSET_CALL(mmu_map_dma_area, sun4c_map_dma_area, BTFIXUPCALL_NORM);
2149 BTFIXUPSET_CALL(mmu_unmap_dma_area, sun4c_unmap_dma_area, BTFIXUPCALL_NORM);
2150
2151 BTFIXUPSET_CALL(sparc_mapiorange, sun4c_mapiorange, BTFIXUPCALL_NORM);
2152 BTFIXUPSET_CALL(sparc_unmapiorange, sun4c_unmapiorange, BTFIXUPCALL_NORM);
2153
2154 BTFIXUPSET_CALL(__swp_type, sun4c_swp_type, BTFIXUPCALL_NORM);
2155 BTFIXUPSET_CALL(__swp_offset, sun4c_swp_offset, BTFIXUPCALL_NORM);
2156 BTFIXUPSET_CALL(__swp_entry, sun4c_swp_entry, BTFIXUPCALL_NORM);
2157
2158 BTFIXUPSET_CALL(alloc_thread_info_node, sun4c_alloc_thread_info_node, BTFIXUPCALL_NORM);
2159 BTFIXUPSET_CALL(free_thread_info, sun4c_free_thread_info, BTFIXUPCALL_NORM);
2160
2161 BTFIXUPSET_CALL(mmu_info, sun4c_mmu_info, BTFIXUPCALL_NORM);
2162
2163 /* These should _never_ get called with two level tables. */
2164 BTFIXUPSET_CALL(pgd_set, sun4c_pgd_set, BTFIXUPCALL_NOP);
2165 BTFIXUPSET_CALL(pgd_page_vaddr, sun4c_pgd_page, BTFIXUPCALL_RETO0);
2166 }
2167