1 /*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
30 #include <linux/mm.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
44 #include <linux/slab.h>
45
46 #include <asm/errno.h>
47 #include <asm/intrinsics.h>
48 #include <asm/page.h>
49 #include <asm/perfmon.h>
50 #include <asm/processor.h>
51 #include <asm/signal.h>
52 #include <asm/uaccess.h>
53 #include <asm/delay.h>
54
55 #ifdef CONFIG_PERFMON
56 /*
57 * perfmon context state
58 */
59 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
60 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
61 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
62 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
63
64 #define PFM_INVALID_ACTIVATION (~0UL)
65
66 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
67 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
68
69 /*
70 * depth of message queue
71 */
72 #define PFM_MAX_MSGS 32
73 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
74
75 /*
76 * type of a PMU register (bitmask).
77 * bitmask structure:
78 * bit0 : register implemented
79 * bit1 : end marker
80 * bit2-3 : reserved
81 * bit4 : pmc has pmc.pm
82 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
83 * bit6-7 : register type
84 * bit8-31: reserved
85 */
86 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
87 #define PFM_REG_IMPL 0x1 /* register implemented */
88 #define PFM_REG_END 0x2 /* end marker */
89 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
90 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
91 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
92 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
93 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
94
95 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
96 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
97
98 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
99
100 /* i assumed unsigned */
101 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
102 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
103
104 /* XXX: these assume that register i is implemented */
105 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
108 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
109
110 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
111 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
112 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
113 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
114
115 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
116 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
117
118 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
119 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
120 #define PFM_CTX_TASK(h) (h)->ctx_task
121
122 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
123
124 /* XXX: does not support more than 64 PMDs */
125 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
126 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
127
128 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
129
130 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
131 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
133 #define PFM_CODE_RR 0 /* requesting code range restriction */
134 #define PFM_DATA_RR 1 /* requestion data range restriction */
135
136 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
137 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
138 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
139
140 #define RDEP(x) (1UL<<(x))
141
142 /*
143 * context protection macros
144 * in SMP:
145 * - we need to protect against CPU concurrency (spin_lock)
146 * - we need to protect against PMU overflow interrupts (local_irq_disable)
147 * in UP:
148 * - we need to protect against PMU overflow interrupts (local_irq_disable)
149 *
150 * spin_lock_irqsave()/spin_unlock_irqrestore():
151 * in SMP: local_irq_disable + spin_lock
152 * in UP : local_irq_disable
153 *
154 * spin_lock()/spin_lock():
155 * in UP : removed automatically
156 * in SMP: protect against context accesses from other CPU. interrupts
157 * are not masked. This is useful for the PMU interrupt handler
158 * because we know we will not get PMU concurrency in that code.
159 */
160 #define PROTECT_CTX(c, f) \
161 do { \
162 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
163 spin_lock_irqsave(&(c)->ctx_lock, f); \
164 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
165 } while(0)
166
167 #define UNPROTECT_CTX(c, f) \
168 do { \
169 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
170 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
171 } while(0)
172
173 #define PROTECT_CTX_NOPRINT(c, f) \
174 do { \
175 spin_lock_irqsave(&(c)->ctx_lock, f); \
176 } while(0)
177
178
179 #define UNPROTECT_CTX_NOPRINT(c, f) \
180 do { \
181 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
182 } while(0)
183
184
185 #define PROTECT_CTX_NOIRQ(c) \
186 do { \
187 spin_lock(&(c)->ctx_lock); \
188 } while(0)
189
190 #define UNPROTECT_CTX_NOIRQ(c) \
191 do { \
192 spin_unlock(&(c)->ctx_lock); \
193 } while(0)
194
195
196 #ifdef CONFIG_SMP
197
198 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
199 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
200 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
201
202 #else /* !CONFIG_SMP */
203 #define SET_ACTIVATION(t) do {} while(0)
204 #define GET_ACTIVATION(t) do {} while(0)
205 #define INC_ACTIVATION(t) do {} while(0)
206 #endif /* CONFIG_SMP */
207
208 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
209 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
210 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
211
212 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
213 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
214
215 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
216
217 /*
218 * cmp0 must be the value of pmc0
219 */
220 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
221
222 #define PFMFS_MAGIC 0xa0b4d889
223
224 /*
225 * debugging
226 */
227 #define PFM_DEBUGGING 1
228 #ifdef PFM_DEBUGGING
229 #define DPRINT(a) \
230 do { \
231 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
232 } while (0)
233
234 #define DPRINT_ovfl(a) \
235 do { \
236 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
237 } while (0)
238 #endif
239
240 /*
241 * 64-bit software counter structure
242 *
243 * the next_reset_type is applied to the next call to pfm_reset_regs()
244 */
245 typedef struct {
246 unsigned long val; /* virtual 64bit counter value */
247 unsigned long lval; /* last reset value */
248 unsigned long long_reset; /* reset value on sampling overflow */
249 unsigned long short_reset; /* reset value on overflow */
250 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
251 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
252 unsigned long seed; /* seed for random-number generator */
253 unsigned long mask; /* mask for random-number generator */
254 unsigned int flags; /* notify/do not notify */
255 unsigned long eventid; /* overflow event identifier */
256 } pfm_counter_t;
257
258 /*
259 * context flags
260 */
261 typedef struct {
262 unsigned int block:1; /* when 1, task will blocked on user notifications */
263 unsigned int system:1; /* do system wide monitoring */
264 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
265 unsigned int is_sampling:1; /* true if using a custom format */
266 unsigned int excl_idle:1; /* exclude idle task in system wide session */
267 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
268 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
269 unsigned int no_msg:1; /* no message sent on overflow */
270 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
271 unsigned int reserved:22;
272 } pfm_context_flags_t;
273
274 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
275 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
276 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
277
278
279 /*
280 * perfmon context: encapsulates all the state of a monitoring session
281 */
282
283 typedef struct pfm_context {
284 spinlock_t ctx_lock; /* context protection */
285
286 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
287 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
288
289 struct task_struct *ctx_task; /* task to which context is attached */
290
291 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
292
293 struct completion ctx_restart_done; /* use for blocking notification mode */
294
295 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
296 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
297 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
298
299 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
300 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
301 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
302
303 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
304
305 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
306 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
307 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
308 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
309
310 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
311
312 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
313 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
314
315 unsigned long ctx_saved_psr_up; /* only contains psr.up value */
316
317 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
318 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
319 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
320
321 int ctx_fd; /* file descriptor used my this context */
322 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
323
324 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
325 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
326 unsigned long ctx_smpl_size; /* size of sampling buffer */
327 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
328
329 wait_queue_head_t ctx_msgq_wait;
330 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
331 int ctx_msgq_head;
332 int ctx_msgq_tail;
333 struct fasync_struct *ctx_async_queue;
334
335 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
336 } pfm_context_t;
337
338 /*
339 * magic number used to verify that structure is really
340 * a perfmon context
341 */
342 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
343
344 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
345
346 #ifdef CONFIG_SMP
347 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
348 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
349 #else
350 #define SET_LAST_CPU(ctx, v) do {} while(0)
351 #define GET_LAST_CPU(ctx) do {} while(0)
352 #endif
353
354
355 #define ctx_fl_block ctx_flags.block
356 #define ctx_fl_system ctx_flags.system
357 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
358 #define ctx_fl_is_sampling ctx_flags.is_sampling
359 #define ctx_fl_excl_idle ctx_flags.excl_idle
360 #define ctx_fl_going_zombie ctx_flags.going_zombie
361 #define ctx_fl_trap_reason ctx_flags.trap_reason
362 #define ctx_fl_no_msg ctx_flags.no_msg
363 #define ctx_fl_can_restart ctx_flags.can_restart
364
365 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
366 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
367
368 /*
369 * global information about all sessions
370 * mostly used to synchronize between system wide and per-process
371 */
372 typedef struct {
373 spinlock_t pfs_lock; /* lock the structure */
374
375 unsigned int pfs_task_sessions; /* number of per task sessions */
376 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
377 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
378 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
379 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
380 } pfm_session_t;
381
382 /*
383 * information about a PMC or PMD.
384 * dep_pmd[]: a bitmask of dependent PMD registers
385 * dep_pmc[]: a bitmask of dependent PMC registers
386 */
387 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
388 typedef struct {
389 unsigned int type;
390 int pm_pos;
391 unsigned long default_value; /* power-on default value */
392 unsigned long reserved_mask; /* bitmask of reserved bits */
393 pfm_reg_check_t read_check;
394 pfm_reg_check_t write_check;
395 unsigned long dep_pmd[4];
396 unsigned long dep_pmc[4];
397 } pfm_reg_desc_t;
398
399 /* assume cnum is a valid monitor */
400 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
401
402 /*
403 * This structure is initialized at boot time and contains
404 * a description of the PMU main characteristics.
405 *
406 * If the probe function is defined, detection is based
407 * on its return value:
408 * - 0 means recognized PMU
409 * - anything else means not supported
410 * When the probe function is not defined, then the pmu_family field
411 * is used and it must match the host CPU family such that:
412 * - cpu->family & config->pmu_family != 0
413 */
414 typedef struct {
415 unsigned long ovfl_val; /* overflow value for counters */
416
417 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
418 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
419
420 unsigned int num_pmcs; /* number of PMCS: computed at init time */
421 unsigned int num_pmds; /* number of PMDS: computed at init time */
422 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
423 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
424
425 char *pmu_name; /* PMU family name */
426 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
427 unsigned int flags; /* pmu specific flags */
428 unsigned int num_ibrs; /* number of IBRS: computed at init time */
429 unsigned int num_dbrs; /* number of DBRS: computed at init time */
430 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
431 int (*probe)(void); /* customized probe routine */
432 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
433 } pmu_config_t;
434 /*
435 * PMU specific flags
436 */
437 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
438
439 /*
440 * debug register related type definitions
441 */
442 typedef struct {
443 unsigned long ibr_mask:56;
444 unsigned long ibr_plm:4;
445 unsigned long ibr_ig:3;
446 unsigned long ibr_x:1;
447 } ibr_mask_reg_t;
448
449 typedef struct {
450 unsigned long dbr_mask:56;
451 unsigned long dbr_plm:4;
452 unsigned long dbr_ig:2;
453 unsigned long dbr_w:1;
454 unsigned long dbr_r:1;
455 } dbr_mask_reg_t;
456
457 typedef union {
458 unsigned long val;
459 ibr_mask_reg_t ibr;
460 dbr_mask_reg_t dbr;
461 } dbreg_t;
462
463
464 /*
465 * perfmon command descriptions
466 */
467 typedef struct {
468 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
469 char *cmd_name;
470 int cmd_flags;
471 unsigned int cmd_narg;
472 size_t cmd_argsize;
473 int (*cmd_getsize)(void *arg, size_t *sz);
474 } pfm_cmd_desc_t;
475
476 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
477 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
478 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
479 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
480
481
482 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
483 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
484 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
485 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
486 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
487
488 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
489
490 typedef struct {
491 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
492 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
493 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
497 unsigned long pfm_smpl_handler_calls;
498 unsigned long pfm_smpl_handler_cycles;
499 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
500 } pfm_stats_t;
501
502 /*
503 * perfmon internal variables
504 */
505 static pfm_stats_t pfm_stats[NR_CPUS];
506 static pfm_session_t pfm_sessions; /* global sessions information */
507
508 static DEFINE_SPINLOCK(pfm_alt_install_check);
509 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
510
511 static struct proc_dir_entry *perfmon_dir;
512 static pfm_uuid_t pfm_null_uuid = {0,};
513
514 static spinlock_t pfm_buffer_fmt_lock;
515 static LIST_HEAD(pfm_buffer_fmt_list);
516
517 static pmu_config_t *pmu_conf;
518
519 /* sysctl() controls */
520 pfm_sysctl_t pfm_sysctl;
521 EXPORT_SYMBOL(pfm_sysctl);
522
523 static ctl_table pfm_ctl_table[]={
524 {
525 .procname = "debug",
526 .data = &pfm_sysctl.debug,
527 .maxlen = sizeof(int),
528 .mode = 0666,
529 .proc_handler = proc_dointvec,
530 },
531 {
532 .procname = "debug_ovfl",
533 .data = &pfm_sysctl.debug_ovfl,
534 .maxlen = sizeof(int),
535 .mode = 0666,
536 .proc_handler = proc_dointvec,
537 },
538 {
539 .procname = "fastctxsw",
540 .data = &pfm_sysctl.fastctxsw,
541 .maxlen = sizeof(int),
542 .mode = 0600,
543 .proc_handler = proc_dointvec,
544 },
545 {
546 .procname = "expert_mode",
547 .data = &pfm_sysctl.expert_mode,
548 .maxlen = sizeof(int),
549 .mode = 0600,
550 .proc_handler = proc_dointvec,
551 },
552 {}
553 };
554 static ctl_table pfm_sysctl_dir[] = {
555 {
556 .procname = "perfmon",
557 .mode = 0555,
558 .child = pfm_ctl_table,
559 },
560 {}
561 };
562 static ctl_table pfm_sysctl_root[] = {
563 {
564 .procname = "kernel",
565 .mode = 0555,
566 .child = pfm_sysctl_dir,
567 },
568 {}
569 };
570 static struct ctl_table_header *pfm_sysctl_header;
571
572 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
573
574 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
575 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
576
577 static inline void
pfm_put_task(struct task_struct * task)578 pfm_put_task(struct task_struct *task)
579 {
580 if (task != current) put_task_struct(task);
581 }
582
583 static inline void
pfm_reserve_page(unsigned long a)584 pfm_reserve_page(unsigned long a)
585 {
586 SetPageReserved(vmalloc_to_page((void *)a));
587 }
588 static inline void
pfm_unreserve_page(unsigned long a)589 pfm_unreserve_page(unsigned long a)
590 {
591 ClearPageReserved(vmalloc_to_page((void*)a));
592 }
593
594 static inline unsigned long
pfm_protect_ctx_ctxsw(pfm_context_t * x)595 pfm_protect_ctx_ctxsw(pfm_context_t *x)
596 {
597 spin_lock(&(x)->ctx_lock);
598 return 0UL;
599 }
600
601 static inline void
pfm_unprotect_ctx_ctxsw(pfm_context_t * x,unsigned long f)602 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
603 {
604 spin_unlock(&(x)->ctx_lock);
605 }
606
607 static inline unsigned long
pfm_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,unsigned long exec)608 pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
609 {
610 return get_unmapped_area(file, addr, len, pgoff, flags);
611 }
612
613 /* forward declaration */
614 static const struct dentry_operations pfmfs_dentry_operations;
615
616 static struct dentry *
pfmfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)617 pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
618 {
619 return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
620 PFMFS_MAGIC);
621 }
622
623 static struct file_system_type pfm_fs_type = {
624 .name = "pfmfs",
625 .mount = pfmfs_mount,
626 .kill_sb = kill_anon_super,
627 };
628
629 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
630 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
631 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
632 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
633 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
634
635
636 /* forward declaration */
637 static const struct file_operations pfm_file_ops;
638
639 /*
640 * forward declarations
641 */
642 #ifndef CONFIG_SMP
643 static void pfm_lazy_save_regs (struct task_struct *ta);
644 #endif
645
646 void dump_pmu_state(const char *);
647 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
648
649 #include "perfmon_itanium.h"
650 #include "perfmon_mckinley.h"
651 #include "perfmon_montecito.h"
652 #include "perfmon_generic.h"
653
654 static pmu_config_t *pmu_confs[]={
655 &pmu_conf_mont,
656 &pmu_conf_mck,
657 &pmu_conf_ita,
658 &pmu_conf_gen, /* must be last */
659 NULL
660 };
661
662
663 static int pfm_end_notify_user(pfm_context_t *ctx);
664
665 static inline void
pfm_clear_psr_pp(void)666 pfm_clear_psr_pp(void)
667 {
668 ia64_rsm(IA64_PSR_PP);
669 ia64_srlz_i();
670 }
671
672 static inline void
pfm_set_psr_pp(void)673 pfm_set_psr_pp(void)
674 {
675 ia64_ssm(IA64_PSR_PP);
676 ia64_srlz_i();
677 }
678
679 static inline void
pfm_clear_psr_up(void)680 pfm_clear_psr_up(void)
681 {
682 ia64_rsm(IA64_PSR_UP);
683 ia64_srlz_i();
684 }
685
686 static inline void
pfm_set_psr_up(void)687 pfm_set_psr_up(void)
688 {
689 ia64_ssm(IA64_PSR_UP);
690 ia64_srlz_i();
691 }
692
693 static inline unsigned long
pfm_get_psr(void)694 pfm_get_psr(void)
695 {
696 unsigned long tmp;
697 tmp = ia64_getreg(_IA64_REG_PSR);
698 ia64_srlz_i();
699 return tmp;
700 }
701
702 static inline void
pfm_set_psr_l(unsigned long val)703 pfm_set_psr_l(unsigned long val)
704 {
705 ia64_setreg(_IA64_REG_PSR_L, val);
706 ia64_srlz_i();
707 }
708
709 static inline void
pfm_freeze_pmu(void)710 pfm_freeze_pmu(void)
711 {
712 ia64_set_pmc(0,1UL);
713 ia64_srlz_d();
714 }
715
716 static inline void
pfm_unfreeze_pmu(void)717 pfm_unfreeze_pmu(void)
718 {
719 ia64_set_pmc(0,0UL);
720 ia64_srlz_d();
721 }
722
723 static inline void
pfm_restore_ibrs(unsigned long * ibrs,unsigned int nibrs)724 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
725 {
726 int i;
727
728 for (i=0; i < nibrs; i++) {
729 ia64_set_ibr(i, ibrs[i]);
730 ia64_dv_serialize_instruction();
731 }
732 ia64_srlz_i();
733 }
734
735 static inline void
pfm_restore_dbrs(unsigned long * dbrs,unsigned int ndbrs)736 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
737 {
738 int i;
739
740 for (i=0; i < ndbrs; i++) {
741 ia64_set_dbr(i, dbrs[i]);
742 ia64_dv_serialize_data();
743 }
744 ia64_srlz_d();
745 }
746
747 /*
748 * PMD[i] must be a counter. no check is made
749 */
750 static inline unsigned long
pfm_read_soft_counter(pfm_context_t * ctx,int i)751 pfm_read_soft_counter(pfm_context_t *ctx, int i)
752 {
753 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
754 }
755
756 /*
757 * PMD[i] must be a counter. no check is made
758 */
759 static inline void
pfm_write_soft_counter(pfm_context_t * ctx,int i,unsigned long val)760 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
761 {
762 unsigned long ovfl_val = pmu_conf->ovfl_val;
763
764 ctx->ctx_pmds[i].val = val & ~ovfl_val;
765 /*
766 * writing to unimplemented part is ignore, so we do not need to
767 * mask off top part
768 */
769 ia64_set_pmd(i, val & ovfl_val);
770 }
771
772 static pfm_msg_t *
pfm_get_new_msg(pfm_context_t * ctx)773 pfm_get_new_msg(pfm_context_t *ctx)
774 {
775 int idx, next;
776
777 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
778
779 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
780 if (next == ctx->ctx_msgq_head) return NULL;
781
782 idx = ctx->ctx_msgq_tail;
783 ctx->ctx_msgq_tail = next;
784
785 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
786
787 return ctx->ctx_msgq+idx;
788 }
789
790 static pfm_msg_t *
pfm_get_next_msg(pfm_context_t * ctx)791 pfm_get_next_msg(pfm_context_t *ctx)
792 {
793 pfm_msg_t *msg;
794
795 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
796
797 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
798
799 /*
800 * get oldest message
801 */
802 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
803
804 /*
805 * and move forward
806 */
807 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
808
809 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
810
811 return msg;
812 }
813
814 static void
pfm_reset_msgq(pfm_context_t * ctx)815 pfm_reset_msgq(pfm_context_t *ctx)
816 {
817 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
818 DPRINT(("ctx=%p msgq reset\n", ctx));
819 }
820
821 static void *
pfm_rvmalloc(unsigned long size)822 pfm_rvmalloc(unsigned long size)
823 {
824 void *mem;
825 unsigned long addr;
826
827 size = PAGE_ALIGN(size);
828 mem = vzalloc(size);
829 if (mem) {
830 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
831 addr = (unsigned long)mem;
832 while (size > 0) {
833 pfm_reserve_page(addr);
834 addr+=PAGE_SIZE;
835 size-=PAGE_SIZE;
836 }
837 }
838 return mem;
839 }
840
841 static void
pfm_rvfree(void * mem,unsigned long size)842 pfm_rvfree(void *mem, unsigned long size)
843 {
844 unsigned long addr;
845
846 if (mem) {
847 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
848 addr = (unsigned long) mem;
849 while ((long) size > 0) {
850 pfm_unreserve_page(addr);
851 addr+=PAGE_SIZE;
852 size-=PAGE_SIZE;
853 }
854 vfree(mem);
855 }
856 return;
857 }
858
859 static pfm_context_t *
pfm_context_alloc(int ctx_flags)860 pfm_context_alloc(int ctx_flags)
861 {
862 pfm_context_t *ctx;
863
864 /*
865 * allocate context descriptor
866 * must be able to free with interrupts disabled
867 */
868 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
869 if (ctx) {
870 DPRINT(("alloc ctx @%p\n", ctx));
871
872 /*
873 * init context protection lock
874 */
875 spin_lock_init(&ctx->ctx_lock);
876
877 /*
878 * context is unloaded
879 */
880 ctx->ctx_state = PFM_CTX_UNLOADED;
881
882 /*
883 * initialization of context's flags
884 */
885 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
886 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
887 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
888 /*
889 * will move to set properties
890 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
891 */
892
893 /*
894 * init restart semaphore to locked
895 */
896 init_completion(&ctx->ctx_restart_done);
897
898 /*
899 * activation is used in SMP only
900 */
901 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
902 SET_LAST_CPU(ctx, -1);
903
904 /*
905 * initialize notification message queue
906 */
907 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
908 init_waitqueue_head(&ctx->ctx_msgq_wait);
909 init_waitqueue_head(&ctx->ctx_zombieq);
910
911 }
912 return ctx;
913 }
914
915 static void
pfm_context_free(pfm_context_t * ctx)916 pfm_context_free(pfm_context_t *ctx)
917 {
918 if (ctx) {
919 DPRINT(("free ctx @%p\n", ctx));
920 kfree(ctx);
921 }
922 }
923
924 static void
pfm_mask_monitoring(struct task_struct * task)925 pfm_mask_monitoring(struct task_struct *task)
926 {
927 pfm_context_t *ctx = PFM_GET_CTX(task);
928 unsigned long mask, val, ovfl_mask;
929 int i;
930
931 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
932
933 ovfl_mask = pmu_conf->ovfl_val;
934 /*
935 * monitoring can only be masked as a result of a valid
936 * counter overflow. In UP, it means that the PMU still
937 * has an owner. Note that the owner can be different
938 * from the current task. However the PMU state belongs
939 * to the owner.
940 * In SMP, a valid overflow only happens when task is
941 * current. Therefore if we come here, we know that
942 * the PMU state belongs to the current task, therefore
943 * we can access the live registers.
944 *
945 * So in both cases, the live register contains the owner's
946 * state. We can ONLY touch the PMU registers and NOT the PSR.
947 *
948 * As a consequence to this call, the ctx->th_pmds[] array
949 * contains stale information which must be ignored
950 * when context is reloaded AND monitoring is active (see
951 * pfm_restart).
952 */
953 mask = ctx->ctx_used_pmds[0];
954 for (i = 0; mask; i++, mask>>=1) {
955 /* skip non used pmds */
956 if ((mask & 0x1) == 0) continue;
957 val = ia64_get_pmd(i);
958
959 if (PMD_IS_COUNTING(i)) {
960 /*
961 * we rebuild the full 64 bit value of the counter
962 */
963 ctx->ctx_pmds[i].val += (val & ovfl_mask);
964 } else {
965 ctx->ctx_pmds[i].val = val;
966 }
967 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
968 i,
969 ctx->ctx_pmds[i].val,
970 val & ovfl_mask));
971 }
972 /*
973 * mask monitoring by setting the privilege level to 0
974 * we cannot use psr.pp/psr.up for this, it is controlled by
975 * the user
976 *
977 * if task is current, modify actual registers, otherwise modify
978 * thread save state, i.e., what will be restored in pfm_load_regs()
979 */
980 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
981 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
982 if ((mask & 0x1) == 0UL) continue;
983 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
984 ctx->th_pmcs[i] &= ~0xfUL;
985 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
986 }
987 /*
988 * make all of this visible
989 */
990 ia64_srlz_d();
991 }
992
993 /*
994 * must always be done with task == current
995 *
996 * context must be in MASKED state when calling
997 */
998 static void
pfm_restore_monitoring(struct task_struct * task)999 pfm_restore_monitoring(struct task_struct *task)
1000 {
1001 pfm_context_t *ctx = PFM_GET_CTX(task);
1002 unsigned long mask, ovfl_mask;
1003 unsigned long psr, val;
1004 int i, is_system;
1005
1006 is_system = ctx->ctx_fl_system;
1007 ovfl_mask = pmu_conf->ovfl_val;
1008
1009 if (task != current) {
1010 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1011 return;
1012 }
1013 if (ctx->ctx_state != PFM_CTX_MASKED) {
1014 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1015 task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1016 return;
1017 }
1018 psr = pfm_get_psr();
1019 /*
1020 * monitoring is masked via the PMC.
1021 * As we restore their value, we do not want each counter to
1022 * restart right away. We stop monitoring using the PSR,
1023 * restore the PMC (and PMD) and then re-establish the psr
1024 * as it was. Note that there can be no pending overflow at
1025 * this point, because monitoring was MASKED.
1026 *
1027 * system-wide session are pinned and self-monitoring
1028 */
1029 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1030 /* disable dcr pp */
1031 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1032 pfm_clear_psr_pp();
1033 } else {
1034 pfm_clear_psr_up();
1035 }
1036 /*
1037 * first, we restore the PMD
1038 */
1039 mask = ctx->ctx_used_pmds[0];
1040 for (i = 0; mask; i++, mask>>=1) {
1041 /* skip non used pmds */
1042 if ((mask & 0x1) == 0) continue;
1043
1044 if (PMD_IS_COUNTING(i)) {
1045 /*
1046 * we split the 64bit value according to
1047 * counter width
1048 */
1049 val = ctx->ctx_pmds[i].val & ovfl_mask;
1050 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1051 } else {
1052 val = ctx->ctx_pmds[i].val;
1053 }
1054 ia64_set_pmd(i, val);
1055
1056 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1057 i,
1058 ctx->ctx_pmds[i].val,
1059 val));
1060 }
1061 /*
1062 * restore the PMCs
1063 */
1064 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1065 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1066 if ((mask & 0x1) == 0UL) continue;
1067 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1068 ia64_set_pmc(i, ctx->th_pmcs[i]);
1069 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1070 task_pid_nr(task), i, ctx->th_pmcs[i]));
1071 }
1072 ia64_srlz_d();
1073
1074 /*
1075 * must restore DBR/IBR because could be modified while masked
1076 * XXX: need to optimize
1077 */
1078 if (ctx->ctx_fl_using_dbreg) {
1079 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1080 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1081 }
1082
1083 /*
1084 * now restore PSR
1085 */
1086 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1087 /* enable dcr pp */
1088 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1089 ia64_srlz_i();
1090 }
1091 pfm_set_psr_l(psr);
1092 }
1093
1094 static inline void
pfm_save_pmds(unsigned long * pmds,unsigned long mask)1095 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1096 {
1097 int i;
1098
1099 ia64_srlz_d();
1100
1101 for (i=0; mask; i++, mask>>=1) {
1102 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1103 }
1104 }
1105
1106 /*
1107 * reload from thread state (used for ctxw only)
1108 */
1109 static inline void
pfm_restore_pmds(unsigned long * pmds,unsigned long mask)1110 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1111 {
1112 int i;
1113 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1114
1115 for (i=0; mask; i++, mask>>=1) {
1116 if ((mask & 0x1) == 0) continue;
1117 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1118 ia64_set_pmd(i, val);
1119 }
1120 ia64_srlz_d();
1121 }
1122
1123 /*
1124 * propagate PMD from context to thread-state
1125 */
1126 static inline void
pfm_copy_pmds(struct task_struct * task,pfm_context_t * ctx)1127 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1128 {
1129 unsigned long ovfl_val = pmu_conf->ovfl_val;
1130 unsigned long mask = ctx->ctx_all_pmds[0];
1131 unsigned long val;
1132 int i;
1133
1134 DPRINT(("mask=0x%lx\n", mask));
1135
1136 for (i=0; mask; i++, mask>>=1) {
1137
1138 val = ctx->ctx_pmds[i].val;
1139
1140 /*
1141 * We break up the 64 bit value into 2 pieces
1142 * the lower bits go to the machine state in the
1143 * thread (will be reloaded on ctxsw in).
1144 * The upper part stays in the soft-counter.
1145 */
1146 if (PMD_IS_COUNTING(i)) {
1147 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1148 val &= ovfl_val;
1149 }
1150 ctx->th_pmds[i] = val;
1151
1152 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1153 i,
1154 ctx->th_pmds[i],
1155 ctx->ctx_pmds[i].val));
1156 }
1157 }
1158
1159 /*
1160 * propagate PMC from context to thread-state
1161 */
1162 static inline void
pfm_copy_pmcs(struct task_struct * task,pfm_context_t * ctx)1163 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1164 {
1165 unsigned long mask = ctx->ctx_all_pmcs[0];
1166 int i;
1167
1168 DPRINT(("mask=0x%lx\n", mask));
1169
1170 for (i=0; mask; i++, mask>>=1) {
1171 /* masking 0 with ovfl_val yields 0 */
1172 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1173 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1174 }
1175 }
1176
1177
1178
1179 static inline void
pfm_restore_pmcs(unsigned long * pmcs,unsigned long mask)1180 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1181 {
1182 int i;
1183
1184 for (i=0; mask; i++, mask>>=1) {
1185 if ((mask & 0x1) == 0) continue;
1186 ia64_set_pmc(i, pmcs[i]);
1187 }
1188 ia64_srlz_d();
1189 }
1190
1191 static inline int
pfm_uuid_cmp(pfm_uuid_t a,pfm_uuid_t b)1192 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1193 {
1194 return memcmp(a, b, sizeof(pfm_uuid_t));
1195 }
1196
1197 static inline int
pfm_buf_fmt_exit(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,struct pt_regs * regs)1198 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1199 {
1200 int ret = 0;
1201 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1202 return ret;
1203 }
1204
1205 static inline int
pfm_buf_fmt_getsize(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg,unsigned long * size)1206 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1207 {
1208 int ret = 0;
1209 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1210 return ret;
1211 }
1212
1213
1214 static inline int
pfm_buf_fmt_validate(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg)1215 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1216 int cpu, void *arg)
1217 {
1218 int ret = 0;
1219 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1220 return ret;
1221 }
1222
1223 static inline int
pfm_buf_fmt_init(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,unsigned int flags,int cpu,void * arg)1224 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1225 int cpu, void *arg)
1226 {
1227 int ret = 0;
1228 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1229 return ret;
1230 }
1231
1232 static inline int
pfm_buf_fmt_restart(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1233 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1234 {
1235 int ret = 0;
1236 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1237 return ret;
1238 }
1239
1240 static inline int
pfm_buf_fmt_restart_active(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1241 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1242 {
1243 int ret = 0;
1244 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1245 return ret;
1246 }
1247
1248 static pfm_buffer_fmt_t *
__pfm_find_buffer_fmt(pfm_uuid_t uuid)1249 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1250 {
1251 struct list_head * pos;
1252 pfm_buffer_fmt_t * entry;
1253
1254 list_for_each(pos, &pfm_buffer_fmt_list) {
1255 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1256 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1257 return entry;
1258 }
1259 return NULL;
1260 }
1261
1262 /*
1263 * find a buffer format based on its uuid
1264 */
1265 static pfm_buffer_fmt_t *
pfm_find_buffer_fmt(pfm_uuid_t uuid)1266 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1267 {
1268 pfm_buffer_fmt_t * fmt;
1269 spin_lock(&pfm_buffer_fmt_lock);
1270 fmt = __pfm_find_buffer_fmt(uuid);
1271 spin_unlock(&pfm_buffer_fmt_lock);
1272 return fmt;
1273 }
1274
1275 int
pfm_register_buffer_fmt(pfm_buffer_fmt_t * fmt)1276 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1277 {
1278 int ret = 0;
1279
1280 /* some sanity checks */
1281 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1282
1283 /* we need at least a handler */
1284 if (fmt->fmt_handler == NULL) return -EINVAL;
1285
1286 /*
1287 * XXX: need check validity of fmt_arg_size
1288 */
1289
1290 spin_lock(&pfm_buffer_fmt_lock);
1291
1292 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1293 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1294 ret = -EBUSY;
1295 goto out;
1296 }
1297 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1298 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1299
1300 out:
1301 spin_unlock(&pfm_buffer_fmt_lock);
1302 return ret;
1303 }
1304 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1305
1306 int
pfm_unregister_buffer_fmt(pfm_uuid_t uuid)1307 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1308 {
1309 pfm_buffer_fmt_t *fmt;
1310 int ret = 0;
1311
1312 spin_lock(&pfm_buffer_fmt_lock);
1313
1314 fmt = __pfm_find_buffer_fmt(uuid);
1315 if (!fmt) {
1316 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1317 ret = -EINVAL;
1318 goto out;
1319 }
1320 list_del_init(&fmt->fmt_list);
1321 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1322
1323 out:
1324 spin_unlock(&pfm_buffer_fmt_lock);
1325 return ret;
1326
1327 }
1328 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1329
1330 extern void update_pal_halt_status(int);
1331
1332 static int
pfm_reserve_session(struct task_struct * task,int is_syswide,unsigned int cpu)1333 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1334 {
1335 unsigned long flags;
1336 /*
1337 * validity checks on cpu_mask have been done upstream
1338 */
1339 LOCK_PFS(flags);
1340
1341 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1342 pfm_sessions.pfs_sys_sessions,
1343 pfm_sessions.pfs_task_sessions,
1344 pfm_sessions.pfs_sys_use_dbregs,
1345 is_syswide,
1346 cpu));
1347
1348 if (is_syswide) {
1349 /*
1350 * cannot mix system wide and per-task sessions
1351 */
1352 if (pfm_sessions.pfs_task_sessions > 0UL) {
1353 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1354 pfm_sessions.pfs_task_sessions));
1355 goto abort;
1356 }
1357
1358 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1359
1360 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1361
1362 pfm_sessions.pfs_sys_session[cpu] = task;
1363
1364 pfm_sessions.pfs_sys_sessions++ ;
1365
1366 } else {
1367 if (pfm_sessions.pfs_sys_sessions) goto abort;
1368 pfm_sessions.pfs_task_sessions++;
1369 }
1370
1371 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1372 pfm_sessions.pfs_sys_sessions,
1373 pfm_sessions.pfs_task_sessions,
1374 pfm_sessions.pfs_sys_use_dbregs,
1375 is_syswide,
1376 cpu));
1377
1378 /*
1379 * disable default_idle() to go to PAL_HALT
1380 */
1381 update_pal_halt_status(0);
1382
1383 UNLOCK_PFS(flags);
1384
1385 return 0;
1386
1387 error_conflict:
1388 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1389 task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1390 cpu));
1391 abort:
1392 UNLOCK_PFS(flags);
1393
1394 return -EBUSY;
1395
1396 }
1397
1398 static int
pfm_unreserve_session(pfm_context_t * ctx,int is_syswide,unsigned int cpu)1399 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1400 {
1401 unsigned long flags;
1402 /*
1403 * validity checks on cpu_mask have been done upstream
1404 */
1405 LOCK_PFS(flags);
1406
1407 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1408 pfm_sessions.pfs_sys_sessions,
1409 pfm_sessions.pfs_task_sessions,
1410 pfm_sessions.pfs_sys_use_dbregs,
1411 is_syswide,
1412 cpu));
1413
1414
1415 if (is_syswide) {
1416 pfm_sessions.pfs_sys_session[cpu] = NULL;
1417 /*
1418 * would not work with perfmon+more than one bit in cpu_mask
1419 */
1420 if (ctx && ctx->ctx_fl_using_dbreg) {
1421 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1422 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1423 } else {
1424 pfm_sessions.pfs_sys_use_dbregs--;
1425 }
1426 }
1427 pfm_sessions.pfs_sys_sessions--;
1428 } else {
1429 pfm_sessions.pfs_task_sessions--;
1430 }
1431 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1432 pfm_sessions.pfs_sys_sessions,
1433 pfm_sessions.pfs_task_sessions,
1434 pfm_sessions.pfs_sys_use_dbregs,
1435 is_syswide,
1436 cpu));
1437
1438 /*
1439 * if possible, enable default_idle() to go into PAL_HALT
1440 */
1441 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1442 update_pal_halt_status(1);
1443
1444 UNLOCK_PFS(flags);
1445
1446 return 0;
1447 }
1448
1449 /*
1450 * removes virtual mapping of the sampling buffer.
1451 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1452 * a PROTECT_CTX() section.
1453 */
1454 static int
pfm_remove_smpl_mapping(void * vaddr,unsigned long size)1455 pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1456 {
1457 struct task_struct *task = current;
1458 int r;
1459
1460 /* sanity checks */
1461 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1462 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1463 return -EINVAL;
1464 }
1465
1466 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1467
1468 /*
1469 * does the actual unmapping
1470 */
1471 r = vm_munmap((unsigned long)vaddr, size);
1472
1473 if (r !=0) {
1474 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1475 }
1476
1477 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1478
1479 return 0;
1480 }
1481
1482 /*
1483 * free actual physical storage used by sampling buffer
1484 */
1485 #if 0
1486 static int
1487 pfm_free_smpl_buffer(pfm_context_t *ctx)
1488 {
1489 pfm_buffer_fmt_t *fmt;
1490
1491 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1492
1493 /*
1494 * we won't use the buffer format anymore
1495 */
1496 fmt = ctx->ctx_buf_fmt;
1497
1498 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1499 ctx->ctx_smpl_hdr,
1500 ctx->ctx_smpl_size,
1501 ctx->ctx_smpl_vaddr));
1502
1503 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1504
1505 /*
1506 * free the buffer
1507 */
1508 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1509
1510 ctx->ctx_smpl_hdr = NULL;
1511 ctx->ctx_smpl_size = 0UL;
1512
1513 return 0;
1514
1515 invalid_free:
1516 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1517 return -EINVAL;
1518 }
1519 #endif
1520
1521 static inline void
pfm_exit_smpl_buffer(pfm_buffer_fmt_t * fmt)1522 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1523 {
1524 if (fmt == NULL) return;
1525
1526 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1527
1528 }
1529
1530 /*
1531 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1532 * no real gain from having the whole whorehouse mounted. So we don't need
1533 * any operations on the root directory. However, we need a non-trivial
1534 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1535 */
1536 static struct vfsmount *pfmfs_mnt __read_mostly;
1537
1538 static int __init
init_pfm_fs(void)1539 init_pfm_fs(void)
1540 {
1541 int err = register_filesystem(&pfm_fs_type);
1542 if (!err) {
1543 pfmfs_mnt = kern_mount(&pfm_fs_type);
1544 err = PTR_ERR(pfmfs_mnt);
1545 if (IS_ERR(pfmfs_mnt))
1546 unregister_filesystem(&pfm_fs_type);
1547 else
1548 err = 0;
1549 }
1550 return err;
1551 }
1552
1553 static ssize_t
pfm_read(struct file * filp,char __user * buf,size_t size,loff_t * ppos)1554 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1555 {
1556 pfm_context_t *ctx;
1557 pfm_msg_t *msg;
1558 ssize_t ret;
1559 unsigned long flags;
1560 DECLARE_WAITQUEUE(wait, current);
1561 if (PFM_IS_FILE(filp) == 0) {
1562 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1563 return -EINVAL;
1564 }
1565
1566 ctx = filp->private_data;
1567 if (ctx == NULL) {
1568 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1569 return -EINVAL;
1570 }
1571
1572 /*
1573 * check even when there is no message
1574 */
1575 if (size < sizeof(pfm_msg_t)) {
1576 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1577 return -EINVAL;
1578 }
1579
1580 PROTECT_CTX(ctx, flags);
1581
1582 /*
1583 * put ourselves on the wait queue
1584 */
1585 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1586
1587
1588 for(;;) {
1589 /*
1590 * check wait queue
1591 */
1592
1593 set_current_state(TASK_INTERRUPTIBLE);
1594
1595 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1596
1597 ret = 0;
1598 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1599
1600 UNPROTECT_CTX(ctx, flags);
1601
1602 /*
1603 * check non-blocking read
1604 */
1605 ret = -EAGAIN;
1606 if(filp->f_flags & O_NONBLOCK) break;
1607
1608 /*
1609 * check pending signals
1610 */
1611 if(signal_pending(current)) {
1612 ret = -EINTR;
1613 break;
1614 }
1615 /*
1616 * no message, so wait
1617 */
1618 schedule();
1619
1620 PROTECT_CTX(ctx, flags);
1621 }
1622 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1623 set_current_state(TASK_RUNNING);
1624 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1625
1626 if (ret < 0) goto abort;
1627
1628 ret = -EINVAL;
1629 msg = pfm_get_next_msg(ctx);
1630 if (msg == NULL) {
1631 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1632 goto abort_locked;
1633 }
1634
1635 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1636
1637 ret = -EFAULT;
1638 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1639
1640 abort_locked:
1641 UNPROTECT_CTX(ctx, flags);
1642 abort:
1643 return ret;
1644 }
1645
1646 static ssize_t
pfm_write(struct file * file,const char __user * ubuf,size_t size,loff_t * ppos)1647 pfm_write(struct file *file, const char __user *ubuf,
1648 size_t size, loff_t *ppos)
1649 {
1650 DPRINT(("pfm_write called\n"));
1651 return -EINVAL;
1652 }
1653
1654 static unsigned int
pfm_poll(struct file * filp,poll_table * wait)1655 pfm_poll(struct file *filp, poll_table * wait)
1656 {
1657 pfm_context_t *ctx;
1658 unsigned long flags;
1659 unsigned int mask = 0;
1660
1661 if (PFM_IS_FILE(filp) == 0) {
1662 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1663 return 0;
1664 }
1665
1666 ctx = filp->private_data;
1667 if (ctx == NULL) {
1668 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1669 return 0;
1670 }
1671
1672
1673 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1674
1675 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1676
1677 PROTECT_CTX(ctx, flags);
1678
1679 if (PFM_CTXQ_EMPTY(ctx) == 0)
1680 mask = POLLIN | POLLRDNORM;
1681
1682 UNPROTECT_CTX(ctx, flags);
1683
1684 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1685
1686 return mask;
1687 }
1688
1689 static long
pfm_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1690 pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1691 {
1692 DPRINT(("pfm_ioctl called\n"));
1693 return -EINVAL;
1694 }
1695
1696 /*
1697 * interrupt cannot be masked when coming here
1698 */
1699 static inline int
pfm_do_fasync(int fd,struct file * filp,pfm_context_t * ctx,int on)1700 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1701 {
1702 int ret;
1703
1704 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1705
1706 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1707 task_pid_nr(current),
1708 fd,
1709 on,
1710 ctx->ctx_async_queue, ret));
1711
1712 return ret;
1713 }
1714
1715 static int
pfm_fasync(int fd,struct file * filp,int on)1716 pfm_fasync(int fd, struct file *filp, int on)
1717 {
1718 pfm_context_t *ctx;
1719 int ret;
1720
1721 if (PFM_IS_FILE(filp) == 0) {
1722 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1723 return -EBADF;
1724 }
1725
1726 ctx = filp->private_data;
1727 if (ctx == NULL) {
1728 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1729 return -EBADF;
1730 }
1731 /*
1732 * we cannot mask interrupts during this call because this may
1733 * may go to sleep if memory is not readily avalaible.
1734 *
1735 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1736 * done in caller. Serialization of this function is ensured by caller.
1737 */
1738 ret = pfm_do_fasync(fd, filp, ctx, on);
1739
1740
1741 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1742 fd,
1743 on,
1744 ctx->ctx_async_queue, ret));
1745
1746 return ret;
1747 }
1748
1749 #ifdef CONFIG_SMP
1750 /*
1751 * this function is exclusively called from pfm_close().
1752 * The context is not protected at that time, nor are interrupts
1753 * on the remote CPU. That's necessary to avoid deadlocks.
1754 */
1755 static void
pfm_syswide_force_stop(void * info)1756 pfm_syswide_force_stop(void *info)
1757 {
1758 pfm_context_t *ctx = (pfm_context_t *)info;
1759 struct pt_regs *regs = task_pt_regs(current);
1760 struct task_struct *owner;
1761 unsigned long flags;
1762 int ret;
1763
1764 if (ctx->ctx_cpu != smp_processor_id()) {
1765 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1766 ctx->ctx_cpu,
1767 smp_processor_id());
1768 return;
1769 }
1770 owner = GET_PMU_OWNER();
1771 if (owner != ctx->ctx_task) {
1772 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1773 smp_processor_id(),
1774 task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1775 return;
1776 }
1777 if (GET_PMU_CTX() != ctx) {
1778 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1779 smp_processor_id(),
1780 GET_PMU_CTX(), ctx);
1781 return;
1782 }
1783
1784 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1785 /*
1786 * the context is already protected in pfm_close(), we simply
1787 * need to mask interrupts to avoid a PMU interrupt race on
1788 * this CPU
1789 */
1790 local_irq_save(flags);
1791
1792 ret = pfm_context_unload(ctx, NULL, 0, regs);
1793 if (ret) {
1794 DPRINT(("context_unload returned %d\n", ret));
1795 }
1796
1797 /*
1798 * unmask interrupts, PMU interrupts are now spurious here
1799 */
1800 local_irq_restore(flags);
1801 }
1802
1803 static void
pfm_syswide_cleanup_other_cpu(pfm_context_t * ctx)1804 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1805 {
1806 int ret;
1807
1808 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1809 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1810 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1811 }
1812 #endif /* CONFIG_SMP */
1813
1814 /*
1815 * called for each close(). Partially free resources.
1816 * When caller is self-monitoring, the context is unloaded.
1817 */
1818 static int
pfm_flush(struct file * filp,fl_owner_t id)1819 pfm_flush(struct file *filp, fl_owner_t id)
1820 {
1821 pfm_context_t *ctx;
1822 struct task_struct *task;
1823 struct pt_regs *regs;
1824 unsigned long flags;
1825 unsigned long smpl_buf_size = 0UL;
1826 void *smpl_buf_vaddr = NULL;
1827 int state, is_system;
1828
1829 if (PFM_IS_FILE(filp) == 0) {
1830 DPRINT(("bad magic for\n"));
1831 return -EBADF;
1832 }
1833
1834 ctx = filp->private_data;
1835 if (ctx == NULL) {
1836 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1837 return -EBADF;
1838 }
1839
1840 /*
1841 * remove our file from the async queue, if we use this mode.
1842 * This can be done without the context being protected. We come
1843 * here when the context has become unreachable by other tasks.
1844 *
1845 * We may still have active monitoring at this point and we may
1846 * end up in pfm_overflow_handler(). However, fasync_helper()
1847 * operates with interrupts disabled and it cleans up the
1848 * queue. If the PMU handler is called prior to entering
1849 * fasync_helper() then it will send a signal. If it is
1850 * invoked after, it will find an empty queue and no
1851 * signal will be sent. In both case, we are safe
1852 */
1853 PROTECT_CTX(ctx, flags);
1854
1855 state = ctx->ctx_state;
1856 is_system = ctx->ctx_fl_system;
1857
1858 task = PFM_CTX_TASK(ctx);
1859 regs = task_pt_regs(task);
1860
1861 DPRINT(("ctx_state=%d is_current=%d\n",
1862 state,
1863 task == current ? 1 : 0));
1864
1865 /*
1866 * if state == UNLOADED, then task is NULL
1867 */
1868
1869 /*
1870 * we must stop and unload because we are losing access to the context.
1871 */
1872 if (task == current) {
1873 #ifdef CONFIG_SMP
1874 /*
1875 * the task IS the owner but it migrated to another CPU: that's bad
1876 * but we must handle this cleanly. Unfortunately, the kernel does
1877 * not provide a mechanism to block migration (while the context is loaded).
1878 *
1879 * We need to release the resource on the ORIGINAL cpu.
1880 */
1881 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1882
1883 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1884 /*
1885 * keep context protected but unmask interrupt for IPI
1886 */
1887 local_irq_restore(flags);
1888
1889 pfm_syswide_cleanup_other_cpu(ctx);
1890
1891 /*
1892 * restore interrupt masking
1893 */
1894 local_irq_save(flags);
1895
1896 /*
1897 * context is unloaded at this point
1898 */
1899 } else
1900 #endif /* CONFIG_SMP */
1901 {
1902
1903 DPRINT(("forcing unload\n"));
1904 /*
1905 * stop and unload, returning with state UNLOADED
1906 * and session unreserved.
1907 */
1908 pfm_context_unload(ctx, NULL, 0, regs);
1909
1910 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1911 }
1912 }
1913
1914 /*
1915 * remove virtual mapping, if any, for the calling task.
1916 * cannot reset ctx field until last user is calling close().
1917 *
1918 * ctx_smpl_vaddr must never be cleared because it is needed
1919 * by every task with access to the context
1920 *
1921 * When called from do_exit(), the mm context is gone already, therefore
1922 * mm is NULL, i.e., the VMA is already gone and we do not have to
1923 * do anything here
1924 */
1925 if (ctx->ctx_smpl_vaddr && current->mm) {
1926 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1927 smpl_buf_size = ctx->ctx_smpl_size;
1928 }
1929
1930 UNPROTECT_CTX(ctx, flags);
1931
1932 /*
1933 * if there was a mapping, then we systematically remove it
1934 * at this point. Cannot be done inside critical section
1935 * because some VM function reenables interrupts.
1936 *
1937 */
1938 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1939
1940 return 0;
1941 }
1942 /*
1943 * called either on explicit close() or from exit_files().
1944 * Only the LAST user of the file gets to this point, i.e., it is
1945 * called only ONCE.
1946 *
1947 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1948 * (fput()),i.e, last task to access the file. Nobody else can access the
1949 * file at this point.
1950 *
1951 * When called from exit_files(), the VMA has been freed because exit_mm()
1952 * is executed before exit_files().
1953 *
1954 * When called from exit_files(), the current task is not yet ZOMBIE but we
1955 * flush the PMU state to the context.
1956 */
1957 static int
pfm_close(struct inode * inode,struct file * filp)1958 pfm_close(struct inode *inode, struct file *filp)
1959 {
1960 pfm_context_t *ctx;
1961 struct task_struct *task;
1962 struct pt_regs *regs;
1963 DECLARE_WAITQUEUE(wait, current);
1964 unsigned long flags;
1965 unsigned long smpl_buf_size = 0UL;
1966 void *smpl_buf_addr = NULL;
1967 int free_possible = 1;
1968 int state, is_system;
1969
1970 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1971
1972 if (PFM_IS_FILE(filp) == 0) {
1973 DPRINT(("bad magic\n"));
1974 return -EBADF;
1975 }
1976
1977 ctx = filp->private_data;
1978 if (ctx == NULL) {
1979 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1980 return -EBADF;
1981 }
1982
1983 PROTECT_CTX(ctx, flags);
1984
1985 state = ctx->ctx_state;
1986 is_system = ctx->ctx_fl_system;
1987
1988 task = PFM_CTX_TASK(ctx);
1989 regs = task_pt_regs(task);
1990
1991 DPRINT(("ctx_state=%d is_current=%d\n",
1992 state,
1993 task == current ? 1 : 0));
1994
1995 /*
1996 * if task == current, then pfm_flush() unloaded the context
1997 */
1998 if (state == PFM_CTX_UNLOADED) goto doit;
1999
2000 /*
2001 * context is loaded/masked and task != current, we need to
2002 * either force an unload or go zombie
2003 */
2004
2005 /*
2006 * The task is currently blocked or will block after an overflow.
2007 * we must force it to wakeup to get out of the
2008 * MASKED state and transition to the unloaded state by itself.
2009 *
2010 * This situation is only possible for per-task mode
2011 */
2012 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2013
2014 /*
2015 * set a "partial" zombie state to be checked
2016 * upon return from down() in pfm_handle_work().
2017 *
2018 * We cannot use the ZOMBIE state, because it is checked
2019 * by pfm_load_regs() which is called upon wakeup from down().
2020 * In such case, it would free the context and then we would
2021 * return to pfm_handle_work() which would access the
2022 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2023 * but visible to pfm_handle_work().
2024 *
2025 * For some window of time, we have a zombie context with
2026 * ctx_state = MASKED and not ZOMBIE
2027 */
2028 ctx->ctx_fl_going_zombie = 1;
2029
2030 /*
2031 * force task to wake up from MASKED state
2032 */
2033 complete(&ctx->ctx_restart_done);
2034
2035 DPRINT(("waking up ctx_state=%d\n", state));
2036
2037 /*
2038 * put ourself to sleep waiting for the other
2039 * task to report completion
2040 *
2041 * the context is protected by mutex, therefore there
2042 * is no risk of being notified of completion before
2043 * begin actually on the waitq.
2044 */
2045 set_current_state(TASK_INTERRUPTIBLE);
2046 add_wait_queue(&ctx->ctx_zombieq, &wait);
2047
2048 UNPROTECT_CTX(ctx, flags);
2049
2050 /*
2051 * XXX: check for signals :
2052 * - ok for explicit close
2053 * - not ok when coming from exit_files()
2054 */
2055 schedule();
2056
2057
2058 PROTECT_CTX(ctx, flags);
2059
2060
2061 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2062 set_current_state(TASK_RUNNING);
2063
2064 /*
2065 * context is unloaded at this point
2066 */
2067 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2068 }
2069 else if (task != current) {
2070 #ifdef CONFIG_SMP
2071 /*
2072 * switch context to zombie state
2073 */
2074 ctx->ctx_state = PFM_CTX_ZOMBIE;
2075
2076 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2077 /*
2078 * cannot free the context on the spot. deferred until
2079 * the task notices the ZOMBIE state
2080 */
2081 free_possible = 0;
2082 #else
2083 pfm_context_unload(ctx, NULL, 0, regs);
2084 #endif
2085 }
2086
2087 doit:
2088 /* reload state, may have changed during opening of critical section */
2089 state = ctx->ctx_state;
2090
2091 /*
2092 * the context is still attached to a task (possibly current)
2093 * we cannot destroy it right now
2094 */
2095
2096 /*
2097 * we must free the sampling buffer right here because
2098 * we cannot rely on it being cleaned up later by the
2099 * monitored task. It is not possible to free vmalloc'ed
2100 * memory in pfm_load_regs(). Instead, we remove the buffer
2101 * now. should there be subsequent PMU overflow originally
2102 * meant for sampling, the will be converted to spurious
2103 * and that's fine because the monitoring tools is gone anyway.
2104 */
2105 if (ctx->ctx_smpl_hdr) {
2106 smpl_buf_addr = ctx->ctx_smpl_hdr;
2107 smpl_buf_size = ctx->ctx_smpl_size;
2108 /* no more sampling */
2109 ctx->ctx_smpl_hdr = NULL;
2110 ctx->ctx_fl_is_sampling = 0;
2111 }
2112
2113 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2114 state,
2115 free_possible,
2116 smpl_buf_addr,
2117 smpl_buf_size));
2118
2119 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2120
2121 /*
2122 * UNLOADED that the session has already been unreserved.
2123 */
2124 if (state == PFM_CTX_ZOMBIE) {
2125 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2126 }
2127
2128 /*
2129 * disconnect file descriptor from context must be done
2130 * before we unlock.
2131 */
2132 filp->private_data = NULL;
2133
2134 /*
2135 * if we free on the spot, the context is now completely unreachable
2136 * from the callers side. The monitored task side is also cut, so we
2137 * can freely cut.
2138 *
2139 * If we have a deferred free, only the caller side is disconnected.
2140 */
2141 UNPROTECT_CTX(ctx, flags);
2142
2143 /*
2144 * All memory free operations (especially for vmalloc'ed memory)
2145 * MUST be done with interrupts ENABLED.
2146 */
2147 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2148
2149 /*
2150 * return the memory used by the context
2151 */
2152 if (free_possible) pfm_context_free(ctx);
2153
2154 return 0;
2155 }
2156
2157 static int
pfm_no_open(struct inode * irrelevant,struct file * dontcare)2158 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2159 {
2160 DPRINT(("pfm_no_open called\n"));
2161 return -ENXIO;
2162 }
2163
2164
2165
2166 static const struct file_operations pfm_file_ops = {
2167 .llseek = no_llseek,
2168 .read = pfm_read,
2169 .write = pfm_write,
2170 .poll = pfm_poll,
2171 .unlocked_ioctl = pfm_ioctl,
2172 .open = pfm_no_open, /* special open code to disallow open via /proc */
2173 .fasync = pfm_fasync,
2174 .release = pfm_close,
2175 .flush = pfm_flush
2176 };
2177
2178 static int
pfmfs_delete_dentry(const struct dentry * dentry)2179 pfmfs_delete_dentry(const struct dentry *dentry)
2180 {
2181 return 1;
2182 }
2183
pfmfs_dname(struct dentry * dentry,char * buffer,int buflen)2184 static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2185 {
2186 return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2187 dentry->d_inode->i_ino);
2188 }
2189
2190 static const struct dentry_operations pfmfs_dentry_operations = {
2191 .d_delete = pfmfs_delete_dentry,
2192 .d_dname = pfmfs_dname,
2193 };
2194
2195
2196 static struct file *
pfm_alloc_file(pfm_context_t * ctx)2197 pfm_alloc_file(pfm_context_t *ctx)
2198 {
2199 struct file *file;
2200 struct inode *inode;
2201 struct path path;
2202 struct qstr this = { .name = "" };
2203
2204 /*
2205 * allocate a new inode
2206 */
2207 inode = new_inode(pfmfs_mnt->mnt_sb);
2208 if (!inode)
2209 return ERR_PTR(-ENOMEM);
2210
2211 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2212
2213 inode->i_mode = S_IFCHR|S_IRUGO;
2214 inode->i_uid = current_fsuid();
2215 inode->i_gid = current_fsgid();
2216
2217 /*
2218 * allocate a new dcache entry
2219 */
2220 path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2221 if (!path.dentry) {
2222 iput(inode);
2223 return ERR_PTR(-ENOMEM);
2224 }
2225 path.mnt = mntget(pfmfs_mnt);
2226
2227 d_add(path.dentry, inode);
2228
2229 file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2230 if (!file) {
2231 path_put(&path);
2232 return ERR_PTR(-ENFILE);
2233 }
2234
2235 file->f_flags = O_RDONLY;
2236 file->private_data = ctx;
2237
2238 return file;
2239 }
2240
2241 static int
pfm_remap_buffer(struct vm_area_struct * vma,unsigned long buf,unsigned long addr,unsigned long size)2242 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2243 {
2244 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2245
2246 while (size > 0) {
2247 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2248
2249
2250 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2251 return -ENOMEM;
2252
2253 addr += PAGE_SIZE;
2254 buf += PAGE_SIZE;
2255 size -= PAGE_SIZE;
2256 }
2257 return 0;
2258 }
2259
2260 /*
2261 * allocate a sampling buffer and remaps it into the user address space of the task
2262 */
2263 static int
pfm_smpl_buffer_alloc(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned long rsize,void ** user_vaddr)2264 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2265 {
2266 struct mm_struct *mm = task->mm;
2267 struct vm_area_struct *vma = NULL;
2268 unsigned long size;
2269 void *smpl_buf;
2270
2271
2272 /*
2273 * the fixed header + requested size and align to page boundary
2274 */
2275 size = PAGE_ALIGN(rsize);
2276
2277 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2278
2279 /*
2280 * check requested size to avoid Denial-of-service attacks
2281 * XXX: may have to refine this test
2282 * Check against address space limit.
2283 *
2284 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2285 * return -ENOMEM;
2286 */
2287 if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2288 return -ENOMEM;
2289
2290 /*
2291 * We do the easy to undo allocations first.
2292 *
2293 * pfm_rvmalloc(), clears the buffer, so there is no leak
2294 */
2295 smpl_buf = pfm_rvmalloc(size);
2296 if (smpl_buf == NULL) {
2297 DPRINT(("Can't allocate sampling buffer\n"));
2298 return -ENOMEM;
2299 }
2300
2301 DPRINT(("smpl_buf @%p\n", smpl_buf));
2302
2303 /* allocate vma */
2304 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2305 if (!vma) {
2306 DPRINT(("Cannot allocate vma\n"));
2307 goto error_kmem;
2308 }
2309 INIT_LIST_HEAD(&vma->anon_vma_chain);
2310
2311 /*
2312 * partially initialize the vma for the sampling buffer
2313 */
2314 vma->vm_mm = mm;
2315 vma->vm_file = filp;
2316 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2317 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2318
2319 /*
2320 * Now we have everything we need and we can initialize
2321 * and connect all the data structures
2322 */
2323
2324 ctx->ctx_smpl_hdr = smpl_buf;
2325 ctx->ctx_smpl_size = size; /* aligned size */
2326
2327 /*
2328 * Let's do the difficult operations next.
2329 *
2330 * now we atomically find some area in the address space and
2331 * remap the buffer in it.
2332 */
2333 down_write(&task->mm->mmap_sem);
2334
2335 /* find some free area in address space, must have mmap sem held */
2336 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2337 if (vma->vm_start == 0UL) {
2338 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2339 up_write(&task->mm->mmap_sem);
2340 goto error;
2341 }
2342 vma->vm_end = vma->vm_start + size;
2343 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2344
2345 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2346
2347 /* can only be applied to current task, need to have the mm semaphore held when called */
2348 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2349 DPRINT(("Can't remap buffer\n"));
2350 up_write(&task->mm->mmap_sem);
2351 goto error;
2352 }
2353
2354 get_file(filp);
2355
2356 /*
2357 * now insert the vma in the vm list for the process, must be
2358 * done with mmap lock held
2359 */
2360 insert_vm_struct(mm, vma);
2361
2362 mm->total_vm += size >> PAGE_SHIFT;
2363 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2364 vma_pages(vma));
2365 up_write(&task->mm->mmap_sem);
2366
2367 /*
2368 * keep track of user level virtual address
2369 */
2370 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2371 *(unsigned long *)user_vaddr = vma->vm_start;
2372
2373 return 0;
2374
2375 error:
2376 kmem_cache_free(vm_area_cachep, vma);
2377 error_kmem:
2378 pfm_rvfree(smpl_buf, size);
2379
2380 return -ENOMEM;
2381 }
2382
2383 /*
2384 * XXX: do something better here
2385 */
2386 static int
pfm_bad_permissions(struct task_struct * task)2387 pfm_bad_permissions(struct task_struct *task)
2388 {
2389 const struct cred *tcred;
2390 uid_t uid = current_uid();
2391 gid_t gid = current_gid();
2392 int ret;
2393
2394 rcu_read_lock();
2395 tcred = __task_cred(task);
2396
2397 /* inspired by ptrace_attach() */
2398 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2399 uid,
2400 gid,
2401 tcred->euid,
2402 tcred->suid,
2403 tcred->uid,
2404 tcred->egid,
2405 tcred->sgid));
2406
2407 ret = ((uid != tcred->euid)
2408 || (uid != tcred->suid)
2409 || (uid != tcred->uid)
2410 || (gid != tcred->egid)
2411 || (gid != tcred->sgid)
2412 || (gid != tcred->gid)) && !capable(CAP_SYS_PTRACE);
2413
2414 rcu_read_unlock();
2415 return ret;
2416 }
2417
2418 static int
pfarg_is_sane(struct task_struct * task,pfarg_context_t * pfx)2419 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2420 {
2421 int ctx_flags;
2422
2423 /* valid signal */
2424
2425 ctx_flags = pfx->ctx_flags;
2426
2427 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2428
2429 /*
2430 * cannot block in this mode
2431 */
2432 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2433 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2434 return -EINVAL;
2435 }
2436 } else {
2437 }
2438 /* probably more to add here */
2439
2440 return 0;
2441 }
2442
2443 static int
pfm_setup_buffer_fmt(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned int ctx_flags,unsigned int cpu,pfarg_context_t * arg)2444 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2445 unsigned int cpu, pfarg_context_t *arg)
2446 {
2447 pfm_buffer_fmt_t *fmt = NULL;
2448 unsigned long size = 0UL;
2449 void *uaddr = NULL;
2450 void *fmt_arg = NULL;
2451 int ret = 0;
2452 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2453
2454 /* invoke and lock buffer format, if found */
2455 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2456 if (fmt == NULL) {
2457 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2458 return -EINVAL;
2459 }
2460
2461 /*
2462 * buffer argument MUST be contiguous to pfarg_context_t
2463 */
2464 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2465
2466 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2467
2468 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2469
2470 if (ret) goto error;
2471
2472 /* link buffer format and context */
2473 ctx->ctx_buf_fmt = fmt;
2474 ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2475
2476 /*
2477 * check if buffer format wants to use perfmon buffer allocation/mapping service
2478 */
2479 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2480 if (ret) goto error;
2481
2482 if (size) {
2483 /*
2484 * buffer is always remapped into the caller's address space
2485 */
2486 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2487 if (ret) goto error;
2488
2489 /* keep track of user address of buffer */
2490 arg->ctx_smpl_vaddr = uaddr;
2491 }
2492 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2493
2494 error:
2495 return ret;
2496 }
2497
2498 static void
pfm_reset_pmu_state(pfm_context_t * ctx)2499 pfm_reset_pmu_state(pfm_context_t *ctx)
2500 {
2501 int i;
2502
2503 /*
2504 * install reset values for PMC.
2505 */
2506 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2507 if (PMC_IS_IMPL(i) == 0) continue;
2508 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2509 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2510 }
2511 /*
2512 * PMD registers are set to 0UL when the context in memset()
2513 */
2514
2515 /*
2516 * On context switched restore, we must restore ALL pmc and ALL pmd even
2517 * when they are not actively used by the task. In UP, the incoming process
2518 * may otherwise pick up left over PMC, PMD state from the previous process.
2519 * As opposed to PMD, stale PMC can cause harm to the incoming
2520 * process because they may change what is being measured.
2521 * Therefore, we must systematically reinstall the entire
2522 * PMC state. In SMP, the same thing is possible on the
2523 * same CPU but also on between 2 CPUs.
2524 *
2525 * The problem with PMD is information leaking especially
2526 * to user level when psr.sp=0
2527 *
2528 * There is unfortunately no easy way to avoid this problem
2529 * on either UP or SMP. This definitively slows down the
2530 * pfm_load_regs() function.
2531 */
2532
2533 /*
2534 * bitmask of all PMCs accessible to this context
2535 *
2536 * PMC0 is treated differently.
2537 */
2538 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2539
2540 /*
2541 * bitmask of all PMDs that are accessible to this context
2542 */
2543 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2544
2545 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2546
2547 /*
2548 * useful in case of re-enable after disable
2549 */
2550 ctx->ctx_used_ibrs[0] = 0UL;
2551 ctx->ctx_used_dbrs[0] = 0UL;
2552 }
2553
2554 static int
pfm_ctx_getsize(void * arg,size_t * sz)2555 pfm_ctx_getsize(void *arg, size_t *sz)
2556 {
2557 pfarg_context_t *req = (pfarg_context_t *)arg;
2558 pfm_buffer_fmt_t *fmt;
2559
2560 *sz = 0;
2561
2562 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2563
2564 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2565 if (fmt == NULL) {
2566 DPRINT(("cannot find buffer format\n"));
2567 return -EINVAL;
2568 }
2569 /* get just enough to copy in user parameters */
2570 *sz = fmt->fmt_arg_size;
2571 DPRINT(("arg_size=%lu\n", *sz));
2572
2573 return 0;
2574 }
2575
2576
2577
2578 /*
2579 * cannot attach if :
2580 * - kernel task
2581 * - task not owned by caller
2582 * - task incompatible with context mode
2583 */
2584 static int
pfm_task_incompatible(pfm_context_t * ctx,struct task_struct * task)2585 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2586 {
2587 /*
2588 * no kernel task or task not owner by caller
2589 */
2590 if (task->mm == NULL) {
2591 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2592 return -EPERM;
2593 }
2594 if (pfm_bad_permissions(task)) {
2595 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
2596 return -EPERM;
2597 }
2598 /*
2599 * cannot block in self-monitoring mode
2600 */
2601 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2602 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2603 return -EINVAL;
2604 }
2605
2606 if (task->exit_state == EXIT_ZOMBIE) {
2607 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
2608 return -EBUSY;
2609 }
2610
2611 /*
2612 * always ok for self
2613 */
2614 if (task == current) return 0;
2615
2616 if (!task_is_stopped_or_traced(task)) {
2617 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2618 return -EBUSY;
2619 }
2620 /*
2621 * make sure the task is off any CPU
2622 */
2623 wait_task_inactive(task, 0);
2624
2625 /* more to come... */
2626
2627 return 0;
2628 }
2629
2630 static int
pfm_get_task(pfm_context_t * ctx,pid_t pid,struct task_struct ** task)2631 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2632 {
2633 struct task_struct *p = current;
2634 int ret;
2635
2636 /* XXX: need to add more checks here */
2637 if (pid < 2) return -EPERM;
2638
2639 if (pid != task_pid_vnr(current)) {
2640
2641 read_lock(&tasklist_lock);
2642
2643 p = find_task_by_vpid(pid);
2644
2645 /* make sure task cannot go away while we operate on it */
2646 if (p) get_task_struct(p);
2647
2648 read_unlock(&tasklist_lock);
2649
2650 if (p == NULL) return -ESRCH;
2651 }
2652
2653 ret = pfm_task_incompatible(ctx, p);
2654 if (ret == 0) {
2655 *task = p;
2656 } else if (p != current) {
2657 pfm_put_task(p);
2658 }
2659 return ret;
2660 }
2661
2662
2663
2664 static int
pfm_context_create(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2665 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2666 {
2667 pfarg_context_t *req = (pfarg_context_t *)arg;
2668 struct file *filp;
2669 struct path path;
2670 int ctx_flags;
2671 int fd;
2672 int ret;
2673
2674 /* let's check the arguments first */
2675 ret = pfarg_is_sane(current, req);
2676 if (ret < 0)
2677 return ret;
2678
2679 ctx_flags = req->ctx_flags;
2680
2681 ret = -ENOMEM;
2682
2683 fd = get_unused_fd();
2684 if (fd < 0)
2685 return fd;
2686
2687 ctx = pfm_context_alloc(ctx_flags);
2688 if (!ctx)
2689 goto error;
2690
2691 filp = pfm_alloc_file(ctx);
2692 if (IS_ERR(filp)) {
2693 ret = PTR_ERR(filp);
2694 goto error_file;
2695 }
2696
2697 req->ctx_fd = ctx->ctx_fd = fd;
2698
2699 /*
2700 * does the user want to sample?
2701 */
2702 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2703 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2704 if (ret)
2705 goto buffer_error;
2706 }
2707
2708 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2709 ctx,
2710 ctx_flags,
2711 ctx->ctx_fl_system,
2712 ctx->ctx_fl_block,
2713 ctx->ctx_fl_excl_idle,
2714 ctx->ctx_fl_no_msg,
2715 ctx->ctx_fd));
2716
2717 /*
2718 * initialize soft PMU state
2719 */
2720 pfm_reset_pmu_state(ctx);
2721
2722 fd_install(fd, filp);
2723
2724 return 0;
2725
2726 buffer_error:
2727 path = filp->f_path;
2728 put_filp(filp);
2729 path_put(&path);
2730
2731 if (ctx->ctx_buf_fmt) {
2732 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2733 }
2734 error_file:
2735 pfm_context_free(ctx);
2736
2737 error:
2738 put_unused_fd(fd);
2739 return ret;
2740 }
2741
2742 static inline unsigned long
pfm_new_counter_value(pfm_counter_t * reg,int is_long_reset)2743 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2744 {
2745 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2746 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2747 extern unsigned long carta_random32 (unsigned long seed);
2748
2749 if (reg->flags & PFM_REGFL_RANDOM) {
2750 new_seed = carta_random32(old_seed);
2751 val -= (old_seed & mask); /* counter values are negative numbers! */
2752 if ((mask >> 32) != 0)
2753 /* construct a full 64-bit random value: */
2754 new_seed |= carta_random32(old_seed >> 32) << 32;
2755 reg->seed = new_seed;
2756 }
2757 reg->lval = val;
2758 return val;
2759 }
2760
2761 static void
pfm_reset_regs_masked(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2762 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2763 {
2764 unsigned long mask = ovfl_regs[0];
2765 unsigned long reset_others = 0UL;
2766 unsigned long val;
2767 int i;
2768
2769 /*
2770 * now restore reset value on sampling overflowed counters
2771 */
2772 mask >>= PMU_FIRST_COUNTER;
2773 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2774
2775 if ((mask & 0x1UL) == 0UL) continue;
2776
2777 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2778 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2779
2780 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2781 }
2782
2783 /*
2784 * Now take care of resetting the other registers
2785 */
2786 for(i = 0; reset_others; i++, reset_others >>= 1) {
2787
2788 if ((reset_others & 0x1) == 0) continue;
2789
2790 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2791
2792 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2793 is_long_reset ? "long" : "short", i, val));
2794 }
2795 }
2796
2797 static void
pfm_reset_regs(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2798 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2799 {
2800 unsigned long mask = ovfl_regs[0];
2801 unsigned long reset_others = 0UL;
2802 unsigned long val;
2803 int i;
2804
2805 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2806
2807 if (ctx->ctx_state == PFM_CTX_MASKED) {
2808 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2809 return;
2810 }
2811
2812 /*
2813 * now restore reset value on sampling overflowed counters
2814 */
2815 mask >>= PMU_FIRST_COUNTER;
2816 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2817
2818 if ((mask & 0x1UL) == 0UL) continue;
2819
2820 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2821 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2822
2823 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2824
2825 pfm_write_soft_counter(ctx, i, val);
2826 }
2827
2828 /*
2829 * Now take care of resetting the other registers
2830 */
2831 for(i = 0; reset_others; i++, reset_others >>= 1) {
2832
2833 if ((reset_others & 0x1) == 0) continue;
2834
2835 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2836
2837 if (PMD_IS_COUNTING(i)) {
2838 pfm_write_soft_counter(ctx, i, val);
2839 } else {
2840 ia64_set_pmd(i, val);
2841 }
2842 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2843 is_long_reset ? "long" : "short", i, val));
2844 }
2845 ia64_srlz_d();
2846 }
2847
2848 static int
pfm_write_pmcs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2849 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2850 {
2851 struct task_struct *task;
2852 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2853 unsigned long value, pmc_pm;
2854 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2855 unsigned int cnum, reg_flags, flags, pmc_type;
2856 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2857 int is_monitor, is_counting, state;
2858 int ret = -EINVAL;
2859 pfm_reg_check_t wr_func;
2860 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2861
2862 state = ctx->ctx_state;
2863 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2864 is_system = ctx->ctx_fl_system;
2865 task = ctx->ctx_task;
2866 impl_pmds = pmu_conf->impl_pmds[0];
2867
2868 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2869
2870 if (is_loaded) {
2871 /*
2872 * In system wide and when the context is loaded, access can only happen
2873 * when the caller is running on the CPU being monitored by the session.
2874 * It does not have to be the owner (ctx_task) of the context per se.
2875 */
2876 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2877 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2878 return -EBUSY;
2879 }
2880 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2881 }
2882 expert_mode = pfm_sysctl.expert_mode;
2883
2884 for (i = 0; i < count; i++, req++) {
2885
2886 cnum = req->reg_num;
2887 reg_flags = req->reg_flags;
2888 value = req->reg_value;
2889 smpl_pmds = req->reg_smpl_pmds[0];
2890 reset_pmds = req->reg_reset_pmds[0];
2891 flags = 0;
2892
2893
2894 if (cnum >= PMU_MAX_PMCS) {
2895 DPRINT(("pmc%u is invalid\n", cnum));
2896 goto error;
2897 }
2898
2899 pmc_type = pmu_conf->pmc_desc[cnum].type;
2900 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2901 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2902 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2903
2904 /*
2905 * we reject all non implemented PMC as well
2906 * as attempts to modify PMC[0-3] which are used
2907 * as status registers by the PMU
2908 */
2909 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2910 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2911 goto error;
2912 }
2913 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2914 /*
2915 * If the PMC is a monitor, then if the value is not the default:
2916 * - system-wide session: PMCx.pm=1 (privileged monitor)
2917 * - per-task : PMCx.pm=0 (user monitor)
2918 */
2919 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2920 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2921 cnum,
2922 pmc_pm,
2923 is_system));
2924 goto error;
2925 }
2926
2927 if (is_counting) {
2928 /*
2929 * enforce generation of overflow interrupt. Necessary on all
2930 * CPUs.
2931 */
2932 value |= 1 << PMU_PMC_OI;
2933
2934 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2935 flags |= PFM_REGFL_OVFL_NOTIFY;
2936 }
2937
2938 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2939
2940 /* verify validity of smpl_pmds */
2941 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2942 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2943 goto error;
2944 }
2945
2946 /* verify validity of reset_pmds */
2947 if ((reset_pmds & impl_pmds) != reset_pmds) {
2948 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2949 goto error;
2950 }
2951 } else {
2952 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2953 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2954 goto error;
2955 }
2956 /* eventid on non-counting monitors are ignored */
2957 }
2958
2959 /*
2960 * execute write checker, if any
2961 */
2962 if (likely(expert_mode == 0 && wr_func)) {
2963 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2964 if (ret) goto error;
2965 ret = -EINVAL;
2966 }
2967
2968 /*
2969 * no error on this register
2970 */
2971 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2972
2973 /*
2974 * Now we commit the changes to the software state
2975 */
2976
2977 /*
2978 * update overflow information
2979 */
2980 if (is_counting) {
2981 /*
2982 * full flag update each time a register is programmed
2983 */
2984 ctx->ctx_pmds[cnum].flags = flags;
2985
2986 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2987 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2988 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2989
2990 /*
2991 * Mark all PMDS to be accessed as used.
2992 *
2993 * We do not keep track of PMC because we have to
2994 * systematically restore ALL of them.
2995 *
2996 * We do not update the used_monitors mask, because
2997 * if we have not programmed them, then will be in
2998 * a quiescent state, therefore we will not need to
2999 * mask/restore then when context is MASKED.
3000 */
3001 CTX_USED_PMD(ctx, reset_pmds);
3002 CTX_USED_PMD(ctx, smpl_pmds);
3003 /*
3004 * make sure we do not try to reset on
3005 * restart because we have established new values
3006 */
3007 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3008 }
3009 /*
3010 * Needed in case the user does not initialize the equivalent
3011 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3012 * possible leak here.
3013 */
3014 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3015
3016 /*
3017 * keep track of the monitor PMC that we are using.
3018 * we save the value of the pmc in ctx_pmcs[] and if
3019 * the monitoring is not stopped for the context we also
3020 * place it in the saved state area so that it will be
3021 * picked up later by the context switch code.
3022 *
3023 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3024 *
3025 * The value in th_pmcs[] may be modified on overflow, i.e., when
3026 * monitoring needs to be stopped.
3027 */
3028 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3029
3030 /*
3031 * update context state
3032 */
3033 ctx->ctx_pmcs[cnum] = value;
3034
3035 if (is_loaded) {
3036 /*
3037 * write thread state
3038 */
3039 if (is_system == 0) ctx->th_pmcs[cnum] = value;
3040
3041 /*
3042 * write hardware register if we can
3043 */
3044 if (can_access_pmu) {
3045 ia64_set_pmc(cnum, value);
3046 }
3047 #ifdef CONFIG_SMP
3048 else {
3049 /*
3050 * per-task SMP only here
3051 *
3052 * we are guaranteed that the task is not running on the other CPU,
3053 * we indicate that this PMD will need to be reloaded if the task
3054 * is rescheduled on the CPU it ran last on.
3055 */
3056 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3057 }
3058 #endif
3059 }
3060
3061 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3062 cnum,
3063 value,
3064 is_loaded,
3065 can_access_pmu,
3066 flags,
3067 ctx->ctx_all_pmcs[0],
3068 ctx->ctx_used_pmds[0],
3069 ctx->ctx_pmds[cnum].eventid,
3070 smpl_pmds,
3071 reset_pmds,
3072 ctx->ctx_reload_pmcs[0],
3073 ctx->ctx_used_monitors[0],
3074 ctx->ctx_ovfl_regs[0]));
3075 }
3076
3077 /*
3078 * make sure the changes are visible
3079 */
3080 if (can_access_pmu) ia64_srlz_d();
3081
3082 return 0;
3083 error:
3084 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3085 return ret;
3086 }
3087
3088 static int
pfm_write_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3089 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3090 {
3091 struct task_struct *task;
3092 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3093 unsigned long value, hw_value, ovfl_mask;
3094 unsigned int cnum;
3095 int i, can_access_pmu = 0, state;
3096 int is_counting, is_loaded, is_system, expert_mode;
3097 int ret = -EINVAL;
3098 pfm_reg_check_t wr_func;
3099
3100
3101 state = ctx->ctx_state;
3102 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3103 is_system = ctx->ctx_fl_system;
3104 ovfl_mask = pmu_conf->ovfl_val;
3105 task = ctx->ctx_task;
3106
3107 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3108
3109 /*
3110 * on both UP and SMP, we can only write to the PMC when the task is
3111 * the owner of the local PMU.
3112 */
3113 if (likely(is_loaded)) {
3114 /*
3115 * In system wide and when the context is loaded, access can only happen
3116 * when the caller is running on the CPU being monitored by the session.
3117 * It does not have to be the owner (ctx_task) of the context per se.
3118 */
3119 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3120 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3121 return -EBUSY;
3122 }
3123 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3124 }
3125 expert_mode = pfm_sysctl.expert_mode;
3126
3127 for (i = 0; i < count; i++, req++) {
3128
3129 cnum = req->reg_num;
3130 value = req->reg_value;
3131
3132 if (!PMD_IS_IMPL(cnum)) {
3133 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3134 goto abort_mission;
3135 }
3136 is_counting = PMD_IS_COUNTING(cnum);
3137 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3138
3139 /*
3140 * execute write checker, if any
3141 */
3142 if (unlikely(expert_mode == 0 && wr_func)) {
3143 unsigned long v = value;
3144
3145 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3146 if (ret) goto abort_mission;
3147
3148 value = v;
3149 ret = -EINVAL;
3150 }
3151
3152 /*
3153 * no error on this register
3154 */
3155 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3156
3157 /*
3158 * now commit changes to software state
3159 */
3160 hw_value = value;
3161
3162 /*
3163 * update virtualized (64bits) counter
3164 */
3165 if (is_counting) {
3166 /*
3167 * write context state
3168 */
3169 ctx->ctx_pmds[cnum].lval = value;
3170
3171 /*
3172 * when context is load we use the split value
3173 */
3174 if (is_loaded) {
3175 hw_value = value & ovfl_mask;
3176 value = value & ~ovfl_mask;
3177 }
3178 }
3179 /*
3180 * update reset values (not just for counters)
3181 */
3182 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3183 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3184
3185 /*
3186 * update randomization parameters (not just for counters)
3187 */
3188 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3189 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3190
3191 /*
3192 * update context value
3193 */
3194 ctx->ctx_pmds[cnum].val = value;
3195
3196 /*
3197 * Keep track of what we use
3198 *
3199 * We do not keep track of PMC because we have to
3200 * systematically restore ALL of them.
3201 */
3202 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3203
3204 /*
3205 * mark this PMD register used as well
3206 */
3207 CTX_USED_PMD(ctx, RDEP(cnum));
3208
3209 /*
3210 * make sure we do not try to reset on
3211 * restart because we have established new values
3212 */
3213 if (is_counting && state == PFM_CTX_MASKED) {
3214 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3215 }
3216
3217 if (is_loaded) {
3218 /*
3219 * write thread state
3220 */
3221 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3222
3223 /*
3224 * write hardware register if we can
3225 */
3226 if (can_access_pmu) {
3227 ia64_set_pmd(cnum, hw_value);
3228 } else {
3229 #ifdef CONFIG_SMP
3230 /*
3231 * we are guaranteed that the task is not running on the other CPU,
3232 * we indicate that this PMD will need to be reloaded if the task
3233 * is rescheduled on the CPU it ran last on.
3234 */
3235 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3236 #endif
3237 }
3238 }
3239
3240 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3241 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3242 cnum,
3243 value,
3244 is_loaded,
3245 can_access_pmu,
3246 hw_value,
3247 ctx->ctx_pmds[cnum].val,
3248 ctx->ctx_pmds[cnum].short_reset,
3249 ctx->ctx_pmds[cnum].long_reset,
3250 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3251 ctx->ctx_pmds[cnum].seed,
3252 ctx->ctx_pmds[cnum].mask,
3253 ctx->ctx_used_pmds[0],
3254 ctx->ctx_pmds[cnum].reset_pmds[0],
3255 ctx->ctx_reload_pmds[0],
3256 ctx->ctx_all_pmds[0],
3257 ctx->ctx_ovfl_regs[0]));
3258 }
3259
3260 /*
3261 * make changes visible
3262 */
3263 if (can_access_pmu) ia64_srlz_d();
3264
3265 return 0;
3266
3267 abort_mission:
3268 /*
3269 * for now, we have only one possibility for error
3270 */
3271 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3272 return ret;
3273 }
3274
3275 /*
3276 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3277 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3278 * interrupt is delivered during the call, it will be kept pending until we leave, making
3279 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3280 * guaranteed to return consistent data to the user, it may simply be old. It is not
3281 * trivial to treat the overflow while inside the call because you may end up in
3282 * some module sampling buffer code causing deadlocks.
3283 */
3284 static int
pfm_read_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3285 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3286 {
3287 struct task_struct *task;
3288 unsigned long val = 0UL, lval, ovfl_mask, sval;
3289 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3290 unsigned int cnum, reg_flags = 0;
3291 int i, can_access_pmu = 0, state;
3292 int is_loaded, is_system, is_counting, expert_mode;
3293 int ret = -EINVAL;
3294 pfm_reg_check_t rd_func;
3295
3296 /*
3297 * access is possible when loaded only for
3298 * self-monitoring tasks or in UP mode
3299 */
3300
3301 state = ctx->ctx_state;
3302 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3303 is_system = ctx->ctx_fl_system;
3304 ovfl_mask = pmu_conf->ovfl_val;
3305 task = ctx->ctx_task;
3306
3307 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3308
3309 if (likely(is_loaded)) {
3310 /*
3311 * In system wide and when the context is loaded, access can only happen
3312 * when the caller is running on the CPU being monitored by the session.
3313 * It does not have to be the owner (ctx_task) of the context per se.
3314 */
3315 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3316 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3317 return -EBUSY;
3318 }
3319 /*
3320 * this can be true when not self-monitoring only in UP
3321 */
3322 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3323
3324 if (can_access_pmu) ia64_srlz_d();
3325 }
3326 expert_mode = pfm_sysctl.expert_mode;
3327
3328 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3329 is_loaded,
3330 can_access_pmu,
3331 state));
3332
3333 /*
3334 * on both UP and SMP, we can only read the PMD from the hardware register when
3335 * the task is the owner of the local PMU.
3336 */
3337
3338 for (i = 0; i < count; i++, req++) {
3339
3340 cnum = req->reg_num;
3341 reg_flags = req->reg_flags;
3342
3343 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3344 /*
3345 * we can only read the register that we use. That includes
3346 * the one we explicitly initialize AND the one we want included
3347 * in the sampling buffer (smpl_regs).
3348 *
3349 * Having this restriction allows optimization in the ctxsw routine
3350 * without compromising security (leaks)
3351 */
3352 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3353
3354 sval = ctx->ctx_pmds[cnum].val;
3355 lval = ctx->ctx_pmds[cnum].lval;
3356 is_counting = PMD_IS_COUNTING(cnum);
3357
3358 /*
3359 * If the task is not the current one, then we check if the
3360 * PMU state is still in the local live register due to lazy ctxsw.
3361 * If true, then we read directly from the registers.
3362 */
3363 if (can_access_pmu){
3364 val = ia64_get_pmd(cnum);
3365 } else {
3366 /*
3367 * context has been saved
3368 * if context is zombie, then task does not exist anymore.
3369 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3370 */
3371 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3372 }
3373 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3374
3375 if (is_counting) {
3376 /*
3377 * XXX: need to check for overflow when loaded
3378 */
3379 val &= ovfl_mask;
3380 val += sval;
3381 }
3382
3383 /*
3384 * execute read checker, if any
3385 */
3386 if (unlikely(expert_mode == 0 && rd_func)) {
3387 unsigned long v = val;
3388 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3389 if (ret) goto error;
3390 val = v;
3391 ret = -EINVAL;
3392 }
3393
3394 PFM_REG_RETFLAG_SET(reg_flags, 0);
3395
3396 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3397
3398 /*
3399 * update register return value, abort all if problem during copy.
3400 * we only modify the reg_flags field. no check mode is fine because
3401 * access has been verified upfront in sys_perfmonctl().
3402 */
3403 req->reg_value = val;
3404 req->reg_flags = reg_flags;
3405 req->reg_last_reset_val = lval;
3406 }
3407
3408 return 0;
3409
3410 error:
3411 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3412 return ret;
3413 }
3414
3415 int
pfm_mod_write_pmcs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3416 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3417 {
3418 pfm_context_t *ctx;
3419
3420 if (req == NULL) return -EINVAL;
3421
3422 ctx = GET_PMU_CTX();
3423
3424 if (ctx == NULL) return -EINVAL;
3425
3426 /*
3427 * for now limit to current task, which is enough when calling
3428 * from overflow handler
3429 */
3430 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3431
3432 return pfm_write_pmcs(ctx, req, nreq, regs);
3433 }
3434 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3435
3436 int
pfm_mod_read_pmds(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3437 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3438 {
3439 pfm_context_t *ctx;
3440
3441 if (req == NULL) return -EINVAL;
3442
3443 ctx = GET_PMU_CTX();
3444
3445 if (ctx == NULL) return -EINVAL;
3446
3447 /*
3448 * for now limit to current task, which is enough when calling
3449 * from overflow handler
3450 */
3451 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3452
3453 return pfm_read_pmds(ctx, req, nreq, regs);
3454 }
3455 EXPORT_SYMBOL(pfm_mod_read_pmds);
3456
3457 /*
3458 * Only call this function when a process it trying to
3459 * write the debug registers (reading is always allowed)
3460 */
3461 int
pfm_use_debug_registers(struct task_struct * task)3462 pfm_use_debug_registers(struct task_struct *task)
3463 {
3464 pfm_context_t *ctx = task->thread.pfm_context;
3465 unsigned long flags;
3466 int ret = 0;
3467
3468 if (pmu_conf->use_rr_dbregs == 0) return 0;
3469
3470 DPRINT(("called for [%d]\n", task_pid_nr(task)));
3471
3472 /*
3473 * do it only once
3474 */
3475 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3476
3477 /*
3478 * Even on SMP, we do not need to use an atomic here because
3479 * the only way in is via ptrace() and this is possible only when the
3480 * process is stopped. Even in the case where the ctxsw out is not totally
3481 * completed by the time we come here, there is no way the 'stopped' process
3482 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3483 * So this is always safe.
3484 */
3485 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3486
3487 LOCK_PFS(flags);
3488
3489 /*
3490 * We cannot allow setting breakpoints when system wide monitoring
3491 * sessions are using the debug registers.
3492 */
3493 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3494 ret = -1;
3495 else
3496 pfm_sessions.pfs_ptrace_use_dbregs++;
3497
3498 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3499 pfm_sessions.pfs_ptrace_use_dbregs,
3500 pfm_sessions.pfs_sys_use_dbregs,
3501 task_pid_nr(task), ret));
3502
3503 UNLOCK_PFS(flags);
3504
3505 return ret;
3506 }
3507
3508 /*
3509 * This function is called for every task that exits with the
3510 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3511 * able to use the debug registers for debugging purposes via
3512 * ptrace(). Therefore we know it was not using them for
3513 * performance monitoring, so we only decrement the number
3514 * of "ptraced" debug register users to keep the count up to date
3515 */
3516 int
pfm_release_debug_registers(struct task_struct * task)3517 pfm_release_debug_registers(struct task_struct *task)
3518 {
3519 unsigned long flags;
3520 int ret;
3521
3522 if (pmu_conf->use_rr_dbregs == 0) return 0;
3523
3524 LOCK_PFS(flags);
3525 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3526 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3527 ret = -1;
3528 } else {
3529 pfm_sessions.pfs_ptrace_use_dbregs--;
3530 ret = 0;
3531 }
3532 UNLOCK_PFS(flags);
3533
3534 return ret;
3535 }
3536
3537 static int
pfm_restart(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3538 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3539 {
3540 struct task_struct *task;
3541 pfm_buffer_fmt_t *fmt;
3542 pfm_ovfl_ctrl_t rst_ctrl;
3543 int state, is_system;
3544 int ret = 0;
3545
3546 state = ctx->ctx_state;
3547 fmt = ctx->ctx_buf_fmt;
3548 is_system = ctx->ctx_fl_system;
3549 task = PFM_CTX_TASK(ctx);
3550
3551 switch(state) {
3552 case PFM_CTX_MASKED:
3553 break;
3554 case PFM_CTX_LOADED:
3555 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3556 /* fall through */
3557 case PFM_CTX_UNLOADED:
3558 case PFM_CTX_ZOMBIE:
3559 DPRINT(("invalid state=%d\n", state));
3560 return -EBUSY;
3561 default:
3562 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3563 return -EINVAL;
3564 }
3565
3566 /*
3567 * In system wide and when the context is loaded, access can only happen
3568 * when the caller is running on the CPU being monitored by the session.
3569 * It does not have to be the owner (ctx_task) of the context per se.
3570 */
3571 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3572 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3573 return -EBUSY;
3574 }
3575
3576 /* sanity check */
3577 if (unlikely(task == NULL)) {
3578 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3579 return -EINVAL;
3580 }
3581
3582 if (task == current || is_system) {
3583
3584 fmt = ctx->ctx_buf_fmt;
3585
3586 DPRINT(("restarting self %d ovfl=0x%lx\n",
3587 task_pid_nr(task),
3588 ctx->ctx_ovfl_regs[0]));
3589
3590 if (CTX_HAS_SMPL(ctx)) {
3591
3592 prefetch(ctx->ctx_smpl_hdr);
3593
3594 rst_ctrl.bits.mask_monitoring = 0;
3595 rst_ctrl.bits.reset_ovfl_pmds = 0;
3596
3597 if (state == PFM_CTX_LOADED)
3598 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3599 else
3600 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3601 } else {
3602 rst_ctrl.bits.mask_monitoring = 0;
3603 rst_ctrl.bits.reset_ovfl_pmds = 1;
3604 }
3605
3606 if (ret == 0) {
3607 if (rst_ctrl.bits.reset_ovfl_pmds)
3608 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3609
3610 if (rst_ctrl.bits.mask_monitoring == 0) {
3611 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3612
3613 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3614 } else {
3615 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3616
3617 // cannot use pfm_stop_monitoring(task, regs);
3618 }
3619 }
3620 /*
3621 * clear overflowed PMD mask to remove any stale information
3622 */
3623 ctx->ctx_ovfl_regs[0] = 0UL;
3624
3625 /*
3626 * back to LOADED state
3627 */
3628 ctx->ctx_state = PFM_CTX_LOADED;
3629
3630 /*
3631 * XXX: not really useful for self monitoring
3632 */
3633 ctx->ctx_fl_can_restart = 0;
3634
3635 return 0;
3636 }
3637
3638 /*
3639 * restart another task
3640 */
3641
3642 /*
3643 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3644 * one is seen by the task.
3645 */
3646 if (state == PFM_CTX_MASKED) {
3647 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3648 /*
3649 * will prevent subsequent restart before this one is
3650 * seen by other task
3651 */
3652 ctx->ctx_fl_can_restart = 0;
3653 }
3654
3655 /*
3656 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3657 * the task is blocked or on its way to block. That's the normal
3658 * restart path. If the monitoring is not masked, then the task
3659 * can be actively monitoring and we cannot directly intervene.
3660 * Therefore we use the trap mechanism to catch the task and
3661 * force it to reset the buffer/reset PMDs.
3662 *
3663 * if non-blocking, then we ensure that the task will go into
3664 * pfm_handle_work() before returning to user mode.
3665 *
3666 * We cannot explicitly reset another task, it MUST always
3667 * be done by the task itself. This works for system wide because
3668 * the tool that is controlling the session is logically doing
3669 * "self-monitoring".
3670 */
3671 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3672 DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3673 complete(&ctx->ctx_restart_done);
3674 } else {
3675 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3676
3677 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3678
3679 PFM_SET_WORK_PENDING(task, 1);
3680
3681 set_notify_resume(task);
3682
3683 /*
3684 * XXX: send reschedule if task runs on another CPU
3685 */
3686 }
3687 return 0;
3688 }
3689
3690 static int
pfm_debug(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3691 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3692 {
3693 unsigned int m = *(unsigned int *)arg;
3694
3695 pfm_sysctl.debug = m == 0 ? 0 : 1;
3696
3697 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3698
3699 if (m == 0) {
3700 memset(pfm_stats, 0, sizeof(pfm_stats));
3701 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3702 }
3703 return 0;
3704 }
3705
3706 /*
3707 * arg can be NULL and count can be zero for this function
3708 */
3709 static int
pfm_write_ibr_dbr(int mode,pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3710 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3711 {
3712 struct thread_struct *thread = NULL;
3713 struct task_struct *task;
3714 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3715 unsigned long flags;
3716 dbreg_t dbreg;
3717 unsigned int rnum;
3718 int first_time;
3719 int ret = 0, state;
3720 int i, can_access_pmu = 0;
3721 int is_system, is_loaded;
3722
3723 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3724
3725 state = ctx->ctx_state;
3726 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3727 is_system = ctx->ctx_fl_system;
3728 task = ctx->ctx_task;
3729
3730 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3731
3732 /*
3733 * on both UP and SMP, we can only write to the PMC when the task is
3734 * the owner of the local PMU.
3735 */
3736 if (is_loaded) {
3737 thread = &task->thread;
3738 /*
3739 * In system wide and when the context is loaded, access can only happen
3740 * when the caller is running on the CPU being monitored by the session.
3741 * It does not have to be the owner (ctx_task) of the context per se.
3742 */
3743 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3744 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3745 return -EBUSY;
3746 }
3747 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3748 }
3749
3750 /*
3751 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3752 * ensuring that no real breakpoint can be installed via this call.
3753 *
3754 * IMPORTANT: regs can be NULL in this function
3755 */
3756
3757 first_time = ctx->ctx_fl_using_dbreg == 0;
3758
3759 /*
3760 * don't bother if we are loaded and task is being debugged
3761 */
3762 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3763 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3764 return -EBUSY;
3765 }
3766
3767 /*
3768 * check for debug registers in system wide mode
3769 *
3770 * If though a check is done in pfm_context_load(),
3771 * we must repeat it here, in case the registers are
3772 * written after the context is loaded
3773 */
3774 if (is_loaded) {
3775 LOCK_PFS(flags);
3776
3777 if (first_time && is_system) {
3778 if (pfm_sessions.pfs_ptrace_use_dbregs)
3779 ret = -EBUSY;
3780 else
3781 pfm_sessions.pfs_sys_use_dbregs++;
3782 }
3783 UNLOCK_PFS(flags);
3784 }
3785
3786 if (ret != 0) return ret;
3787
3788 /*
3789 * mark ourself as user of the debug registers for
3790 * perfmon purposes.
3791 */
3792 ctx->ctx_fl_using_dbreg = 1;
3793
3794 /*
3795 * clear hardware registers to make sure we don't
3796 * pick up stale state.
3797 *
3798 * for a system wide session, we do not use
3799 * thread.dbr, thread.ibr because this process
3800 * never leaves the current CPU and the state
3801 * is shared by all processes running on it
3802 */
3803 if (first_time && can_access_pmu) {
3804 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3805 for (i=0; i < pmu_conf->num_ibrs; i++) {
3806 ia64_set_ibr(i, 0UL);
3807 ia64_dv_serialize_instruction();
3808 }
3809 ia64_srlz_i();
3810 for (i=0; i < pmu_conf->num_dbrs; i++) {
3811 ia64_set_dbr(i, 0UL);
3812 ia64_dv_serialize_data();
3813 }
3814 ia64_srlz_d();
3815 }
3816
3817 /*
3818 * Now install the values into the registers
3819 */
3820 for (i = 0; i < count; i++, req++) {
3821
3822 rnum = req->dbreg_num;
3823 dbreg.val = req->dbreg_value;
3824
3825 ret = -EINVAL;
3826
3827 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3828 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3829 rnum, dbreg.val, mode, i, count));
3830
3831 goto abort_mission;
3832 }
3833
3834 /*
3835 * make sure we do not install enabled breakpoint
3836 */
3837 if (rnum & 0x1) {
3838 if (mode == PFM_CODE_RR)
3839 dbreg.ibr.ibr_x = 0;
3840 else
3841 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3842 }
3843
3844 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3845
3846 /*
3847 * Debug registers, just like PMC, can only be modified
3848 * by a kernel call. Moreover, perfmon() access to those
3849 * registers are centralized in this routine. The hardware
3850 * does not modify the value of these registers, therefore,
3851 * if we save them as they are written, we can avoid having
3852 * to save them on context switch out. This is made possible
3853 * by the fact that when perfmon uses debug registers, ptrace()
3854 * won't be able to modify them concurrently.
3855 */
3856 if (mode == PFM_CODE_RR) {
3857 CTX_USED_IBR(ctx, rnum);
3858
3859 if (can_access_pmu) {
3860 ia64_set_ibr(rnum, dbreg.val);
3861 ia64_dv_serialize_instruction();
3862 }
3863
3864 ctx->ctx_ibrs[rnum] = dbreg.val;
3865
3866 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3867 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3868 } else {
3869 CTX_USED_DBR(ctx, rnum);
3870
3871 if (can_access_pmu) {
3872 ia64_set_dbr(rnum, dbreg.val);
3873 ia64_dv_serialize_data();
3874 }
3875 ctx->ctx_dbrs[rnum] = dbreg.val;
3876
3877 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3878 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3879 }
3880 }
3881
3882 return 0;
3883
3884 abort_mission:
3885 /*
3886 * in case it was our first attempt, we undo the global modifications
3887 */
3888 if (first_time) {
3889 LOCK_PFS(flags);
3890 if (ctx->ctx_fl_system) {
3891 pfm_sessions.pfs_sys_use_dbregs--;
3892 }
3893 UNLOCK_PFS(flags);
3894 ctx->ctx_fl_using_dbreg = 0;
3895 }
3896 /*
3897 * install error return flag
3898 */
3899 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3900
3901 return ret;
3902 }
3903
3904 static int
pfm_write_ibrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3905 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3906 {
3907 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3908 }
3909
3910 static int
pfm_write_dbrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3911 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3912 {
3913 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3914 }
3915
3916 int
pfm_mod_write_ibrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3917 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3918 {
3919 pfm_context_t *ctx;
3920
3921 if (req == NULL) return -EINVAL;
3922
3923 ctx = GET_PMU_CTX();
3924
3925 if (ctx == NULL) return -EINVAL;
3926
3927 /*
3928 * for now limit to current task, which is enough when calling
3929 * from overflow handler
3930 */
3931 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3932
3933 return pfm_write_ibrs(ctx, req, nreq, regs);
3934 }
3935 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3936
3937 int
pfm_mod_write_dbrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3938 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3939 {
3940 pfm_context_t *ctx;
3941
3942 if (req == NULL) return -EINVAL;
3943
3944 ctx = GET_PMU_CTX();
3945
3946 if (ctx == NULL) return -EINVAL;
3947
3948 /*
3949 * for now limit to current task, which is enough when calling
3950 * from overflow handler
3951 */
3952 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3953
3954 return pfm_write_dbrs(ctx, req, nreq, regs);
3955 }
3956 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3957
3958
3959 static int
pfm_get_features(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3960 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3961 {
3962 pfarg_features_t *req = (pfarg_features_t *)arg;
3963
3964 req->ft_version = PFM_VERSION;
3965 return 0;
3966 }
3967
3968 static int
pfm_stop(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3969 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3970 {
3971 struct pt_regs *tregs;
3972 struct task_struct *task = PFM_CTX_TASK(ctx);
3973 int state, is_system;
3974
3975 state = ctx->ctx_state;
3976 is_system = ctx->ctx_fl_system;
3977
3978 /*
3979 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3980 */
3981 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3982
3983 /*
3984 * In system wide and when the context is loaded, access can only happen
3985 * when the caller is running on the CPU being monitored by the session.
3986 * It does not have to be the owner (ctx_task) of the context per se.
3987 */
3988 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3989 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3990 return -EBUSY;
3991 }
3992 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3993 task_pid_nr(PFM_CTX_TASK(ctx)),
3994 state,
3995 is_system));
3996 /*
3997 * in system mode, we need to update the PMU directly
3998 * and the user level state of the caller, which may not
3999 * necessarily be the creator of the context.
4000 */
4001 if (is_system) {
4002 /*
4003 * Update local PMU first
4004 *
4005 * disable dcr pp
4006 */
4007 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4008 ia64_srlz_i();
4009
4010 /*
4011 * update local cpuinfo
4012 */
4013 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4014
4015 /*
4016 * stop monitoring, does srlz.i
4017 */
4018 pfm_clear_psr_pp();
4019
4020 /*
4021 * stop monitoring in the caller
4022 */
4023 ia64_psr(regs)->pp = 0;
4024
4025 return 0;
4026 }
4027 /*
4028 * per-task mode
4029 */
4030
4031 if (task == current) {
4032 /* stop monitoring at kernel level */
4033 pfm_clear_psr_up();
4034
4035 /*
4036 * stop monitoring at the user level
4037 */
4038 ia64_psr(regs)->up = 0;
4039 } else {
4040 tregs = task_pt_regs(task);
4041
4042 /*
4043 * stop monitoring at the user level
4044 */
4045 ia64_psr(tregs)->up = 0;
4046
4047 /*
4048 * monitoring disabled in kernel at next reschedule
4049 */
4050 ctx->ctx_saved_psr_up = 0;
4051 DPRINT(("task=[%d]\n", task_pid_nr(task)));
4052 }
4053 return 0;
4054 }
4055
4056
4057 static int
pfm_start(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4058 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4059 {
4060 struct pt_regs *tregs;
4061 int state, is_system;
4062
4063 state = ctx->ctx_state;
4064 is_system = ctx->ctx_fl_system;
4065
4066 if (state != PFM_CTX_LOADED) return -EINVAL;
4067
4068 /*
4069 * In system wide and when the context is loaded, access can only happen
4070 * when the caller is running on the CPU being monitored by the session.
4071 * It does not have to be the owner (ctx_task) of the context per se.
4072 */
4073 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4074 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4075 return -EBUSY;
4076 }
4077
4078 /*
4079 * in system mode, we need to update the PMU directly
4080 * and the user level state of the caller, which may not
4081 * necessarily be the creator of the context.
4082 */
4083 if (is_system) {
4084
4085 /*
4086 * set user level psr.pp for the caller
4087 */
4088 ia64_psr(regs)->pp = 1;
4089
4090 /*
4091 * now update the local PMU and cpuinfo
4092 */
4093 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4094
4095 /*
4096 * start monitoring at kernel level
4097 */
4098 pfm_set_psr_pp();
4099
4100 /* enable dcr pp */
4101 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4102 ia64_srlz_i();
4103
4104 return 0;
4105 }
4106
4107 /*
4108 * per-process mode
4109 */
4110
4111 if (ctx->ctx_task == current) {
4112
4113 /* start monitoring at kernel level */
4114 pfm_set_psr_up();
4115
4116 /*
4117 * activate monitoring at user level
4118 */
4119 ia64_psr(regs)->up = 1;
4120
4121 } else {
4122 tregs = task_pt_regs(ctx->ctx_task);
4123
4124 /*
4125 * start monitoring at the kernel level the next
4126 * time the task is scheduled
4127 */
4128 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4129
4130 /*
4131 * activate monitoring at user level
4132 */
4133 ia64_psr(tregs)->up = 1;
4134 }
4135 return 0;
4136 }
4137
4138 static int
pfm_get_pmc_reset(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4139 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4140 {
4141 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4142 unsigned int cnum;
4143 int i;
4144 int ret = -EINVAL;
4145
4146 for (i = 0; i < count; i++, req++) {
4147
4148 cnum = req->reg_num;
4149
4150 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4151
4152 req->reg_value = PMC_DFL_VAL(cnum);
4153
4154 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4155
4156 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4157 }
4158 return 0;
4159
4160 abort_mission:
4161 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4162 return ret;
4163 }
4164
4165 static int
pfm_check_task_exist(pfm_context_t * ctx)4166 pfm_check_task_exist(pfm_context_t *ctx)
4167 {
4168 struct task_struct *g, *t;
4169 int ret = -ESRCH;
4170
4171 read_lock(&tasklist_lock);
4172
4173 do_each_thread (g, t) {
4174 if (t->thread.pfm_context == ctx) {
4175 ret = 0;
4176 goto out;
4177 }
4178 } while_each_thread (g, t);
4179 out:
4180 read_unlock(&tasklist_lock);
4181
4182 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4183
4184 return ret;
4185 }
4186
4187 static int
pfm_context_load(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4188 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4189 {
4190 struct task_struct *task;
4191 struct thread_struct *thread;
4192 struct pfm_context_t *old;
4193 unsigned long flags;
4194 #ifndef CONFIG_SMP
4195 struct task_struct *owner_task = NULL;
4196 #endif
4197 pfarg_load_t *req = (pfarg_load_t *)arg;
4198 unsigned long *pmcs_source, *pmds_source;
4199 int the_cpu;
4200 int ret = 0;
4201 int state, is_system, set_dbregs = 0;
4202
4203 state = ctx->ctx_state;
4204 is_system = ctx->ctx_fl_system;
4205 /*
4206 * can only load from unloaded or terminated state
4207 */
4208 if (state != PFM_CTX_UNLOADED) {
4209 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4210 req->load_pid,
4211 ctx->ctx_state));
4212 return -EBUSY;
4213 }
4214
4215 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4216
4217 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4218 DPRINT(("cannot use blocking mode on self\n"));
4219 return -EINVAL;
4220 }
4221
4222 ret = pfm_get_task(ctx, req->load_pid, &task);
4223 if (ret) {
4224 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4225 return ret;
4226 }
4227
4228 ret = -EINVAL;
4229
4230 /*
4231 * system wide is self monitoring only
4232 */
4233 if (is_system && task != current) {
4234 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4235 req->load_pid));
4236 goto error;
4237 }
4238
4239 thread = &task->thread;
4240
4241 ret = 0;
4242 /*
4243 * cannot load a context which is using range restrictions,
4244 * into a task that is being debugged.
4245 */
4246 if (ctx->ctx_fl_using_dbreg) {
4247 if (thread->flags & IA64_THREAD_DBG_VALID) {
4248 ret = -EBUSY;
4249 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4250 goto error;
4251 }
4252 LOCK_PFS(flags);
4253
4254 if (is_system) {
4255 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4256 DPRINT(("cannot load [%d] dbregs in use\n",
4257 task_pid_nr(task)));
4258 ret = -EBUSY;
4259 } else {
4260 pfm_sessions.pfs_sys_use_dbregs++;
4261 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4262 set_dbregs = 1;
4263 }
4264 }
4265
4266 UNLOCK_PFS(flags);
4267
4268 if (ret) goto error;
4269 }
4270
4271 /*
4272 * SMP system-wide monitoring implies self-monitoring.
4273 *
4274 * The programming model expects the task to
4275 * be pinned on a CPU throughout the session.
4276 * Here we take note of the current CPU at the
4277 * time the context is loaded. No call from
4278 * another CPU will be allowed.
4279 *
4280 * The pinning via shed_setaffinity()
4281 * must be done by the calling task prior
4282 * to this call.
4283 *
4284 * systemwide: keep track of CPU this session is supposed to run on
4285 */
4286 the_cpu = ctx->ctx_cpu = smp_processor_id();
4287
4288 ret = -EBUSY;
4289 /*
4290 * now reserve the session
4291 */
4292 ret = pfm_reserve_session(current, is_system, the_cpu);
4293 if (ret) goto error;
4294
4295 /*
4296 * task is necessarily stopped at this point.
4297 *
4298 * If the previous context was zombie, then it got removed in
4299 * pfm_save_regs(). Therefore we should not see it here.
4300 * If we see a context, then this is an active context
4301 *
4302 * XXX: needs to be atomic
4303 */
4304 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4305 thread->pfm_context, ctx));
4306
4307 ret = -EBUSY;
4308 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4309 if (old != NULL) {
4310 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4311 goto error_unres;
4312 }
4313
4314 pfm_reset_msgq(ctx);
4315
4316 ctx->ctx_state = PFM_CTX_LOADED;
4317
4318 /*
4319 * link context to task
4320 */
4321 ctx->ctx_task = task;
4322
4323 if (is_system) {
4324 /*
4325 * we load as stopped
4326 */
4327 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4328 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4329
4330 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4331 } else {
4332 thread->flags |= IA64_THREAD_PM_VALID;
4333 }
4334
4335 /*
4336 * propagate into thread-state
4337 */
4338 pfm_copy_pmds(task, ctx);
4339 pfm_copy_pmcs(task, ctx);
4340
4341 pmcs_source = ctx->th_pmcs;
4342 pmds_source = ctx->th_pmds;
4343
4344 /*
4345 * always the case for system-wide
4346 */
4347 if (task == current) {
4348
4349 if (is_system == 0) {
4350
4351 /* allow user level control */
4352 ia64_psr(regs)->sp = 0;
4353 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4354
4355 SET_LAST_CPU(ctx, smp_processor_id());
4356 INC_ACTIVATION();
4357 SET_ACTIVATION(ctx);
4358 #ifndef CONFIG_SMP
4359 /*
4360 * push the other task out, if any
4361 */
4362 owner_task = GET_PMU_OWNER();
4363 if (owner_task) pfm_lazy_save_regs(owner_task);
4364 #endif
4365 }
4366 /*
4367 * load all PMD from ctx to PMU (as opposed to thread state)
4368 * restore all PMC from ctx to PMU
4369 */
4370 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4371 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4372
4373 ctx->ctx_reload_pmcs[0] = 0UL;
4374 ctx->ctx_reload_pmds[0] = 0UL;
4375
4376 /*
4377 * guaranteed safe by earlier check against DBG_VALID
4378 */
4379 if (ctx->ctx_fl_using_dbreg) {
4380 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4381 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4382 }
4383 /*
4384 * set new ownership
4385 */
4386 SET_PMU_OWNER(task, ctx);
4387
4388 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4389 } else {
4390 /*
4391 * when not current, task MUST be stopped, so this is safe
4392 */
4393 regs = task_pt_regs(task);
4394
4395 /* force a full reload */
4396 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4397 SET_LAST_CPU(ctx, -1);
4398
4399 /* initial saved psr (stopped) */
4400 ctx->ctx_saved_psr_up = 0UL;
4401 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4402 }
4403
4404 ret = 0;
4405
4406 error_unres:
4407 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4408 error:
4409 /*
4410 * we must undo the dbregs setting (for system-wide)
4411 */
4412 if (ret && set_dbregs) {
4413 LOCK_PFS(flags);
4414 pfm_sessions.pfs_sys_use_dbregs--;
4415 UNLOCK_PFS(flags);
4416 }
4417 /*
4418 * release task, there is now a link with the context
4419 */
4420 if (is_system == 0 && task != current) {
4421 pfm_put_task(task);
4422
4423 if (ret == 0) {
4424 ret = pfm_check_task_exist(ctx);
4425 if (ret) {
4426 ctx->ctx_state = PFM_CTX_UNLOADED;
4427 ctx->ctx_task = NULL;
4428 }
4429 }
4430 }
4431 return ret;
4432 }
4433
4434 /*
4435 * in this function, we do not need to increase the use count
4436 * for the task via get_task_struct(), because we hold the
4437 * context lock. If the task were to disappear while having
4438 * a context attached, it would go through pfm_exit_thread()
4439 * which also grabs the context lock and would therefore be blocked
4440 * until we are here.
4441 */
4442 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4443
4444 static int
pfm_context_unload(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4445 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4446 {
4447 struct task_struct *task = PFM_CTX_TASK(ctx);
4448 struct pt_regs *tregs;
4449 int prev_state, is_system;
4450 int ret;
4451
4452 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4453
4454 prev_state = ctx->ctx_state;
4455 is_system = ctx->ctx_fl_system;
4456
4457 /*
4458 * unload only when necessary
4459 */
4460 if (prev_state == PFM_CTX_UNLOADED) {
4461 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4462 return 0;
4463 }
4464
4465 /*
4466 * clear psr and dcr bits
4467 */
4468 ret = pfm_stop(ctx, NULL, 0, regs);
4469 if (ret) return ret;
4470
4471 ctx->ctx_state = PFM_CTX_UNLOADED;
4472
4473 /*
4474 * in system mode, we need to update the PMU directly
4475 * and the user level state of the caller, which may not
4476 * necessarily be the creator of the context.
4477 */
4478 if (is_system) {
4479
4480 /*
4481 * Update cpuinfo
4482 *
4483 * local PMU is taken care of in pfm_stop()
4484 */
4485 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4486 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4487
4488 /*
4489 * save PMDs in context
4490 * release ownership
4491 */
4492 pfm_flush_pmds(current, ctx);
4493
4494 /*
4495 * at this point we are done with the PMU
4496 * so we can unreserve the resource.
4497 */
4498 if (prev_state != PFM_CTX_ZOMBIE)
4499 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4500
4501 /*
4502 * disconnect context from task
4503 */
4504 task->thread.pfm_context = NULL;
4505 /*
4506 * disconnect task from context
4507 */
4508 ctx->ctx_task = NULL;
4509
4510 /*
4511 * There is nothing more to cleanup here.
4512 */
4513 return 0;
4514 }
4515
4516 /*
4517 * per-task mode
4518 */
4519 tregs = task == current ? regs : task_pt_regs(task);
4520
4521 if (task == current) {
4522 /*
4523 * cancel user level control
4524 */
4525 ia64_psr(regs)->sp = 1;
4526
4527 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4528 }
4529 /*
4530 * save PMDs to context
4531 * release ownership
4532 */
4533 pfm_flush_pmds(task, ctx);
4534
4535 /*
4536 * at this point we are done with the PMU
4537 * so we can unreserve the resource.
4538 *
4539 * when state was ZOMBIE, we have already unreserved.
4540 */
4541 if (prev_state != PFM_CTX_ZOMBIE)
4542 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4543
4544 /*
4545 * reset activation counter and psr
4546 */
4547 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4548 SET_LAST_CPU(ctx, -1);
4549
4550 /*
4551 * PMU state will not be restored
4552 */
4553 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4554
4555 /*
4556 * break links between context and task
4557 */
4558 task->thread.pfm_context = NULL;
4559 ctx->ctx_task = NULL;
4560
4561 PFM_SET_WORK_PENDING(task, 0);
4562
4563 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4564 ctx->ctx_fl_can_restart = 0;
4565 ctx->ctx_fl_going_zombie = 0;
4566
4567 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4568
4569 return 0;
4570 }
4571
4572
4573 /*
4574 * called only from exit_thread(): task == current
4575 * we come here only if current has a context attached (loaded or masked)
4576 */
4577 void
pfm_exit_thread(struct task_struct * task)4578 pfm_exit_thread(struct task_struct *task)
4579 {
4580 pfm_context_t *ctx;
4581 unsigned long flags;
4582 struct pt_regs *regs = task_pt_regs(task);
4583 int ret, state;
4584 int free_ok = 0;
4585
4586 ctx = PFM_GET_CTX(task);
4587
4588 PROTECT_CTX(ctx, flags);
4589
4590 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4591
4592 state = ctx->ctx_state;
4593 switch(state) {
4594 case PFM_CTX_UNLOADED:
4595 /*
4596 * only comes to this function if pfm_context is not NULL, i.e., cannot
4597 * be in unloaded state
4598 */
4599 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4600 break;
4601 case PFM_CTX_LOADED:
4602 case PFM_CTX_MASKED:
4603 ret = pfm_context_unload(ctx, NULL, 0, regs);
4604 if (ret) {
4605 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4606 }
4607 DPRINT(("ctx unloaded for current state was %d\n", state));
4608
4609 pfm_end_notify_user(ctx);
4610 break;
4611 case PFM_CTX_ZOMBIE:
4612 ret = pfm_context_unload(ctx, NULL, 0, regs);
4613 if (ret) {
4614 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4615 }
4616 free_ok = 1;
4617 break;
4618 default:
4619 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4620 break;
4621 }
4622 UNPROTECT_CTX(ctx, flags);
4623
4624 { u64 psr = pfm_get_psr();
4625 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4626 BUG_ON(GET_PMU_OWNER());
4627 BUG_ON(ia64_psr(regs)->up);
4628 BUG_ON(ia64_psr(regs)->pp);
4629 }
4630
4631 /*
4632 * All memory free operations (especially for vmalloc'ed memory)
4633 * MUST be done with interrupts ENABLED.
4634 */
4635 if (free_ok) pfm_context_free(ctx);
4636 }
4637
4638 /*
4639 * functions MUST be listed in the increasing order of their index (see permfon.h)
4640 */
4641 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4642 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4643 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4644 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4645 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4646
4647 static pfm_cmd_desc_t pfm_cmd_tab[]={
4648 /* 0 */PFM_CMD_NONE,
4649 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4650 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4651 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4652 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4653 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4654 /* 6 */PFM_CMD_NONE,
4655 /* 7 */PFM_CMD_NONE,
4656 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4657 /* 9 */PFM_CMD_NONE,
4658 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4659 /* 11 */PFM_CMD_NONE,
4660 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4661 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4662 /* 14 */PFM_CMD_NONE,
4663 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4664 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4665 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4666 /* 18 */PFM_CMD_NONE,
4667 /* 19 */PFM_CMD_NONE,
4668 /* 20 */PFM_CMD_NONE,
4669 /* 21 */PFM_CMD_NONE,
4670 /* 22 */PFM_CMD_NONE,
4671 /* 23 */PFM_CMD_NONE,
4672 /* 24 */PFM_CMD_NONE,
4673 /* 25 */PFM_CMD_NONE,
4674 /* 26 */PFM_CMD_NONE,
4675 /* 27 */PFM_CMD_NONE,
4676 /* 28 */PFM_CMD_NONE,
4677 /* 29 */PFM_CMD_NONE,
4678 /* 30 */PFM_CMD_NONE,
4679 /* 31 */PFM_CMD_NONE,
4680 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4681 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4682 };
4683 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4684
4685 static int
pfm_check_task_state(pfm_context_t * ctx,int cmd,unsigned long flags)4686 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4687 {
4688 struct task_struct *task;
4689 int state, old_state;
4690
4691 recheck:
4692 state = ctx->ctx_state;
4693 task = ctx->ctx_task;
4694
4695 if (task == NULL) {
4696 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4697 return 0;
4698 }
4699
4700 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4701 ctx->ctx_fd,
4702 state,
4703 task_pid_nr(task),
4704 task->state, PFM_CMD_STOPPED(cmd)));
4705
4706 /*
4707 * self-monitoring always ok.
4708 *
4709 * for system-wide the caller can either be the creator of the
4710 * context (to one to which the context is attached to) OR
4711 * a task running on the same CPU as the session.
4712 */
4713 if (task == current || ctx->ctx_fl_system) return 0;
4714
4715 /*
4716 * we are monitoring another thread
4717 */
4718 switch(state) {
4719 case PFM_CTX_UNLOADED:
4720 /*
4721 * if context is UNLOADED we are safe to go
4722 */
4723 return 0;
4724 case PFM_CTX_ZOMBIE:
4725 /*
4726 * no command can operate on a zombie context
4727 */
4728 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4729 return -EINVAL;
4730 case PFM_CTX_MASKED:
4731 /*
4732 * PMU state has been saved to software even though
4733 * the thread may still be running.
4734 */
4735 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4736 }
4737
4738 /*
4739 * context is LOADED or MASKED. Some commands may need to have
4740 * the task stopped.
4741 *
4742 * We could lift this restriction for UP but it would mean that
4743 * the user has no guarantee the task would not run between
4744 * two successive calls to perfmonctl(). That's probably OK.
4745 * If this user wants to ensure the task does not run, then
4746 * the task must be stopped.
4747 */
4748 if (PFM_CMD_STOPPED(cmd)) {
4749 if (!task_is_stopped_or_traced(task)) {
4750 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4751 return -EBUSY;
4752 }
4753 /*
4754 * task is now stopped, wait for ctxsw out
4755 *
4756 * This is an interesting point in the code.
4757 * We need to unprotect the context because
4758 * the pfm_save_regs() routines needs to grab
4759 * the same lock. There are danger in doing
4760 * this because it leaves a window open for
4761 * another task to get access to the context
4762 * and possibly change its state. The one thing
4763 * that is not possible is for the context to disappear
4764 * because we are protected by the VFS layer, i.e.,
4765 * get_fd()/put_fd().
4766 */
4767 old_state = state;
4768
4769 UNPROTECT_CTX(ctx, flags);
4770
4771 wait_task_inactive(task, 0);
4772
4773 PROTECT_CTX(ctx, flags);
4774
4775 /*
4776 * we must recheck to verify if state has changed
4777 */
4778 if (ctx->ctx_state != old_state) {
4779 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4780 goto recheck;
4781 }
4782 }
4783 return 0;
4784 }
4785
4786 /*
4787 * system-call entry point (must return long)
4788 */
4789 asmlinkage long
sys_perfmonctl(int fd,int cmd,void __user * arg,int count)4790 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4791 {
4792 struct file *file = NULL;
4793 pfm_context_t *ctx = NULL;
4794 unsigned long flags = 0UL;
4795 void *args_k = NULL;
4796 long ret; /* will expand int return types */
4797 size_t base_sz, sz, xtra_sz = 0;
4798 int narg, completed_args = 0, call_made = 0, cmd_flags;
4799 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4800 int (*getsize)(void *arg, size_t *sz);
4801 #define PFM_MAX_ARGSIZE 4096
4802
4803 /*
4804 * reject any call if perfmon was disabled at initialization
4805 */
4806 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4807
4808 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4809 DPRINT(("invalid cmd=%d\n", cmd));
4810 return -EINVAL;
4811 }
4812
4813 func = pfm_cmd_tab[cmd].cmd_func;
4814 narg = pfm_cmd_tab[cmd].cmd_narg;
4815 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4816 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4817 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4818
4819 if (unlikely(func == NULL)) {
4820 DPRINT(("invalid cmd=%d\n", cmd));
4821 return -EINVAL;
4822 }
4823
4824 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4825 PFM_CMD_NAME(cmd),
4826 cmd,
4827 narg,
4828 base_sz,
4829 count));
4830
4831 /*
4832 * check if number of arguments matches what the command expects
4833 */
4834 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4835 return -EINVAL;
4836
4837 restart_args:
4838 sz = xtra_sz + base_sz*count;
4839 /*
4840 * limit abuse to min page size
4841 */
4842 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4843 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4844 return -E2BIG;
4845 }
4846
4847 /*
4848 * allocate default-sized argument buffer
4849 */
4850 if (likely(count && args_k == NULL)) {
4851 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4852 if (args_k == NULL) return -ENOMEM;
4853 }
4854
4855 ret = -EFAULT;
4856
4857 /*
4858 * copy arguments
4859 *
4860 * assume sz = 0 for command without parameters
4861 */
4862 if (sz && copy_from_user(args_k, arg, sz)) {
4863 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4864 goto error_args;
4865 }
4866
4867 /*
4868 * check if command supports extra parameters
4869 */
4870 if (completed_args == 0 && getsize) {
4871 /*
4872 * get extra parameters size (based on main argument)
4873 */
4874 ret = (*getsize)(args_k, &xtra_sz);
4875 if (ret) goto error_args;
4876
4877 completed_args = 1;
4878
4879 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4880
4881 /* retry if necessary */
4882 if (likely(xtra_sz)) goto restart_args;
4883 }
4884
4885 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4886
4887 ret = -EBADF;
4888
4889 file = fget(fd);
4890 if (unlikely(file == NULL)) {
4891 DPRINT(("invalid fd %d\n", fd));
4892 goto error_args;
4893 }
4894 if (unlikely(PFM_IS_FILE(file) == 0)) {
4895 DPRINT(("fd %d not related to perfmon\n", fd));
4896 goto error_args;
4897 }
4898
4899 ctx = file->private_data;
4900 if (unlikely(ctx == NULL)) {
4901 DPRINT(("no context for fd %d\n", fd));
4902 goto error_args;
4903 }
4904 prefetch(&ctx->ctx_state);
4905
4906 PROTECT_CTX(ctx, flags);
4907
4908 /*
4909 * check task is stopped
4910 */
4911 ret = pfm_check_task_state(ctx, cmd, flags);
4912 if (unlikely(ret)) goto abort_locked;
4913
4914 skip_fd:
4915 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4916
4917 call_made = 1;
4918
4919 abort_locked:
4920 if (likely(ctx)) {
4921 DPRINT(("context unlocked\n"));
4922 UNPROTECT_CTX(ctx, flags);
4923 }
4924
4925 /* copy argument back to user, if needed */
4926 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4927
4928 error_args:
4929 if (file)
4930 fput(file);
4931
4932 kfree(args_k);
4933
4934 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4935
4936 return ret;
4937 }
4938
4939 static void
pfm_resume_after_ovfl(pfm_context_t * ctx,unsigned long ovfl_regs,struct pt_regs * regs)4940 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4941 {
4942 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4943 pfm_ovfl_ctrl_t rst_ctrl;
4944 int state;
4945 int ret = 0;
4946
4947 state = ctx->ctx_state;
4948 /*
4949 * Unlock sampling buffer and reset index atomically
4950 * XXX: not really needed when blocking
4951 */
4952 if (CTX_HAS_SMPL(ctx)) {
4953
4954 rst_ctrl.bits.mask_monitoring = 0;
4955 rst_ctrl.bits.reset_ovfl_pmds = 0;
4956
4957 if (state == PFM_CTX_LOADED)
4958 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4959 else
4960 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4961 } else {
4962 rst_ctrl.bits.mask_monitoring = 0;
4963 rst_ctrl.bits.reset_ovfl_pmds = 1;
4964 }
4965
4966 if (ret == 0) {
4967 if (rst_ctrl.bits.reset_ovfl_pmds) {
4968 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4969 }
4970 if (rst_ctrl.bits.mask_monitoring == 0) {
4971 DPRINT(("resuming monitoring\n"));
4972 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4973 } else {
4974 DPRINT(("stopping monitoring\n"));
4975 //pfm_stop_monitoring(current, regs);
4976 }
4977 ctx->ctx_state = PFM_CTX_LOADED;
4978 }
4979 }
4980
4981 /*
4982 * context MUST BE LOCKED when calling
4983 * can only be called for current
4984 */
4985 static void
pfm_context_force_terminate(pfm_context_t * ctx,struct pt_regs * regs)4986 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4987 {
4988 int ret;
4989
4990 DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4991
4992 ret = pfm_context_unload(ctx, NULL, 0, regs);
4993 if (ret) {
4994 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4995 }
4996
4997 /*
4998 * and wakeup controlling task, indicating we are now disconnected
4999 */
5000 wake_up_interruptible(&ctx->ctx_zombieq);
5001
5002 /*
5003 * given that context is still locked, the controlling
5004 * task will only get access when we return from
5005 * pfm_handle_work().
5006 */
5007 }
5008
5009 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5010
5011 /*
5012 * pfm_handle_work() can be called with interrupts enabled
5013 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5014 * call may sleep, therefore we must re-enable interrupts
5015 * to avoid deadlocks. It is safe to do so because this function
5016 * is called ONLY when returning to user level (pUStk=1), in which case
5017 * there is no risk of kernel stack overflow due to deep
5018 * interrupt nesting.
5019 */
5020 void
pfm_handle_work(void)5021 pfm_handle_work(void)
5022 {
5023 pfm_context_t *ctx;
5024 struct pt_regs *regs;
5025 unsigned long flags, dummy_flags;
5026 unsigned long ovfl_regs;
5027 unsigned int reason;
5028 int ret;
5029
5030 ctx = PFM_GET_CTX(current);
5031 if (ctx == NULL) {
5032 printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5033 task_pid_nr(current));
5034 return;
5035 }
5036
5037 PROTECT_CTX(ctx, flags);
5038
5039 PFM_SET_WORK_PENDING(current, 0);
5040
5041 regs = task_pt_regs(current);
5042
5043 /*
5044 * extract reason for being here and clear
5045 */
5046 reason = ctx->ctx_fl_trap_reason;
5047 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5048 ovfl_regs = ctx->ctx_ovfl_regs[0];
5049
5050 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5051
5052 /*
5053 * must be done before we check for simple-reset mode
5054 */
5055 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5056 goto do_zombie;
5057
5058 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5059 if (reason == PFM_TRAP_REASON_RESET)
5060 goto skip_blocking;
5061
5062 /*
5063 * restore interrupt mask to what it was on entry.
5064 * Could be enabled/diasbled.
5065 */
5066 UNPROTECT_CTX(ctx, flags);
5067
5068 /*
5069 * force interrupt enable because of down_interruptible()
5070 */
5071 local_irq_enable();
5072
5073 DPRINT(("before block sleeping\n"));
5074
5075 /*
5076 * may go through without blocking on SMP systems
5077 * if restart has been received already by the time we call down()
5078 */
5079 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5080
5081 DPRINT(("after block sleeping ret=%d\n", ret));
5082
5083 /*
5084 * lock context and mask interrupts again
5085 * We save flags into a dummy because we may have
5086 * altered interrupts mask compared to entry in this
5087 * function.
5088 */
5089 PROTECT_CTX(ctx, dummy_flags);
5090
5091 /*
5092 * we need to read the ovfl_regs only after wake-up
5093 * because we may have had pfm_write_pmds() in between
5094 * and that can changed PMD values and therefore
5095 * ovfl_regs is reset for these new PMD values.
5096 */
5097 ovfl_regs = ctx->ctx_ovfl_regs[0];
5098
5099 if (ctx->ctx_fl_going_zombie) {
5100 do_zombie:
5101 DPRINT(("context is zombie, bailing out\n"));
5102 pfm_context_force_terminate(ctx, regs);
5103 goto nothing_to_do;
5104 }
5105 /*
5106 * in case of interruption of down() we don't restart anything
5107 */
5108 if (ret < 0)
5109 goto nothing_to_do;
5110
5111 skip_blocking:
5112 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5113 ctx->ctx_ovfl_regs[0] = 0UL;
5114
5115 nothing_to_do:
5116 /*
5117 * restore flags as they were upon entry
5118 */
5119 UNPROTECT_CTX(ctx, flags);
5120 }
5121
5122 static int
pfm_notify_user(pfm_context_t * ctx,pfm_msg_t * msg)5123 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5124 {
5125 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5126 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5127 return 0;
5128 }
5129
5130 DPRINT(("waking up somebody\n"));
5131
5132 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5133
5134 /*
5135 * safe, we are not in intr handler, nor in ctxsw when
5136 * we come here
5137 */
5138 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5139
5140 return 0;
5141 }
5142
5143 static int
pfm_ovfl_notify_user(pfm_context_t * ctx,unsigned long ovfl_pmds)5144 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5145 {
5146 pfm_msg_t *msg = NULL;
5147
5148 if (ctx->ctx_fl_no_msg == 0) {
5149 msg = pfm_get_new_msg(ctx);
5150 if (msg == NULL) {
5151 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5152 return -1;
5153 }
5154
5155 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5156 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5157 msg->pfm_ovfl_msg.msg_active_set = 0;
5158 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5159 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5160 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5161 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5162 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5163 }
5164
5165 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5166 msg,
5167 ctx->ctx_fl_no_msg,
5168 ctx->ctx_fd,
5169 ovfl_pmds));
5170
5171 return pfm_notify_user(ctx, msg);
5172 }
5173
5174 static int
pfm_end_notify_user(pfm_context_t * ctx)5175 pfm_end_notify_user(pfm_context_t *ctx)
5176 {
5177 pfm_msg_t *msg;
5178
5179 msg = pfm_get_new_msg(ctx);
5180 if (msg == NULL) {
5181 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5182 return -1;
5183 }
5184 /* no leak */
5185 memset(msg, 0, sizeof(*msg));
5186
5187 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5188 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5189 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5190
5191 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5192 msg,
5193 ctx->ctx_fl_no_msg,
5194 ctx->ctx_fd));
5195
5196 return pfm_notify_user(ctx, msg);
5197 }
5198
5199 /*
5200 * main overflow processing routine.
5201 * it can be called from the interrupt path or explicitly during the context switch code
5202 */
pfm_overflow_handler(struct task_struct * task,pfm_context_t * ctx,unsigned long pmc0,struct pt_regs * regs)5203 static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5204 unsigned long pmc0, struct pt_regs *regs)
5205 {
5206 pfm_ovfl_arg_t *ovfl_arg;
5207 unsigned long mask;
5208 unsigned long old_val, ovfl_val, new_val;
5209 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5210 unsigned long tstamp;
5211 pfm_ovfl_ctrl_t ovfl_ctrl;
5212 unsigned int i, has_smpl;
5213 int must_notify = 0;
5214
5215 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5216
5217 /*
5218 * sanity test. Should never happen
5219 */
5220 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5221
5222 tstamp = ia64_get_itc();
5223 mask = pmc0 >> PMU_FIRST_COUNTER;
5224 ovfl_val = pmu_conf->ovfl_val;
5225 has_smpl = CTX_HAS_SMPL(ctx);
5226
5227 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5228 "used_pmds=0x%lx\n",
5229 pmc0,
5230 task ? task_pid_nr(task): -1,
5231 (regs ? regs->cr_iip : 0),
5232 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5233 ctx->ctx_used_pmds[0]));
5234
5235
5236 /*
5237 * first we update the virtual counters
5238 * assume there was a prior ia64_srlz_d() issued
5239 */
5240 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5241
5242 /* skip pmd which did not overflow */
5243 if ((mask & 0x1) == 0) continue;
5244
5245 /*
5246 * Note that the pmd is not necessarily 0 at this point as qualified events
5247 * may have happened before the PMU was frozen. The residual count is not
5248 * taken into consideration here but will be with any read of the pmd via
5249 * pfm_read_pmds().
5250 */
5251 old_val = new_val = ctx->ctx_pmds[i].val;
5252 new_val += 1 + ovfl_val;
5253 ctx->ctx_pmds[i].val = new_val;
5254
5255 /*
5256 * check for overflow condition
5257 */
5258 if (likely(old_val > new_val)) {
5259 ovfl_pmds |= 1UL << i;
5260 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5261 }
5262
5263 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5264 i,
5265 new_val,
5266 old_val,
5267 ia64_get_pmd(i) & ovfl_val,
5268 ovfl_pmds,
5269 ovfl_notify));
5270 }
5271
5272 /*
5273 * there was no 64-bit overflow, nothing else to do
5274 */
5275 if (ovfl_pmds == 0UL) return;
5276
5277 /*
5278 * reset all control bits
5279 */
5280 ovfl_ctrl.val = 0;
5281 reset_pmds = 0UL;
5282
5283 /*
5284 * if a sampling format module exists, then we "cache" the overflow by
5285 * calling the module's handler() routine.
5286 */
5287 if (has_smpl) {
5288 unsigned long start_cycles, end_cycles;
5289 unsigned long pmd_mask;
5290 int j, k, ret = 0;
5291 int this_cpu = smp_processor_id();
5292
5293 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5294 ovfl_arg = &ctx->ctx_ovfl_arg;
5295
5296 prefetch(ctx->ctx_smpl_hdr);
5297
5298 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5299
5300 mask = 1UL << i;
5301
5302 if ((pmd_mask & 0x1) == 0) continue;
5303
5304 ovfl_arg->ovfl_pmd = (unsigned char )i;
5305 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5306 ovfl_arg->active_set = 0;
5307 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5308 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5309
5310 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5311 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5312 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5313
5314 /*
5315 * copy values of pmds of interest. Sampling format may copy them
5316 * into sampling buffer.
5317 */
5318 if (smpl_pmds) {
5319 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5320 if ((smpl_pmds & 0x1) == 0) continue;
5321 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5322 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5323 }
5324 }
5325
5326 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5327
5328 start_cycles = ia64_get_itc();
5329
5330 /*
5331 * call custom buffer format record (handler) routine
5332 */
5333 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5334
5335 end_cycles = ia64_get_itc();
5336
5337 /*
5338 * For those controls, we take the union because they have
5339 * an all or nothing behavior.
5340 */
5341 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5342 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5343 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5344 /*
5345 * build the bitmask of pmds to reset now
5346 */
5347 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5348
5349 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5350 }
5351 /*
5352 * when the module cannot handle the rest of the overflows, we abort right here
5353 */
5354 if (ret && pmd_mask) {
5355 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5356 pmd_mask<<PMU_FIRST_COUNTER));
5357 }
5358 /*
5359 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5360 */
5361 ovfl_pmds &= ~reset_pmds;
5362 } else {
5363 /*
5364 * when no sampling module is used, then the default
5365 * is to notify on overflow if requested by user
5366 */
5367 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5368 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5369 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5370 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5371 /*
5372 * if needed, we reset all overflowed pmds
5373 */
5374 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5375 }
5376
5377 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5378
5379 /*
5380 * reset the requested PMD registers using the short reset values
5381 */
5382 if (reset_pmds) {
5383 unsigned long bm = reset_pmds;
5384 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5385 }
5386
5387 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5388 /*
5389 * keep track of what to reset when unblocking
5390 */
5391 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5392
5393 /*
5394 * check for blocking context
5395 */
5396 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5397
5398 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5399
5400 /*
5401 * set the perfmon specific checking pending work for the task
5402 */
5403 PFM_SET_WORK_PENDING(task, 1);
5404
5405 /*
5406 * when coming from ctxsw, current still points to the
5407 * previous task, therefore we must work with task and not current.
5408 */
5409 set_notify_resume(task);
5410 }
5411 /*
5412 * defer until state is changed (shorten spin window). the context is locked
5413 * anyway, so the signal receiver would come spin for nothing.
5414 */
5415 must_notify = 1;
5416 }
5417
5418 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5419 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5420 PFM_GET_WORK_PENDING(task),
5421 ctx->ctx_fl_trap_reason,
5422 ovfl_pmds,
5423 ovfl_notify,
5424 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5425 /*
5426 * in case monitoring must be stopped, we toggle the psr bits
5427 */
5428 if (ovfl_ctrl.bits.mask_monitoring) {
5429 pfm_mask_monitoring(task);
5430 ctx->ctx_state = PFM_CTX_MASKED;
5431 ctx->ctx_fl_can_restart = 1;
5432 }
5433
5434 /*
5435 * send notification now
5436 */
5437 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5438
5439 return;
5440
5441 sanity_check:
5442 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5443 smp_processor_id(),
5444 task ? task_pid_nr(task) : -1,
5445 pmc0);
5446 return;
5447
5448 stop_monitoring:
5449 /*
5450 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5451 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5452 * come here as zombie only if the task is the current task. In which case, we
5453 * can access the PMU hardware directly.
5454 *
5455 * Note that zombies do have PM_VALID set. So here we do the minimal.
5456 *
5457 * In case the context was zombified it could not be reclaimed at the time
5458 * the monitoring program exited. At this point, the PMU reservation has been
5459 * returned, the sampiing buffer has been freed. We must convert this call
5460 * into a spurious interrupt. However, we must also avoid infinite overflows
5461 * by stopping monitoring for this task. We can only come here for a per-task
5462 * context. All we need to do is to stop monitoring using the psr bits which
5463 * are always task private. By re-enabling secure montioring, we ensure that
5464 * the monitored task will not be able to re-activate monitoring.
5465 * The task will eventually be context switched out, at which point the context
5466 * will be reclaimed (that includes releasing ownership of the PMU).
5467 *
5468 * So there might be a window of time where the number of per-task session is zero
5469 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5470 * context. This is safe because if a per-task session comes in, it will push this one
5471 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5472 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5473 * also push our zombie context out.
5474 *
5475 * Overall pretty hairy stuff....
5476 */
5477 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5478 pfm_clear_psr_up();
5479 ia64_psr(regs)->up = 0;
5480 ia64_psr(regs)->sp = 1;
5481 return;
5482 }
5483
5484 static int
pfm_do_interrupt_handler(void * arg,struct pt_regs * regs)5485 pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5486 {
5487 struct task_struct *task;
5488 pfm_context_t *ctx;
5489 unsigned long flags;
5490 u64 pmc0;
5491 int this_cpu = smp_processor_id();
5492 int retval = 0;
5493
5494 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5495
5496 /*
5497 * srlz.d done before arriving here
5498 */
5499 pmc0 = ia64_get_pmc(0);
5500
5501 task = GET_PMU_OWNER();
5502 ctx = GET_PMU_CTX();
5503
5504 /*
5505 * if we have some pending bits set
5506 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5507 */
5508 if (PMC0_HAS_OVFL(pmc0) && task) {
5509 /*
5510 * we assume that pmc0.fr is always set here
5511 */
5512
5513 /* sanity check */
5514 if (!ctx) goto report_spurious1;
5515
5516 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5517 goto report_spurious2;
5518
5519 PROTECT_CTX_NOPRINT(ctx, flags);
5520
5521 pfm_overflow_handler(task, ctx, pmc0, regs);
5522
5523 UNPROTECT_CTX_NOPRINT(ctx, flags);
5524
5525 } else {
5526 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5527 retval = -1;
5528 }
5529 /*
5530 * keep it unfrozen at all times
5531 */
5532 pfm_unfreeze_pmu();
5533
5534 return retval;
5535
5536 report_spurious1:
5537 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5538 this_cpu, task_pid_nr(task));
5539 pfm_unfreeze_pmu();
5540 return -1;
5541 report_spurious2:
5542 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5543 this_cpu,
5544 task_pid_nr(task));
5545 pfm_unfreeze_pmu();
5546 return -1;
5547 }
5548
5549 static irqreturn_t
pfm_interrupt_handler(int irq,void * arg)5550 pfm_interrupt_handler(int irq, void *arg)
5551 {
5552 unsigned long start_cycles, total_cycles;
5553 unsigned long min, max;
5554 int this_cpu;
5555 int ret;
5556 struct pt_regs *regs = get_irq_regs();
5557
5558 this_cpu = get_cpu();
5559 if (likely(!pfm_alt_intr_handler)) {
5560 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5561 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5562
5563 start_cycles = ia64_get_itc();
5564
5565 ret = pfm_do_interrupt_handler(arg, regs);
5566
5567 total_cycles = ia64_get_itc();
5568
5569 /*
5570 * don't measure spurious interrupts
5571 */
5572 if (likely(ret == 0)) {
5573 total_cycles -= start_cycles;
5574
5575 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5576 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5577
5578 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5579 }
5580 }
5581 else {
5582 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5583 }
5584
5585 put_cpu();
5586 return IRQ_HANDLED;
5587 }
5588
5589 /*
5590 * /proc/perfmon interface, for debug only
5591 */
5592
5593 #define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5594
5595 static void *
pfm_proc_start(struct seq_file * m,loff_t * pos)5596 pfm_proc_start(struct seq_file *m, loff_t *pos)
5597 {
5598 if (*pos == 0) {
5599 return PFM_PROC_SHOW_HEADER;
5600 }
5601
5602 while (*pos <= nr_cpu_ids) {
5603 if (cpu_online(*pos - 1)) {
5604 return (void *)*pos;
5605 }
5606 ++*pos;
5607 }
5608 return NULL;
5609 }
5610
5611 static void *
pfm_proc_next(struct seq_file * m,void * v,loff_t * pos)5612 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5613 {
5614 ++*pos;
5615 return pfm_proc_start(m, pos);
5616 }
5617
5618 static void
pfm_proc_stop(struct seq_file * m,void * v)5619 pfm_proc_stop(struct seq_file *m, void *v)
5620 {
5621 }
5622
5623 static void
pfm_proc_show_header(struct seq_file * m)5624 pfm_proc_show_header(struct seq_file *m)
5625 {
5626 struct list_head * pos;
5627 pfm_buffer_fmt_t * entry;
5628 unsigned long flags;
5629
5630 seq_printf(m,
5631 "perfmon version : %u.%u\n"
5632 "model : %s\n"
5633 "fastctxsw : %s\n"
5634 "expert mode : %s\n"
5635 "ovfl_mask : 0x%lx\n"
5636 "PMU flags : 0x%x\n",
5637 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5638 pmu_conf->pmu_name,
5639 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5640 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5641 pmu_conf->ovfl_val,
5642 pmu_conf->flags);
5643
5644 LOCK_PFS(flags);
5645
5646 seq_printf(m,
5647 "proc_sessions : %u\n"
5648 "sys_sessions : %u\n"
5649 "sys_use_dbregs : %u\n"
5650 "ptrace_use_dbregs : %u\n",
5651 pfm_sessions.pfs_task_sessions,
5652 pfm_sessions.pfs_sys_sessions,
5653 pfm_sessions.pfs_sys_use_dbregs,
5654 pfm_sessions.pfs_ptrace_use_dbregs);
5655
5656 UNLOCK_PFS(flags);
5657
5658 spin_lock(&pfm_buffer_fmt_lock);
5659
5660 list_for_each(pos, &pfm_buffer_fmt_list) {
5661 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5662 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5663 entry->fmt_uuid[0],
5664 entry->fmt_uuid[1],
5665 entry->fmt_uuid[2],
5666 entry->fmt_uuid[3],
5667 entry->fmt_uuid[4],
5668 entry->fmt_uuid[5],
5669 entry->fmt_uuid[6],
5670 entry->fmt_uuid[7],
5671 entry->fmt_uuid[8],
5672 entry->fmt_uuid[9],
5673 entry->fmt_uuid[10],
5674 entry->fmt_uuid[11],
5675 entry->fmt_uuid[12],
5676 entry->fmt_uuid[13],
5677 entry->fmt_uuid[14],
5678 entry->fmt_uuid[15],
5679 entry->fmt_name);
5680 }
5681 spin_unlock(&pfm_buffer_fmt_lock);
5682
5683 }
5684
5685 static int
pfm_proc_show(struct seq_file * m,void * v)5686 pfm_proc_show(struct seq_file *m, void *v)
5687 {
5688 unsigned long psr;
5689 unsigned int i;
5690 int cpu;
5691
5692 if (v == PFM_PROC_SHOW_HEADER) {
5693 pfm_proc_show_header(m);
5694 return 0;
5695 }
5696
5697 /* show info for CPU (v - 1) */
5698
5699 cpu = (long)v - 1;
5700 seq_printf(m,
5701 "CPU%-2d overflow intrs : %lu\n"
5702 "CPU%-2d overflow cycles : %lu\n"
5703 "CPU%-2d overflow min : %lu\n"
5704 "CPU%-2d overflow max : %lu\n"
5705 "CPU%-2d smpl handler calls : %lu\n"
5706 "CPU%-2d smpl handler cycles : %lu\n"
5707 "CPU%-2d spurious intrs : %lu\n"
5708 "CPU%-2d replay intrs : %lu\n"
5709 "CPU%-2d syst_wide : %d\n"
5710 "CPU%-2d dcr_pp : %d\n"
5711 "CPU%-2d exclude idle : %d\n"
5712 "CPU%-2d owner : %d\n"
5713 "CPU%-2d context : %p\n"
5714 "CPU%-2d activations : %lu\n",
5715 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5716 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5717 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5718 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5719 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5720 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5721 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5722 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5723 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5724 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5725 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5726 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5727 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5728 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5729
5730 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5731
5732 psr = pfm_get_psr();
5733
5734 ia64_srlz_d();
5735
5736 seq_printf(m,
5737 "CPU%-2d psr : 0x%lx\n"
5738 "CPU%-2d pmc0 : 0x%lx\n",
5739 cpu, psr,
5740 cpu, ia64_get_pmc(0));
5741
5742 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5743 if (PMC_IS_COUNTING(i) == 0) continue;
5744 seq_printf(m,
5745 "CPU%-2d pmc%u : 0x%lx\n"
5746 "CPU%-2d pmd%u : 0x%lx\n",
5747 cpu, i, ia64_get_pmc(i),
5748 cpu, i, ia64_get_pmd(i));
5749 }
5750 }
5751 return 0;
5752 }
5753
5754 const struct seq_operations pfm_seq_ops = {
5755 .start = pfm_proc_start,
5756 .next = pfm_proc_next,
5757 .stop = pfm_proc_stop,
5758 .show = pfm_proc_show
5759 };
5760
5761 static int
pfm_proc_open(struct inode * inode,struct file * file)5762 pfm_proc_open(struct inode *inode, struct file *file)
5763 {
5764 return seq_open(file, &pfm_seq_ops);
5765 }
5766
5767
5768 /*
5769 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5770 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5771 * is active or inactive based on mode. We must rely on the value in
5772 * local_cpu_data->pfm_syst_info
5773 */
5774 void
pfm_syst_wide_update_task(struct task_struct * task,unsigned long info,int is_ctxswin)5775 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5776 {
5777 struct pt_regs *regs;
5778 unsigned long dcr;
5779 unsigned long dcr_pp;
5780
5781 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5782
5783 /*
5784 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5785 * on every CPU, so we can rely on the pid to identify the idle task.
5786 */
5787 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5788 regs = task_pt_regs(task);
5789 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5790 return;
5791 }
5792 /*
5793 * if monitoring has started
5794 */
5795 if (dcr_pp) {
5796 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5797 /*
5798 * context switching in?
5799 */
5800 if (is_ctxswin) {
5801 /* mask monitoring for the idle task */
5802 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5803 pfm_clear_psr_pp();
5804 ia64_srlz_i();
5805 return;
5806 }
5807 /*
5808 * context switching out
5809 * restore monitoring for next task
5810 *
5811 * Due to inlining this odd if-then-else construction generates
5812 * better code.
5813 */
5814 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5815 pfm_set_psr_pp();
5816 ia64_srlz_i();
5817 }
5818 }
5819
5820 #ifdef CONFIG_SMP
5821
5822 static void
pfm_force_cleanup(pfm_context_t * ctx,struct pt_regs * regs)5823 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5824 {
5825 struct task_struct *task = ctx->ctx_task;
5826
5827 ia64_psr(regs)->up = 0;
5828 ia64_psr(regs)->sp = 1;
5829
5830 if (GET_PMU_OWNER() == task) {
5831 DPRINT(("cleared ownership for [%d]\n",
5832 task_pid_nr(ctx->ctx_task)));
5833 SET_PMU_OWNER(NULL, NULL);
5834 }
5835
5836 /*
5837 * disconnect the task from the context and vice-versa
5838 */
5839 PFM_SET_WORK_PENDING(task, 0);
5840
5841 task->thread.pfm_context = NULL;
5842 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5843
5844 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
5845 }
5846
5847
5848 /*
5849 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5850 */
5851 void
pfm_save_regs(struct task_struct * task)5852 pfm_save_regs(struct task_struct *task)
5853 {
5854 pfm_context_t *ctx;
5855 unsigned long flags;
5856 u64 psr;
5857
5858
5859 ctx = PFM_GET_CTX(task);
5860 if (ctx == NULL) return;
5861
5862 /*
5863 * we always come here with interrupts ALREADY disabled by
5864 * the scheduler. So we simply need to protect against concurrent
5865 * access, not CPU concurrency.
5866 */
5867 flags = pfm_protect_ctx_ctxsw(ctx);
5868
5869 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5870 struct pt_regs *regs = task_pt_regs(task);
5871
5872 pfm_clear_psr_up();
5873
5874 pfm_force_cleanup(ctx, regs);
5875
5876 BUG_ON(ctx->ctx_smpl_hdr);
5877
5878 pfm_unprotect_ctx_ctxsw(ctx, flags);
5879
5880 pfm_context_free(ctx);
5881 return;
5882 }
5883
5884 /*
5885 * save current PSR: needed because we modify it
5886 */
5887 ia64_srlz_d();
5888 psr = pfm_get_psr();
5889
5890 BUG_ON(psr & (IA64_PSR_I));
5891
5892 /*
5893 * stop monitoring:
5894 * This is the last instruction which may generate an overflow
5895 *
5896 * We do not need to set psr.sp because, it is irrelevant in kernel.
5897 * It will be restored from ipsr when going back to user level
5898 */
5899 pfm_clear_psr_up();
5900
5901 /*
5902 * keep a copy of psr.up (for reload)
5903 */
5904 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5905
5906 /*
5907 * release ownership of this PMU.
5908 * PM interrupts are masked, so nothing
5909 * can happen.
5910 */
5911 SET_PMU_OWNER(NULL, NULL);
5912
5913 /*
5914 * we systematically save the PMD as we have no
5915 * guarantee we will be schedule at that same
5916 * CPU again.
5917 */
5918 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5919
5920 /*
5921 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5922 * we will need it on the restore path to check
5923 * for pending overflow.
5924 */
5925 ctx->th_pmcs[0] = ia64_get_pmc(0);
5926
5927 /*
5928 * unfreeze PMU if had pending overflows
5929 */
5930 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5931
5932 /*
5933 * finally, allow context access.
5934 * interrupts will still be masked after this call.
5935 */
5936 pfm_unprotect_ctx_ctxsw(ctx, flags);
5937 }
5938
5939 #else /* !CONFIG_SMP */
5940 void
pfm_save_regs(struct task_struct * task)5941 pfm_save_regs(struct task_struct *task)
5942 {
5943 pfm_context_t *ctx;
5944 u64 psr;
5945
5946 ctx = PFM_GET_CTX(task);
5947 if (ctx == NULL) return;
5948
5949 /*
5950 * save current PSR: needed because we modify it
5951 */
5952 psr = pfm_get_psr();
5953
5954 BUG_ON(psr & (IA64_PSR_I));
5955
5956 /*
5957 * stop monitoring:
5958 * This is the last instruction which may generate an overflow
5959 *
5960 * We do not need to set psr.sp because, it is irrelevant in kernel.
5961 * It will be restored from ipsr when going back to user level
5962 */
5963 pfm_clear_psr_up();
5964
5965 /*
5966 * keep a copy of psr.up (for reload)
5967 */
5968 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5969 }
5970
5971 static void
pfm_lazy_save_regs(struct task_struct * task)5972 pfm_lazy_save_regs (struct task_struct *task)
5973 {
5974 pfm_context_t *ctx;
5975 unsigned long flags;
5976
5977 { u64 psr = pfm_get_psr();
5978 BUG_ON(psr & IA64_PSR_UP);
5979 }
5980
5981 ctx = PFM_GET_CTX(task);
5982
5983 /*
5984 * we need to mask PMU overflow here to
5985 * make sure that we maintain pmc0 until
5986 * we save it. overflow interrupts are
5987 * treated as spurious if there is no
5988 * owner.
5989 *
5990 * XXX: I don't think this is necessary
5991 */
5992 PROTECT_CTX(ctx,flags);
5993
5994 /*
5995 * release ownership of this PMU.
5996 * must be done before we save the registers.
5997 *
5998 * after this call any PMU interrupt is treated
5999 * as spurious.
6000 */
6001 SET_PMU_OWNER(NULL, NULL);
6002
6003 /*
6004 * save all the pmds we use
6005 */
6006 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
6007
6008 /*
6009 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6010 * it is needed to check for pended overflow
6011 * on the restore path
6012 */
6013 ctx->th_pmcs[0] = ia64_get_pmc(0);
6014
6015 /*
6016 * unfreeze PMU if had pending overflows
6017 */
6018 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6019
6020 /*
6021 * now get can unmask PMU interrupts, they will
6022 * be treated as purely spurious and we will not
6023 * lose any information
6024 */
6025 UNPROTECT_CTX(ctx,flags);
6026 }
6027 #endif /* CONFIG_SMP */
6028
6029 #ifdef CONFIG_SMP
6030 /*
6031 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6032 */
6033 void
pfm_load_regs(struct task_struct * task)6034 pfm_load_regs (struct task_struct *task)
6035 {
6036 pfm_context_t *ctx;
6037 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6038 unsigned long flags;
6039 u64 psr, psr_up;
6040 int need_irq_resend;
6041
6042 ctx = PFM_GET_CTX(task);
6043 if (unlikely(ctx == NULL)) return;
6044
6045 BUG_ON(GET_PMU_OWNER());
6046
6047 /*
6048 * possible on unload
6049 */
6050 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6051
6052 /*
6053 * we always come here with interrupts ALREADY disabled by
6054 * the scheduler. So we simply need to protect against concurrent
6055 * access, not CPU concurrency.
6056 */
6057 flags = pfm_protect_ctx_ctxsw(ctx);
6058 psr = pfm_get_psr();
6059
6060 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6061
6062 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6063 BUG_ON(psr & IA64_PSR_I);
6064
6065 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6066 struct pt_regs *regs = task_pt_regs(task);
6067
6068 BUG_ON(ctx->ctx_smpl_hdr);
6069
6070 pfm_force_cleanup(ctx, regs);
6071
6072 pfm_unprotect_ctx_ctxsw(ctx, flags);
6073
6074 /*
6075 * this one (kmalloc'ed) is fine with interrupts disabled
6076 */
6077 pfm_context_free(ctx);
6078
6079 return;
6080 }
6081
6082 /*
6083 * we restore ALL the debug registers to avoid picking up
6084 * stale state.
6085 */
6086 if (ctx->ctx_fl_using_dbreg) {
6087 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6088 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6089 }
6090 /*
6091 * retrieve saved psr.up
6092 */
6093 psr_up = ctx->ctx_saved_psr_up;
6094
6095 /*
6096 * if we were the last user of the PMU on that CPU,
6097 * then nothing to do except restore psr
6098 */
6099 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6100
6101 /*
6102 * retrieve partial reload masks (due to user modifications)
6103 */
6104 pmc_mask = ctx->ctx_reload_pmcs[0];
6105 pmd_mask = ctx->ctx_reload_pmds[0];
6106
6107 } else {
6108 /*
6109 * To avoid leaking information to the user level when psr.sp=0,
6110 * we must reload ALL implemented pmds (even the ones we don't use).
6111 * In the kernel we only allow PFM_READ_PMDS on registers which
6112 * we initialized or requested (sampling) so there is no risk there.
6113 */
6114 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6115
6116 /*
6117 * ALL accessible PMCs are systematically reloaded, unused registers
6118 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6119 * up stale configuration.
6120 *
6121 * PMC0 is never in the mask. It is always restored separately.
6122 */
6123 pmc_mask = ctx->ctx_all_pmcs[0];
6124 }
6125 /*
6126 * when context is MASKED, we will restore PMC with plm=0
6127 * and PMD with stale information, but that's ok, nothing
6128 * will be captured.
6129 *
6130 * XXX: optimize here
6131 */
6132 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6133 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6134
6135 /*
6136 * check for pending overflow at the time the state
6137 * was saved.
6138 */
6139 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6140 /*
6141 * reload pmc0 with the overflow information
6142 * On McKinley PMU, this will trigger a PMU interrupt
6143 */
6144 ia64_set_pmc(0, ctx->th_pmcs[0]);
6145 ia64_srlz_d();
6146 ctx->th_pmcs[0] = 0UL;
6147
6148 /*
6149 * will replay the PMU interrupt
6150 */
6151 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6152
6153 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6154 }
6155
6156 /*
6157 * we just did a reload, so we reset the partial reload fields
6158 */
6159 ctx->ctx_reload_pmcs[0] = 0UL;
6160 ctx->ctx_reload_pmds[0] = 0UL;
6161
6162 SET_LAST_CPU(ctx, smp_processor_id());
6163
6164 /*
6165 * dump activation value for this PMU
6166 */
6167 INC_ACTIVATION();
6168 /*
6169 * record current activation for this context
6170 */
6171 SET_ACTIVATION(ctx);
6172
6173 /*
6174 * establish new ownership.
6175 */
6176 SET_PMU_OWNER(task, ctx);
6177
6178 /*
6179 * restore the psr.up bit. measurement
6180 * is active again.
6181 * no PMU interrupt can happen at this point
6182 * because we still have interrupts disabled.
6183 */
6184 if (likely(psr_up)) pfm_set_psr_up();
6185
6186 /*
6187 * allow concurrent access to context
6188 */
6189 pfm_unprotect_ctx_ctxsw(ctx, flags);
6190 }
6191 #else /* !CONFIG_SMP */
6192 /*
6193 * reload PMU state for UP kernels
6194 * in 2.5 we come here with interrupts disabled
6195 */
6196 void
pfm_load_regs(struct task_struct * task)6197 pfm_load_regs (struct task_struct *task)
6198 {
6199 pfm_context_t *ctx;
6200 struct task_struct *owner;
6201 unsigned long pmd_mask, pmc_mask;
6202 u64 psr, psr_up;
6203 int need_irq_resend;
6204
6205 owner = GET_PMU_OWNER();
6206 ctx = PFM_GET_CTX(task);
6207 psr = pfm_get_psr();
6208
6209 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6210 BUG_ON(psr & IA64_PSR_I);
6211
6212 /*
6213 * we restore ALL the debug registers to avoid picking up
6214 * stale state.
6215 *
6216 * This must be done even when the task is still the owner
6217 * as the registers may have been modified via ptrace()
6218 * (not perfmon) by the previous task.
6219 */
6220 if (ctx->ctx_fl_using_dbreg) {
6221 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6222 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6223 }
6224
6225 /*
6226 * retrieved saved psr.up
6227 */
6228 psr_up = ctx->ctx_saved_psr_up;
6229 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6230
6231 /*
6232 * short path, our state is still there, just
6233 * need to restore psr and we go
6234 *
6235 * we do not touch either PMC nor PMD. the psr is not touched
6236 * by the overflow_handler. So we are safe w.r.t. to interrupt
6237 * concurrency even without interrupt masking.
6238 */
6239 if (likely(owner == task)) {
6240 if (likely(psr_up)) pfm_set_psr_up();
6241 return;
6242 }
6243
6244 /*
6245 * someone else is still using the PMU, first push it out and
6246 * then we'll be able to install our stuff !
6247 *
6248 * Upon return, there will be no owner for the current PMU
6249 */
6250 if (owner) pfm_lazy_save_regs(owner);
6251
6252 /*
6253 * To avoid leaking information to the user level when psr.sp=0,
6254 * we must reload ALL implemented pmds (even the ones we don't use).
6255 * In the kernel we only allow PFM_READ_PMDS on registers which
6256 * we initialized or requested (sampling) so there is no risk there.
6257 */
6258 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6259
6260 /*
6261 * ALL accessible PMCs are systematically reloaded, unused registers
6262 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6263 * up stale configuration.
6264 *
6265 * PMC0 is never in the mask. It is always restored separately
6266 */
6267 pmc_mask = ctx->ctx_all_pmcs[0];
6268
6269 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6270 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6271
6272 /*
6273 * check for pending overflow at the time the state
6274 * was saved.
6275 */
6276 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6277 /*
6278 * reload pmc0 with the overflow information
6279 * On McKinley PMU, this will trigger a PMU interrupt
6280 */
6281 ia64_set_pmc(0, ctx->th_pmcs[0]);
6282 ia64_srlz_d();
6283
6284 ctx->th_pmcs[0] = 0UL;
6285
6286 /*
6287 * will replay the PMU interrupt
6288 */
6289 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6290
6291 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6292 }
6293
6294 /*
6295 * establish new ownership.
6296 */
6297 SET_PMU_OWNER(task, ctx);
6298
6299 /*
6300 * restore the psr.up bit. measurement
6301 * is active again.
6302 * no PMU interrupt can happen at this point
6303 * because we still have interrupts disabled.
6304 */
6305 if (likely(psr_up)) pfm_set_psr_up();
6306 }
6307 #endif /* CONFIG_SMP */
6308
6309 /*
6310 * this function assumes monitoring is stopped
6311 */
6312 static void
pfm_flush_pmds(struct task_struct * task,pfm_context_t * ctx)6313 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6314 {
6315 u64 pmc0;
6316 unsigned long mask2, val, pmd_val, ovfl_val;
6317 int i, can_access_pmu = 0;
6318 int is_self;
6319
6320 /*
6321 * is the caller the task being monitored (or which initiated the
6322 * session for system wide measurements)
6323 */
6324 is_self = ctx->ctx_task == task ? 1 : 0;
6325
6326 /*
6327 * can access PMU is task is the owner of the PMU state on the current CPU
6328 * or if we are running on the CPU bound to the context in system-wide mode
6329 * (that is not necessarily the task the context is attached to in this mode).
6330 * In system-wide we always have can_access_pmu true because a task running on an
6331 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6332 */
6333 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6334 if (can_access_pmu) {
6335 /*
6336 * Mark the PMU as not owned
6337 * This will cause the interrupt handler to do nothing in case an overflow
6338 * interrupt was in-flight
6339 * This also guarantees that pmc0 will contain the final state
6340 * It virtually gives us full control on overflow processing from that point
6341 * on.
6342 */
6343 SET_PMU_OWNER(NULL, NULL);
6344 DPRINT(("releasing ownership\n"));
6345
6346 /*
6347 * read current overflow status:
6348 *
6349 * we are guaranteed to read the final stable state
6350 */
6351 ia64_srlz_d();
6352 pmc0 = ia64_get_pmc(0); /* slow */
6353
6354 /*
6355 * reset freeze bit, overflow status information destroyed
6356 */
6357 pfm_unfreeze_pmu();
6358 } else {
6359 pmc0 = ctx->th_pmcs[0];
6360 /*
6361 * clear whatever overflow status bits there were
6362 */
6363 ctx->th_pmcs[0] = 0;
6364 }
6365 ovfl_val = pmu_conf->ovfl_val;
6366 /*
6367 * we save all the used pmds
6368 * we take care of overflows for counting PMDs
6369 *
6370 * XXX: sampling situation is not taken into account here
6371 */
6372 mask2 = ctx->ctx_used_pmds[0];
6373
6374 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6375
6376 for (i = 0; mask2; i++, mask2>>=1) {
6377
6378 /* skip non used pmds */
6379 if ((mask2 & 0x1) == 0) continue;
6380
6381 /*
6382 * can access PMU always true in system wide mode
6383 */
6384 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6385
6386 if (PMD_IS_COUNTING(i)) {
6387 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6388 task_pid_nr(task),
6389 i,
6390 ctx->ctx_pmds[i].val,
6391 val & ovfl_val));
6392
6393 /*
6394 * we rebuild the full 64 bit value of the counter
6395 */
6396 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6397
6398 /*
6399 * now everything is in ctx_pmds[] and we need
6400 * to clear the saved context from save_regs() such that
6401 * pfm_read_pmds() gets the correct value
6402 */
6403 pmd_val = 0UL;
6404
6405 /*
6406 * take care of overflow inline
6407 */
6408 if (pmc0 & (1UL << i)) {
6409 val += 1 + ovfl_val;
6410 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6411 }
6412 }
6413
6414 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6415
6416 if (is_self) ctx->th_pmds[i] = pmd_val;
6417
6418 ctx->ctx_pmds[i].val = val;
6419 }
6420 }
6421
6422 static struct irqaction perfmon_irqaction = {
6423 .handler = pfm_interrupt_handler,
6424 .flags = IRQF_DISABLED,
6425 .name = "perfmon"
6426 };
6427
6428 static void
pfm_alt_save_pmu_state(void * data)6429 pfm_alt_save_pmu_state(void *data)
6430 {
6431 struct pt_regs *regs;
6432
6433 regs = task_pt_regs(current);
6434
6435 DPRINT(("called\n"));
6436
6437 /*
6438 * should not be necessary but
6439 * let's take not risk
6440 */
6441 pfm_clear_psr_up();
6442 pfm_clear_psr_pp();
6443 ia64_psr(regs)->pp = 0;
6444
6445 /*
6446 * This call is required
6447 * May cause a spurious interrupt on some processors
6448 */
6449 pfm_freeze_pmu();
6450
6451 ia64_srlz_d();
6452 }
6453
6454 void
pfm_alt_restore_pmu_state(void * data)6455 pfm_alt_restore_pmu_state(void *data)
6456 {
6457 struct pt_regs *regs;
6458
6459 regs = task_pt_regs(current);
6460
6461 DPRINT(("called\n"));
6462
6463 /*
6464 * put PMU back in state expected
6465 * by perfmon
6466 */
6467 pfm_clear_psr_up();
6468 pfm_clear_psr_pp();
6469 ia64_psr(regs)->pp = 0;
6470
6471 /*
6472 * perfmon runs with PMU unfrozen at all times
6473 */
6474 pfm_unfreeze_pmu();
6475
6476 ia64_srlz_d();
6477 }
6478
6479 int
pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6480 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6481 {
6482 int ret, i;
6483 int reserve_cpu;
6484
6485 /* some sanity checks */
6486 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6487
6488 /* do the easy test first */
6489 if (pfm_alt_intr_handler) return -EBUSY;
6490
6491 /* one at a time in the install or remove, just fail the others */
6492 if (!spin_trylock(&pfm_alt_install_check)) {
6493 return -EBUSY;
6494 }
6495
6496 /* reserve our session */
6497 for_each_online_cpu(reserve_cpu) {
6498 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6499 if (ret) goto cleanup_reserve;
6500 }
6501
6502 /* save the current system wide pmu states */
6503 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6504 if (ret) {
6505 DPRINT(("on_each_cpu() failed: %d\n", ret));
6506 goto cleanup_reserve;
6507 }
6508
6509 /* officially change to the alternate interrupt handler */
6510 pfm_alt_intr_handler = hdl;
6511
6512 spin_unlock(&pfm_alt_install_check);
6513
6514 return 0;
6515
6516 cleanup_reserve:
6517 for_each_online_cpu(i) {
6518 /* don't unreserve more than we reserved */
6519 if (i >= reserve_cpu) break;
6520
6521 pfm_unreserve_session(NULL, 1, i);
6522 }
6523
6524 spin_unlock(&pfm_alt_install_check);
6525
6526 return ret;
6527 }
6528 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6529
6530 int
pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6531 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6532 {
6533 int i;
6534 int ret;
6535
6536 if (hdl == NULL) return -EINVAL;
6537
6538 /* cannot remove someone else's handler! */
6539 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6540
6541 /* one at a time in the install or remove, just fail the others */
6542 if (!spin_trylock(&pfm_alt_install_check)) {
6543 return -EBUSY;
6544 }
6545
6546 pfm_alt_intr_handler = NULL;
6547
6548 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6549 if (ret) {
6550 DPRINT(("on_each_cpu() failed: %d\n", ret));
6551 }
6552
6553 for_each_online_cpu(i) {
6554 pfm_unreserve_session(NULL, 1, i);
6555 }
6556
6557 spin_unlock(&pfm_alt_install_check);
6558
6559 return 0;
6560 }
6561 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6562
6563 /*
6564 * perfmon initialization routine, called from the initcall() table
6565 */
6566 static int init_pfm_fs(void);
6567
6568 static int __init
pfm_probe_pmu(void)6569 pfm_probe_pmu(void)
6570 {
6571 pmu_config_t **p;
6572 int family;
6573
6574 family = local_cpu_data->family;
6575 p = pmu_confs;
6576
6577 while(*p) {
6578 if ((*p)->probe) {
6579 if ((*p)->probe() == 0) goto found;
6580 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6581 goto found;
6582 }
6583 p++;
6584 }
6585 return -1;
6586 found:
6587 pmu_conf = *p;
6588 return 0;
6589 }
6590
6591 static const struct file_operations pfm_proc_fops = {
6592 .open = pfm_proc_open,
6593 .read = seq_read,
6594 .llseek = seq_lseek,
6595 .release = seq_release,
6596 };
6597
6598 int __init
pfm_init(void)6599 pfm_init(void)
6600 {
6601 unsigned int n, n_counters, i;
6602
6603 printk("perfmon: version %u.%u IRQ %u\n",
6604 PFM_VERSION_MAJ,
6605 PFM_VERSION_MIN,
6606 IA64_PERFMON_VECTOR);
6607
6608 if (pfm_probe_pmu()) {
6609 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6610 local_cpu_data->family);
6611 return -ENODEV;
6612 }
6613
6614 /*
6615 * compute the number of implemented PMD/PMC from the
6616 * description tables
6617 */
6618 n = 0;
6619 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6620 if (PMC_IS_IMPL(i) == 0) continue;
6621 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6622 n++;
6623 }
6624 pmu_conf->num_pmcs = n;
6625
6626 n = 0; n_counters = 0;
6627 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6628 if (PMD_IS_IMPL(i) == 0) continue;
6629 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6630 n++;
6631 if (PMD_IS_COUNTING(i)) n_counters++;
6632 }
6633 pmu_conf->num_pmds = n;
6634 pmu_conf->num_counters = n_counters;
6635
6636 /*
6637 * sanity checks on the number of debug registers
6638 */
6639 if (pmu_conf->use_rr_dbregs) {
6640 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6641 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6642 pmu_conf = NULL;
6643 return -1;
6644 }
6645 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6646 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6647 pmu_conf = NULL;
6648 return -1;
6649 }
6650 }
6651
6652 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6653 pmu_conf->pmu_name,
6654 pmu_conf->num_pmcs,
6655 pmu_conf->num_pmds,
6656 pmu_conf->num_counters,
6657 ffz(pmu_conf->ovfl_val));
6658
6659 /* sanity check */
6660 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6661 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6662 pmu_conf = NULL;
6663 return -1;
6664 }
6665
6666 /*
6667 * create /proc/perfmon (mostly for debugging purposes)
6668 */
6669 perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6670 if (perfmon_dir == NULL) {
6671 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6672 pmu_conf = NULL;
6673 return -1;
6674 }
6675
6676 /*
6677 * create /proc/sys/kernel/perfmon (for debugging purposes)
6678 */
6679 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6680
6681 /*
6682 * initialize all our spinlocks
6683 */
6684 spin_lock_init(&pfm_sessions.pfs_lock);
6685 spin_lock_init(&pfm_buffer_fmt_lock);
6686
6687 init_pfm_fs();
6688
6689 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6690
6691 return 0;
6692 }
6693
6694 __initcall(pfm_init);
6695
6696 /*
6697 * this function is called before pfm_init()
6698 */
6699 void
pfm_init_percpu(void)6700 pfm_init_percpu (void)
6701 {
6702 static int first_time=1;
6703 /*
6704 * make sure no measurement is active
6705 * (may inherit programmed PMCs from EFI).
6706 */
6707 pfm_clear_psr_pp();
6708 pfm_clear_psr_up();
6709
6710 /*
6711 * we run with the PMU not frozen at all times
6712 */
6713 pfm_unfreeze_pmu();
6714
6715 if (first_time) {
6716 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6717 first_time=0;
6718 }
6719
6720 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6721 ia64_srlz_d();
6722 }
6723
6724 /*
6725 * used for debug purposes only
6726 */
6727 void
dump_pmu_state(const char * from)6728 dump_pmu_state(const char *from)
6729 {
6730 struct task_struct *task;
6731 struct pt_regs *regs;
6732 pfm_context_t *ctx;
6733 unsigned long psr, dcr, info, flags;
6734 int i, this_cpu;
6735
6736 local_irq_save(flags);
6737
6738 this_cpu = smp_processor_id();
6739 regs = task_pt_regs(current);
6740 info = PFM_CPUINFO_GET();
6741 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6742
6743 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6744 local_irq_restore(flags);
6745 return;
6746 }
6747
6748 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6749 this_cpu,
6750 from,
6751 task_pid_nr(current),
6752 regs->cr_iip,
6753 current->comm);
6754
6755 task = GET_PMU_OWNER();
6756 ctx = GET_PMU_CTX();
6757
6758 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6759
6760 psr = pfm_get_psr();
6761
6762 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6763 this_cpu,
6764 ia64_get_pmc(0),
6765 psr & IA64_PSR_PP ? 1 : 0,
6766 psr & IA64_PSR_UP ? 1 : 0,
6767 dcr & IA64_DCR_PP ? 1 : 0,
6768 info,
6769 ia64_psr(regs)->up,
6770 ia64_psr(regs)->pp);
6771
6772 ia64_psr(regs)->up = 0;
6773 ia64_psr(regs)->pp = 0;
6774
6775 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6776 if (PMC_IS_IMPL(i) == 0) continue;
6777 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6778 }
6779
6780 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6781 if (PMD_IS_IMPL(i) == 0) continue;
6782 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6783 }
6784
6785 if (ctx) {
6786 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6787 this_cpu,
6788 ctx->ctx_state,
6789 ctx->ctx_smpl_vaddr,
6790 ctx->ctx_smpl_hdr,
6791 ctx->ctx_msgq_head,
6792 ctx->ctx_msgq_tail,
6793 ctx->ctx_saved_psr_up);
6794 }
6795 local_irq_restore(flags);
6796 }
6797
6798 /*
6799 * called from process.c:copy_thread(). task is new child.
6800 */
6801 void
pfm_inherit(struct task_struct * task,struct pt_regs * regs)6802 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6803 {
6804 struct thread_struct *thread;
6805
6806 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6807
6808 thread = &task->thread;
6809
6810 /*
6811 * cut links inherited from parent (current)
6812 */
6813 thread->pfm_context = NULL;
6814
6815 PFM_SET_WORK_PENDING(task, 0);
6816
6817 /*
6818 * the psr bits are already set properly in copy_threads()
6819 */
6820 }
6821 #else /* !CONFIG_PERFMON */
6822 asmlinkage long
sys_perfmonctl(int fd,int cmd,void * arg,int count)6823 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6824 {
6825 return -ENOSYS;
6826 }
6827 #endif /* CONFIG_PERFMON */
6828