1 /*
2  * This file implements the perfmon-2 subsystem which is used
3  * to program the IA-64 Performance Monitoring Unit (PMU).
4  *
5  * The initial version of perfmon.c was written by
6  * Ganesh Venkitachalam, IBM Corp.
7  *
8  * Then it was modified for perfmon-1.x by Stephane Eranian and
9  * David Mosberger, Hewlett Packard Co.
10  *
11  * Version Perfmon-2.x is a rewrite of perfmon-1.x
12  * by Stephane Eranian, Hewlett Packard Co.
13  *
14  * Copyright (C) 1999-2005  Hewlett Packard Co
15  *               Stephane Eranian <eranian@hpl.hp.com>
16  *               David Mosberger-Tang <davidm@hpl.hp.com>
17  *
18  * More information about perfmon available at:
19  * 	http://www.hpl.hp.com/research/linux/perfmon
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
30 #include <linux/mm.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
44 #include <linux/slab.h>
45 
46 #include <asm/errno.h>
47 #include <asm/intrinsics.h>
48 #include <asm/page.h>
49 #include <asm/perfmon.h>
50 #include <asm/processor.h>
51 #include <asm/signal.h>
52 #include <asm/uaccess.h>
53 #include <asm/delay.h>
54 
55 #ifdef CONFIG_PERFMON
56 /*
57  * perfmon context state
58  */
59 #define PFM_CTX_UNLOADED	1	/* context is not loaded onto any task */
60 #define PFM_CTX_LOADED		2	/* context is loaded onto a task */
61 #define PFM_CTX_MASKED		3	/* context is loaded but monitoring is masked due to overflow */
62 #define PFM_CTX_ZOMBIE		4	/* owner of the context is closing it */
63 
64 #define PFM_INVALID_ACTIVATION	(~0UL)
65 
66 #define PFM_NUM_PMC_REGS	64	/* PMC save area for ctxsw */
67 #define PFM_NUM_PMD_REGS	64	/* PMD save area for ctxsw */
68 
69 /*
70  * depth of message queue
71  */
72 #define PFM_MAX_MSGS		32
73 #define PFM_CTXQ_EMPTY(g)	((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
74 
75 /*
76  * type of a PMU register (bitmask).
77  * bitmask structure:
78  * 	bit0   : register implemented
79  * 	bit1   : end marker
80  * 	bit2-3 : reserved
81  * 	bit4   : pmc has pmc.pm
82  * 	bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
83  * 	bit6-7 : register type
84  * 	bit8-31: reserved
85  */
86 #define PFM_REG_NOTIMPL		0x0 /* not implemented at all */
87 #define PFM_REG_IMPL		0x1 /* register implemented */
88 #define PFM_REG_END		0x2 /* end marker */
89 #define PFM_REG_MONITOR		(0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
90 #define PFM_REG_COUNTING	(0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
91 #define PFM_REG_CONTROL		(0x4<<4|PFM_REG_IMPL) /* PMU control register */
92 #define	PFM_REG_CONFIG		(0x8<<4|PFM_REG_IMPL) /* configuration register */
93 #define PFM_REG_BUFFER	 	(0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
94 
95 #define PMC_IS_LAST(i)	(pmu_conf->pmc_desc[i].type & PFM_REG_END)
96 #define PMD_IS_LAST(i)	(pmu_conf->pmd_desc[i].type & PFM_REG_END)
97 
98 #define PMC_OVFL_NOTIFY(ctx, i)	((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
99 
100 /* i assumed unsigned */
101 #define PMC_IS_IMPL(i)	  (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
102 #define PMD_IS_IMPL(i)	  (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
103 
104 /* XXX: these assume that register i is implemented */
105 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
108 #define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
109 
110 #define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
111 #define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
112 #define PMD_PMD_DEP(i)	   pmu_conf->pmd_desc[i].dep_pmd[0]
113 #define PMC_PMD_DEP(i)	   pmu_conf->pmc_desc[i].dep_pmd[0]
114 
115 #define PFM_NUM_IBRS	  IA64_NUM_DBG_REGS
116 #define PFM_NUM_DBRS	  IA64_NUM_DBG_REGS
117 
118 #define CTX_OVFL_NOBLOCK(c)	((c)->ctx_fl_block == 0)
119 #define CTX_HAS_SMPL(c)		((c)->ctx_fl_is_sampling)
120 #define PFM_CTX_TASK(h)		(h)->ctx_task
121 
122 #define PMU_PMC_OI		5 /* position of pmc.oi bit */
123 
124 /* XXX: does not support more than 64 PMDs */
125 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
126 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
127 
128 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
129 
130 #define CTX_USED_IBR(ctx,n) 	(ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
131 #define CTX_USED_DBR(ctx,n) 	(ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USES_DBREGS(ctx)	(((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
133 #define PFM_CODE_RR	0	/* requesting code range restriction */
134 #define PFM_DATA_RR	1	/* requestion data range restriction */
135 
136 #define PFM_CPUINFO_CLEAR(v)	pfm_get_cpu_var(pfm_syst_info) &= ~(v)
137 #define PFM_CPUINFO_SET(v)	pfm_get_cpu_var(pfm_syst_info) |= (v)
138 #define PFM_CPUINFO_GET()	pfm_get_cpu_var(pfm_syst_info)
139 
140 #define RDEP(x)	(1UL<<(x))
141 
142 /*
143  * context protection macros
144  * in SMP:
145  * 	- we need to protect against CPU concurrency (spin_lock)
146  * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
147  * in UP:
148  * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
149  *
150  * spin_lock_irqsave()/spin_unlock_irqrestore():
151  * 	in SMP: local_irq_disable + spin_lock
152  * 	in UP : local_irq_disable
153  *
154  * spin_lock()/spin_lock():
155  * 	in UP : removed automatically
156  * 	in SMP: protect against context accesses from other CPU. interrupts
157  * 	        are not masked. This is useful for the PMU interrupt handler
158  * 	        because we know we will not get PMU concurrency in that code.
159  */
160 #define PROTECT_CTX(c, f) \
161 	do {  \
162 		DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
163 		spin_lock_irqsave(&(c)->ctx_lock, f); \
164 		DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
165 	} while(0)
166 
167 #define UNPROTECT_CTX(c, f) \
168 	do { \
169 		DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
170 		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
171 	} while(0)
172 
173 #define PROTECT_CTX_NOPRINT(c, f) \
174 	do {  \
175 		spin_lock_irqsave(&(c)->ctx_lock, f); \
176 	} while(0)
177 
178 
179 #define UNPROTECT_CTX_NOPRINT(c, f) \
180 	do { \
181 		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
182 	} while(0)
183 
184 
185 #define PROTECT_CTX_NOIRQ(c) \
186 	do {  \
187 		spin_lock(&(c)->ctx_lock); \
188 	} while(0)
189 
190 #define UNPROTECT_CTX_NOIRQ(c) \
191 	do { \
192 		spin_unlock(&(c)->ctx_lock); \
193 	} while(0)
194 
195 
196 #ifdef CONFIG_SMP
197 
198 #define GET_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)
199 #define INC_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)++
200 #define SET_ACTIVATION(c)	(c)->ctx_last_activation = GET_ACTIVATION()
201 
202 #else /* !CONFIG_SMP */
203 #define SET_ACTIVATION(t) 	do {} while(0)
204 #define GET_ACTIVATION(t) 	do {} while(0)
205 #define INC_ACTIVATION(t) 	do {} while(0)
206 #endif /* CONFIG_SMP */
207 
208 #define SET_PMU_OWNER(t, c)	do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
209 #define GET_PMU_OWNER()		pfm_get_cpu_var(pmu_owner)
210 #define GET_PMU_CTX()		pfm_get_cpu_var(pmu_ctx)
211 
212 #define LOCK_PFS(g)	    	spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
213 #define UNLOCK_PFS(g)	    	spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
214 
215 #define PFM_REG_RETFLAG_SET(flags, val)	do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
216 
217 /*
218  * cmp0 must be the value of pmc0
219  */
220 #define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
221 
222 #define PFMFS_MAGIC 0xa0b4d889
223 
224 /*
225  * debugging
226  */
227 #define PFM_DEBUGGING 1
228 #ifdef PFM_DEBUGGING
229 #define DPRINT(a) \
230 	do { \
231 		if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
232 	} while (0)
233 
234 #define DPRINT_ovfl(a) \
235 	do { \
236 		if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
237 	} while (0)
238 #endif
239 
240 /*
241  * 64-bit software counter structure
242  *
243  * the next_reset_type is applied to the next call to pfm_reset_regs()
244  */
245 typedef struct {
246 	unsigned long	val;		/* virtual 64bit counter value */
247 	unsigned long	lval;		/* last reset value */
248 	unsigned long	long_reset;	/* reset value on sampling overflow */
249 	unsigned long	short_reset;    /* reset value on overflow */
250 	unsigned long	reset_pmds[4];  /* which other pmds to reset when this counter overflows */
251 	unsigned long	smpl_pmds[4];   /* which pmds are accessed when counter overflow */
252 	unsigned long	seed;		/* seed for random-number generator */
253 	unsigned long	mask;		/* mask for random-number generator */
254 	unsigned int 	flags;		/* notify/do not notify */
255 	unsigned long	eventid;	/* overflow event identifier */
256 } pfm_counter_t;
257 
258 /*
259  * context flags
260  */
261 typedef struct {
262 	unsigned int block:1;		/* when 1, task will blocked on user notifications */
263 	unsigned int system:1;		/* do system wide monitoring */
264 	unsigned int using_dbreg:1;	/* using range restrictions (debug registers) */
265 	unsigned int is_sampling:1;	/* true if using a custom format */
266 	unsigned int excl_idle:1;	/* exclude idle task in system wide session */
267 	unsigned int going_zombie:1;	/* context is zombie (MASKED+blocking) */
268 	unsigned int trap_reason:2;	/* reason for going into pfm_handle_work() */
269 	unsigned int no_msg:1;		/* no message sent on overflow */
270 	unsigned int can_restart:1;	/* allowed to issue a PFM_RESTART */
271 	unsigned int reserved:22;
272 } pfm_context_flags_t;
273 
274 #define PFM_TRAP_REASON_NONE		0x0	/* default value */
275 #define PFM_TRAP_REASON_BLOCK		0x1	/* we need to block on overflow */
276 #define PFM_TRAP_REASON_RESET		0x2	/* we need to reset PMDs */
277 
278 
279 /*
280  * perfmon context: encapsulates all the state of a monitoring session
281  */
282 
283 typedef struct pfm_context {
284 	spinlock_t		ctx_lock;		/* context protection */
285 
286 	pfm_context_flags_t	ctx_flags;		/* bitmask of flags  (block reason incl.) */
287 	unsigned int		ctx_state;		/* state: active/inactive (no bitfield) */
288 
289 	struct task_struct 	*ctx_task;		/* task to which context is attached */
290 
291 	unsigned long		ctx_ovfl_regs[4];	/* which registers overflowed (notification) */
292 
293 	struct completion	ctx_restart_done;  	/* use for blocking notification mode */
294 
295 	unsigned long		ctx_used_pmds[4];	/* bitmask of PMD used            */
296 	unsigned long		ctx_all_pmds[4];	/* bitmask of all accessible PMDs */
297 	unsigned long		ctx_reload_pmds[4];	/* bitmask of force reload PMD on ctxsw in */
298 
299 	unsigned long		ctx_all_pmcs[4];	/* bitmask of all accessible PMCs */
300 	unsigned long		ctx_reload_pmcs[4];	/* bitmask of force reload PMC on ctxsw in */
301 	unsigned long		ctx_used_monitors[4];	/* bitmask of monitor PMC being used */
302 
303 	unsigned long		ctx_pmcs[PFM_NUM_PMC_REGS];	/*  saved copies of PMC values */
304 
305 	unsigned int		ctx_used_ibrs[1];		/* bitmask of used IBR (speedup ctxsw in) */
306 	unsigned int		ctx_used_dbrs[1];		/* bitmask of used DBR (speedup ctxsw in) */
307 	unsigned long		ctx_dbrs[IA64_NUM_DBG_REGS];	/* DBR values (cache) when not loaded */
308 	unsigned long		ctx_ibrs[IA64_NUM_DBG_REGS];	/* IBR values (cache) when not loaded */
309 
310 	pfm_counter_t		ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
311 
312 	unsigned long		th_pmcs[PFM_NUM_PMC_REGS];	/* PMC thread save state */
313 	unsigned long		th_pmds[PFM_NUM_PMD_REGS];	/* PMD thread save state */
314 
315 	unsigned long		ctx_saved_psr_up;	/* only contains psr.up value */
316 
317 	unsigned long		ctx_last_activation;	/* context last activation number for last_cpu */
318 	unsigned int		ctx_last_cpu;		/* CPU id of current or last CPU used (SMP only) */
319 	unsigned int		ctx_cpu;		/* cpu to which perfmon is applied (system wide) */
320 
321 	int			ctx_fd;			/* file descriptor used my this context */
322 	pfm_ovfl_arg_t		ctx_ovfl_arg;		/* argument to custom buffer format handler */
323 
324 	pfm_buffer_fmt_t	*ctx_buf_fmt;		/* buffer format callbacks */
325 	void			*ctx_smpl_hdr;		/* points to sampling buffer header kernel vaddr */
326 	unsigned long		ctx_smpl_size;		/* size of sampling buffer */
327 	void			*ctx_smpl_vaddr;	/* user level virtual address of smpl buffer */
328 
329 	wait_queue_head_t 	ctx_msgq_wait;
330 	pfm_msg_t		ctx_msgq[PFM_MAX_MSGS];
331 	int			ctx_msgq_head;
332 	int			ctx_msgq_tail;
333 	struct fasync_struct	*ctx_async_queue;
334 
335 	wait_queue_head_t 	ctx_zombieq;		/* termination cleanup wait queue */
336 } pfm_context_t;
337 
338 /*
339  * magic number used to verify that structure is really
340  * a perfmon context
341  */
342 #define PFM_IS_FILE(f)		((f)->f_op == &pfm_file_ops)
343 
344 #define PFM_GET_CTX(t)	 	((pfm_context_t *)(t)->thread.pfm_context)
345 
346 #ifdef CONFIG_SMP
347 #define SET_LAST_CPU(ctx, v)	(ctx)->ctx_last_cpu = (v)
348 #define GET_LAST_CPU(ctx)	(ctx)->ctx_last_cpu
349 #else
350 #define SET_LAST_CPU(ctx, v)	do {} while(0)
351 #define GET_LAST_CPU(ctx)	do {} while(0)
352 #endif
353 
354 
355 #define ctx_fl_block		ctx_flags.block
356 #define ctx_fl_system		ctx_flags.system
357 #define ctx_fl_using_dbreg	ctx_flags.using_dbreg
358 #define ctx_fl_is_sampling	ctx_flags.is_sampling
359 #define ctx_fl_excl_idle	ctx_flags.excl_idle
360 #define ctx_fl_going_zombie	ctx_flags.going_zombie
361 #define ctx_fl_trap_reason	ctx_flags.trap_reason
362 #define ctx_fl_no_msg		ctx_flags.no_msg
363 #define ctx_fl_can_restart	ctx_flags.can_restart
364 
365 #define PFM_SET_WORK_PENDING(t, v)	do { (t)->thread.pfm_needs_checking = v; } while(0);
366 #define PFM_GET_WORK_PENDING(t)		(t)->thread.pfm_needs_checking
367 
368 /*
369  * global information about all sessions
370  * mostly used to synchronize between system wide and per-process
371  */
372 typedef struct {
373 	spinlock_t		pfs_lock;		   /* lock the structure */
374 
375 	unsigned int		pfs_task_sessions;	   /* number of per task sessions */
376 	unsigned int		pfs_sys_sessions;	   /* number of per system wide sessions */
377 	unsigned int		pfs_sys_use_dbregs;	   /* incremented when a system wide session uses debug regs */
378 	unsigned int		pfs_ptrace_use_dbregs;	   /* incremented when a process uses debug regs */
379 	struct task_struct	*pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
380 } pfm_session_t;
381 
382 /*
383  * information about a PMC or PMD.
384  * dep_pmd[]: a bitmask of dependent PMD registers
385  * dep_pmc[]: a bitmask of dependent PMC registers
386  */
387 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
388 typedef struct {
389 	unsigned int		type;
390 	int			pm_pos;
391 	unsigned long		default_value;	/* power-on default value */
392 	unsigned long		reserved_mask;	/* bitmask of reserved bits */
393 	pfm_reg_check_t		read_check;
394 	pfm_reg_check_t		write_check;
395 	unsigned long		dep_pmd[4];
396 	unsigned long		dep_pmc[4];
397 } pfm_reg_desc_t;
398 
399 /* assume cnum is a valid monitor */
400 #define PMC_PM(cnum, val)	(((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
401 
402 /*
403  * This structure is initialized at boot time and contains
404  * a description of the PMU main characteristics.
405  *
406  * If the probe function is defined, detection is based
407  * on its return value:
408  * 	- 0 means recognized PMU
409  * 	- anything else means not supported
410  * When the probe function is not defined, then the pmu_family field
411  * is used and it must match the host CPU family such that:
412  * 	- cpu->family & config->pmu_family != 0
413  */
414 typedef struct {
415 	unsigned long  ovfl_val;	/* overflow value for counters */
416 
417 	pfm_reg_desc_t *pmc_desc;	/* detailed PMC register dependencies descriptions */
418 	pfm_reg_desc_t *pmd_desc;	/* detailed PMD register dependencies descriptions */
419 
420 	unsigned int   num_pmcs;	/* number of PMCS: computed at init time */
421 	unsigned int   num_pmds;	/* number of PMDS: computed at init time */
422 	unsigned long  impl_pmcs[4];	/* bitmask of implemented PMCS */
423 	unsigned long  impl_pmds[4];	/* bitmask of implemented PMDS */
424 
425 	char	      *pmu_name;	/* PMU family name */
426 	unsigned int  pmu_family;	/* cpuid family pattern used to identify pmu */
427 	unsigned int  flags;		/* pmu specific flags */
428 	unsigned int  num_ibrs;		/* number of IBRS: computed at init time */
429 	unsigned int  num_dbrs;		/* number of DBRS: computed at init time */
430 	unsigned int  num_counters;	/* PMC/PMD counting pairs : computed at init time */
431 	int           (*probe)(void);   /* customized probe routine */
432 	unsigned int  use_rr_dbregs:1;	/* set if debug registers used for range restriction */
433 } pmu_config_t;
434 /*
435  * PMU specific flags
436  */
437 #define PFM_PMU_IRQ_RESEND	1	/* PMU needs explicit IRQ resend */
438 
439 /*
440  * debug register related type definitions
441  */
442 typedef struct {
443 	unsigned long ibr_mask:56;
444 	unsigned long ibr_plm:4;
445 	unsigned long ibr_ig:3;
446 	unsigned long ibr_x:1;
447 } ibr_mask_reg_t;
448 
449 typedef struct {
450 	unsigned long dbr_mask:56;
451 	unsigned long dbr_plm:4;
452 	unsigned long dbr_ig:2;
453 	unsigned long dbr_w:1;
454 	unsigned long dbr_r:1;
455 } dbr_mask_reg_t;
456 
457 typedef union {
458 	unsigned long  val;
459 	ibr_mask_reg_t ibr;
460 	dbr_mask_reg_t dbr;
461 } dbreg_t;
462 
463 
464 /*
465  * perfmon command descriptions
466  */
467 typedef struct {
468 	int		(*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
469 	char		*cmd_name;
470 	int		cmd_flags;
471 	unsigned int	cmd_narg;
472 	size_t		cmd_argsize;
473 	int		(*cmd_getsize)(void *arg, size_t *sz);
474 } pfm_cmd_desc_t;
475 
476 #define PFM_CMD_FD		0x01	/* command requires a file descriptor */
477 #define PFM_CMD_ARG_READ	0x02	/* command must read argument(s) */
478 #define PFM_CMD_ARG_RW		0x04	/* command must read/write argument(s) */
479 #define PFM_CMD_STOP		0x08	/* command does not work on zombie context */
480 
481 
482 #define PFM_CMD_NAME(cmd)	pfm_cmd_tab[(cmd)].cmd_name
483 #define PFM_CMD_READ_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
484 #define PFM_CMD_RW_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
485 #define PFM_CMD_USE_FD(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
486 #define PFM_CMD_STOPPED(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
487 
488 #define PFM_CMD_ARG_MANY	-1 /* cannot be zero */
489 
490 typedef struct {
491 	unsigned long pfm_spurious_ovfl_intr_count;	/* keep track of spurious ovfl interrupts */
492 	unsigned long pfm_replay_ovfl_intr_count;	/* keep track of replayed ovfl interrupts */
493 	unsigned long pfm_ovfl_intr_count; 		/* keep track of ovfl interrupts */
494 	unsigned long pfm_ovfl_intr_cycles;		/* cycles spent processing ovfl interrupts */
495 	unsigned long pfm_ovfl_intr_cycles_min;		/* min cycles spent processing ovfl interrupts */
496 	unsigned long pfm_ovfl_intr_cycles_max;		/* max cycles spent processing ovfl interrupts */
497 	unsigned long pfm_smpl_handler_calls;
498 	unsigned long pfm_smpl_handler_cycles;
499 	char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
500 } pfm_stats_t;
501 
502 /*
503  * perfmon internal variables
504  */
505 static pfm_stats_t		pfm_stats[NR_CPUS];
506 static pfm_session_t		pfm_sessions;	/* global sessions information */
507 
508 static DEFINE_SPINLOCK(pfm_alt_install_check);
509 static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
510 
511 static struct proc_dir_entry 	*perfmon_dir;
512 static pfm_uuid_t		pfm_null_uuid = {0,};
513 
514 static spinlock_t		pfm_buffer_fmt_lock;
515 static LIST_HEAD(pfm_buffer_fmt_list);
516 
517 static pmu_config_t		*pmu_conf;
518 
519 /* sysctl() controls */
520 pfm_sysctl_t pfm_sysctl;
521 EXPORT_SYMBOL(pfm_sysctl);
522 
523 static ctl_table pfm_ctl_table[]={
524 	{
525 		.procname	= "debug",
526 		.data		= &pfm_sysctl.debug,
527 		.maxlen		= sizeof(int),
528 		.mode		= 0666,
529 		.proc_handler	= proc_dointvec,
530 	},
531 	{
532 		.procname	= "debug_ovfl",
533 		.data		= &pfm_sysctl.debug_ovfl,
534 		.maxlen		= sizeof(int),
535 		.mode		= 0666,
536 		.proc_handler	= proc_dointvec,
537 	},
538 	{
539 		.procname	= "fastctxsw",
540 		.data		= &pfm_sysctl.fastctxsw,
541 		.maxlen		= sizeof(int),
542 		.mode		= 0600,
543 		.proc_handler	= proc_dointvec,
544 	},
545 	{
546 		.procname	= "expert_mode",
547 		.data		= &pfm_sysctl.expert_mode,
548 		.maxlen		= sizeof(int),
549 		.mode		= 0600,
550 		.proc_handler	= proc_dointvec,
551 	},
552 	{}
553 };
554 static ctl_table pfm_sysctl_dir[] = {
555 	{
556 		.procname	= "perfmon",
557 		.mode		= 0555,
558 		.child		= pfm_ctl_table,
559 	},
560  	{}
561 };
562 static ctl_table pfm_sysctl_root[] = {
563 	{
564 		.procname	= "kernel",
565 		.mode		= 0555,
566 		.child		= pfm_sysctl_dir,
567 	},
568  	{}
569 };
570 static struct ctl_table_header *pfm_sysctl_header;
571 
572 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
573 
574 #define pfm_get_cpu_var(v)		__ia64_per_cpu_var(v)
575 #define pfm_get_cpu_data(a,b)		per_cpu(a, b)
576 
577 static inline void
pfm_put_task(struct task_struct * task)578 pfm_put_task(struct task_struct *task)
579 {
580 	if (task != current) put_task_struct(task);
581 }
582 
583 static inline void
pfm_reserve_page(unsigned long a)584 pfm_reserve_page(unsigned long a)
585 {
586 	SetPageReserved(vmalloc_to_page((void *)a));
587 }
588 static inline void
pfm_unreserve_page(unsigned long a)589 pfm_unreserve_page(unsigned long a)
590 {
591 	ClearPageReserved(vmalloc_to_page((void*)a));
592 }
593 
594 static inline unsigned long
pfm_protect_ctx_ctxsw(pfm_context_t * x)595 pfm_protect_ctx_ctxsw(pfm_context_t *x)
596 {
597 	spin_lock(&(x)->ctx_lock);
598 	return 0UL;
599 }
600 
601 static inline void
pfm_unprotect_ctx_ctxsw(pfm_context_t * x,unsigned long f)602 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
603 {
604 	spin_unlock(&(x)->ctx_lock);
605 }
606 
607 static inline unsigned long
pfm_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,unsigned long exec)608 pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
609 {
610 	return get_unmapped_area(file, addr, len, pgoff, flags);
611 }
612 
613 /* forward declaration */
614 static const struct dentry_operations pfmfs_dentry_operations;
615 
616 static struct dentry *
pfmfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)617 pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
618 {
619 	return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
620 			PFMFS_MAGIC);
621 }
622 
623 static struct file_system_type pfm_fs_type = {
624 	.name     = "pfmfs",
625 	.mount    = pfmfs_mount,
626 	.kill_sb  = kill_anon_super,
627 };
628 
629 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
630 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
631 DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
632 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
633 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
634 
635 
636 /* forward declaration */
637 static const struct file_operations pfm_file_ops;
638 
639 /*
640  * forward declarations
641  */
642 #ifndef CONFIG_SMP
643 static void pfm_lazy_save_regs (struct task_struct *ta);
644 #endif
645 
646 void dump_pmu_state(const char *);
647 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
648 
649 #include "perfmon_itanium.h"
650 #include "perfmon_mckinley.h"
651 #include "perfmon_montecito.h"
652 #include "perfmon_generic.h"
653 
654 static pmu_config_t *pmu_confs[]={
655 	&pmu_conf_mont,
656 	&pmu_conf_mck,
657 	&pmu_conf_ita,
658 	&pmu_conf_gen, /* must be last */
659 	NULL
660 };
661 
662 
663 static int pfm_end_notify_user(pfm_context_t *ctx);
664 
665 static inline void
pfm_clear_psr_pp(void)666 pfm_clear_psr_pp(void)
667 {
668 	ia64_rsm(IA64_PSR_PP);
669 	ia64_srlz_i();
670 }
671 
672 static inline void
pfm_set_psr_pp(void)673 pfm_set_psr_pp(void)
674 {
675 	ia64_ssm(IA64_PSR_PP);
676 	ia64_srlz_i();
677 }
678 
679 static inline void
pfm_clear_psr_up(void)680 pfm_clear_psr_up(void)
681 {
682 	ia64_rsm(IA64_PSR_UP);
683 	ia64_srlz_i();
684 }
685 
686 static inline void
pfm_set_psr_up(void)687 pfm_set_psr_up(void)
688 {
689 	ia64_ssm(IA64_PSR_UP);
690 	ia64_srlz_i();
691 }
692 
693 static inline unsigned long
pfm_get_psr(void)694 pfm_get_psr(void)
695 {
696 	unsigned long tmp;
697 	tmp = ia64_getreg(_IA64_REG_PSR);
698 	ia64_srlz_i();
699 	return tmp;
700 }
701 
702 static inline void
pfm_set_psr_l(unsigned long val)703 pfm_set_psr_l(unsigned long val)
704 {
705 	ia64_setreg(_IA64_REG_PSR_L, val);
706 	ia64_srlz_i();
707 }
708 
709 static inline void
pfm_freeze_pmu(void)710 pfm_freeze_pmu(void)
711 {
712 	ia64_set_pmc(0,1UL);
713 	ia64_srlz_d();
714 }
715 
716 static inline void
pfm_unfreeze_pmu(void)717 pfm_unfreeze_pmu(void)
718 {
719 	ia64_set_pmc(0,0UL);
720 	ia64_srlz_d();
721 }
722 
723 static inline void
pfm_restore_ibrs(unsigned long * ibrs,unsigned int nibrs)724 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
725 {
726 	int i;
727 
728 	for (i=0; i < nibrs; i++) {
729 		ia64_set_ibr(i, ibrs[i]);
730 		ia64_dv_serialize_instruction();
731 	}
732 	ia64_srlz_i();
733 }
734 
735 static inline void
pfm_restore_dbrs(unsigned long * dbrs,unsigned int ndbrs)736 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
737 {
738 	int i;
739 
740 	for (i=0; i < ndbrs; i++) {
741 		ia64_set_dbr(i, dbrs[i]);
742 		ia64_dv_serialize_data();
743 	}
744 	ia64_srlz_d();
745 }
746 
747 /*
748  * PMD[i] must be a counter. no check is made
749  */
750 static inline unsigned long
pfm_read_soft_counter(pfm_context_t * ctx,int i)751 pfm_read_soft_counter(pfm_context_t *ctx, int i)
752 {
753 	return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
754 }
755 
756 /*
757  * PMD[i] must be a counter. no check is made
758  */
759 static inline void
pfm_write_soft_counter(pfm_context_t * ctx,int i,unsigned long val)760 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
761 {
762 	unsigned long ovfl_val = pmu_conf->ovfl_val;
763 
764 	ctx->ctx_pmds[i].val = val  & ~ovfl_val;
765 	/*
766 	 * writing to unimplemented part is ignore, so we do not need to
767 	 * mask off top part
768 	 */
769 	ia64_set_pmd(i, val & ovfl_val);
770 }
771 
772 static pfm_msg_t *
pfm_get_new_msg(pfm_context_t * ctx)773 pfm_get_new_msg(pfm_context_t *ctx)
774 {
775 	int idx, next;
776 
777 	next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
778 
779 	DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
780 	if (next == ctx->ctx_msgq_head) return NULL;
781 
782  	idx = 	ctx->ctx_msgq_tail;
783 	ctx->ctx_msgq_tail = next;
784 
785 	DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
786 
787 	return ctx->ctx_msgq+idx;
788 }
789 
790 static pfm_msg_t *
pfm_get_next_msg(pfm_context_t * ctx)791 pfm_get_next_msg(pfm_context_t *ctx)
792 {
793 	pfm_msg_t *msg;
794 
795 	DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
796 
797 	if (PFM_CTXQ_EMPTY(ctx)) return NULL;
798 
799 	/*
800 	 * get oldest message
801 	 */
802 	msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
803 
804 	/*
805 	 * and move forward
806 	 */
807 	ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
808 
809 	DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
810 
811 	return msg;
812 }
813 
814 static void
pfm_reset_msgq(pfm_context_t * ctx)815 pfm_reset_msgq(pfm_context_t *ctx)
816 {
817 	ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
818 	DPRINT(("ctx=%p msgq reset\n", ctx));
819 }
820 
821 static void *
pfm_rvmalloc(unsigned long size)822 pfm_rvmalloc(unsigned long size)
823 {
824 	void *mem;
825 	unsigned long addr;
826 
827 	size = PAGE_ALIGN(size);
828 	mem  = vzalloc(size);
829 	if (mem) {
830 		//printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
831 		addr = (unsigned long)mem;
832 		while (size > 0) {
833 			pfm_reserve_page(addr);
834 			addr+=PAGE_SIZE;
835 			size-=PAGE_SIZE;
836 		}
837 	}
838 	return mem;
839 }
840 
841 static void
pfm_rvfree(void * mem,unsigned long size)842 pfm_rvfree(void *mem, unsigned long size)
843 {
844 	unsigned long addr;
845 
846 	if (mem) {
847 		DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
848 		addr = (unsigned long) mem;
849 		while ((long) size > 0) {
850 			pfm_unreserve_page(addr);
851 			addr+=PAGE_SIZE;
852 			size-=PAGE_SIZE;
853 		}
854 		vfree(mem);
855 	}
856 	return;
857 }
858 
859 static pfm_context_t *
pfm_context_alloc(int ctx_flags)860 pfm_context_alloc(int ctx_flags)
861 {
862 	pfm_context_t *ctx;
863 
864 	/*
865 	 * allocate context descriptor
866 	 * must be able to free with interrupts disabled
867 	 */
868 	ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
869 	if (ctx) {
870 		DPRINT(("alloc ctx @%p\n", ctx));
871 
872 		/*
873 		 * init context protection lock
874 		 */
875 		spin_lock_init(&ctx->ctx_lock);
876 
877 		/*
878 		 * context is unloaded
879 		 */
880 		ctx->ctx_state = PFM_CTX_UNLOADED;
881 
882 		/*
883 		 * initialization of context's flags
884 		 */
885 		ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
886 		ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
887 		ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
888 		/*
889 		 * will move to set properties
890 		 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
891 		 */
892 
893 		/*
894 		 * init restart semaphore to locked
895 		 */
896 		init_completion(&ctx->ctx_restart_done);
897 
898 		/*
899 		 * activation is used in SMP only
900 		 */
901 		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
902 		SET_LAST_CPU(ctx, -1);
903 
904 		/*
905 		 * initialize notification message queue
906 		 */
907 		ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
908 		init_waitqueue_head(&ctx->ctx_msgq_wait);
909 		init_waitqueue_head(&ctx->ctx_zombieq);
910 
911 	}
912 	return ctx;
913 }
914 
915 static void
pfm_context_free(pfm_context_t * ctx)916 pfm_context_free(pfm_context_t *ctx)
917 {
918 	if (ctx) {
919 		DPRINT(("free ctx @%p\n", ctx));
920 		kfree(ctx);
921 	}
922 }
923 
924 static void
pfm_mask_monitoring(struct task_struct * task)925 pfm_mask_monitoring(struct task_struct *task)
926 {
927 	pfm_context_t *ctx = PFM_GET_CTX(task);
928 	unsigned long mask, val, ovfl_mask;
929 	int i;
930 
931 	DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
932 
933 	ovfl_mask = pmu_conf->ovfl_val;
934 	/*
935 	 * monitoring can only be masked as a result of a valid
936 	 * counter overflow. In UP, it means that the PMU still
937 	 * has an owner. Note that the owner can be different
938 	 * from the current task. However the PMU state belongs
939 	 * to the owner.
940 	 * In SMP, a valid overflow only happens when task is
941 	 * current. Therefore if we come here, we know that
942 	 * the PMU state belongs to the current task, therefore
943 	 * we can access the live registers.
944 	 *
945 	 * So in both cases, the live register contains the owner's
946 	 * state. We can ONLY touch the PMU registers and NOT the PSR.
947 	 *
948 	 * As a consequence to this call, the ctx->th_pmds[] array
949 	 * contains stale information which must be ignored
950 	 * when context is reloaded AND monitoring is active (see
951 	 * pfm_restart).
952 	 */
953 	mask = ctx->ctx_used_pmds[0];
954 	for (i = 0; mask; i++, mask>>=1) {
955 		/* skip non used pmds */
956 		if ((mask & 0x1) == 0) continue;
957 		val = ia64_get_pmd(i);
958 
959 		if (PMD_IS_COUNTING(i)) {
960 			/*
961 		 	 * we rebuild the full 64 bit value of the counter
962 		 	 */
963 			ctx->ctx_pmds[i].val += (val & ovfl_mask);
964 		} else {
965 			ctx->ctx_pmds[i].val = val;
966 		}
967 		DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
968 			i,
969 			ctx->ctx_pmds[i].val,
970 			val & ovfl_mask));
971 	}
972 	/*
973 	 * mask monitoring by setting the privilege level to 0
974 	 * we cannot use psr.pp/psr.up for this, it is controlled by
975 	 * the user
976 	 *
977 	 * if task is current, modify actual registers, otherwise modify
978 	 * thread save state, i.e., what will be restored in pfm_load_regs()
979 	 */
980 	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
981 	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
982 		if ((mask & 0x1) == 0UL) continue;
983 		ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
984 		ctx->th_pmcs[i] &= ~0xfUL;
985 		DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
986 	}
987 	/*
988 	 * make all of this visible
989 	 */
990 	ia64_srlz_d();
991 }
992 
993 /*
994  * must always be done with task == current
995  *
996  * context must be in MASKED state when calling
997  */
998 static void
pfm_restore_monitoring(struct task_struct * task)999 pfm_restore_monitoring(struct task_struct *task)
1000 {
1001 	pfm_context_t *ctx = PFM_GET_CTX(task);
1002 	unsigned long mask, ovfl_mask;
1003 	unsigned long psr, val;
1004 	int i, is_system;
1005 
1006 	is_system = ctx->ctx_fl_system;
1007 	ovfl_mask = pmu_conf->ovfl_val;
1008 
1009 	if (task != current) {
1010 		printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1011 		return;
1012 	}
1013 	if (ctx->ctx_state != PFM_CTX_MASKED) {
1014 		printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1015 			task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1016 		return;
1017 	}
1018 	psr = pfm_get_psr();
1019 	/*
1020 	 * monitoring is masked via the PMC.
1021 	 * As we restore their value, we do not want each counter to
1022 	 * restart right away. We stop monitoring using the PSR,
1023 	 * restore the PMC (and PMD) and then re-establish the psr
1024 	 * as it was. Note that there can be no pending overflow at
1025 	 * this point, because monitoring was MASKED.
1026 	 *
1027 	 * system-wide session are pinned and self-monitoring
1028 	 */
1029 	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1030 		/* disable dcr pp */
1031 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1032 		pfm_clear_psr_pp();
1033 	} else {
1034 		pfm_clear_psr_up();
1035 	}
1036 	/*
1037 	 * first, we restore the PMD
1038 	 */
1039 	mask = ctx->ctx_used_pmds[0];
1040 	for (i = 0; mask; i++, mask>>=1) {
1041 		/* skip non used pmds */
1042 		if ((mask & 0x1) == 0) continue;
1043 
1044 		if (PMD_IS_COUNTING(i)) {
1045 			/*
1046 			 * we split the 64bit value according to
1047 			 * counter width
1048 			 */
1049 			val = ctx->ctx_pmds[i].val & ovfl_mask;
1050 			ctx->ctx_pmds[i].val &= ~ovfl_mask;
1051 		} else {
1052 			val = ctx->ctx_pmds[i].val;
1053 		}
1054 		ia64_set_pmd(i, val);
1055 
1056 		DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1057 			i,
1058 			ctx->ctx_pmds[i].val,
1059 			val));
1060 	}
1061 	/*
1062 	 * restore the PMCs
1063 	 */
1064 	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1065 	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1066 		if ((mask & 0x1) == 0UL) continue;
1067 		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1068 		ia64_set_pmc(i, ctx->th_pmcs[i]);
1069 		DPRINT(("[%d] pmc[%d]=0x%lx\n",
1070 					task_pid_nr(task), i, ctx->th_pmcs[i]));
1071 	}
1072 	ia64_srlz_d();
1073 
1074 	/*
1075 	 * must restore DBR/IBR because could be modified while masked
1076 	 * XXX: need to optimize
1077 	 */
1078 	if (ctx->ctx_fl_using_dbreg) {
1079 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1080 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1081 	}
1082 
1083 	/*
1084 	 * now restore PSR
1085 	 */
1086 	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1087 		/* enable dcr pp */
1088 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1089 		ia64_srlz_i();
1090 	}
1091 	pfm_set_psr_l(psr);
1092 }
1093 
1094 static inline void
pfm_save_pmds(unsigned long * pmds,unsigned long mask)1095 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1096 {
1097 	int i;
1098 
1099 	ia64_srlz_d();
1100 
1101 	for (i=0; mask; i++, mask>>=1) {
1102 		if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1103 	}
1104 }
1105 
1106 /*
1107  * reload from thread state (used for ctxw only)
1108  */
1109 static inline void
pfm_restore_pmds(unsigned long * pmds,unsigned long mask)1110 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1111 {
1112 	int i;
1113 	unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1114 
1115 	for (i=0; mask; i++, mask>>=1) {
1116 		if ((mask & 0x1) == 0) continue;
1117 		val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1118 		ia64_set_pmd(i, val);
1119 	}
1120 	ia64_srlz_d();
1121 }
1122 
1123 /*
1124  * propagate PMD from context to thread-state
1125  */
1126 static inline void
pfm_copy_pmds(struct task_struct * task,pfm_context_t * ctx)1127 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1128 {
1129 	unsigned long ovfl_val = pmu_conf->ovfl_val;
1130 	unsigned long mask = ctx->ctx_all_pmds[0];
1131 	unsigned long val;
1132 	int i;
1133 
1134 	DPRINT(("mask=0x%lx\n", mask));
1135 
1136 	for (i=0; mask; i++, mask>>=1) {
1137 
1138 		val = ctx->ctx_pmds[i].val;
1139 
1140 		/*
1141 		 * We break up the 64 bit value into 2 pieces
1142 		 * the lower bits go to the machine state in the
1143 		 * thread (will be reloaded on ctxsw in).
1144 		 * The upper part stays in the soft-counter.
1145 		 */
1146 		if (PMD_IS_COUNTING(i)) {
1147 			ctx->ctx_pmds[i].val = val & ~ovfl_val;
1148 			 val &= ovfl_val;
1149 		}
1150 		ctx->th_pmds[i] = val;
1151 
1152 		DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1153 			i,
1154 			ctx->th_pmds[i],
1155 			ctx->ctx_pmds[i].val));
1156 	}
1157 }
1158 
1159 /*
1160  * propagate PMC from context to thread-state
1161  */
1162 static inline void
pfm_copy_pmcs(struct task_struct * task,pfm_context_t * ctx)1163 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1164 {
1165 	unsigned long mask = ctx->ctx_all_pmcs[0];
1166 	int i;
1167 
1168 	DPRINT(("mask=0x%lx\n", mask));
1169 
1170 	for (i=0; mask; i++, mask>>=1) {
1171 		/* masking 0 with ovfl_val yields 0 */
1172 		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1173 		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1174 	}
1175 }
1176 
1177 
1178 
1179 static inline void
pfm_restore_pmcs(unsigned long * pmcs,unsigned long mask)1180 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1181 {
1182 	int i;
1183 
1184 	for (i=0; mask; i++, mask>>=1) {
1185 		if ((mask & 0x1) == 0) continue;
1186 		ia64_set_pmc(i, pmcs[i]);
1187 	}
1188 	ia64_srlz_d();
1189 }
1190 
1191 static inline int
pfm_uuid_cmp(pfm_uuid_t a,pfm_uuid_t b)1192 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1193 {
1194 	return memcmp(a, b, sizeof(pfm_uuid_t));
1195 }
1196 
1197 static inline int
pfm_buf_fmt_exit(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,struct pt_regs * regs)1198 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1199 {
1200 	int ret = 0;
1201 	if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1202 	return ret;
1203 }
1204 
1205 static inline int
pfm_buf_fmt_getsize(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg,unsigned long * size)1206 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1207 {
1208 	int ret = 0;
1209 	if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1210 	return ret;
1211 }
1212 
1213 
1214 static inline int
pfm_buf_fmt_validate(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg)1215 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1216 		     int cpu, void *arg)
1217 {
1218 	int ret = 0;
1219 	if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1220 	return ret;
1221 }
1222 
1223 static inline int
pfm_buf_fmt_init(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,unsigned int flags,int cpu,void * arg)1224 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1225 		     int cpu, void *arg)
1226 {
1227 	int ret = 0;
1228 	if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1229 	return ret;
1230 }
1231 
1232 static inline int
pfm_buf_fmt_restart(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1233 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1234 {
1235 	int ret = 0;
1236 	if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1237 	return ret;
1238 }
1239 
1240 static inline int
pfm_buf_fmt_restart_active(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1241 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1242 {
1243 	int ret = 0;
1244 	if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1245 	return ret;
1246 }
1247 
1248 static pfm_buffer_fmt_t *
__pfm_find_buffer_fmt(pfm_uuid_t uuid)1249 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1250 {
1251 	struct list_head * pos;
1252 	pfm_buffer_fmt_t * entry;
1253 
1254 	list_for_each(pos, &pfm_buffer_fmt_list) {
1255 		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1256 		if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1257 			return entry;
1258 	}
1259 	return NULL;
1260 }
1261 
1262 /*
1263  * find a buffer format based on its uuid
1264  */
1265 static pfm_buffer_fmt_t *
pfm_find_buffer_fmt(pfm_uuid_t uuid)1266 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1267 {
1268 	pfm_buffer_fmt_t * fmt;
1269 	spin_lock(&pfm_buffer_fmt_lock);
1270 	fmt = __pfm_find_buffer_fmt(uuid);
1271 	spin_unlock(&pfm_buffer_fmt_lock);
1272 	return fmt;
1273 }
1274 
1275 int
pfm_register_buffer_fmt(pfm_buffer_fmt_t * fmt)1276 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1277 {
1278 	int ret = 0;
1279 
1280 	/* some sanity checks */
1281 	if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1282 
1283 	/* we need at least a handler */
1284 	if (fmt->fmt_handler == NULL) return -EINVAL;
1285 
1286 	/*
1287 	 * XXX: need check validity of fmt_arg_size
1288 	 */
1289 
1290 	spin_lock(&pfm_buffer_fmt_lock);
1291 
1292 	if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1293 		printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1294 		ret = -EBUSY;
1295 		goto out;
1296 	}
1297 	list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1298 	printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1299 
1300 out:
1301 	spin_unlock(&pfm_buffer_fmt_lock);
1302  	return ret;
1303 }
1304 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1305 
1306 int
pfm_unregister_buffer_fmt(pfm_uuid_t uuid)1307 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1308 {
1309 	pfm_buffer_fmt_t *fmt;
1310 	int ret = 0;
1311 
1312 	spin_lock(&pfm_buffer_fmt_lock);
1313 
1314 	fmt = __pfm_find_buffer_fmt(uuid);
1315 	if (!fmt) {
1316 		printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1317 		ret = -EINVAL;
1318 		goto out;
1319 	}
1320 	list_del_init(&fmt->fmt_list);
1321 	printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1322 
1323 out:
1324 	spin_unlock(&pfm_buffer_fmt_lock);
1325 	return ret;
1326 
1327 }
1328 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1329 
1330 extern void update_pal_halt_status(int);
1331 
1332 static int
pfm_reserve_session(struct task_struct * task,int is_syswide,unsigned int cpu)1333 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1334 {
1335 	unsigned long flags;
1336 	/*
1337 	 * validity checks on cpu_mask have been done upstream
1338 	 */
1339 	LOCK_PFS(flags);
1340 
1341 	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1342 		pfm_sessions.pfs_sys_sessions,
1343 		pfm_sessions.pfs_task_sessions,
1344 		pfm_sessions.pfs_sys_use_dbregs,
1345 		is_syswide,
1346 		cpu));
1347 
1348 	if (is_syswide) {
1349 		/*
1350 		 * cannot mix system wide and per-task sessions
1351 		 */
1352 		if (pfm_sessions.pfs_task_sessions > 0UL) {
1353 			DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1354 			  	pfm_sessions.pfs_task_sessions));
1355 			goto abort;
1356 		}
1357 
1358 		if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1359 
1360 		DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1361 
1362 		pfm_sessions.pfs_sys_session[cpu] = task;
1363 
1364 		pfm_sessions.pfs_sys_sessions++ ;
1365 
1366 	} else {
1367 		if (pfm_sessions.pfs_sys_sessions) goto abort;
1368 		pfm_sessions.pfs_task_sessions++;
1369 	}
1370 
1371 	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1372 		pfm_sessions.pfs_sys_sessions,
1373 		pfm_sessions.pfs_task_sessions,
1374 		pfm_sessions.pfs_sys_use_dbregs,
1375 		is_syswide,
1376 		cpu));
1377 
1378 	/*
1379 	 * disable default_idle() to go to PAL_HALT
1380 	 */
1381 	update_pal_halt_status(0);
1382 
1383 	UNLOCK_PFS(flags);
1384 
1385 	return 0;
1386 
1387 error_conflict:
1388 	DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1389   		task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1390 		cpu));
1391 abort:
1392 	UNLOCK_PFS(flags);
1393 
1394 	return -EBUSY;
1395 
1396 }
1397 
1398 static int
pfm_unreserve_session(pfm_context_t * ctx,int is_syswide,unsigned int cpu)1399 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1400 {
1401 	unsigned long flags;
1402 	/*
1403 	 * validity checks on cpu_mask have been done upstream
1404 	 */
1405 	LOCK_PFS(flags);
1406 
1407 	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1408 		pfm_sessions.pfs_sys_sessions,
1409 		pfm_sessions.pfs_task_sessions,
1410 		pfm_sessions.pfs_sys_use_dbregs,
1411 		is_syswide,
1412 		cpu));
1413 
1414 
1415 	if (is_syswide) {
1416 		pfm_sessions.pfs_sys_session[cpu] = NULL;
1417 		/*
1418 		 * would not work with perfmon+more than one bit in cpu_mask
1419 		 */
1420 		if (ctx && ctx->ctx_fl_using_dbreg) {
1421 			if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1422 				printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1423 			} else {
1424 				pfm_sessions.pfs_sys_use_dbregs--;
1425 			}
1426 		}
1427 		pfm_sessions.pfs_sys_sessions--;
1428 	} else {
1429 		pfm_sessions.pfs_task_sessions--;
1430 	}
1431 	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1432 		pfm_sessions.pfs_sys_sessions,
1433 		pfm_sessions.pfs_task_sessions,
1434 		pfm_sessions.pfs_sys_use_dbregs,
1435 		is_syswide,
1436 		cpu));
1437 
1438 	/*
1439 	 * if possible, enable default_idle() to go into PAL_HALT
1440 	 */
1441 	if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1442 		update_pal_halt_status(1);
1443 
1444 	UNLOCK_PFS(flags);
1445 
1446 	return 0;
1447 }
1448 
1449 /*
1450  * removes virtual mapping of the sampling buffer.
1451  * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1452  * a PROTECT_CTX() section.
1453  */
1454 static int
pfm_remove_smpl_mapping(void * vaddr,unsigned long size)1455 pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1456 {
1457 	struct task_struct *task = current;
1458 	int r;
1459 
1460 	/* sanity checks */
1461 	if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1462 		printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1463 		return -EINVAL;
1464 	}
1465 
1466 	DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1467 
1468 	/*
1469 	 * does the actual unmapping
1470 	 */
1471 	r = vm_munmap((unsigned long)vaddr, size);
1472 
1473 	if (r !=0) {
1474 		printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1475 	}
1476 
1477 	DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1478 
1479 	return 0;
1480 }
1481 
1482 /*
1483  * free actual physical storage used by sampling buffer
1484  */
1485 #if 0
1486 static int
1487 pfm_free_smpl_buffer(pfm_context_t *ctx)
1488 {
1489 	pfm_buffer_fmt_t *fmt;
1490 
1491 	if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1492 
1493 	/*
1494 	 * we won't use the buffer format anymore
1495 	 */
1496 	fmt = ctx->ctx_buf_fmt;
1497 
1498 	DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1499 		ctx->ctx_smpl_hdr,
1500 		ctx->ctx_smpl_size,
1501 		ctx->ctx_smpl_vaddr));
1502 
1503 	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1504 
1505 	/*
1506 	 * free the buffer
1507 	 */
1508 	pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1509 
1510 	ctx->ctx_smpl_hdr  = NULL;
1511 	ctx->ctx_smpl_size = 0UL;
1512 
1513 	return 0;
1514 
1515 invalid_free:
1516 	printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1517 	return -EINVAL;
1518 }
1519 #endif
1520 
1521 static inline void
pfm_exit_smpl_buffer(pfm_buffer_fmt_t * fmt)1522 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1523 {
1524 	if (fmt == NULL) return;
1525 
1526 	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1527 
1528 }
1529 
1530 /*
1531  * pfmfs should _never_ be mounted by userland - too much of security hassle,
1532  * no real gain from having the whole whorehouse mounted. So we don't need
1533  * any operations on the root directory. However, we need a non-trivial
1534  * d_name - pfm: will go nicely and kill the special-casing in procfs.
1535  */
1536 static struct vfsmount *pfmfs_mnt __read_mostly;
1537 
1538 static int __init
init_pfm_fs(void)1539 init_pfm_fs(void)
1540 {
1541 	int err = register_filesystem(&pfm_fs_type);
1542 	if (!err) {
1543 		pfmfs_mnt = kern_mount(&pfm_fs_type);
1544 		err = PTR_ERR(pfmfs_mnt);
1545 		if (IS_ERR(pfmfs_mnt))
1546 			unregister_filesystem(&pfm_fs_type);
1547 		else
1548 			err = 0;
1549 	}
1550 	return err;
1551 }
1552 
1553 static ssize_t
pfm_read(struct file * filp,char __user * buf,size_t size,loff_t * ppos)1554 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1555 {
1556 	pfm_context_t *ctx;
1557 	pfm_msg_t *msg;
1558 	ssize_t ret;
1559 	unsigned long flags;
1560   	DECLARE_WAITQUEUE(wait, current);
1561 	if (PFM_IS_FILE(filp) == 0) {
1562 		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1563 		return -EINVAL;
1564 	}
1565 
1566 	ctx = filp->private_data;
1567 	if (ctx == NULL) {
1568 		printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1569 		return -EINVAL;
1570 	}
1571 
1572 	/*
1573 	 * check even when there is no message
1574 	 */
1575 	if (size < sizeof(pfm_msg_t)) {
1576 		DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1577 		return -EINVAL;
1578 	}
1579 
1580 	PROTECT_CTX(ctx, flags);
1581 
1582   	/*
1583 	 * put ourselves on the wait queue
1584 	 */
1585   	add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1586 
1587 
1588   	for(;;) {
1589 		/*
1590 		 * check wait queue
1591 		 */
1592 
1593   		set_current_state(TASK_INTERRUPTIBLE);
1594 
1595 		DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1596 
1597 		ret = 0;
1598 		if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1599 
1600 		UNPROTECT_CTX(ctx, flags);
1601 
1602 		/*
1603 		 * check non-blocking read
1604 		 */
1605       		ret = -EAGAIN;
1606 		if(filp->f_flags & O_NONBLOCK) break;
1607 
1608 		/*
1609 		 * check pending signals
1610 		 */
1611 		if(signal_pending(current)) {
1612 			ret = -EINTR;
1613 			break;
1614 		}
1615       		/*
1616 		 * no message, so wait
1617 		 */
1618       		schedule();
1619 
1620 		PROTECT_CTX(ctx, flags);
1621 	}
1622 	DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1623   	set_current_state(TASK_RUNNING);
1624 	remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1625 
1626 	if (ret < 0) goto abort;
1627 
1628 	ret = -EINVAL;
1629 	msg = pfm_get_next_msg(ctx);
1630 	if (msg == NULL) {
1631 		printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1632 		goto abort_locked;
1633 	}
1634 
1635 	DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1636 
1637 	ret = -EFAULT;
1638   	if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1639 
1640 abort_locked:
1641 	UNPROTECT_CTX(ctx, flags);
1642 abort:
1643 	return ret;
1644 }
1645 
1646 static ssize_t
pfm_write(struct file * file,const char __user * ubuf,size_t size,loff_t * ppos)1647 pfm_write(struct file *file, const char __user *ubuf,
1648 			  size_t size, loff_t *ppos)
1649 {
1650 	DPRINT(("pfm_write called\n"));
1651 	return -EINVAL;
1652 }
1653 
1654 static unsigned int
pfm_poll(struct file * filp,poll_table * wait)1655 pfm_poll(struct file *filp, poll_table * wait)
1656 {
1657 	pfm_context_t *ctx;
1658 	unsigned long flags;
1659 	unsigned int mask = 0;
1660 
1661 	if (PFM_IS_FILE(filp) == 0) {
1662 		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1663 		return 0;
1664 	}
1665 
1666 	ctx = filp->private_data;
1667 	if (ctx == NULL) {
1668 		printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1669 		return 0;
1670 	}
1671 
1672 
1673 	DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1674 
1675 	poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1676 
1677 	PROTECT_CTX(ctx, flags);
1678 
1679 	if (PFM_CTXQ_EMPTY(ctx) == 0)
1680 		mask =  POLLIN | POLLRDNORM;
1681 
1682 	UNPROTECT_CTX(ctx, flags);
1683 
1684 	DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1685 
1686 	return mask;
1687 }
1688 
1689 static long
pfm_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1690 pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1691 {
1692 	DPRINT(("pfm_ioctl called\n"));
1693 	return -EINVAL;
1694 }
1695 
1696 /*
1697  * interrupt cannot be masked when coming here
1698  */
1699 static inline int
pfm_do_fasync(int fd,struct file * filp,pfm_context_t * ctx,int on)1700 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1701 {
1702 	int ret;
1703 
1704 	ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1705 
1706 	DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1707 		task_pid_nr(current),
1708 		fd,
1709 		on,
1710 		ctx->ctx_async_queue, ret));
1711 
1712 	return ret;
1713 }
1714 
1715 static int
pfm_fasync(int fd,struct file * filp,int on)1716 pfm_fasync(int fd, struct file *filp, int on)
1717 {
1718 	pfm_context_t *ctx;
1719 	int ret;
1720 
1721 	if (PFM_IS_FILE(filp) == 0) {
1722 		printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1723 		return -EBADF;
1724 	}
1725 
1726 	ctx = filp->private_data;
1727 	if (ctx == NULL) {
1728 		printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1729 		return -EBADF;
1730 	}
1731 	/*
1732 	 * we cannot mask interrupts during this call because this may
1733 	 * may go to sleep if memory is not readily avalaible.
1734 	 *
1735 	 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1736 	 * done in caller. Serialization of this function is ensured by caller.
1737 	 */
1738 	ret = pfm_do_fasync(fd, filp, ctx, on);
1739 
1740 
1741 	DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1742 		fd,
1743 		on,
1744 		ctx->ctx_async_queue, ret));
1745 
1746 	return ret;
1747 }
1748 
1749 #ifdef CONFIG_SMP
1750 /*
1751  * this function is exclusively called from pfm_close().
1752  * The context is not protected at that time, nor are interrupts
1753  * on the remote CPU. That's necessary to avoid deadlocks.
1754  */
1755 static void
pfm_syswide_force_stop(void * info)1756 pfm_syswide_force_stop(void *info)
1757 {
1758 	pfm_context_t   *ctx = (pfm_context_t *)info;
1759 	struct pt_regs *regs = task_pt_regs(current);
1760 	struct task_struct *owner;
1761 	unsigned long flags;
1762 	int ret;
1763 
1764 	if (ctx->ctx_cpu != smp_processor_id()) {
1765 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1766 			ctx->ctx_cpu,
1767 			smp_processor_id());
1768 		return;
1769 	}
1770 	owner = GET_PMU_OWNER();
1771 	if (owner != ctx->ctx_task) {
1772 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1773 			smp_processor_id(),
1774 			task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1775 		return;
1776 	}
1777 	if (GET_PMU_CTX() != ctx) {
1778 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1779 			smp_processor_id(),
1780 			GET_PMU_CTX(), ctx);
1781 		return;
1782 	}
1783 
1784 	DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1785 	/*
1786 	 * the context is already protected in pfm_close(), we simply
1787 	 * need to mask interrupts to avoid a PMU interrupt race on
1788 	 * this CPU
1789 	 */
1790 	local_irq_save(flags);
1791 
1792 	ret = pfm_context_unload(ctx, NULL, 0, regs);
1793 	if (ret) {
1794 		DPRINT(("context_unload returned %d\n", ret));
1795 	}
1796 
1797 	/*
1798 	 * unmask interrupts, PMU interrupts are now spurious here
1799 	 */
1800 	local_irq_restore(flags);
1801 }
1802 
1803 static void
pfm_syswide_cleanup_other_cpu(pfm_context_t * ctx)1804 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1805 {
1806 	int ret;
1807 
1808 	DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1809 	ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1810 	DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1811 }
1812 #endif /* CONFIG_SMP */
1813 
1814 /*
1815  * called for each close(). Partially free resources.
1816  * When caller is self-monitoring, the context is unloaded.
1817  */
1818 static int
pfm_flush(struct file * filp,fl_owner_t id)1819 pfm_flush(struct file *filp, fl_owner_t id)
1820 {
1821 	pfm_context_t *ctx;
1822 	struct task_struct *task;
1823 	struct pt_regs *regs;
1824 	unsigned long flags;
1825 	unsigned long smpl_buf_size = 0UL;
1826 	void *smpl_buf_vaddr = NULL;
1827 	int state, is_system;
1828 
1829 	if (PFM_IS_FILE(filp) == 0) {
1830 		DPRINT(("bad magic for\n"));
1831 		return -EBADF;
1832 	}
1833 
1834 	ctx = filp->private_data;
1835 	if (ctx == NULL) {
1836 		printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1837 		return -EBADF;
1838 	}
1839 
1840 	/*
1841 	 * remove our file from the async queue, if we use this mode.
1842 	 * This can be done without the context being protected. We come
1843 	 * here when the context has become unreachable by other tasks.
1844 	 *
1845 	 * We may still have active monitoring at this point and we may
1846 	 * end up in pfm_overflow_handler(). However, fasync_helper()
1847 	 * operates with interrupts disabled and it cleans up the
1848 	 * queue. If the PMU handler is called prior to entering
1849 	 * fasync_helper() then it will send a signal. If it is
1850 	 * invoked after, it will find an empty queue and no
1851 	 * signal will be sent. In both case, we are safe
1852 	 */
1853 	PROTECT_CTX(ctx, flags);
1854 
1855 	state     = ctx->ctx_state;
1856 	is_system = ctx->ctx_fl_system;
1857 
1858 	task = PFM_CTX_TASK(ctx);
1859 	regs = task_pt_regs(task);
1860 
1861 	DPRINT(("ctx_state=%d is_current=%d\n",
1862 		state,
1863 		task == current ? 1 : 0));
1864 
1865 	/*
1866 	 * if state == UNLOADED, then task is NULL
1867 	 */
1868 
1869 	/*
1870 	 * we must stop and unload because we are losing access to the context.
1871 	 */
1872 	if (task == current) {
1873 #ifdef CONFIG_SMP
1874 		/*
1875 		 * the task IS the owner but it migrated to another CPU: that's bad
1876 		 * but we must handle this cleanly. Unfortunately, the kernel does
1877 		 * not provide a mechanism to block migration (while the context is loaded).
1878 		 *
1879 		 * We need to release the resource on the ORIGINAL cpu.
1880 		 */
1881 		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1882 
1883 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1884 			/*
1885 			 * keep context protected but unmask interrupt for IPI
1886 			 */
1887 			local_irq_restore(flags);
1888 
1889 			pfm_syswide_cleanup_other_cpu(ctx);
1890 
1891 			/*
1892 			 * restore interrupt masking
1893 			 */
1894 			local_irq_save(flags);
1895 
1896 			/*
1897 			 * context is unloaded at this point
1898 			 */
1899 		} else
1900 #endif /* CONFIG_SMP */
1901 		{
1902 
1903 			DPRINT(("forcing unload\n"));
1904 			/*
1905 		 	* stop and unload, returning with state UNLOADED
1906 		 	* and session unreserved.
1907 		 	*/
1908 			pfm_context_unload(ctx, NULL, 0, regs);
1909 
1910 			DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1911 		}
1912 	}
1913 
1914 	/*
1915 	 * remove virtual mapping, if any, for the calling task.
1916 	 * cannot reset ctx field until last user is calling close().
1917 	 *
1918 	 * ctx_smpl_vaddr must never be cleared because it is needed
1919 	 * by every task with access to the context
1920 	 *
1921 	 * When called from do_exit(), the mm context is gone already, therefore
1922 	 * mm is NULL, i.e., the VMA is already gone  and we do not have to
1923 	 * do anything here
1924 	 */
1925 	if (ctx->ctx_smpl_vaddr && current->mm) {
1926 		smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1927 		smpl_buf_size  = ctx->ctx_smpl_size;
1928 	}
1929 
1930 	UNPROTECT_CTX(ctx, flags);
1931 
1932 	/*
1933 	 * if there was a mapping, then we systematically remove it
1934 	 * at this point. Cannot be done inside critical section
1935 	 * because some VM function reenables interrupts.
1936 	 *
1937 	 */
1938 	if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1939 
1940 	return 0;
1941 }
1942 /*
1943  * called either on explicit close() or from exit_files().
1944  * Only the LAST user of the file gets to this point, i.e., it is
1945  * called only ONCE.
1946  *
1947  * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1948  * (fput()),i.e, last task to access the file. Nobody else can access the
1949  * file at this point.
1950  *
1951  * When called from exit_files(), the VMA has been freed because exit_mm()
1952  * is executed before exit_files().
1953  *
1954  * When called from exit_files(), the current task is not yet ZOMBIE but we
1955  * flush the PMU state to the context.
1956  */
1957 static int
pfm_close(struct inode * inode,struct file * filp)1958 pfm_close(struct inode *inode, struct file *filp)
1959 {
1960 	pfm_context_t *ctx;
1961 	struct task_struct *task;
1962 	struct pt_regs *regs;
1963   	DECLARE_WAITQUEUE(wait, current);
1964 	unsigned long flags;
1965 	unsigned long smpl_buf_size = 0UL;
1966 	void *smpl_buf_addr = NULL;
1967 	int free_possible = 1;
1968 	int state, is_system;
1969 
1970 	DPRINT(("pfm_close called private=%p\n", filp->private_data));
1971 
1972 	if (PFM_IS_FILE(filp) == 0) {
1973 		DPRINT(("bad magic\n"));
1974 		return -EBADF;
1975 	}
1976 
1977 	ctx = filp->private_data;
1978 	if (ctx == NULL) {
1979 		printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1980 		return -EBADF;
1981 	}
1982 
1983 	PROTECT_CTX(ctx, flags);
1984 
1985 	state     = ctx->ctx_state;
1986 	is_system = ctx->ctx_fl_system;
1987 
1988 	task = PFM_CTX_TASK(ctx);
1989 	regs = task_pt_regs(task);
1990 
1991 	DPRINT(("ctx_state=%d is_current=%d\n",
1992 		state,
1993 		task == current ? 1 : 0));
1994 
1995 	/*
1996 	 * if task == current, then pfm_flush() unloaded the context
1997 	 */
1998 	if (state == PFM_CTX_UNLOADED) goto doit;
1999 
2000 	/*
2001 	 * context is loaded/masked and task != current, we need to
2002 	 * either force an unload or go zombie
2003 	 */
2004 
2005 	/*
2006 	 * The task is currently blocked or will block after an overflow.
2007 	 * we must force it to wakeup to get out of the
2008 	 * MASKED state and transition to the unloaded state by itself.
2009 	 *
2010 	 * This situation is only possible for per-task mode
2011 	 */
2012 	if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2013 
2014 		/*
2015 		 * set a "partial" zombie state to be checked
2016 		 * upon return from down() in pfm_handle_work().
2017 		 *
2018 		 * We cannot use the ZOMBIE state, because it is checked
2019 		 * by pfm_load_regs() which is called upon wakeup from down().
2020 		 * In such case, it would free the context and then we would
2021 		 * return to pfm_handle_work() which would access the
2022 		 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2023 		 * but visible to pfm_handle_work().
2024 		 *
2025 		 * For some window of time, we have a zombie context with
2026 		 * ctx_state = MASKED  and not ZOMBIE
2027 		 */
2028 		ctx->ctx_fl_going_zombie = 1;
2029 
2030 		/*
2031 		 * force task to wake up from MASKED state
2032 		 */
2033 		complete(&ctx->ctx_restart_done);
2034 
2035 		DPRINT(("waking up ctx_state=%d\n", state));
2036 
2037 		/*
2038 		 * put ourself to sleep waiting for the other
2039 		 * task to report completion
2040 		 *
2041 		 * the context is protected by mutex, therefore there
2042 		 * is no risk of being notified of completion before
2043 		 * begin actually on the waitq.
2044 		 */
2045   		set_current_state(TASK_INTERRUPTIBLE);
2046   		add_wait_queue(&ctx->ctx_zombieq, &wait);
2047 
2048 		UNPROTECT_CTX(ctx, flags);
2049 
2050 		/*
2051 		 * XXX: check for signals :
2052 		 * 	- ok for explicit close
2053 		 * 	- not ok when coming from exit_files()
2054 		 */
2055       		schedule();
2056 
2057 
2058 		PROTECT_CTX(ctx, flags);
2059 
2060 
2061 		remove_wait_queue(&ctx->ctx_zombieq, &wait);
2062   		set_current_state(TASK_RUNNING);
2063 
2064 		/*
2065 		 * context is unloaded at this point
2066 		 */
2067 		DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2068 	}
2069 	else if (task != current) {
2070 #ifdef CONFIG_SMP
2071 		/*
2072 	 	 * switch context to zombie state
2073 	 	 */
2074 		ctx->ctx_state = PFM_CTX_ZOMBIE;
2075 
2076 		DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2077 		/*
2078 		 * cannot free the context on the spot. deferred until
2079 		 * the task notices the ZOMBIE state
2080 		 */
2081 		free_possible = 0;
2082 #else
2083 		pfm_context_unload(ctx, NULL, 0, regs);
2084 #endif
2085 	}
2086 
2087 doit:
2088 	/* reload state, may have changed during  opening of critical section */
2089 	state = ctx->ctx_state;
2090 
2091 	/*
2092 	 * the context is still attached to a task (possibly current)
2093 	 * we cannot destroy it right now
2094 	 */
2095 
2096 	/*
2097 	 * we must free the sampling buffer right here because
2098 	 * we cannot rely on it being cleaned up later by the
2099 	 * monitored task. It is not possible to free vmalloc'ed
2100 	 * memory in pfm_load_regs(). Instead, we remove the buffer
2101 	 * now. should there be subsequent PMU overflow originally
2102 	 * meant for sampling, the will be converted to spurious
2103 	 * and that's fine because the monitoring tools is gone anyway.
2104 	 */
2105 	if (ctx->ctx_smpl_hdr) {
2106 		smpl_buf_addr = ctx->ctx_smpl_hdr;
2107 		smpl_buf_size = ctx->ctx_smpl_size;
2108 		/* no more sampling */
2109 		ctx->ctx_smpl_hdr = NULL;
2110 		ctx->ctx_fl_is_sampling = 0;
2111 	}
2112 
2113 	DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2114 		state,
2115 		free_possible,
2116 		smpl_buf_addr,
2117 		smpl_buf_size));
2118 
2119 	if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2120 
2121 	/*
2122 	 * UNLOADED that the session has already been unreserved.
2123 	 */
2124 	if (state == PFM_CTX_ZOMBIE) {
2125 		pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2126 	}
2127 
2128 	/*
2129 	 * disconnect file descriptor from context must be done
2130 	 * before we unlock.
2131 	 */
2132 	filp->private_data = NULL;
2133 
2134 	/*
2135 	 * if we free on the spot, the context is now completely unreachable
2136 	 * from the callers side. The monitored task side is also cut, so we
2137 	 * can freely cut.
2138 	 *
2139 	 * If we have a deferred free, only the caller side is disconnected.
2140 	 */
2141 	UNPROTECT_CTX(ctx, flags);
2142 
2143 	/*
2144 	 * All memory free operations (especially for vmalloc'ed memory)
2145 	 * MUST be done with interrupts ENABLED.
2146 	 */
2147 	if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2148 
2149 	/*
2150 	 * return the memory used by the context
2151 	 */
2152 	if (free_possible) pfm_context_free(ctx);
2153 
2154 	return 0;
2155 }
2156 
2157 static int
pfm_no_open(struct inode * irrelevant,struct file * dontcare)2158 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2159 {
2160 	DPRINT(("pfm_no_open called\n"));
2161 	return -ENXIO;
2162 }
2163 
2164 
2165 
2166 static const struct file_operations pfm_file_ops = {
2167 	.llseek		= no_llseek,
2168 	.read		= pfm_read,
2169 	.write		= pfm_write,
2170 	.poll		= pfm_poll,
2171 	.unlocked_ioctl = pfm_ioctl,
2172 	.open		= pfm_no_open,	/* special open code to disallow open via /proc */
2173 	.fasync		= pfm_fasync,
2174 	.release	= pfm_close,
2175 	.flush		= pfm_flush
2176 };
2177 
2178 static int
pfmfs_delete_dentry(const struct dentry * dentry)2179 pfmfs_delete_dentry(const struct dentry *dentry)
2180 {
2181 	return 1;
2182 }
2183 
pfmfs_dname(struct dentry * dentry,char * buffer,int buflen)2184 static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2185 {
2186 	return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2187 			     dentry->d_inode->i_ino);
2188 }
2189 
2190 static const struct dentry_operations pfmfs_dentry_operations = {
2191 	.d_delete = pfmfs_delete_dentry,
2192 	.d_dname = pfmfs_dname,
2193 };
2194 
2195 
2196 static struct file *
pfm_alloc_file(pfm_context_t * ctx)2197 pfm_alloc_file(pfm_context_t *ctx)
2198 {
2199 	struct file *file;
2200 	struct inode *inode;
2201 	struct path path;
2202 	struct qstr this = { .name = "" };
2203 
2204 	/*
2205 	 * allocate a new inode
2206 	 */
2207 	inode = new_inode(pfmfs_mnt->mnt_sb);
2208 	if (!inode)
2209 		return ERR_PTR(-ENOMEM);
2210 
2211 	DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2212 
2213 	inode->i_mode = S_IFCHR|S_IRUGO;
2214 	inode->i_uid  = current_fsuid();
2215 	inode->i_gid  = current_fsgid();
2216 
2217 	/*
2218 	 * allocate a new dcache entry
2219 	 */
2220 	path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2221 	if (!path.dentry) {
2222 		iput(inode);
2223 		return ERR_PTR(-ENOMEM);
2224 	}
2225 	path.mnt = mntget(pfmfs_mnt);
2226 
2227 	d_add(path.dentry, inode);
2228 
2229 	file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2230 	if (!file) {
2231 		path_put(&path);
2232 		return ERR_PTR(-ENFILE);
2233 	}
2234 
2235 	file->f_flags = O_RDONLY;
2236 	file->private_data = ctx;
2237 
2238 	return file;
2239 }
2240 
2241 static int
pfm_remap_buffer(struct vm_area_struct * vma,unsigned long buf,unsigned long addr,unsigned long size)2242 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2243 {
2244 	DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2245 
2246 	while (size > 0) {
2247 		unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2248 
2249 
2250 		if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2251 			return -ENOMEM;
2252 
2253 		addr  += PAGE_SIZE;
2254 		buf   += PAGE_SIZE;
2255 		size  -= PAGE_SIZE;
2256 	}
2257 	return 0;
2258 }
2259 
2260 /*
2261  * allocate a sampling buffer and remaps it into the user address space of the task
2262  */
2263 static int
pfm_smpl_buffer_alloc(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned long rsize,void ** user_vaddr)2264 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2265 {
2266 	struct mm_struct *mm = task->mm;
2267 	struct vm_area_struct *vma = NULL;
2268 	unsigned long size;
2269 	void *smpl_buf;
2270 
2271 
2272 	/*
2273 	 * the fixed header + requested size and align to page boundary
2274 	 */
2275 	size = PAGE_ALIGN(rsize);
2276 
2277 	DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2278 
2279 	/*
2280 	 * check requested size to avoid Denial-of-service attacks
2281 	 * XXX: may have to refine this test
2282 	 * Check against address space limit.
2283 	 *
2284 	 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2285 	 * 	return -ENOMEM;
2286 	 */
2287 	if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2288 		return -ENOMEM;
2289 
2290 	/*
2291 	 * We do the easy to undo allocations first.
2292  	 *
2293 	 * pfm_rvmalloc(), clears the buffer, so there is no leak
2294 	 */
2295 	smpl_buf = pfm_rvmalloc(size);
2296 	if (smpl_buf == NULL) {
2297 		DPRINT(("Can't allocate sampling buffer\n"));
2298 		return -ENOMEM;
2299 	}
2300 
2301 	DPRINT(("smpl_buf @%p\n", smpl_buf));
2302 
2303 	/* allocate vma */
2304 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2305 	if (!vma) {
2306 		DPRINT(("Cannot allocate vma\n"));
2307 		goto error_kmem;
2308 	}
2309 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2310 
2311 	/*
2312 	 * partially initialize the vma for the sampling buffer
2313 	 */
2314 	vma->vm_mm	     = mm;
2315 	vma->vm_file	     = filp;
2316 	vma->vm_flags	     = VM_READ| VM_MAYREAD |VM_RESERVED;
2317 	vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2318 
2319 	/*
2320 	 * Now we have everything we need and we can initialize
2321 	 * and connect all the data structures
2322 	 */
2323 
2324 	ctx->ctx_smpl_hdr   = smpl_buf;
2325 	ctx->ctx_smpl_size  = size; /* aligned size */
2326 
2327 	/*
2328 	 * Let's do the difficult operations next.
2329 	 *
2330 	 * now we atomically find some area in the address space and
2331 	 * remap the buffer in it.
2332 	 */
2333 	down_write(&task->mm->mmap_sem);
2334 
2335 	/* find some free area in address space, must have mmap sem held */
2336 	vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2337 	if (vma->vm_start == 0UL) {
2338 		DPRINT(("Cannot find unmapped area for size %ld\n", size));
2339 		up_write(&task->mm->mmap_sem);
2340 		goto error;
2341 	}
2342 	vma->vm_end = vma->vm_start + size;
2343 	vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2344 
2345 	DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2346 
2347 	/* can only be applied to current task, need to have the mm semaphore held when called */
2348 	if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2349 		DPRINT(("Can't remap buffer\n"));
2350 		up_write(&task->mm->mmap_sem);
2351 		goto error;
2352 	}
2353 
2354 	get_file(filp);
2355 
2356 	/*
2357 	 * now insert the vma in the vm list for the process, must be
2358 	 * done with mmap lock held
2359 	 */
2360 	insert_vm_struct(mm, vma);
2361 
2362 	mm->total_vm  += size >> PAGE_SHIFT;
2363 	vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2364 							vma_pages(vma));
2365 	up_write(&task->mm->mmap_sem);
2366 
2367 	/*
2368 	 * keep track of user level virtual address
2369 	 */
2370 	ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2371 	*(unsigned long *)user_vaddr = vma->vm_start;
2372 
2373 	return 0;
2374 
2375 error:
2376 	kmem_cache_free(vm_area_cachep, vma);
2377 error_kmem:
2378 	pfm_rvfree(smpl_buf, size);
2379 
2380 	return -ENOMEM;
2381 }
2382 
2383 /*
2384  * XXX: do something better here
2385  */
2386 static int
pfm_bad_permissions(struct task_struct * task)2387 pfm_bad_permissions(struct task_struct *task)
2388 {
2389 	const struct cred *tcred;
2390 	uid_t uid = current_uid();
2391 	gid_t gid = current_gid();
2392 	int ret;
2393 
2394 	rcu_read_lock();
2395 	tcred = __task_cred(task);
2396 
2397 	/* inspired by ptrace_attach() */
2398 	DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2399 		uid,
2400 		gid,
2401 		tcred->euid,
2402 		tcred->suid,
2403 		tcred->uid,
2404 		tcred->egid,
2405 		tcred->sgid));
2406 
2407 	ret = ((uid != tcred->euid)
2408 	       || (uid != tcred->suid)
2409 	       || (uid != tcred->uid)
2410 	       || (gid != tcred->egid)
2411 	       || (gid != tcred->sgid)
2412 	       || (gid != tcred->gid)) && !capable(CAP_SYS_PTRACE);
2413 
2414 	rcu_read_unlock();
2415 	return ret;
2416 }
2417 
2418 static int
pfarg_is_sane(struct task_struct * task,pfarg_context_t * pfx)2419 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2420 {
2421 	int ctx_flags;
2422 
2423 	/* valid signal */
2424 
2425 	ctx_flags = pfx->ctx_flags;
2426 
2427 	if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2428 
2429 		/*
2430 		 * cannot block in this mode
2431 		 */
2432 		if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2433 			DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2434 			return -EINVAL;
2435 		}
2436 	} else {
2437 	}
2438 	/* probably more to add here */
2439 
2440 	return 0;
2441 }
2442 
2443 static int
pfm_setup_buffer_fmt(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned int ctx_flags,unsigned int cpu,pfarg_context_t * arg)2444 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2445 		     unsigned int cpu, pfarg_context_t *arg)
2446 {
2447 	pfm_buffer_fmt_t *fmt = NULL;
2448 	unsigned long size = 0UL;
2449 	void *uaddr = NULL;
2450 	void *fmt_arg = NULL;
2451 	int ret = 0;
2452 #define PFM_CTXARG_BUF_ARG(a)	(pfm_buffer_fmt_t *)(a+1)
2453 
2454 	/* invoke and lock buffer format, if found */
2455 	fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2456 	if (fmt == NULL) {
2457 		DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2458 		return -EINVAL;
2459 	}
2460 
2461 	/*
2462 	 * buffer argument MUST be contiguous to pfarg_context_t
2463 	 */
2464 	if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2465 
2466 	ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2467 
2468 	DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2469 
2470 	if (ret) goto error;
2471 
2472 	/* link buffer format and context */
2473 	ctx->ctx_buf_fmt = fmt;
2474 	ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2475 
2476 	/*
2477 	 * check if buffer format wants to use perfmon buffer allocation/mapping service
2478 	 */
2479 	ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2480 	if (ret) goto error;
2481 
2482 	if (size) {
2483 		/*
2484 		 * buffer is always remapped into the caller's address space
2485 		 */
2486 		ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2487 		if (ret) goto error;
2488 
2489 		/* keep track of user address of buffer */
2490 		arg->ctx_smpl_vaddr = uaddr;
2491 	}
2492 	ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2493 
2494 error:
2495 	return ret;
2496 }
2497 
2498 static void
pfm_reset_pmu_state(pfm_context_t * ctx)2499 pfm_reset_pmu_state(pfm_context_t *ctx)
2500 {
2501 	int i;
2502 
2503 	/*
2504 	 * install reset values for PMC.
2505 	 */
2506 	for (i=1; PMC_IS_LAST(i) == 0; i++) {
2507 		if (PMC_IS_IMPL(i) == 0) continue;
2508 		ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2509 		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2510 	}
2511 	/*
2512 	 * PMD registers are set to 0UL when the context in memset()
2513 	 */
2514 
2515 	/*
2516 	 * On context switched restore, we must restore ALL pmc and ALL pmd even
2517 	 * when they are not actively used by the task. In UP, the incoming process
2518 	 * may otherwise pick up left over PMC, PMD state from the previous process.
2519 	 * As opposed to PMD, stale PMC can cause harm to the incoming
2520 	 * process because they may change what is being measured.
2521 	 * Therefore, we must systematically reinstall the entire
2522 	 * PMC state. In SMP, the same thing is possible on the
2523 	 * same CPU but also on between 2 CPUs.
2524 	 *
2525 	 * The problem with PMD is information leaking especially
2526 	 * to user level when psr.sp=0
2527 	 *
2528 	 * There is unfortunately no easy way to avoid this problem
2529 	 * on either UP or SMP. This definitively slows down the
2530 	 * pfm_load_regs() function.
2531 	 */
2532 
2533 	 /*
2534 	  * bitmask of all PMCs accessible to this context
2535 	  *
2536 	  * PMC0 is treated differently.
2537 	  */
2538 	ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2539 
2540 	/*
2541 	 * bitmask of all PMDs that are accessible to this context
2542 	 */
2543 	ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2544 
2545 	DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2546 
2547 	/*
2548 	 * useful in case of re-enable after disable
2549 	 */
2550 	ctx->ctx_used_ibrs[0] = 0UL;
2551 	ctx->ctx_used_dbrs[0] = 0UL;
2552 }
2553 
2554 static int
pfm_ctx_getsize(void * arg,size_t * sz)2555 pfm_ctx_getsize(void *arg, size_t *sz)
2556 {
2557 	pfarg_context_t *req = (pfarg_context_t *)arg;
2558 	pfm_buffer_fmt_t *fmt;
2559 
2560 	*sz = 0;
2561 
2562 	if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2563 
2564 	fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2565 	if (fmt == NULL) {
2566 		DPRINT(("cannot find buffer format\n"));
2567 		return -EINVAL;
2568 	}
2569 	/* get just enough to copy in user parameters */
2570 	*sz = fmt->fmt_arg_size;
2571 	DPRINT(("arg_size=%lu\n", *sz));
2572 
2573 	return 0;
2574 }
2575 
2576 
2577 
2578 /*
2579  * cannot attach if :
2580  * 	- kernel task
2581  * 	- task not owned by caller
2582  * 	- task incompatible with context mode
2583  */
2584 static int
pfm_task_incompatible(pfm_context_t * ctx,struct task_struct * task)2585 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2586 {
2587 	/*
2588 	 * no kernel task or task not owner by caller
2589 	 */
2590 	if (task->mm == NULL) {
2591 		DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2592 		return -EPERM;
2593 	}
2594 	if (pfm_bad_permissions(task)) {
2595 		DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2596 		return -EPERM;
2597 	}
2598 	/*
2599 	 * cannot block in self-monitoring mode
2600 	 */
2601 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2602 		DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2603 		return -EINVAL;
2604 	}
2605 
2606 	if (task->exit_state == EXIT_ZOMBIE) {
2607 		DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2608 		return -EBUSY;
2609 	}
2610 
2611 	/*
2612 	 * always ok for self
2613 	 */
2614 	if (task == current) return 0;
2615 
2616 	if (!task_is_stopped_or_traced(task)) {
2617 		DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2618 		return -EBUSY;
2619 	}
2620 	/*
2621 	 * make sure the task is off any CPU
2622 	 */
2623 	wait_task_inactive(task, 0);
2624 
2625 	/* more to come... */
2626 
2627 	return 0;
2628 }
2629 
2630 static int
pfm_get_task(pfm_context_t * ctx,pid_t pid,struct task_struct ** task)2631 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2632 {
2633 	struct task_struct *p = current;
2634 	int ret;
2635 
2636 	/* XXX: need to add more checks here */
2637 	if (pid < 2) return -EPERM;
2638 
2639 	if (pid != task_pid_vnr(current)) {
2640 
2641 		read_lock(&tasklist_lock);
2642 
2643 		p = find_task_by_vpid(pid);
2644 
2645 		/* make sure task cannot go away while we operate on it */
2646 		if (p) get_task_struct(p);
2647 
2648 		read_unlock(&tasklist_lock);
2649 
2650 		if (p == NULL) return -ESRCH;
2651 	}
2652 
2653 	ret = pfm_task_incompatible(ctx, p);
2654 	if (ret == 0) {
2655 		*task = p;
2656 	} else if (p != current) {
2657 		pfm_put_task(p);
2658 	}
2659 	return ret;
2660 }
2661 
2662 
2663 
2664 static int
pfm_context_create(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2665 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2666 {
2667 	pfarg_context_t *req = (pfarg_context_t *)arg;
2668 	struct file *filp;
2669 	struct path path;
2670 	int ctx_flags;
2671 	int fd;
2672 	int ret;
2673 
2674 	/* let's check the arguments first */
2675 	ret = pfarg_is_sane(current, req);
2676 	if (ret < 0)
2677 		return ret;
2678 
2679 	ctx_flags = req->ctx_flags;
2680 
2681 	ret = -ENOMEM;
2682 
2683 	fd = get_unused_fd();
2684 	if (fd < 0)
2685 		return fd;
2686 
2687 	ctx = pfm_context_alloc(ctx_flags);
2688 	if (!ctx)
2689 		goto error;
2690 
2691 	filp = pfm_alloc_file(ctx);
2692 	if (IS_ERR(filp)) {
2693 		ret = PTR_ERR(filp);
2694 		goto error_file;
2695 	}
2696 
2697 	req->ctx_fd = ctx->ctx_fd = fd;
2698 
2699 	/*
2700 	 * does the user want to sample?
2701 	 */
2702 	if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2703 		ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2704 		if (ret)
2705 			goto buffer_error;
2706 	}
2707 
2708 	DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2709 		ctx,
2710 		ctx_flags,
2711 		ctx->ctx_fl_system,
2712 		ctx->ctx_fl_block,
2713 		ctx->ctx_fl_excl_idle,
2714 		ctx->ctx_fl_no_msg,
2715 		ctx->ctx_fd));
2716 
2717 	/*
2718 	 * initialize soft PMU state
2719 	 */
2720 	pfm_reset_pmu_state(ctx);
2721 
2722 	fd_install(fd, filp);
2723 
2724 	return 0;
2725 
2726 buffer_error:
2727 	path = filp->f_path;
2728 	put_filp(filp);
2729 	path_put(&path);
2730 
2731 	if (ctx->ctx_buf_fmt) {
2732 		pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2733 	}
2734 error_file:
2735 	pfm_context_free(ctx);
2736 
2737 error:
2738 	put_unused_fd(fd);
2739 	return ret;
2740 }
2741 
2742 static inline unsigned long
pfm_new_counter_value(pfm_counter_t * reg,int is_long_reset)2743 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2744 {
2745 	unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2746 	unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2747 	extern unsigned long carta_random32 (unsigned long seed);
2748 
2749 	if (reg->flags & PFM_REGFL_RANDOM) {
2750 		new_seed = carta_random32(old_seed);
2751 		val -= (old_seed & mask);	/* counter values are negative numbers! */
2752 		if ((mask >> 32) != 0)
2753 			/* construct a full 64-bit random value: */
2754 			new_seed |= carta_random32(old_seed >> 32) << 32;
2755 		reg->seed = new_seed;
2756 	}
2757 	reg->lval = val;
2758 	return val;
2759 }
2760 
2761 static void
pfm_reset_regs_masked(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2762 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2763 {
2764 	unsigned long mask = ovfl_regs[0];
2765 	unsigned long reset_others = 0UL;
2766 	unsigned long val;
2767 	int i;
2768 
2769 	/*
2770 	 * now restore reset value on sampling overflowed counters
2771 	 */
2772 	mask >>= PMU_FIRST_COUNTER;
2773 	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2774 
2775 		if ((mask & 0x1UL) == 0UL) continue;
2776 
2777 		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2778 		reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2779 
2780 		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2781 	}
2782 
2783 	/*
2784 	 * Now take care of resetting the other registers
2785 	 */
2786 	for(i = 0; reset_others; i++, reset_others >>= 1) {
2787 
2788 		if ((reset_others & 0x1) == 0) continue;
2789 
2790 		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2791 
2792 		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2793 			  is_long_reset ? "long" : "short", i, val));
2794 	}
2795 }
2796 
2797 static void
pfm_reset_regs(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2798 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2799 {
2800 	unsigned long mask = ovfl_regs[0];
2801 	unsigned long reset_others = 0UL;
2802 	unsigned long val;
2803 	int i;
2804 
2805 	DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2806 
2807 	if (ctx->ctx_state == PFM_CTX_MASKED) {
2808 		pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2809 		return;
2810 	}
2811 
2812 	/*
2813 	 * now restore reset value on sampling overflowed counters
2814 	 */
2815 	mask >>= PMU_FIRST_COUNTER;
2816 	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2817 
2818 		if ((mask & 0x1UL) == 0UL) continue;
2819 
2820 		val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2821 		reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2822 
2823 		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2824 
2825 		pfm_write_soft_counter(ctx, i, val);
2826 	}
2827 
2828 	/*
2829 	 * Now take care of resetting the other registers
2830 	 */
2831 	for(i = 0; reset_others; i++, reset_others >>= 1) {
2832 
2833 		if ((reset_others & 0x1) == 0) continue;
2834 
2835 		val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2836 
2837 		if (PMD_IS_COUNTING(i)) {
2838 			pfm_write_soft_counter(ctx, i, val);
2839 		} else {
2840 			ia64_set_pmd(i, val);
2841 		}
2842 		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2843 			  is_long_reset ? "long" : "short", i, val));
2844 	}
2845 	ia64_srlz_d();
2846 }
2847 
2848 static int
pfm_write_pmcs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2849 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2850 {
2851 	struct task_struct *task;
2852 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
2853 	unsigned long value, pmc_pm;
2854 	unsigned long smpl_pmds, reset_pmds, impl_pmds;
2855 	unsigned int cnum, reg_flags, flags, pmc_type;
2856 	int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2857 	int is_monitor, is_counting, state;
2858 	int ret = -EINVAL;
2859 	pfm_reg_check_t	wr_func;
2860 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2861 
2862 	state     = ctx->ctx_state;
2863 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2864 	is_system = ctx->ctx_fl_system;
2865 	task      = ctx->ctx_task;
2866 	impl_pmds = pmu_conf->impl_pmds[0];
2867 
2868 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2869 
2870 	if (is_loaded) {
2871 		/*
2872 		 * In system wide and when the context is loaded, access can only happen
2873 		 * when the caller is running on the CPU being monitored by the session.
2874 		 * It does not have to be the owner (ctx_task) of the context per se.
2875 		 */
2876 		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2877 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2878 			return -EBUSY;
2879 		}
2880 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2881 	}
2882 	expert_mode = pfm_sysctl.expert_mode;
2883 
2884 	for (i = 0; i < count; i++, req++) {
2885 
2886 		cnum       = req->reg_num;
2887 		reg_flags  = req->reg_flags;
2888 		value      = req->reg_value;
2889 		smpl_pmds  = req->reg_smpl_pmds[0];
2890 		reset_pmds = req->reg_reset_pmds[0];
2891 		flags      = 0;
2892 
2893 
2894 		if (cnum >= PMU_MAX_PMCS) {
2895 			DPRINT(("pmc%u is invalid\n", cnum));
2896 			goto error;
2897 		}
2898 
2899 		pmc_type   = pmu_conf->pmc_desc[cnum].type;
2900 		pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2901 		is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2902 		is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2903 
2904 		/*
2905 		 * we reject all non implemented PMC as well
2906 		 * as attempts to modify PMC[0-3] which are used
2907 		 * as status registers by the PMU
2908 		 */
2909 		if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2910 			DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2911 			goto error;
2912 		}
2913 		wr_func = pmu_conf->pmc_desc[cnum].write_check;
2914 		/*
2915 		 * If the PMC is a monitor, then if the value is not the default:
2916 		 * 	- system-wide session: PMCx.pm=1 (privileged monitor)
2917 		 * 	- per-task           : PMCx.pm=0 (user monitor)
2918 		 */
2919 		if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2920 			DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2921 				cnum,
2922 				pmc_pm,
2923 				is_system));
2924 			goto error;
2925 		}
2926 
2927 		if (is_counting) {
2928 			/*
2929 		 	 * enforce generation of overflow interrupt. Necessary on all
2930 		 	 * CPUs.
2931 		 	 */
2932 			value |= 1 << PMU_PMC_OI;
2933 
2934 			if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2935 				flags |= PFM_REGFL_OVFL_NOTIFY;
2936 			}
2937 
2938 			if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2939 
2940 			/* verify validity of smpl_pmds */
2941 			if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2942 				DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2943 				goto error;
2944 			}
2945 
2946 			/* verify validity of reset_pmds */
2947 			if ((reset_pmds & impl_pmds) != reset_pmds) {
2948 				DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2949 				goto error;
2950 			}
2951 		} else {
2952 			if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2953 				DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2954 				goto error;
2955 			}
2956 			/* eventid on non-counting monitors are ignored */
2957 		}
2958 
2959 		/*
2960 		 * execute write checker, if any
2961 		 */
2962 		if (likely(expert_mode == 0 && wr_func)) {
2963 			ret = (*wr_func)(task, ctx, cnum, &value, regs);
2964 			if (ret) goto error;
2965 			ret = -EINVAL;
2966 		}
2967 
2968 		/*
2969 		 * no error on this register
2970 		 */
2971 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2972 
2973 		/*
2974 		 * Now we commit the changes to the software state
2975 		 */
2976 
2977 		/*
2978 		 * update overflow information
2979 		 */
2980 		if (is_counting) {
2981 			/*
2982 		 	 * full flag update each time a register is programmed
2983 		 	 */
2984 			ctx->ctx_pmds[cnum].flags = flags;
2985 
2986 			ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2987 			ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2988 			ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2989 
2990 			/*
2991 			 * Mark all PMDS to be accessed as used.
2992 			 *
2993 			 * We do not keep track of PMC because we have to
2994 			 * systematically restore ALL of them.
2995 			 *
2996 			 * We do not update the used_monitors mask, because
2997 			 * if we have not programmed them, then will be in
2998 			 * a quiescent state, therefore we will not need to
2999 			 * mask/restore then when context is MASKED.
3000 			 */
3001 			CTX_USED_PMD(ctx, reset_pmds);
3002 			CTX_USED_PMD(ctx, smpl_pmds);
3003 			/*
3004 		 	 * make sure we do not try to reset on
3005 		 	 * restart because we have established new values
3006 		 	 */
3007 			if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3008 		}
3009 		/*
3010 		 * Needed in case the user does not initialize the equivalent
3011 		 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3012 		 * possible leak here.
3013 		 */
3014 		CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3015 
3016 		/*
3017 		 * keep track of the monitor PMC that we are using.
3018 		 * we save the value of the pmc in ctx_pmcs[] and if
3019 		 * the monitoring is not stopped for the context we also
3020 		 * place it in the saved state area so that it will be
3021 		 * picked up later by the context switch code.
3022 		 *
3023 		 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3024 		 *
3025 		 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
3026 		 * monitoring needs to be stopped.
3027 		 */
3028 		if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3029 
3030 		/*
3031 		 * update context state
3032 		 */
3033 		ctx->ctx_pmcs[cnum] = value;
3034 
3035 		if (is_loaded) {
3036 			/*
3037 			 * write thread state
3038 			 */
3039 			if (is_system == 0) ctx->th_pmcs[cnum] = value;
3040 
3041 			/*
3042 			 * write hardware register if we can
3043 			 */
3044 			if (can_access_pmu) {
3045 				ia64_set_pmc(cnum, value);
3046 			}
3047 #ifdef CONFIG_SMP
3048 			else {
3049 				/*
3050 				 * per-task SMP only here
3051 				 *
3052 			 	 * we are guaranteed that the task is not running on the other CPU,
3053 			 	 * we indicate that this PMD will need to be reloaded if the task
3054 			 	 * is rescheduled on the CPU it ran last on.
3055 			 	 */
3056 				ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3057 			}
3058 #endif
3059 		}
3060 
3061 		DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3062 			  cnum,
3063 			  value,
3064 			  is_loaded,
3065 			  can_access_pmu,
3066 			  flags,
3067 			  ctx->ctx_all_pmcs[0],
3068 			  ctx->ctx_used_pmds[0],
3069 			  ctx->ctx_pmds[cnum].eventid,
3070 			  smpl_pmds,
3071 			  reset_pmds,
3072 			  ctx->ctx_reload_pmcs[0],
3073 			  ctx->ctx_used_monitors[0],
3074 			  ctx->ctx_ovfl_regs[0]));
3075 	}
3076 
3077 	/*
3078 	 * make sure the changes are visible
3079 	 */
3080 	if (can_access_pmu) ia64_srlz_d();
3081 
3082 	return 0;
3083 error:
3084 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3085 	return ret;
3086 }
3087 
3088 static int
pfm_write_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3089 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3090 {
3091 	struct task_struct *task;
3092 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3093 	unsigned long value, hw_value, ovfl_mask;
3094 	unsigned int cnum;
3095 	int i, can_access_pmu = 0, state;
3096 	int is_counting, is_loaded, is_system, expert_mode;
3097 	int ret = -EINVAL;
3098 	pfm_reg_check_t wr_func;
3099 
3100 
3101 	state     = ctx->ctx_state;
3102 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3103 	is_system = ctx->ctx_fl_system;
3104 	ovfl_mask = pmu_conf->ovfl_val;
3105 	task      = ctx->ctx_task;
3106 
3107 	if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3108 
3109 	/*
3110 	 * on both UP and SMP, we can only write to the PMC when the task is
3111 	 * the owner of the local PMU.
3112 	 */
3113 	if (likely(is_loaded)) {
3114 		/*
3115 		 * In system wide and when the context is loaded, access can only happen
3116 		 * when the caller is running on the CPU being monitored by the session.
3117 		 * It does not have to be the owner (ctx_task) of the context per se.
3118 		 */
3119 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3120 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3121 			return -EBUSY;
3122 		}
3123 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3124 	}
3125 	expert_mode = pfm_sysctl.expert_mode;
3126 
3127 	for (i = 0; i < count; i++, req++) {
3128 
3129 		cnum  = req->reg_num;
3130 		value = req->reg_value;
3131 
3132 		if (!PMD_IS_IMPL(cnum)) {
3133 			DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3134 			goto abort_mission;
3135 		}
3136 		is_counting = PMD_IS_COUNTING(cnum);
3137 		wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3138 
3139 		/*
3140 		 * execute write checker, if any
3141 		 */
3142 		if (unlikely(expert_mode == 0 && wr_func)) {
3143 			unsigned long v = value;
3144 
3145 			ret = (*wr_func)(task, ctx, cnum, &v, regs);
3146 			if (ret) goto abort_mission;
3147 
3148 			value = v;
3149 			ret   = -EINVAL;
3150 		}
3151 
3152 		/*
3153 		 * no error on this register
3154 		 */
3155 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3156 
3157 		/*
3158 		 * now commit changes to software state
3159 		 */
3160 		hw_value = value;
3161 
3162 		/*
3163 		 * update virtualized (64bits) counter
3164 		 */
3165 		if (is_counting) {
3166 			/*
3167 			 * write context state
3168 			 */
3169 			ctx->ctx_pmds[cnum].lval = value;
3170 
3171 			/*
3172 			 * when context is load we use the split value
3173 			 */
3174 			if (is_loaded) {
3175 				hw_value = value &  ovfl_mask;
3176 				value    = value & ~ovfl_mask;
3177 			}
3178 		}
3179 		/*
3180 		 * update reset values (not just for counters)
3181 		 */
3182 		ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3183 		ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3184 
3185 		/*
3186 		 * update randomization parameters (not just for counters)
3187 		 */
3188 		ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3189 		ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3190 
3191 		/*
3192 		 * update context value
3193 		 */
3194 		ctx->ctx_pmds[cnum].val  = value;
3195 
3196 		/*
3197 		 * Keep track of what we use
3198 		 *
3199 		 * We do not keep track of PMC because we have to
3200 		 * systematically restore ALL of them.
3201 		 */
3202 		CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3203 
3204 		/*
3205 		 * mark this PMD register used as well
3206 		 */
3207 		CTX_USED_PMD(ctx, RDEP(cnum));
3208 
3209 		/*
3210 		 * make sure we do not try to reset on
3211 		 * restart because we have established new values
3212 		 */
3213 		if (is_counting && state == PFM_CTX_MASKED) {
3214 			ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3215 		}
3216 
3217 		if (is_loaded) {
3218 			/*
3219 		 	 * write thread state
3220 		 	 */
3221 			if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3222 
3223 			/*
3224 			 * write hardware register if we can
3225 			 */
3226 			if (can_access_pmu) {
3227 				ia64_set_pmd(cnum, hw_value);
3228 			} else {
3229 #ifdef CONFIG_SMP
3230 				/*
3231 			 	 * we are guaranteed that the task is not running on the other CPU,
3232 			 	 * we indicate that this PMD will need to be reloaded if the task
3233 			 	 * is rescheduled on the CPU it ran last on.
3234 			 	 */
3235 				ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3236 #endif
3237 			}
3238 		}
3239 
3240 		DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3241 			  "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3242 			cnum,
3243 			value,
3244 			is_loaded,
3245 			can_access_pmu,
3246 			hw_value,
3247 			ctx->ctx_pmds[cnum].val,
3248 			ctx->ctx_pmds[cnum].short_reset,
3249 			ctx->ctx_pmds[cnum].long_reset,
3250 			PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3251 			ctx->ctx_pmds[cnum].seed,
3252 			ctx->ctx_pmds[cnum].mask,
3253 			ctx->ctx_used_pmds[0],
3254 			ctx->ctx_pmds[cnum].reset_pmds[0],
3255 			ctx->ctx_reload_pmds[0],
3256 			ctx->ctx_all_pmds[0],
3257 			ctx->ctx_ovfl_regs[0]));
3258 	}
3259 
3260 	/*
3261 	 * make changes visible
3262 	 */
3263 	if (can_access_pmu) ia64_srlz_d();
3264 
3265 	return 0;
3266 
3267 abort_mission:
3268 	/*
3269 	 * for now, we have only one possibility for error
3270 	 */
3271 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3272 	return ret;
3273 }
3274 
3275 /*
3276  * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3277  * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3278  * interrupt is delivered during the call, it will be kept pending until we leave, making
3279  * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3280  * guaranteed to return consistent data to the user, it may simply be old. It is not
3281  * trivial to treat the overflow while inside the call because you may end up in
3282  * some module sampling buffer code causing deadlocks.
3283  */
3284 static int
pfm_read_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3285 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3286 {
3287 	struct task_struct *task;
3288 	unsigned long val = 0UL, lval, ovfl_mask, sval;
3289 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3290 	unsigned int cnum, reg_flags = 0;
3291 	int i, can_access_pmu = 0, state;
3292 	int is_loaded, is_system, is_counting, expert_mode;
3293 	int ret = -EINVAL;
3294 	pfm_reg_check_t rd_func;
3295 
3296 	/*
3297 	 * access is possible when loaded only for
3298 	 * self-monitoring tasks or in UP mode
3299 	 */
3300 
3301 	state     = ctx->ctx_state;
3302 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3303 	is_system = ctx->ctx_fl_system;
3304 	ovfl_mask = pmu_conf->ovfl_val;
3305 	task      = ctx->ctx_task;
3306 
3307 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3308 
3309 	if (likely(is_loaded)) {
3310 		/*
3311 		 * In system wide and when the context is loaded, access can only happen
3312 		 * when the caller is running on the CPU being monitored by the session.
3313 		 * It does not have to be the owner (ctx_task) of the context per se.
3314 		 */
3315 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3316 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3317 			return -EBUSY;
3318 		}
3319 		/*
3320 		 * this can be true when not self-monitoring only in UP
3321 		 */
3322 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3323 
3324 		if (can_access_pmu) ia64_srlz_d();
3325 	}
3326 	expert_mode = pfm_sysctl.expert_mode;
3327 
3328 	DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3329 		is_loaded,
3330 		can_access_pmu,
3331 		state));
3332 
3333 	/*
3334 	 * on both UP and SMP, we can only read the PMD from the hardware register when
3335 	 * the task is the owner of the local PMU.
3336 	 */
3337 
3338 	for (i = 0; i < count; i++, req++) {
3339 
3340 		cnum        = req->reg_num;
3341 		reg_flags   = req->reg_flags;
3342 
3343 		if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3344 		/*
3345 		 * we can only read the register that we use. That includes
3346 		 * the one we explicitly initialize AND the one we want included
3347 		 * in the sampling buffer (smpl_regs).
3348 		 *
3349 		 * Having this restriction allows optimization in the ctxsw routine
3350 		 * without compromising security (leaks)
3351 		 */
3352 		if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3353 
3354 		sval        = ctx->ctx_pmds[cnum].val;
3355 		lval        = ctx->ctx_pmds[cnum].lval;
3356 		is_counting = PMD_IS_COUNTING(cnum);
3357 
3358 		/*
3359 		 * If the task is not the current one, then we check if the
3360 		 * PMU state is still in the local live register due to lazy ctxsw.
3361 		 * If true, then we read directly from the registers.
3362 		 */
3363 		if (can_access_pmu){
3364 			val = ia64_get_pmd(cnum);
3365 		} else {
3366 			/*
3367 			 * context has been saved
3368 			 * if context is zombie, then task does not exist anymore.
3369 			 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3370 			 */
3371 			val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3372 		}
3373 		rd_func = pmu_conf->pmd_desc[cnum].read_check;
3374 
3375 		if (is_counting) {
3376 			/*
3377 			 * XXX: need to check for overflow when loaded
3378 			 */
3379 			val &= ovfl_mask;
3380 			val += sval;
3381 		}
3382 
3383 		/*
3384 		 * execute read checker, if any
3385 		 */
3386 		if (unlikely(expert_mode == 0 && rd_func)) {
3387 			unsigned long v = val;
3388 			ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3389 			if (ret) goto error;
3390 			val = v;
3391 			ret = -EINVAL;
3392 		}
3393 
3394 		PFM_REG_RETFLAG_SET(reg_flags, 0);
3395 
3396 		DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3397 
3398 		/*
3399 		 * update register return value, abort all if problem during copy.
3400 		 * we only modify the reg_flags field. no check mode is fine because
3401 		 * access has been verified upfront in sys_perfmonctl().
3402 		 */
3403 		req->reg_value            = val;
3404 		req->reg_flags            = reg_flags;
3405 		req->reg_last_reset_val   = lval;
3406 	}
3407 
3408 	return 0;
3409 
3410 error:
3411 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3412 	return ret;
3413 }
3414 
3415 int
pfm_mod_write_pmcs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3416 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3417 {
3418 	pfm_context_t *ctx;
3419 
3420 	if (req == NULL) return -EINVAL;
3421 
3422  	ctx = GET_PMU_CTX();
3423 
3424 	if (ctx == NULL) return -EINVAL;
3425 
3426 	/*
3427 	 * for now limit to current task, which is enough when calling
3428 	 * from overflow handler
3429 	 */
3430 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3431 
3432 	return pfm_write_pmcs(ctx, req, nreq, regs);
3433 }
3434 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3435 
3436 int
pfm_mod_read_pmds(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3437 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3438 {
3439 	pfm_context_t *ctx;
3440 
3441 	if (req == NULL) return -EINVAL;
3442 
3443  	ctx = GET_PMU_CTX();
3444 
3445 	if (ctx == NULL) return -EINVAL;
3446 
3447 	/*
3448 	 * for now limit to current task, which is enough when calling
3449 	 * from overflow handler
3450 	 */
3451 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3452 
3453 	return pfm_read_pmds(ctx, req, nreq, regs);
3454 }
3455 EXPORT_SYMBOL(pfm_mod_read_pmds);
3456 
3457 /*
3458  * Only call this function when a process it trying to
3459  * write the debug registers (reading is always allowed)
3460  */
3461 int
pfm_use_debug_registers(struct task_struct * task)3462 pfm_use_debug_registers(struct task_struct *task)
3463 {
3464 	pfm_context_t *ctx = task->thread.pfm_context;
3465 	unsigned long flags;
3466 	int ret = 0;
3467 
3468 	if (pmu_conf->use_rr_dbregs == 0) return 0;
3469 
3470 	DPRINT(("called for [%d]\n", task_pid_nr(task)));
3471 
3472 	/*
3473 	 * do it only once
3474 	 */
3475 	if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3476 
3477 	/*
3478 	 * Even on SMP, we do not need to use an atomic here because
3479 	 * the only way in is via ptrace() and this is possible only when the
3480 	 * process is stopped. Even in the case where the ctxsw out is not totally
3481 	 * completed by the time we come here, there is no way the 'stopped' process
3482 	 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3483 	 * So this is always safe.
3484 	 */
3485 	if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3486 
3487 	LOCK_PFS(flags);
3488 
3489 	/*
3490 	 * We cannot allow setting breakpoints when system wide monitoring
3491 	 * sessions are using the debug registers.
3492 	 */
3493 	if (pfm_sessions.pfs_sys_use_dbregs> 0)
3494 		ret = -1;
3495 	else
3496 		pfm_sessions.pfs_ptrace_use_dbregs++;
3497 
3498 	DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3499 		  pfm_sessions.pfs_ptrace_use_dbregs,
3500 		  pfm_sessions.pfs_sys_use_dbregs,
3501 		  task_pid_nr(task), ret));
3502 
3503 	UNLOCK_PFS(flags);
3504 
3505 	return ret;
3506 }
3507 
3508 /*
3509  * This function is called for every task that exits with the
3510  * IA64_THREAD_DBG_VALID set. This indicates a task which was
3511  * able to use the debug registers for debugging purposes via
3512  * ptrace(). Therefore we know it was not using them for
3513  * performance monitoring, so we only decrement the number
3514  * of "ptraced" debug register users to keep the count up to date
3515  */
3516 int
pfm_release_debug_registers(struct task_struct * task)3517 pfm_release_debug_registers(struct task_struct *task)
3518 {
3519 	unsigned long flags;
3520 	int ret;
3521 
3522 	if (pmu_conf->use_rr_dbregs == 0) return 0;
3523 
3524 	LOCK_PFS(flags);
3525 	if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3526 		printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3527 		ret = -1;
3528 	}  else {
3529 		pfm_sessions.pfs_ptrace_use_dbregs--;
3530 		ret = 0;
3531 	}
3532 	UNLOCK_PFS(flags);
3533 
3534 	return ret;
3535 }
3536 
3537 static int
pfm_restart(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3538 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3539 {
3540 	struct task_struct *task;
3541 	pfm_buffer_fmt_t *fmt;
3542 	pfm_ovfl_ctrl_t rst_ctrl;
3543 	int state, is_system;
3544 	int ret = 0;
3545 
3546 	state     = ctx->ctx_state;
3547 	fmt       = ctx->ctx_buf_fmt;
3548 	is_system = ctx->ctx_fl_system;
3549 	task      = PFM_CTX_TASK(ctx);
3550 
3551 	switch(state) {
3552 		case PFM_CTX_MASKED:
3553 			break;
3554 		case PFM_CTX_LOADED:
3555 			if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3556 			/* fall through */
3557 		case PFM_CTX_UNLOADED:
3558 		case PFM_CTX_ZOMBIE:
3559 			DPRINT(("invalid state=%d\n", state));
3560 			return -EBUSY;
3561 		default:
3562 			DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3563 			return -EINVAL;
3564 	}
3565 
3566 	/*
3567  	 * In system wide and when the context is loaded, access can only happen
3568  	 * when the caller is running on the CPU being monitored by the session.
3569  	 * It does not have to be the owner (ctx_task) of the context per se.
3570  	 */
3571 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3572 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3573 		return -EBUSY;
3574 	}
3575 
3576 	/* sanity check */
3577 	if (unlikely(task == NULL)) {
3578 		printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3579 		return -EINVAL;
3580 	}
3581 
3582 	if (task == current || is_system) {
3583 
3584 		fmt = ctx->ctx_buf_fmt;
3585 
3586 		DPRINT(("restarting self %d ovfl=0x%lx\n",
3587 			task_pid_nr(task),
3588 			ctx->ctx_ovfl_regs[0]));
3589 
3590 		if (CTX_HAS_SMPL(ctx)) {
3591 
3592 			prefetch(ctx->ctx_smpl_hdr);
3593 
3594 			rst_ctrl.bits.mask_monitoring = 0;
3595 			rst_ctrl.bits.reset_ovfl_pmds = 0;
3596 
3597 			if (state == PFM_CTX_LOADED)
3598 				ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3599 			else
3600 				ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3601 		} else {
3602 			rst_ctrl.bits.mask_monitoring = 0;
3603 			rst_ctrl.bits.reset_ovfl_pmds = 1;
3604 		}
3605 
3606 		if (ret == 0) {
3607 			if (rst_ctrl.bits.reset_ovfl_pmds)
3608 				pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3609 
3610 			if (rst_ctrl.bits.mask_monitoring == 0) {
3611 				DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3612 
3613 				if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3614 			} else {
3615 				DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3616 
3617 				// cannot use pfm_stop_monitoring(task, regs);
3618 			}
3619 		}
3620 		/*
3621 		 * clear overflowed PMD mask to remove any stale information
3622 		 */
3623 		ctx->ctx_ovfl_regs[0] = 0UL;
3624 
3625 		/*
3626 		 * back to LOADED state
3627 		 */
3628 		ctx->ctx_state = PFM_CTX_LOADED;
3629 
3630 		/*
3631 		 * XXX: not really useful for self monitoring
3632 		 */
3633 		ctx->ctx_fl_can_restart = 0;
3634 
3635 		return 0;
3636 	}
3637 
3638 	/*
3639 	 * restart another task
3640 	 */
3641 
3642 	/*
3643 	 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3644 	 * one is seen by the task.
3645 	 */
3646 	if (state == PFM_CTX_MASKED) {
3647 		if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3648 		/*
3649 		 * will prevent subsequent restart before this one is
3650 		 * seen by other task
3651 		 */
3652 		ctx->ctx_fl_can_restart = 0;
3653 	}
3654 
3655 	/*
3656 	 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3657 	 * the task is blocked or on its way to block. That's the normal
3658 	 * restart path. If the monitoring is not masked, then the task
3659 	 * can be actively monitoring and we cannot directly intervene.
3660 	 * Therefore we use the trap mechanism to catch the task and
3661 	 * force it to reset the buffer/reset PMDs.
3662 	 *
3663 	 * if non-blocking, then we ensure that the task will go into
3664 	 * pfm_handle_work() before returning to user mode.
3665 	 *
3666 	 * We cannot explicitly reset another task, it MUST always
3667 	 * be done by the task itself. This works for system wide because
3668 	 * the tool that is controlling the session is logically doing
3669 	 * "self-monitoring".
3670 	 */
3671 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3672 		DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3673 		complete(&ctx->ctx_restart_done);
3674 	} else {
3675 		DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3676 
3677 		ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3678 
3679 		PFM_SET_WORK_PENDING(task, 1);
3680 
3681 		set_notify_resume(task);
3682 
3683 		/*
3684 		 * XXX: send reschedule if task runs on another CPU
3685 		 */
3686 	}
3687 	return 0;
3688 }
3689 
3690 static int
pfm_debug(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3691 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3692 {
3693 	unsigned int m = *(unsigned int *)arg;
3694 
3695 	pfm_sysctl.debug = m == 0 ? 0 : 1;
3696 
3697 	printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3698 
3699 	if (m == 0) {
3700 		memset(pfm_stats, 0, sizeof(pfm_stats));
3701 		for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3702 	}
3703 	return 0;
3704 }
3705 
3706 /*
3707  * arg can be NULL and count can be zero for this function
3708  */
3709 static int
pfm_write_ibr_dbr(int mode,pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3710 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3711 {
3712 	struct thread_struct *thread = NULL;
3713 	struct task_struct *task;
3714 	pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3715 	unsigned long flags;
3716 	dbreg_t dbreg;
3717 	unsigned int rnum;
3718 	int first_time;
3719 	int ret = 0, state;
3720 	int i, can_access_pmu = 0;
3721 	int is_system, is_loaded;
3722 
3723 	if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3724 
3725 	state     = ctx->ctx_state;
3726 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3727 	is_system = ctx->ctx_fl_system;
3728 	task      = ctx->ctx_task;
3729 
3730 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3731 
3732 	/*
3733 	 * on both UP and SMP, we can only write to the PMC when the task is
3734 	 * the owner of the local PMU.
3735 	 */
3736 	if (is_loaded) {
3737 		thread = &task->thread;
3738 		/*
3739 		 * In system wide and when the context is loaded, access can only happen
3740 		 * when the caller is running on the CPU being monitored by the session.
3741 		 * It does not have to be the owner (ctx_task) of the context per se.
3742 		 */
3743 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3744 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3745 			return -EBUSY;
3746 		}
3747 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3748 	}
3749 
3750 	/*
3751 	 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3752 	 * ensuring that no real breakpoint can be installed via this call.
3753 	 *
3754 	 * IMPORTANT: regs can be NULL in this function
3755 	 */
3756 
3757 	first_time = ctx->ctx_fl_using_dbreg == 0;
3758 
3759 	/*
3760 	 * don't bother if we are loaded and task is being debugged
3761 	 */
3762 	if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3763 		DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3764 		return -EBUSY;
3765 	}
3766 
3767 	/*
3768 	 * check for debug registers in system wide mode
3769 	 *
3770 	 * If though a check is done in pfm_context_load(),
3771 	 * we must repeat it here, in case the registers are
3772 	 * written after the context is loaded
3773 	 */
3774 	if (is_loaded) {
3775 		LOCK_PFS(flags);
3776 
3777 		if (first_time && is_system) {
3778 			if (pfm_sessions.pfs_ptrace_use_dbregs)
3779 				ret = -EBUSY;
3780 			else
3781 				pfm_sessions.pfs_sys_use_dbregs++;
3782 		}
3783 		UNLOCK_PFS(flags);
3784 	}
3785 
3786 	if (ret != 0) return ret;
3787 
3788 	/*
3789 	 * mark ourself as user of the debug registers for
3790 	 * perfmon purposes.
3791 	 */
3792 	ctx->ctx_fl_using_dbreg = 1;
3793 
3794 	/*
3795  	 * clear hardware registers to make sure we don't
3796  	 * pick up stale state.
3797 	 *
3798 	 * for a system wide session, we do not use
3799 	 * thread.dbr, thread.ibr because this process
3800 	 * never leaves the current CPU and the state
3801 	 * is shared by all processes running on it
3802  	 */
3803 	if (first_time && can_access_pmu) {
3804 		DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3805 		for (i=0; i < pmu_conf->num_ibrs; i++) {
3806 			ia64_set_ibr(i, 0UL);
3807 			ia64_dv_serialize_instruction();
3808 		}
3809 		ia64_srlz_i();
3810 		for (i=0; i < pmu_conf->num_dbrs; i++) {
3811 			ia64_set_dbr(i, 0UL);
3812 			ia64_dv_serialize_data();
3813 		}
3814 		ia64_srlz_d();
3815 	}
3816 
3817 	/*
3818 	 * Now install the values into the registers
3819 	 */
3820 	for (i = 0; i < count; i++, req++) {
3821 
3822 		rnum      = req->dbreg_num;
3823 		dbreg.val = req->dbreg_value;
3824 
3825 		ret = -EINVAL;
3826 
3827 		if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3828 			DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3829 				  rnum, dbreg.val, mode, i, count));
3830 
3831 			goto abort_mission;
3832 		}
3833 
3834 		/*
3835 		 * make sure we do not install enabled breakpoint
3836 		 */
3837 		if (rnum & 0x1) {
3838 			if (mode == PFM_CODE_RR)
3839 				dbreg.ibr.ibr_x = 0;
3840 			else
3841 				dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3842 		}
3843 
3844 		PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3845 
3846 		/*
3847 		 * Debug registers, just like PMC, can only be modified
3848 		 * by a kernel call. Moreover, perfmon() access to those
3849 		 * registers are centralized in this routine. The hardware
3850 		 * does not modify the value of these registers, therefore,
3851 		 * if we save them as they are written, we can avoid having
3852 		 * to save them on context switch out. This is made possible
3853 		 * by the fact that when perfmon uses debug registers, ptrace()
3854 		 * won't be able to modify them concurrently.
3855 		 */
3856 		if (mode == PFM_CODE_RR) {
3857 			CTX_USED_IBR(ctx, rnum);
3858 
3859 			if (can_access_pmu) {
3860 				ia64_set_ibr(rnum, dbreg.val);
3861 				ia64_dv_serialize_instruction();
3862 			}
3863 
3864 			ctx->ctx_ibrs[rnum] = dbreg.val;
3865 
3866 			DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3867 				rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3868 		} else {
3869 			CTX_USED_DBR(ctx, rnum);
3870 
3871 			if (can_access_pmu) {
3872 				ia64_set_dbr(rnum, dbreg.val);
3873 				ia64_dv_serialize_data();
3874 			}
3875 			ctx->ctx_dbrs[rnum] = dbreg.val;
3876 
3877 			DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3878 				rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3879 		}
3880 	}
3881 
3882 	return 0;
3883 
3884 abort_mission:
3885 	/*
3886 	 * in case it was our first attempt, we undo the global modifications
3887 	 */
3888 	if (first_time) {
3889 		LOCK_PFS(flags);
3890 		if (ctx->ctx_fl_system) {
3891 			pfm_sessions.pfs_sys_use_dbregs--;
3892 		}
3893 		UNLOCK_PFS(flags);
3894 		ctx->ctx_fl_using_dbreg = 0;
3895 	}
3896 	/*
3897 	 * install error return flag
3898 	 */
3899 	PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3900 
3901 	return ret;
3902 }
3903 
3904 static int
pfm_write_ibrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3905 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3906 {
3907 	return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3908 }
3909 
3910 static int
pfm_write_dbrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3911 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3912 {
3913 	return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3914 }
3915 
3916 int
pfm_mod_write_ibrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3917 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3918 {
3919 	pfm_context_t *ctx;
3920 
3921 	if (req == NULL) return -EINVAL;
3922 
3923  	ctx = GET_PMU_CTX();
3924 
3925 	if (ctx == NULL) return -EINVAL;
3926 
3927 	/*
3928 	 * for now limit to current task, which is enough when calling
3929 	 * from overflow handler
3930 	 */
3931 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3932 
3933 	return pfm_write_ibrs(ctx, req, nreq, regs);
3934 }
3935 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3936 
3937 int
pfm_mod_write_dbrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3938 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3939 {
3940 	pfm_context_t *ctx;
3941 
3942 	if (req == NULL) return -EINVAL;
3943 
3944  	ctx = GET_PMU_CTX();
3945 
3946 	if (ctx == NULL) return -EINVAL;
3947 
3948 	/*
3949 	 * for now limit to current task, which is enough when calling
3950 	 * from overflow handler
3951 	 */
3952 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3953 
3954 	return pfm_write_dbrs(ctx, req, nreq, regs);
3955 }
3956 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3957 
3958 
3959 static int
pfm_get_features(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3960 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3961 {
3962 	pfarg_features_t *req = (pfarg_features_t *)arg;
3963 
3964 	req->ft_version = PFM_VERSION;
3965 	return 0;
3966 }
3967 
3968 static int
pfm_stop(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3969 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3970 {
3971 	struct pt_regs *tregs;
3972 	struct task_struct *task = PFM_CTX_TASK(ctx);
3973 	int state, is_system;
3974 
3975 	state     = ctx->ctx_state;
3976 	is_system = ctx->ctx_fl_system;
3977 
3978 	/*
3979 	 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3980 	 */
3981 	if (state == PFM_CTX_UNLOADED) return -EINVAL;
3982 
3983 	/*
3984  	 * In system wide and when the context is loaded, access can only happen
3985  	 * when the caller is running on the CPU being monitored by the session.
3986  	 * It does not have to be the owner (ctx_task) of the context per se.
3987  	 */
3988 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3989 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3990 		return -EBUSY;
3991 	}
3992 	DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3993 		task_pid_nr(PFM_CTX_TASK(ctx)),
3994 		state,
3995 		is_system));
3996 	/*
3997 	 * in system mode, we need to update the PMU directly
3998 	 * and the user level state of the caller, which may not
3999 	 * necessarily be the creator of the context.
4000 	 */
4001 	if (is_system) {
4002 		/*
4003 		 * Update local PMU first
4004 		 *
4005 		 * disable dcr pp
4006 		 */
4007 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4008 		ia64_srlz_i();
4009 
4010 		/*
4011 		 * update local cpuinfo
4012 		 */
4013 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4014 
4015 		/*
4016 		 * stop monitoring, does srlz.i
4017 		 */
4018 		pfm_clear_psr_pp();
4019 
4020 		/*
4021 		 * stop monitoring in the caller
4022 		 */
4023 		ia64_psr(regs)->pp = 0;
4024 
4025 		return 0;
4026 	}
4027 	/*
4028 	 * per-task mode
4029 	 */
4030 
4031 	if (task == current) {
4032 		/* stop monitoring  at kernel level */
4033 		pfm_clear_psr_up();
4034 
4035 		/*
4036 	 	 * stop monitoring at the user level
4037 	 	 */
4038 		ia64_psr(regs)->up = 0;
4039 	} else {
4040 		tregs = task_pt_regs(task);
4041 
4042 		/*
4043 	 	 * stop monitoring at the user level
4044 	 	 */
4045 		ia64_psr(tregs)->up = 0;
4046 
4047 		/*
4048 		 * monitoring disabled in kernel at next reschedule
4049 		 */
4050 		ctx->ctx_saved_psr_up = 0;
4051 		DPRINT(("task=[%d]\n", task_pid_nr(task)));
4052 	}
4053 	return 0;
4054 }
4055 
4056 
4057 static int
pfm_start(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4058 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4059 {
4060 	struct pt_regs *tregs;
4061 	int state, is_system;
4062 
4063 	state     = ctx->ctx_state;
4064 	is_system = ctx->ctx_fl_system;
4065 
4066 	if (state != PFM_CTX_LOADED) return -EINVAL;
4067 
4068 	/*
4069  	 * In system wide and when the context is loaded, access can only happen
4070  	 * when the caller is running on the CPU being monitored by the session.
4071  	 * It does not have to be the owner (ctx_task) of the context per se.
4072  	 */
4073 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4074 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4075 		return -EBUSY;
4076 	}
4077 
4078 	/*
4079 	 * in system mode, we need to update the PMU directly
4080 	 * and the user level state of the caller, which may not
4081 	 * necessarily be the creator of the context.
4082 	 */
4083 	if (is_system) {
4084 
4085 		/*
4086 		 * set user level psr.pp for the caller
4087 		 */
4088 		ia64_psr(regs)->pp = 1;
4089 
4090 		/*
4091 		 * now update the local PMU and cpuinfo
4092 		 */
4093 		PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4094 
4095 		/*
4096 		 * start monitoring at kernel level
4097 		 */
4098 		pfm_set_psr_pp();
4099 
4100 		/* enable dcr pp */
4101 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4102 		ia64_srlz_i();
4103 
4104 		return 0;
4105 	}
4106 
4107 	/*
4108 	 * per-process mode
4109 	 */
4110 
4111 	if (ctx->ctx_task == current) {
4112 
4113 		/* start monitoring at kernel level */
4114 		pfm_set_psr_up();
4115 
4116 		/*
4117 		 * activate monitoring at user level
4118 		 */
4119 		ia64_psr(regs)->up = 1;
4120 
4121 	} else {
4122 		tregs = task_pt_regs(ctx->ctx_task);
4123 
4124 		/*
4125 		 * start monitoring at the kernel level the next
4126 		 * time the task is scheduled
4127 		 */
4128 		ctx->ctx_saved_psr_up = IA64_PSR_UP;
4129 
4130 		/*
4131 		 * activate monitoring at user level
4132 		 */
4133 		ia64_psr(tregs)->up = 1;
4134 	}
4135 	return 0;
4136 }
4137 
4138 static int
pfm_get_pmc_reset(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4139 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4140 {
4141 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
4142 	unsigned int cnum;
4143 	int i;
4144 	int ret = -EINVAL;
4145 
4146 	for (i = 0; i < count; i++, req++) {
4147 
4148 		cnum = req->reg_num;
4149 
4150 		if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4151 
4152 		req->reg_value = PMC_DFL_VAL(cnum);
4153 
4154 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4155 
4156 		DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4157 	}
4158 	return 0;
4159 
4160 abort_mission:
4161 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4162 	return ret;
4163 }
4164 
4165 static int
pfm_check_task_exist(pfm_context_t * ctx)4166 pfm_check_task_exist(pfm_context_t *ctx)
4167 {
4168 	struct task_struct *g, *t;
4169 	int ret = -ESRCH;
4170 
4171 	read_lock(&tasklist_lock);
4172 
4173 	do_each_thread (g, t) {
4174 		if (t->thread.pfm_context == ctx) {
4175 			ret = 0;
4176 			goto out;
4177 		}
4178 	} while_each_thread (g, t);
4179 out:
4180 	read_unlock(&tasklist_lock);
4181 
4182 	DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4183 
4184 	return ret;
4185 }
4186 
4187 static int
pfm_context_load(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4188 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4189 {
4190 	struct task_struct *task;
4191 	struct thread_struct *thread;
4192 	struct pfm_context_t *old;
4193 	unsigned long flags;
4194 #ifndef CONFIG_SMP
4195 	struct task_struct *owner_task = NULL;
4196 #endif
4197 	pfarg_load_t *req = (pfarg_load_t *)arg;
4198 	unsigned long *pmcs_source, *pmds_source;
4199 	int the_cpu;
4200 	int ret = 0;
4201 	int state, is_system, set_dbregs = 0;
4202 
4203 	state     = ctx->ctx_state;
4204 	is_system = ctx->ctx_fl_system;
4205 	/*
4206 	 * can only load from unloaded or terminated state
4207 	 */
4208 	if (state != PFM_CTX_UNLOADED) {
4209 		DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4210 			req->load_pid,
4211 			ctx->ctx_state));
4212 		return -EBUSY;
4213 	}
4214 
4215 	DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4216 
4217 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4218 		DPRINT(("cannot use blocking mode on self\n"));
4219 		return -EINVAL;
4220 	}
4221 
4222 	ret = pfm_get_task(ctx, req->load_pid, &task);
4223 	if (ret) {
4224 		DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4225 		return ret;
4226 	}
4227 
4228 	ret = -EINVAL;
4229 
4230 	/*
4231 	 * system wide is self monitoring only
4232 	 */
4233 	if (is_system && task != current) {
4234 		DPRINT(("system wide is self monitoring only load_pid=%d\n",
4235 			req->load_pid));
4236 		goto error;
4237 	}
4238 
4239 	thread = &task->thread;
4240 
4241 	ret = 0;
4242 	/*
4243 	 * cannot load a context which is using range restrictions,
4244 	 * into a task that is being debugged.
4245 	 */
4246 	if (ctx->ctx_fl_using_dbreg) {
4247 		if (thread->flags & IA64_THREAD_DBG_VALID) {
4248 			ret = -EBUSY;
4249 			DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4250 			goto error;
4251 		}
4252 		LOCK_PFS(flags);
4253 
4254 		if (is_system) {
4255 			if (pfm_sessions.pfs_ptrace_use_dbregs) {
4256 				DPRINT(("cannot load [%d] dbregs in use\n",
4257 							task_pid_nr(task)));
4258 				ret = -EBUSY;
4259 			} else {
4260 				pfm_sessions.pfs_sys_use_dbregs++;
4261 				DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4262 				set_dbregs = 1;
4263 			}
4264 		}
4265 
4266 		UNLOCK_PFS(flags);
4267 
4268 		if (ret) goto error;
4269 	}
4270 
4271 	/*
4272 	 * SMP system-wide monitoring implies self-monitoring.
4273 	 *
4274 	 * The programming model expects the task to
4275 	 * be pinned on a CPU throughout the session.
4276 	 * Here we take note of the current CPU at the
4277 	 * time the context is loaded. No call from
4278 	 * another CPU will be allowed.
4279 	 *
4280 	 * The pinning via shed_setaffinity()
4281 	 * must be done by the calling task prior
4282 	 * to this call.
4283 	 *
4284 	 * systemwide: keep track of CPU this session is supposed to run on
4285 	 */
4286 	the_cpu = ctx->ctx_cpu = smp_processor_id();
4287 
4288 	ret = -EBUSY;
4289 	/*
4290 	 * now reserve the session
4291 	 */
4292 	ret = pfm_reserve_session(current, is_system, the_cpu);
4293 	if (ret) goto error;
4294 
4295 	/*
4296 	 * task is necessarily stopped at this point.
4297 	 *
4298 	 * If the previous context was zombie, then it got removed in
4299 	 * pfm_save_regs(). Therefore we should not see it here.
4300 	 * If we see a context, then this is an active context
4301 	 *
4302 	 * XXX: needs to be atomic
4303 	 */
4304 	DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4305 		thread->pfm_context, ctx));
4306 
4307 	ret = -EBUSY;
4308 	old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4309 	if (old != NULL) {
4310 		DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4311 		goto error_unres;
4312 	}
4313 
4314 	pfm_reset_msgq(ctx);
4315 
4316 	ctx->ctx_state = PFM_CTX_LOADED;
4317 
4318 	/*
4319 	 * link context to task
4320 	 */
4321 	ctx->ctx_task = task;
4322 
4323 	if (is_system) {
4324 		/*
4325 		 * we load as stopped
4326 		 */
4327 		PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4328 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4329 
4330 		if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4331 	} else {
4332 		thread->flags |= IA64_THREAD_PM_VALID;
4333 	}
4334 
4335 	/*
4336 	 * propagate into thread-state
4337 	 */
4338 	pfm_copy_pmds(task, ctx);
4339 	pfm_copy_pmcs(task, ctx);
4340 
4341 	pmcs_source = ctx->th_pmcs;
4342 	pmds_source = ctx->th_pmds;
4343 
4344 	/*
4345 	 * always the case for system-wide
4346 	 */
4347 	if (task == current) {
4348 
4349 		if (is_system == 0) {
4350 
4351 			/* allow user level control */
4352 			ia64_psr(regs)->sp = 0;
4353 			DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4354 
4355 			SET_LAST_CPU(ctx, smp_processor_id());
4356 			INC_ACTIVATION();
4357 			SET_ACTIVATION(ctx);
4358 #ifndef CONFIG_SMP
4359 			/*
4360 			 * push the other task out, if any
4361 			 */
4362 			owner_task = GET_PMU_OWNER();
4363 			if (owner_task) pfm_lazy_save_regs(owner_task);
4364 #endif
4365 		}
4366 		/*
4367 		 * load all PMD from ctx to PMU (as opposed to thread state)
4368 		 * restore all PMC from ctx to PMU
4369 		 */
4370 		pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4371 		pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4372 
4373 		ctx->ctx_reload_pmcs[0] = 0UL;
4374 		ctx->ctx_reload_pmds[0] = 0UL;
4375 
4376 		/*
4377 		 * guaranteed safe by earlier check against DBG_VALID
4378 		 */
4379 		if (ctx->ctx_fl_using_dbreg) {
4380 			pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4381 			pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4382 		}
4383 		/*
4384 		 * set new ownership
4385 		 */
4386 		SET_PMU_OWNER(task, ctx);
4387 
4388 		DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4389 	} else {
4390 		/*
4391 		 * when not current, task MUST be stopped, so this is safe
4392 		 */
4393 		regs = task_pt_regs(task);
4394 
4395 		/* force a full reload */
4396 		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4397 		SET_LAST_CPU(ctx, -1);
4398 
4399 		/* initial saved psr (stopped) */
4400 		ctx->ctx_saved_psr_up = 0UL;
4401 		ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4402 	}
4403 
4404 	ret = 0;
4405 
4406 error_unres:
4407 	if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4408 error:
4409 	/*
4410 	 * we must undo the dbregs setting (for system-wide)
4411 	 */
4412 	if (ret && set_dbregs) {
4413 		LOCK_PFS(flags);
4414 		pfm_sessions.pfs_sys_use_dbregs--;
4415 		UNLOCK_PFS(flags);
4416 	}
4417 	/*
4418 	 * release task, there is now a link with the context
4419 	 */
4420 	if (is_system == 0 && task != current) {
4421 		pfm_put_task(task);
4422 
4423 		if (ret == 0) {
4424 			ret = pfm_check_task_exist(ctx);
4425 			if (ret) {
4426 				ctx->ctx_state = PFM_CTX_UNLOADED;
4427 				ctx->ctx_task  = NULL;
4428 			}
4429 		}
4430 	}
4431 	return ret;
4432 }
4433 
4434 /*
4435  * in this function, we do not need to increase the use count
4436  * for the task via get_task_struct(), because we hold the
4437  * context lock. If the task were to disappear while having
4438  * a context attached, it would go through pfm_exit_thread()
4439  * which also grabs the context lock  and would therefore be blocked
4440  * until we are here.
4441  */
4442 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4443 
4444 static int
pfm_context_unload(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4445 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4446 {
4447 	struct task_struct *task = PFM_CTX_TASK(ctx);
4448 	struct pt_regs *tregs;
4449 	int prev_state, is_system;
4450 	int ret;
4451 
4452 	DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4453 
4454 	prev_state = ctx->ctx_state;
4455 	is_system  = ctx->ctx_fl_system;
4456 
4457 	/*
4458 	 * unload only when necessary
4459 	 */
4460 	if (prev_state == PFM_CTX_UNLOADED) {
4461 		DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4462 		return 0;
4463 	}
4464 
4465 	/*
4466 	 * clear psr and dcr bits
4467 	 */
4468 	ret = pfm_stop(ctx, NULL, 0, regs);
4469 	if (ret) return ret;
4470 
4471 	ctx->ctx_state = PFM_CTX_UNLOADED;
4472 
4473 	/*
4474 	 * in system mode, we need to update the PMU directly
4475 	 * and the user level state of the caller, which may not
4476 	 * necessarily be the creator of the context.
4477 	 */
4478 	if (is_system) {
4479 
4480 		/*
4481 		 * Update cpuinfo
4482 		 *
4483 		 * local PMU is taken care of in pfm_stop()
4484 		 */
4485 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4486 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4487 
4488 		/*
4489 		 * save PMDs in context
4490 		 * release ownership
4491 		 */
4492 		pfm_flush_pmds(current, ctx);
4493 
4494 		/*
4495 		 * at this point we are done with the PMU
4496 		 * so we can unreserve the resource.
4497 		 */
4498 		if (prev_state != PFM_CTX_ZOMBIE)
4499 			pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4500 
4501 		/*
4502 		 * disconnect context from task
4503 		 */
4504 		task->thread.pfm_context = NULL;
4505 		/*
4506 		 * disconnect task from context
4507 		 */
4508 		ctx->ctx_task = NULL;
4509 
4510 		/*
4511 		 * There is nothing more to cleanup here.
4512 		 */
4513 		return 0;
4514 	}
4515 
4516 	/*
4517 	 * per-task mode
4518 	 */
4519 	tregs = task == current ? regs : task_pt_regs(task);
4520 
4521 	if (task == current) {
4522 		/*
4523 		 * cancel user level control
4524 		 */
4525 		ia64_psr(regs)->sp = 1;
4526 
4527 		DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4528 	}
4529 	/*
4530 	 * save PMDs to context
4531 	 * release ownership
4532 	 */
4533 	pfm_flush_pmds(task, ctx);
4534 
4535 	/*
4536 	 * at this point we are done with the PMU
4537 	 * so we can unreserve the resource.
4538 	 *
4539 	 * when state was ZOMBIE, we have already unreserved.
4540 	 */
4541 	if (prev_state != PFM_CTX_ZOMBIE)
4542 		pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4543 
4544 	/*
4545 	 * reset activation counter and psr
4546 	 */
4547 	ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4548 	SET_LAST_CPU(ctx, -1);
4549 
4550 	/*
4551 	 * PMU state will not be restored
4552 	 */
4553 	task->thread.flags &= ~IA64_THREAD_PM_VALID;
4554 
4555 	/*
4556 	 * break links between context and task
4557 	 */
4558 	task->thread.pfm_context  = NULL;
4559 	ctx->ctx_task             = NULL;
4560 
4561 	PFM_SET_WORK_PENDING(task, 0);
4562 
4563 	ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4564 	ctx->ctx_fl_can_restart  = 0;
4565 	ctx->ctx_fl_going_zombie = 0;
4566 
4567 	DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4568 
4569 	return 0;
4570 }
4571 
4572 
4573 /*
4574  * called only from exit_thread(): task == current
4575  * we come here only if current has a context attached (loaded or masked)
4576  */
4577 void
pfm_exit_thread(struct task_struct * task)4578 pfm_exit_thread(struct task_struct *task)
4579 {
4580 	pfm_context_t *ctx;
4581 	unsigned long flags;
4582 	struct pt_regs *regs = task_pt_regs(task);
4583 	int ret, state;
4584 	int free_ok = 0;
4585 
4586 	ctx = PFM_GET_CTX(task);
4587 
4588 	PROTECT_CTX(ctx, flags);
4589 
4590 	DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4591 
4592 	state = ctx->ctx_state;
4593 	switch(state) {
4594 		case PFM_CTX_UNLOADED:
4595 			/*
4596 	 		 * only comes to this function if pfm_context is not NULL, i.e., cannot
4597 			 * be in unloaded state
4598 	 		 */
4599 			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4600 			break;
4601 		case PFM_CTX_LOADED:
4602 		case PFM_CTX_MASKED:
4603 			ret = pfm_context_unload(ctx, NULL, 0, regs);
4604 			if (ret) {
4605 				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4606 			}
4607 			DPRINT(("ctx unloaded for current state was %d\n", state));
4608 
4609 			pfm_end_notify_user(ctx);
4610 			break;
4611 		case PFM_CTX_ZOMBIE:
4612 			ret = pfm_context_unload(ctx, NULL, 0, regs);
4613 			if (ret) {
4614 				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4615 			}
4616 			free_ok = 1;
4617 			break;
4618 		default:
4619 			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4620 			break;
4621 	}
4622 	UNPROTECT_CTX(ctx, flags);
4623 
4624 	{ u64 psr = pfm_get_psr();
4625 	  BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4626 	  BUG_ON(GET_PMU_OWNER());
4627 	  BUG_ON(ia64_psr(regs)->up);
4628 	  BUG_ON(ia64_psr(regs)->pp);
4629 	}
4630 
4631 	/*
4632 	 * All memory free operations (especially for vmalloc'ed memory)
4633 	 * MUST be done with interrupts ENABLED.
4634 	 */
4635 	if (free_ok) pfm_context_free(ctx);
4636 }
4637 
4638 /*
4639  * functions MUST be listed in the increasing order of their index (see permfon.h)
4640  */
4641 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4642 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4643 #define PFM_CMD_PCLRWS	(PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4644 #define PFM_CMD_PCLRW	(PFM_CMD_FD|PFM_CMD_ARG_RW)
4645 #define PFM_CMD_NONE	{ NULL, "no-cmd", 0, 0, 0, NULL}
4646 
4647 static pfm_cmd_desc_t pfm_cmd_tab[]={
4648 /* 0  */PFM_CMD_NONE,
4649 /* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4650 /* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4651 /* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4652 /* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4653 /* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4654 /* 6  */PFM_CMD_NONE,
4655 /* 7  */PFM_CMD_NONE,
4656 /* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4657 /* 9  */PFM_CMD_NONE,
4658 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4659 /* 11 */PFM_CMD_NONE,
4660 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4661 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4662 /* 14 */PFM_CMD_NONE,
4663 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4664 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4665 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4666 /* 18 */PFM_CMD_NONE,
4667 /* 19 */PFM_CMD_NONE,
4668 /* 20 */PFM_CMD_NONE,
4669 /* 21 */PFM_CMD_NONE,
4670 /* 22 */PFM_CMD_NONE,
4671 /* 23 */PFM_CMD_NONE,
4672 /* 24 */PFM_CMD_NONE,
4673 /* 25 */PFM_CMD_NONE,
4674 /* 26 */PFM_CMD_NONE,
4675 /* 27 */PFM_CMD_NONE,
4676 /* 28 */PFM_CMD_NONE,
4677 /* 29 */PFM_CMD_NONE,
4678 /* 30 */PFM_CMD_NONE,
4679 /* 31 */PFM_CMD_NONE,
4680 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4681 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4682 };
4683 #define PFM_CMD_COUNT	(sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4684 
4685 static int
pfm_check_task_state(pfm_context_t * ctx,int cmd,unsigned long flags)4686 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4687 {
4688 	struct task_struct *task;
4689 	int state, old_state;
4690 
4691 recheck:
4692 	state = ctx->ctx_state;
4693 	task  = ctx->ctx_task;
4694 
4695 	if (task == NULL) {
4696 		DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4697 		return 0;
4698 	}
4699 
4700 	DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4701 		ctx->ctx_fd,
4702 		state,
4703 		task_pid_nr(task),
4704 		task->state, PFM_CMD_STOPPED(cmd)));
4705 
4706 	/*
4707 	 * self-monitoring always ok.
4708 	 *
4709 	 * for system-wide the caller can either be the creator of the
4710 	 * context (to one to which the context is attached to) OR
4711 	 * a task running on the same CPU as the session.
4712 	 */
4713 	if (task == current || ctx->ctx_fl_system) return 0;
4714 
4715 	/*
4716 	 * we are monitoring another thread
4717 	 */
4718 	switch(state) {
4719 		case PFM_CTX_UNLOADED:
4720 			/*
4721 			 * if context is UNLOADED we are safe to go
4722 			 */
4723 			return 0;
4724 		case PFM_CTX_ZOMBIE:
4725 			/*
4726 			 * no command can operate on a zombie context
4727 			 */
4728 			DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4729 			return -EINVAL;
4730 		case PFM_CTX_MASKED:
4731 			/*
4732 			 * PMU state has been saved to software even though
4733 			 * the thread may still be running.
4734 			 */
4735 			if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4736 	}
4737 
4738 	/*
4739 	 * context is LOADED or MASKED. Some commands may need to have
4740 	 * the task stopped.
4741 	 *
4742 	 * We could lift this restriction for UP but it would mean that
4743 	 * the user has no guarantee the task would not run between
4744 	 * two successive calls to perfmonctl(). That's probably OK.
4745 	 * If this user wants to ensure the task does not run, then
4746 	 * the task must be stopped.
4747 	 */
4748 	if (PFM_CMD_STOPPED(cmd)) {
4749 		if (!task_is_stopped_or_traced(task)) {
4750 			DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4751 			return -EBUSY;
4752 		}
4753 		/*
4754 		 * task is now stopped, wait for ctxsw out
4755 		 *
4756 		 * This is an interesting point in the code.
4757 		 * We need to unprotect the context because
4758 		 * the pfm_save_regs() routines needs to grab
4759 		 * the same lock. There are danger in doing
4760 		 * this because it leaves a window open for
4761 		 * another task to get access to the context
4762 		 * and possibly change its state. The one thing
4763 		 * that is not possible is for the context to disappear
4764 		 * because we are protected by the VFS layer, i.e.,
4765 		 * get_fd()/put_fd().
4766 		 */
4767 		old_state = state;
4768 
4769 		UNPROTECT_CTX(ctx, flags);
4770 
4771 		wait_task_inactive(task, 0);
4772 
4773 		PROTECT_CTX(ctx, flags);
4774 
4775 		/*
4776 		 * we must recheck to verify if state has changed
4777 		 */
4778 		if (ctx->ctx_state != old_state) {
4779 			DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4780 			goto recheck;
4781 		}
4782 	}
4783 	return 0;
4784 }
4785 
4786 /*
4787  * system-call entry point (must return long)
4788  */
4789 asmlinkage long
sys_perfmonctl(int fd,int cmd,void __user * arg,int count)4790 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4791 {
4792 	struct file *file = NULL;
4793 	pfm_context_t *ctx = NULL;
4794 	unsigned long flags = 0UL;
4795 	void *args_k = NULL;
4796 	long ret; /* will expand int return types */
4797 	size_t base_sz, sz, xtra_sz = 0;
4798 	int narg, completed_args = 0, call_made = 0, cmd_flags;
4799 	int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4800 	int (*getsize)(void *arg, size_t *sz);
4801 #define PFM_MAX_ARGSIZE	4096
4802 
4803 	/*
4804 	 * reject any call if perfmon was disabled at initialization
4805 	 */
4806 	if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4807 
4808 	if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4809 		DPRINT(("invalid cmd=%d\n", cmd));
4810 		return -EINVAL;
4811 	}
4812 
4813 	func      = pfm_cmd_tab[cmd].cmd_func;
4814 	narg      = pfm_cmd_tab[cmd].cmd_narg;
4815 	base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4816 	getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4817 	cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4818 
4819 	if (unlikely(func == NULL)) {
4820 		DPRINT(("invalid cmd=%d\n", cmd));
4821 		return -EINVAL;
4822 	}
4823 
4824 	DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4825 		PFM_CMD_NAME(cmd),
4826 		cmd,
4827 		narg,
4828 		base_sz,
4829 		count));
4830 
4831 	/*
4832 	 * check if number of arguments matches what the command expects
4833 	 */
4834 	if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4835 		return -EINVAL;
4836 
4837 restart_args:
4838 	sz = xtra_sz + base_sz*count;
4839 	/*
4840 	 * limit abuse to min page size
4841 	 */
4842 	if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4843 		printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4844 		return -E2BIG;
4845 	}
4846 
4847 	/*
4848 	 * allocate default-sized argument buffer
4849 	 */
4850 	if (likely(count && args_k == NULL)) {
4851 		args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4852 		if (args_k == NULL) return -ENOMEM;
4853 	}
4854 
4855 	ret = -EFAULT;
4856 
4857 	/*
4858 	 * copy arguments
4859 	 *
4860 	 * assume sz = 0 for command without parameters
4861 	 */
4862 	if (sz && copy_from_user(args_k, arg, sz)) {
4863 		DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4864 		goto error_args;
4865 	}
4866 
4867 	/*
4868 	 * check if command supports extra parameters
4869 	 */
4870 	if (completed_args == 0 && getsize) {
4871 		/*
4872 		 * get extra parameters size (based on main argument)
4873 		 */
4874 		ret = (*getsize)(args_k, &xtra_sz);
4875 		if (ret) goto error_args;
4876 
4877 		completed_args = 1;
4878 
4879 		DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4880 
4881 		/* retry if necessary */
4882 		if (likely(xtra_sz)) goto restart_args;
4883 	}
4884 
4885 	if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4886 
4887 	ret = -EBADF;
4888 
4889 	file = fget(fd);
4890 	if (unlikely(file == NULL)) {
4891 		DPRINT(("invalid fd %d\n", fd));
4892 		goto error_args;
4893 	}
4894 	if (unlikely(PFM_IS_FILE(file) == 0)) {
4895 		DPRINT(("fd %d not related to perfmon\n", fd));
4896 		goto error_args;
4897 	}
4898 
4899 	ctx = file->private_data;
4900 	if (unlikely(ctx == NULL)) {
4901 		DPRINT(("no context for fd %d\n", fd));
4902 		goto error_args;
4903 	}
4904 	prefetch(&ctx->ctx_state);
4905 
4906 	PROTECT_CTX(ctx, flags);
4907 
4908 	/*
4909 	 * check task is stopped
4910 	 */
4911 	ret = pfm_check_task_state(ctx, cmd, flags);
4912 	if (unlikely(ret)) goto abort_locked;
4913 
4914 skip_fd:
4915 	ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4916 
4917 	call_made = 1;
4918 
4919 abort_locked:
4920 	if (likely(ctx)) {
4921 		DPRINT(("context unlocked\n"));
4922 		UNPROTECT_CTX(ctx, flags);
4923 	}
4924 
4925 	/* copy argument back to user, if needed */
4926 	if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4927 
4928 error_args:
4929 	if (file)
4930 		fput(file);
4931 
4932 	kfree(args_k);
4933 
4934 	DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4935 
4936 	return ret;
4937 }
4938 
4939 static void
pfm_resume_after_ovfl(pfm_context_t * ctx,unsigned long ovfl_regs,struct pt_regs * regs)4940 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4941 {
4942 	pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4943 	pfm_ovfl_ctrl_t rst_ctrl;
4944 	int state;
4945 	int ret = 0;
4946 
4947 	state = ctx->ctx_state;
4948 	/*
4949 	 * Unlock sampling buffer and reset index atomically
4950 	 * XXX: not really needed when blocking
4951 	 */
4952 	if (CTX_HAS_SMPL(ctx)) {
4953 
4954 		rst_ctrl.bits.mask_monitoring = 0;
4955 		rst_ctrl.bits.reset_ovfl_pmds = 0;
4956 
4957 		if (state == PFM_CTX_LOADED)
4958 			ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4959 		else
4960 			ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4961 	} else {
4962 		rst_ctrl.bits.mask_monitoring = 0;
4963 		rst_ctrl.bits.reset_ovfl_pmds = 1;
4964 	}
4965 
4966 	if (ret == 0) {
4967 		if (rst_ctrl.bits.reset_ovfl_pmds) {
4968 			pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4969 		}
4970 		if (rst_ctrl.bits.mask_monitoring == 0) {
4971 			DPRINT(("resuming monitoring\n"));
4972 			if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4973 		} else {
4974 			DPRINT(("stopping monitoring\n"));
4975 			//pfm_stop_monitoring(current, regs);
4976 		}
4977 		ctx->ctx_state = PFM_CTX_LOADED;
4978 	}
4979 }
4980 
4981 /*
4982  * context MUST BE LOCKED when calling
4983  * can only be called for current
4984  */
4985 static void
pfm_context_force_terminate(pfm_context_t * ctx,struct pt_regs * regs)4986 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4987 {
4988 	int ret;
4989 
4990 	DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4991 
4992 	ret = pfm_context_unload(ctx, NULL, 0, regs);
4993 	if (ret) {
4994 		printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4995 	}
4996 
4997 	/*
4998 	 * and wakeup controlling task, indicating we are now disconnected
4999 	 */
5000 	wake_up_interruptible(&ctx->ctx_zombieq);
5001 
5002 	/*
5003 	 * given that context is still locked, the controlling
5004 	 * task will only get access when we return from
5005 	 * pfm_handle_work().
5006 	 */
5007 }
5008 
5009 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5010 
5011  /*
5012   * pfm_handle_work() can be called with interrupts enabled
5013   * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5014   * call may sleep, therefore we must re-enable interrupts
5015   * to avoid deadlocks. It is safe to do so because this function
5016   * is called ONLY when returning to user level (pUStk=1), in which case
5017   * there is no risk of kernel stack overflow due to deep
5018   * interrupt nesting.
5019   */
5020 void
pfm_handle_work(void)5021 pfm_handle_work(void)
5022 {
5023 	pfm_context_t *ctx;
5024 	struct pt_regs *regs;
5025 	unsigned long flags, dummy_flags;
5026 	unsigned long ovfl_regs;
5027 	unsigned int reason;
5028 	int ret;
5029 
5030 	ctx = PFM_GET_CTX(current);
5031 	if (ctx == NULL) {
5032 		printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5033 			task_pid_nr(current));
5034 		return;
5035 	}
5036 
5037 	PROTECT_CTX(ctx, flags);
5038 
5039 	PFM_SET_WORK_PENDING(current, 0);
5040 
5041 	regs = task_pt_regs(current);
5042 
5043 	/*
5044 	 * extract reason for being here and clear
5045 	 */
5046 	reason = ctx->ctx_fl_trap_reason;
5047 	ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5048 	ovfl_regs = ctx->ctx_ovfl_regs[0];
5049 
5050 	DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5051 
5052 	/*
5053 	 * must be done before we check for simple-reset mode
5054 	 */
5055 	if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5056 		goto do_zombie;
5057 
5058 	//if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5059 	if (reason == PFM_TRAP_REASON_RESET)
5060 		goto skip_blocking;
5061 
5062 	/*
5063 	 * restore interrupt mask to what it was on entry.
5064 	 * Could be enabled/diasbled.
5065 	 */
5066 	UNPROTECT_CTX(ctx, flags);
5067 
5068 	/*
5069 	 * force interrupt enable because of down_interruptible()
5070 	 */
5071 	local_irq_enable();
5072 
5073 	DPRINT(("before block sleeping\n"));
5074 
5075 	/*
5076 	 * may go through without blocking on SMP systems
5077 	 * if restart has been received already by the time we call down()
5078 	 */
5079 	ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5080 
5081 	DPRINT(("after block sleeping ret=%d\n", ret));
5082 
5083 	/*
5084 	 * lock context and mask interrupts again
5085 	 * We save flags into a dummy because we may have
5086 	 * altered interrupts mask compared to entry in this
5087 	 * function.
5088 	 */
5089 	PROTECT_CTX(ctx, dummy_flags);
5090 
5091 	/*
5092 	 * we need to read the ovfl_regs only after wake-up
5093 	 * because we may have had pfm_write_pmds() in between
5094 	 * and that can changed PMD values and therefore
5095 	 * ovfl_regs is reset for these new PMD values.
5096 	 */
5097 	ovfl_regs = ctx->ctx_ovfl_regs[0];
5098 
5099 	if (ctx->ctx_fl_going_zombie) {
5100 do_zombie:
5101 		DPRINT(("context is zombie, bailing out\n"));
5102 		pfm_context_force_terminate(ctx, regs);
5103 		goto nothing_to_do;
5104 	}
5105 	/*
5106 	 * in case of interruption of down() we don't restart anything
5107 	 */
5108 	if (ret < 0)
5109 		goto nothing_to_do;
5110 
5111 skip_blocking:
5112 	pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5113 	ctx->ctx_ovfl_regs[0] = 0UL;
5114 
5115 nothing_to_do:
5116 	/*
5117 	 * restore flags as they were upon entry
5118 	 */
5119 	UNPROTECT_CTX(ctx, flags);
5120 }
5121 
5122 static int
pfm_notify_user(pfm_context_t * ctx,pfm_msg_t * msg)5123 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5124 {
5125 	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5126 		DPRINT(("ignoring overflow notification, owner is zombie\n"));
5127 		return 0;
5128 	}
5129 
5130 	DPRINT(("waking up somebody\n"));
5131 
5132 	if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5133 
5134 	/*
5135 	 * safe, we are not in intr handler, nor in ctxsw when
5136 	 * we come here
5137 	 */
5138 	kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5139 
5140 	return 0;
5141 }
5142 
5143 static int
pfm_ovfl_notify_user(pfm_context_t * ctx,unsigned long ovfl_pmds)5144 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5145 {
5146 	pfm_msg_t *msg = NULL;
5147 
5148 	if (ctx->ctx_fl_no_msg == 0) {
5149 		msg = pfm_get_new_msg(ctx);
5150 		if (msg == NULL) {
5151 			printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5152 			return -1;
5153 		}
5154 
5155 		msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5156 		msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5157 		msg->pfm_ovfl_msg.msg_active_set   = 0;
5158 		msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5159 		msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5160 		msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5161 		msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5162 		msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5163 	}
5164 
5165 	DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5166 		msg,
5167 		ctx->ctx_fl_no_msg,
5168 		ctx->ctx_fd,
5169 		ovfl_pmds));
5170 
5171 	return pfm_notify_user(ctx, msg);
5172 }
5173 
5174 static int
pfm_end_notify_user(pfm_context_t * ctx)5175 pfm_end_notify_user(pfm_context_t *ctx)
5176 {
5177 	pfm_msg_t *msg;
5178 
5179 	msg = pfm_get_new_msg(ctx);
5180 	if (msg == NULL) {
5181 		printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5182 		return -1;
5183 	}
5184 	/* no leak */
5185 	memset(msg, 0, sizeof(*msg));
5186 
5187 	msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5188 	msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5189 	msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5190 
5191 	DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5192 		msg,
5193 		ctx->ctx_fl_no_msg,
5194 		ctx->ctx_fd));
5195 
5196 	return pfm_notify_user(ctx, msg);
5197 }
5198 
5199 /*
5200  * main overflow processing routine.
5201  * it can be called from the interrupt path or explicitly during the context switch code
5202  */
pfm_overflow_handler(struct task_struct * task,pfm_context_t * ctx,unsigned long pmc0,struct pt_regs * regs)5203 static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5204 				unsigned long pmc0, struct pt_regs *regs)
5205 {
5206 	pfm_ovfl_arg_t *ovfl_arg;
5207 	unsigned long mask;
5208 	unsigned long old_val, ovfl_val, new_val;
5209 	unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5210 	unsigned long tstamp;
5211 	pfm_ovfl_ctrl_t	ovfl_ctrl;
5212 	unsigned int i, has_smpl;
5213 	int must_notify = 0;
5214 
5215 	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5216 
5217 	/*
5218 	 * sanity test. Should never happen
5219 	 */
5220 	if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5221 
5222 	tstamp   = ia64_get_itc();
5223 	mask     = pmc0 >> PMU_FIRST_COUNTER;
5224 	ovfl_val = pmu_conf->ovfl_val;
5225 	has_smpl = CTX_HAS_SMPL(ctx);
5226 
5227 	DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5228 		     "used_pmds=0x%lx\n",
5229 			pmc0,
5230 			task ? task_pid_nr(task): -1,
5231 			(regs ? regs->cr_iip : 0),
5232 			CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5233 			ctx->ctx_used_pmds[0]));
5234 
5235 
5236 	/*
5237 	 * first we update the virtual counters
5238 	 * assume there was a prior ia64_srlz_d() issued
5239 	 */
5240 	for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5241 
5242 		/* skip pmd which did not overflow */
5243 		if ((mask & 0x1) == 0) continue;
5244 
5245 		/*
5246 		 * Note that the pmd is not necessarily 0 at this point as qualified events
5247 		 * may have happened before the PMU was frozen. The residual count is not
5248 		 * taken into consideration here but will be with any read of the pmd via
5249 		 * pfm_read_pmds().
5250 		 */
5251 		old_val              = new_val = ctx->ctx_pmds[i].val;
5252 		new_val             += 1 + ovfl_val;
5253 		ctx->ctx_pmds[i].val = new_val;
5254 
5255 		/*
5256 		 * check for overflow condition
5257 		 */
5258 		if (likely(old_val > new_val)) {
5259 			ovfl_pmds |= 1UL << i;
5260 			if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5261 		}
5262 
5263 		DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5264 			i,
5265 			new_val,
5266 			old_val,
5267 			ia64_get_pmd(i) & ovfl_val,
5268 			ovfl_pmds,
5269 			ovfl_notify));
5270 	}
5271 
5272 	/*
5273 	 * there was no 64-bit overflow, nothing else to do
5274 	 */
5275 	if (ovfl_pmds == 0UL) return;
5276 
5277 	/*
5278 	 * reset all control bits
5279 	 */
5280 	ovfl_ctrl.val = 0;
5281 	reset_pmds    = 0UL;
5282 
5283 	/*
5284 	 * if a sampling format module exists, then we "cache" the overflow by
5285 	 * calling the module's handler() routine.
5286 	 */
5287 	if (has_smpl) {
5288 		unsigned long start_cycles, end_cycles;
5289 		unsigned long pmd_mask;
5290 		int j, k, ret = 0;
5291 		int this_cpu = smp_processor_id();
5292 
5293 		pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5294 		ovfl_arg = &ctx->ctx_ovfl_arg;
5295 
5296 		prefetch(ctx->ctx_smpl_hdr);
5297 
5298 		for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5299 
5300 			mask = 1UL << i;
5301 
5302 			if ((pmd_mask & 0x1) == 0) continue;
5303 
5304 			ovfl_arg->ovfl_pmd      = (unsigned char )i;
5305 			ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5306 			ovfl_arg->active_set    = 0;
5307 			ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5308 			ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5309 
5310 			ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5311 			ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5312 			ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5313 
5314 			/*
5315 		 	 * copy values of pmds of interest. Sampling format may copy them
5316 		 	 * into sampling buffer.
5317 		 	 */
5318 			if (smpl_pmds) {
5319 				for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5320 					if ((smpl_pmds & 0x1) == 0) continue;
5321 					ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5322 					DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5323 				}
5324 			}
5325 
5326 			pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5327 
5328 			start_cycles = ia64_get_itc();
5329 
5330 			/*
5331 		 	 * call custom buffer format record (handler) routine
5332 		 	 */
5333 			ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5334 
5335 			end_cycles = ia64_get_itc();
5336 
5337 			/*
5338 			 * For those controls, we take the union because they have
5339 			 * an all or nothing behavior.
5340 			 */
5341 			ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5342 			ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5343 			ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5344 			/*
5345 			 * build the bitmask of pmds to reset now
5346 			 */
5347 			if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5348 
5349 			pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5350 		}
5351 		/*
5352 		 * when the module cannot handle the rest of the overflows, we abort right here
5353 		 */
5354 		if (ret && pmd_mask) {
5355 			DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5356 				pmd_mask<<PMU_FIRST_COUNTER));
5357 		}
5358 		/*
5359 		 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5360 		 */
5361 		ovfl_pmds &= ~reset_pmds;
5362 	} else {
5363 		/*
5364 		 * when no sampling module is used, then the default
5365 		 * is to notify on overflow if requested by user
5366 		 */
5367 		ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5368 		ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5369 		ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5370 		ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5371 		/*
5372 		 * if needed, we reset all overflowed pmds
5373 		 */
5374 		if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5375 	}
5376 
5377 	DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5378 
5379 	/*
5380 	 * reset the requested PMD registers using the short reset values
5381 	 */
5382 	if (reset_pmds) {
5383 		unsigned long bm = reset_pmds;
5384 		pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5385 	}
5386 
5387 	if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5388 		/*
5389 		 * keep track of what to reset when unblocking
5390 		 */
5391 		ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5392 
5393 		/*
5394 		 * check for blocking context
5395 		 */
5396 		if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5397 
5398 			ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5399 
5400 			/*
5401 			 * set the perfmon specific checking pending work for the task
5402 			 */
5403 			PFM_SET_WORK_PENDING(task, 1);
5404 
5405 			/*
5406 			 * when coming from ctxsw, current still points to the
5407 			 * previous task, therefore we must work with task and not current.
5408 			 */
5409 			set_notify_resume(task);
5410 		}
5411 		/*
5412 		 * defer until state is changed (shorten spin window). the context is locked
5413 		 * anyway, so the signal receiver would come spin for nothing.
5414 		 */
5415 		must_notify = 1;
5416 	}
5417 
5418 	DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5419 			GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5420 			PFM_GET_WORK_PENDING(task),
5421 			ctx->ctx_fl_trap_reason,
5422 			ovfl_pmds,
5423 			ovfl_notify,
5424 			ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5425 	/*
5426 	 * in case monitoring must be stopped, we toggle the psr bits
5427 	 */
5428 	if (ovfl_ctrl.bits.mask_monitoring) {
5429 		pfm_mask_monitoring(task);
5430 		ctx->ctx_state = PFM_CTX_MASKED;
5431 		ctx->ctx_fl_can_restart = 1;
5432 	}
5433 
5434 	/*
5435 	 * send notification now
5436 	 */
5437 	if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5438 
5439 	return;
5440 
5441 sanity_check:
5442 	printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5443 			smp_processor_id(),
5444 			task ? task_pid_nr(task) : -1,
5445 			pmc0);
5446 	return;
5447 
5448 stop_monitoring:
5449 	/*
5450 	 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5451 	 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5452 	 * come here as zombie only if the task is the current task. In which case, we
5453 	 * can access the PMU  hardware directly.
5454 	 *
5455 	 * Note that zombies do have PM_VALID set. So here we do the minimal.
5456 	 *
5457 	 * In case the context was zombified it could not be reclaimed at the time
5458 	 * the monitoring program exited. At this point, the PMU reservation has been
5459 	 * returned, the sampiing buffer has been freed. We must convert this call
5460 	 * into a spurious interrupt. However, we must also avoid infinite overflows
5461 	 * by stopping monitoring for this task. We can only come here for a per-task
5462 	 * context. All we need to do is to stop monitoring using the psr bits which
5463 	 * are always task private. By re-enabling secure montioring, we ensure that
5464 	 * the monitored task will not be able to re-activate monitoring.
5465 	 * The task will eventually be context switched out, at which point the context
5466 	 * will be reclaimed (that includes releasing ownership of the PMU).
5467 	 *
5468 	 * So there might be a window of time where the number of per-task session is zero
5469 	 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5470 	 * context. This is safe because if a per-task session comes in, it will push this one
5471 	 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5472 	 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5473 	 * also push our zombie context out.
5474 	 *
5475 	 * Overall pretty hairy stuff....
5476 	 */
5477 	DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5478 	pfm_clear_psr_up();
5479 	ia64_psr(regs)->up = 0;
5480 	ia64_psr(regs)->sp = 1;
5481 	return;
5482 }
5483 
5484 static int
pfm_do_interrupt_handler(void * arg,struct pt_regs * regs)5485 pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5486 {
5487 	struct task_struct *task;
5488 	pfm_context_t *ctx;
5489 	unsigned long flags;
5490 	u64 pmc0;
5491 	int this_cpu = smp_processor_id();
5492 	int retval = 0;
5493 
5494 	pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5495 
5496 	/*
5497 	 * srlz.d done before arriving here
5498 	 */
5499 	pmc0 = ia64_get_pmc(0);
5500 
5501 	task = GET_PMU_OWNER();
5502 	ctx  = GET_PMU_CTX();
5503 
5504 	/*
5505 	 * if we have some pending bits set
5506 	 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5507 	 */
5508 	if (PMC0_HAS_OVFL(pmc0) && task) {
5509 		/*
5510 		 * we assume that pmc0.fr is always set here
5511 		 */
5512 
5513 		/* sanity check */
5514 		if (!ctx) goto report_spurious1;
5515 
5516 		if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5517 			goto report_spurious2;
5518 
5519 		PROTECT_CTX_NOPRINT(ctx, flags);
5520 
5521 		pfm_overflow_handler(task, ctx, pmc0, regs);
5522 
5523 		UNPROTECT_CTX_NOPRINT(ctx, flags);
5524 
5525 	} else {
5526 		pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5527 		retval = -1;
5528 	}
5529 	/*
5530 	 * keep it unfrozen at all times
5531 	 */
5532 	pfm_unfreeze_pmu();
5533 
5534 	return retval;
5535 
5536 report_spurious1:
5537 	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5538 		this_cpu, task_pid_nr(task));
5539 	pfm_unfreeze_pmu();
5540 	return -1;
5541 report_spurious2:
5542 	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5543 		this_cpu,
5544 		task_pid_nr(task));
5545 	pfm_unfreeze_pmu();
5546 	return -1;
5547 }
5548 
5549 static irqreturn_t
pfm_interrupt_handler(int irq,void * arg)5550 pfm_interrupt_handler(int irq, void *arg)
5551 {
5552 	unsigned long start_cycles, total_cycles;
5553 	unsigned long min, max;
5554 	int this_cpu;
5555 	int ret;
5556 	struct pt_regs *regs = get_irq_regs();
5557 
5558 	this_cpu = get_cpu();
5559 	if (likely(!pfm_alt_intr_handler)) {
5560 		min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5561 		max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5562 
5563 		start_cycles = ia64_get_itc();
5564 
5565 		ret = pfm_do_interrupt_handler(arg, regs);
5566 
5567 		total_cycles = ia64_get_itc();
5568 
5569 		/*
5570 		 * don't measure spurious interrupts
5571 		 */
5572 		if (likely(ret == 0)) {
5573 			total_cycles -= start_cycles;
5574 
5575 			if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5576 			if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5577 
5578 			pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5579 		}
5580 	}
5581 	else {
5582 		(*pfm_alt_intr_handler->handler)(irq, arg, regs);
5583 	}
5584 
5585 	put_cpu();
5586 	return IRQ_HANDLED;
5587 }
5588 
5589 /*
5590  * /proc/perfmon interface, for debug only
5591  */
5592 
5593 #define PFM_PROC_SHOW_HEADER	((void *)(long)nr_cpu_ids+1)
5594 
5595 static void *
pfm_proc_start(struct seq_file * m,loff_t * pos)5596 pfm_proc_start(struct seq_file *m, loff_t *pos)
5597 {
5598 	if (*pos == 0) {
5599 		return PFM_PROC_SHOW_HEADER;
5600 	}
5601 
5602 	while (*pos <= nr_cpu_ids) {
5603 		if (cpu_online(*pos - 1)) {
5604 			return (void *)*pos;
5605 		}
5606 		++*pos;
5607 	}
5608 	return NULL;
5609 }
5610 
5611 static void *
pfm_proc_next(struct seq_file * m,void * v,loff_t * pos)5612 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5613 {
5614 	++*pos;
5615 	return pfm_proc_start(m, pos);
5616 }
5617 
5618 static void
pfm_proc_stop(struct seq_file * m,void * v)5619 pfm_proc_stop(struct seq_file *m, void *v)
5620 {
5621 }
5622 
5623 static void
pfm_proc_show_header(struct seq_file * m)5624 pfm_proc_show_header(struct seq_file *m)
5625 {
5626 	struct list_head * pos;
5627 	pfm_buffer_fmt_t * entry;
5628 	unsigned long flags;
5629 
5630  	seq_printf(m,
5631 		"perfmon version           : %u.%u\n"
5632 		"model                     : %s\n"
5633 		"fastctxsw                 : %s\n"
5634 		"expert mode               : %s\n"
5635 		"ovfl_mask                 : 0x%lx\n"
5636 		"PMU flags                 : 0x%x\n",
5637 		PFM_VERSION_MAJ, PFM_VERSION_MIN,
5638 		pmu_conf->pmu_name,
5639 		pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5640 		pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5641 		pmu_conf->ovfl_val,
5642 		pmu_conf->flags);
5643 
5644   	LOCK_PFS(flags);
5645 
5646  	seq_printf(m,
5647  		"proc_sessions             : %u\n"
5648  		"sys_sessions              : %u\n"
5649  		"sys_use_dbregs            : %u\n"
5650  		"ptrace_use_dbregs         : %u\n",
5651  		pfm_sessions.pfs_task_sessions,
5652  		pfm_sessions.pfs_sys_sessions,
5653  		pfm_sessions.pfs_sys_use_dbregs,
5654  		pfm_sessions.pfs_ptrace_use_dbregs);
5655 
5656   	UNLOCK_PFS(flags);
5657 
5658 	spin_lock(&pfm_buffer_fmt_lock);
5659 
5660 	list_for_each(pos, &pfm_buffer_fmt_list) {
5661 		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5662 		seq_printf(m, "format                    : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5663 			entry->fmt_uuid[0],
5664 			entry->fmt_uuid[1],
5665 			entry->fmt_uuid[2],
5666 			entry->fmt_uuid[3],
5667 			entry->fmt_uuid[4],
5668 			entry->fmt_uuid[5],
5669 			entry->fmt_uuid[6],
5670 			entry->fmt_uuid[7],
5671 			entry->fmt_uuid[8],
5672 			entry->fmt_uuid[9],
5673 			entry->fmt_uuid[10],
5674 			entry->fmt_uuid[11],
5675 			entry->fmt_uuid[12],
5676 			entry->fmt_uuid[13],
5677 			entry->fmt_uuid[14],
5678 			entry->fmt_uuid[15],
5679 			entry->fmt_name);
5680 	}
5681 	spin_unlock(&pfm_buffer_fmt_lock);
5682 
5683 }
5684 
5685 static int
pfm_proc_show(struct seq_file * m,void * v)5686 pfm_proc_show(struct seq_file *m, void *v)
5687 {
5688 	unsigned long psr;
5689 	unsigned int i;
5690 	int cpu;
5691 
5692 	if (v == PFM_PROC_SHOW_HEADER) {
5693 		pfm_proc_show_header(m);
5694 		return 0;
5695 	}
5696 
5697 	/* show info for CPU (v - 1) */
5698 
5699 	cpu = (long)v - 1;
5700 	seq_printf(m,
5701 		"CPU%-2d overflow intrs      : %lu\n"
5702 		"CPU%-2d overflow cycles     : %lu\n"
5703 		"CPU%-2d overflow min        : %lu\n"
5704 		"CPU%-2d overflow max        : %lu\n"
5705 		"CPU%-2d smpl handler calls  : %lu\n"
5706 		"CPU%-2d smpl handler cycles : %lu\n"
5707 		"CPU%-2d spurious intrs      : %lu\n"
5708 		"CPU%-2d replay   intrs      : %lu\n"
5709 		"CPU%-2d syst_wide           : %d\n"
5710 		"CPU%-2d dcr_pp              : %d\n"
5711 		"CPU%-2d exclude idle        : %d\n"
5712 		"CPU%-2d owner               : %d\n"
5713 		"CPU%-2d context             : %p\n"
5714 		"CPU%-2d activations         : %lu\n",
5715 		cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5716 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5717 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5718 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5719 		cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5720 		cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5721 		cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5722 		cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5723 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5724 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5725 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5726 		cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5727 		cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5728 		cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5729 
5730 	if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5731 
5732 		psr = pfm_get_psr();
5733 
5734 		ia64_srlz_d();
5735 
5736 		seq_printf(m,
5737 			"CPU%-2d psr                 : 0x%lx\n"
5738 			"CPU%-2d pmc0                : 0x%lx\n",
5739 			cpu, psr,
5740 			cpu, ia64_get_pmc(0));
5741 
5742 		for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5743 			if (PMC_IS_COUNTING(i) == 0) continue;
5744    			seq_printf(m,
5745 				"CPU%-2d pmc%u                : 0x%lx\n"
5746    				"CPU%-2d pmd%u                : 0x%lx\n",
5747 				cpu, i, ia64_get_pmc(i),
5748 				cpu, i, ia64_get_pmd(i));
5749   		}
5750 	}
5751 	return 0;
5752 }
5753 
5754 const struct seq_operations pfm_seq_ops = {
5755 	.start =	pfm_proc_start,
5756  	.next =		pfm_proc_next,
5757  	.stop =		pfm_proc_stop,
5758  	.show =		pfm_proc_show
5759 };
5760 
5761 static int
pfm_proc_open(struct inode * inode,struct file * file)5762 pfm_proc_open(struct inode *inode, struct file *file)
5763 {
5764 	return seq_open(file, &pfm_seq_ops);
5765 }
5766 
5767 
5768 /*
5769  * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5770  * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5771  * is active or inactive based on mode. We must rely on the value in
5772  * local_cpu_data->pfm_syst_info
5773  */
5774 void
pfm_syst_wide_update_task(struct task_struct * task,unsigned long info,int is_ctxswin)5775 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5776 {
5777 	struct pt_regs *regs;
5778 	unsigned long dcr;
5779 	unsigned long dcr_pp;
5780 
5781 	dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5782 
5783 	/*
5784 	 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5785 	 * on every CPU, so we can rely on the pid to identify the idle task.
5786 	 */
5787 	if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5788 		regs = task_pt_regs(task);
5789 		ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5790 		return;
5791 	}
5792 	/*
5793 	 * if monitoring has started
5794 	 */
5795 	if (dcr_pp) {
5796 		dcr = ia64_getreg(_IA64_REG_CR_DCR);
5797 		/*
5798 		 * context switching in?
5799 		 */
5800 		if (is_ctxswin) {
5801 			/* mask monitoring for the idle task */
5802 			ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5803 			pfm_clear_psr_pp();
5804 			ia64_srlz_i();
5805 			return;
5806 		}
5807 		/*
5808 		 * context switching out
5809 		 * restore monitoring for next task
5810 		 *
5811 		 * Due to inlining this odd if-then-else construction generates
5812 		 * better code.
5813 		 */
5814 		ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5815 		pfm_set_psr_pp();
5816 		ia64_srlz_i();
5817 	}
5818 }
5819 
5820 #ifdef CONFIG_SMP
5821 
5822 static void
pfm_force_cleanup(pfm_context_t * ctx,struct pt_regs * regs)5823 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5824 {
5825 	struct task_struct *task = ctx->ctx_task;
5826 
5827 	ia64_psr(regs)->up = 0;
5828 	ia64_psr(regs)->sp = 1;
5829 
5830 	if (GET_PMU_OWNER() == task) {
5831 		DPRINT(("cleared ownership for [%d]\n",
5832 					task_pid_nr(ctx->ctx_task)));
5833 		SET_PMU_OWNER(NULL, NULL);
5834 	}
5835 
5836 	/*
5837 	 * disconnect the task from the context and vice-versa
5838 	 */
5839 	PFM_SET_WORK_PENDING(task, 0);
5840 
5841 	task->thread.pfm_context  = NULL;
5842 	task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5843 
5844 	DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5845 }
5846 
5847 
5848 /*
5849  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5850  */
5851 void
pfm_save_regs(struct task_struct * task)5852 pfm_save_regs(struct task_struct *task)
5853 {
5854 	pfm_context_t *ctx;
5855 	unsigned long flags;
5856 	u64 psr;
5857 
5858 
5859 	ctx = PFM_GET_CTX(task);
5860 	if (ctx == NULL) return;
5861 
5862 	/*
5863  	 * we always come here with interrupts ALREADY disabled by
5864  	 * the scheduler. So we simply need to protect against concurrent
5865 	 * access, not CPU concurrency.
5866 	 */
5867 	flags = pfm_protect_ctx_ctxsw(ctx);
5868 
5869 	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5870 		struct pt_regs *regs = task_pt_regs(task);
5871 
5872 		pfm_clear_psr_up();
5873 
5874 		pfm_force_cleanup(ctx, regs);
5875 
5876 		BUG_ON(ctx->ctx_smpl_hdr);
5877 
5878 		pfm_unprotect_ctx_ctxsw(ctx, flags);
5879 
5880 		pfm_context_free(ctx);
5881 		return;
5882 	}
5883 
5884 	/*
5885 	 * save current PSR: needed because we modify it
5886 	 */
5887 	ia64_srlz_d();
5888 	psr = pfm_get_psr();
5889 
5890 	BUG_ON(psr & (IA64_PSR_I));
5891 
5892 	/*
5893 	 * stop monitoring:
5894 	 * This is the last instruction which may generate an overflow
5895 	 *
5896 	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5897 	 * It will be restored from ipsr when going back to user level
5898 	 */
5899 	pfm_clear_psr_up();
5900 
5901 	/*
5902 	 * keep a copy of psr.up (for reload)
5903 	 */
5904 	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5905 
5906 	/*
5907 	 * release ownership of this PMU.
5908 	 * PM interrupts are masked, so nothing
5909 	 * can happen.
5910 	 */
5911 	SET_PMU_OWNER(NULL, NULL);
5912 
5913 	/*
5914 	 * we systematically save the PMD as we have no
5915 	 * guarantee we will be schedule at that same
5916 	 * CPU again.
5917 	 */
5918 	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5919 
5920 	/*
5921 	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5922 	 * we will need it on the restore path to check
5923 	 * for pending overflow.
5924 	 */
5925 	ctx->th_pmcs[0] = ia64_get_pmc(0);
5926 
5927 	/*
5928 	 * unfreeze PMU if had pending overflows
5929 	 */
5930 	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5931 
5932 	/*
5933 	 * finally, allow context access.
5934 	 * interrupts will still be masked after this call.
5935 	 */
5936 	pfm_unprotect_ctx_ctxsw(ctx, flags);
5937 }
5938 
5939 #else /* !CONFIG_SMP */
5940 void
pfm_save_regs(struct task_struct * task)5941 pfm_save_regs(struct task_struct *task)
5942 {
5943 	pfm_context_t *ctx;
5944 	u64 psr;
5945 
5946 	ctx = PFM_GET_CTX(task);
5947 	if (ctx == NULL) return;
5948 
5949 	/*
5950 	 * save current PSR: needed because we modify it
5951 	 */
5952 	psr = pfm_get_psr();
5953 
5954 	BUG_ON(psr & (IA64_PSR_I));
5955 
5956 	/*
5957 	 * stop monitoring:
5958 	 * This is the last instruction which may generate an overflow
5959 	 *
5960 	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5961 	 * It will be restored from ipsr when going back to user level
5962 	 */
5963 	pfm_clear_psr_up();
5964 
5965 	/*
5966 	 * keep a copy of psr.up (for reload)
5967 	 */
5968 	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5969 }
5970 
5971 static void
pfm_lazy_save_regs(struct task_struct * task)5972 pfm_lazy_save_regs (struct task_struct *task)
5973 {
5974 	pfm_context_t *ctx;
5975 	unsigned long flags;
5976 
5977 	{ u64 psr  = pfm_get_psr();
5978 	  BUG_ON(psr & IA64_PSR_UP);
5979 	}
5980 
5981 	ctx = PFM_GET_CTX(task);
5982 
5983 	/*
5984 	 * we need to mask PMU overflow here to
5985 	 * make sure that we maintain pmc0 until
5986 	 * we save it. overflow interrupts are
5987 	 * treated as spurious if there is no
5988 	 * owner.
5989 	 *
5990 	 * XXX: I don't think this is necessary
5991 	 */
5992 	PROTECT_CTX(ctx,flags);
5993 
5994 	/*
5995 	 * release ownership of this PMU.
5996 	 * must be done before we save the registers.
5997 	 *
5998 	 * after this call any PMU interrupt is treated
5999 	 * as spurious.
6000 	 */
6001 	SET_PMU_OWNER(NULL, NULL);
6002 
6003 	/*
6004 	 * save all the pmds we use
6005 	 */
6006 	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
6007 
6008 	/*
6009 	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6010 	 * it is needed to check for pended overflow
6011 	 * on the restore path
6012 	 */
6013 	ctx->th_pmcs[0] = ia64_get_pmc(0);
6014 
6015 	/*
6016 	 * unfreeze PMU if had pending overflows
6017 	 */
6018 	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6019 
6020 	/*
6021 	 * now get can unmask PMU interrupts, they will
6022 	 * be treated as purely spurious and we will not
6023 	 * lose any information
6024 	 */
6025 	UNPROTECT_CTX(ctx,flags);
6026 }
6027 #endif /* CONFIG_SMP */
6028 
6029 #ifdef CONFIG_SMP
6030 /*
6031  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6032  */
6033 void
pfm_load_regs(struct task_struct * task)6034 pfm_load_regs (struct task_struct *task)
6035 {
6036 	pfm_context_t *ctx;
6037 	unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6038 	unsigned long flags;
6039 	u64 psr, psr_up;
6040 	int need_irq_resend;
6041 
6042 	ctx = PFM_GET_CTX(task);
6043 	if (unlikely(ctx == NULL)) return;
6044 
6045 	BUG_ON(GET_PMU_OWNER());
6046 
6047 	/*
6048 	 * possible on unload
6049 	 */
6050 	if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6051 
6052 	/*
6053  	 * we always come here with interrupts ALREADY disabled by
6054  	 * the scheduler. So we simply need to protect against concurrent
6055 	 * access, not CPU concurrency.
6056 	 */
6057 	flags = pfm_protect_ctx_ctxsw(ctx);
6058 	psr   = pfm_get_psr();
6059 
6060 	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6061 
6062 	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6063 	BUG_ON(psr & IA64_PSR_I);
6064 
6065 	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6066 		struct pt_regs *regs = task_pt_regs(task);
6067 
6068 		BUG_ON(ctx->ctx_smpl_hdr);
6069 
6070 		pfm_force_cleanup(ctx, regs);
6071 
6072 		pfm_unprotect_ctx_ctxsw(ctx, flags);
6073 
6074 		/*
6075 		 * this one (kmalloc'ed) is fine with interrupts disabled
6076 		 */
6077 		pfm_context_free(ctx);
6078 
6079 		return;
6080 	}
6081 
6082 	/*
6083 	 * we restore ALL the debug registers to avoid picking up
6084 	 * stale state.
6085 	 */
6086 	if (ctx->ctx_fl_using_dbreg) {
6087 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6088 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6089 	}
6090 	/*
6091 	 * retrieve saved psr.up
6092 	 */
6093 	psr_up = ctx->ctx_saved_psr_up;
6094 
6095 	/*
6096 	 * if we were the last user of the PMU on that CPU,
6097 	 * then nothing to do except restore psr
6098 	 */
6099 	if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6100 
6101 		/*
6102 		 * retrieve partial reload masks (due to user modifications)
6103 		 */
6104 		pmc_mask = ctx->ctx_reload_pmcs[0];
6105 		pmd_mask = ctx->ctx_reload_pmds[0];
6106 
6107 	} else {
6108 		/*
6109 	 	 * To avoid leaking information to the user level when psr.sp=0,
6110 	 	 * we must reload ALL implemented pmds (even the ones we don't use).
6111 	 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6112 	 	 * we initialized or requested (sampling) so there is no risk there.
6113 	 	 */
6114 		pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6115 
6116 		/*
6117 	 	 * ALL accessible PMCs are systematically reloaded, unused registers
6118 	 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6119 	 	 * up stale configuration.
6120 	 	 *
6121 	 	 * PMC0 is never in the mask. It is always restored separately.
6122 	 	 */
6123 		pmc_mask = ctx->ctx_all_pmcs[0];
6124 	}
6125 	/*
6126 	 * when context is MASKED, we will restore PMC with plm=0
6127 	 * and PMD with stale information, but that's ok, nothing
6128 	 * will be captured.
6129 	 *
6130 	 * XXX: optimize here
6131 	 */
6132 	if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6133 	if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6134 
6135 	/*
6136 	 * check for pending overflow at the time the state
6137 	 * was saved.
6138 	 */
6139 	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6140 		/*
6141 		 * reload pmc0 with the overflow information
6142 		 * On McKinley PMU, this will trigger a PMU interrupt
6143 		 */
6144 		ia64_set_pmc(0, ctx->th_pmcs[0]);
6145 		ia64_srlz_d();
6146 		ctx->th_pmcs[0] = 0UL;
6147 
6148 		/*
6149 		 * will replay the PMU interrupt
6150 		 */
6151 		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6152 
6153 		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6154 	}
6155 
6156 	/*
6157 	 * we just did a reload, so we reset the partial reload fields
6158 	 */
6159 	ctx->ctx_reload_pmcs[0] = 0UL;
6160 	ctx->ctx_reload_pmds[0] = 0UL;
6161 
6162 	SET_LAST_CPU(ctx, smp_processor_id());
6163 
6164 	/*
6165 	 * dump activation value for this PMU
6166 	 */
6167 	INC_ACTIVATION();
6168 	/*
6169 	 * record current activation for this context
6170 	 */
6171 	SET_ACTIVATION(ctx);
6172 
6173 	/*
6174 	 * establish new ownership.
6175 	 */
6176 	SET_PMU_OWNER(task, ctx);
6177 
6178 	/*
6179 	 * restore the psr.up bit. measurement
6180 	 * is active again.
6181 	 * no PMU interrupt can happen at this point
6182 	 * because we still have interrupts disabled.
6183 	 */
6184 	if (likely(psr_up)) pfm_set_psr_up();
6185 
6186 	/*
6187 	 * allow concurrent access to context
6188 	 */
6189 	pfm_unprotect_ctx_ctxsw(ctx, flags);
6190 }
6191 #else /*  !CONFIG_SMP */
6192 /*
6193  * reload PMU state for UP kernels
6194  * in 2.5 we come here with interrupts disabled
6195  */
6196 void
pfm_load_regs(struct task_struct * task)6197 pfm_load_regs (struct task_struct *task)
6198 {
6199 	pfm_context_t *ctx;
6200 	struct task_struct *owner;
6201 	unsigned long pmd_mask, pmc_mask;
6202 	u64 psr, psr_up;
6203 	int need_irq_resend;
6204 
6205 	owner = GET_PMU_OWNER();
6206 	ctx   = PFM_GET_CTX(task);
6207 	psr   = pfm_get_psr();
6208 
6209 	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6210 	BUG_ON(psr & IA64_PSR_I);
6211 
6212 	/*
6213 	 * we restore ALL the debug registers to avoid picking up
6214 	 * stale state.
6215 	 *
6216 	 * This must be done even when the task is still the owner
6217 	 * as the registers may have been modified via ptrace()
6218 	 * (not perfmon) by the previous task.
6219 	 */
6220 	if (ctx->ctx_fl_using_dbreg) {
6221 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6222 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6223 	}
6224 
6225 	/*
6226 	 * retrieved saved psr.up
6227 	 */
6228 	psr_up = ctx->ctx_saved_psr_up;
6229 	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6230 
6231 	/*
6232 	 * short path, our state is still there, just
6233 	 * need to restore psr and we go
6234 	 *
6235 	 * we do not touch either PMC nor PMD. the psr is not touched
6236 	 * by the overflow_handler. So we are safe w.r.t. to interrupt
6237 	 * concurrency even without interrupt masking.
6238 	 */
6239 	if (likely(owner == task)) {
6240 		if (likely(psr_up)) pfm_set_psr_up();
6241 		return;
6242 	}
6243 
6244 	/*
6245 	 * someone else is still using the PMU, first push it out and
6246 	 * then we'll be able to install our stuff !
6247 	 *
6248 	 * Upon return, there will be no owner for the current PMU
6249 	 */
6250 	if (owner) pfm_lazy_save_regs(owner);
6251 
6252 	/*
6253 	 * To avoid leaking information to the user level when psr.sp=0,
6254 	 * we must reload ALL implemented pmds (even the ones we don't use).
6255 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6256 	 * we initialized or requested (sampling) so there is no risk there.
6257 	 */
6258 	pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6259 
6260 	/*
6261 	 * ALL accessible PMCs are systematically reloaded, unused registers
6262 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6263 	 * up stale configuration.
6264 	 *
6265 	 * PMC0 is never in the mask. It is always restored separately
6266 	 */
6267 	pmc_mask = ctx->ctx_all_pmcs[0];
6268 
6269 	pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6270 	pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6271 
6272 	/*
6273 	 * check for pending overflow at the time the state
6274 	 * was saved.
6275 	 */
6276 	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6277 		/*
6278 		 * reload pmc0 with the overflow information
6279 		 * On McKinley PMU, this will trigger a PMU interrupt
6280 		 */
6281 		ia64_set_pmc(0, ctx->th_pmcs[0]);
6282 		ia64_srlz_d();
6283 
6284 		ctx->th_pmcs[0] = 0UL;
6285 
6286 		/*
6287 		 * will replay the PMU interrupt
6288 		 */
6289 		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6290 
6291 		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6292 	}
6293 
6294 	/*
6295 	 * establish new ownership.
6296 	 */
6297 	SET_PMU_OWNER(task, ctx);
6298 
6299 	/*
6300 	 * restore the psr.up bit. measurement
6301 	 * is active again.
6302 	 * no PMU interrupt can happen at this point
6303 	 * because we still have interrupts disabled.
6304 	 */
6305 	if (likely(psr_up)) pfm_set_psr_up();
6306 }
6307 #endif /* CONFIG_SMP */
6308 
6309 /*
6310  * this function assumes monitoring is stopped
6311  */
6312 static void
pfm_flush_pmds(struct task_struct * task,pfm_context_t * ctx)6313 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6314 {
6315 	u64 pmc0;
6316 	unsigned long mask2, val, pmd_val, ovfl_val;
6317 	int i, can_access_pmu = 0;
6318 	int is_self;
6319 
6320 	/*
6321 	 * is the caller the task being monitored (or which initiated the
6322 	 * session for system wide measurements)
6323 	 */
6324 	is_self = ctx->ctx_task == task ? 1 : 0;
6325 
6326 	/*
6327 	 * can access PMU is task is the owner of the PMU state on the current CPU
6328 	 * or if we are running on the CPU bound to the context in system-wide mode
6329 	 * (that is not necessarily the task the context is attached to in this mode).
6330 	 * In system-wide we always have can_access_pmu true because a task running on an
6331 	 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6332 	 */
6333 	can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6334 	if (can_access_pmu) {
6335 		/*
6336 		 * Mark the PMU as not owned
6337 		 * This will cause the interrupt handler to do nothing in case an overflow
6338 		 * interrupt was in-flight
6339 		 * This also guarantees that pmc0 will contain the final state
6340 		 * It virtually gives us full control on overflow processing from that point
6341 		 * on.
6342 		 */
6343 		SET_PMU_OWNER(NULL, NULL);
6344 		DPRINT(("releasing ownership\n"));
6345 
6346 		/*
6347 		 * read current overflow status:
6348 		 *
6349 		 * we are guaranteed to read the final stable state
6350 		 */
6351 		ia64_srlz_d();
6352 		pmc0 = ia64_get_pmc(0); /* slow */
6353 
6354 		/*
6355 		 * reset freeze bit, overflow status information destroyed
6356 		 */
6357 		pfm_unfreeze_pmu();
6358 	} else {
6359 		pmc0 = ctx->th_pmcs[0];
6360 		/*
6361 		 * clear whatever overflow status bits there were
6362 		 */
6363 		ctx->th_pmcs[0] = 0;
6364 	}
6365 	ovfl_val = pmu_conf->ovfl_val;
6366 	/*
6367 	 * we save all the used pmds
6368 	 * we take care of overflows for counting PMDs
6369 	 *
6370 	 * XXX: sampling situation is not taken into account here
6371 	 */
6372 	mask2 = ctx->ctx_used_pmds[0];
6373 
6374 	DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6375 
6376 	for (i = 0; mask2; i++, mask2>>=1) {
6377 
6378 		/* skip non used pmds */
6379 		if ((mask2 & 0x1) == 0) continue;
6380 
6381 		/*
6382 		 * can access PMU always true in system wide mode
6383 		 */
6384 		val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6385 
6386 		if (PMD_IS_COUNTING(i)) {
6387 			DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6388 				task_pid_nr(task),
6389 				i,
6390 				ctx->ctx_pmds[i].val,
6391 				val & ovfl_val));
6392 
6393 			/*
6394 			 * we rebuild the full 64 bit value of the counter
6395 			 */
6396 			val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6397 
6398 			/*
6399 			 * now everything is in ctx_pmds[] and we need
6400 			 * to clear the saved context from save_regs() such that
6401 			 * pfm_read_pmds() gets the correct value
6402 			 */
6403 			pmd_val = 0UL;
6404 
6405 			/*
6406 			 * take care of overflow inline
6407 			 */
6408 			if (pmc0 & (1UL << i)) {
6409 				val += 1 + ovfl_val;
6410 				DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6411 			}
6412 		}
6413 
6414 		DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6415 
6416 		if (is_self) ctx->th_pmds[i] = pmd_val;
6417 
6418 		ctx->ctx_pmds[i].val = val;
6419 	}
6420 }
6421 
6422 static struct irqaction perfmon_irqaction = {
6423 	.handler = pfm_interrupt_handler,
6424 	.flags   = IRQF_DISABLED,
6425 	.name    = "perfmon"
6426 };
6427 
6428 static void
pfm_alt_save_pmu_state(void * data)6429 pfm_alt_save_pmu_state(void *data)
6430 {
6431 	struct pt_regs *regs;
6432 
6433 	regs = task_pt_regs(current);
6434 
6435 	DPRINT(("called\n"));
6436 
6437 	/*
6438 	 * should not be necessary but
6439 	 * let's take not risk
6440 	 */
6441 	pfm_clear_psr_up();
6442 	pfm_clear_psr_pp();
6443 	ia64_psr(regs)->pp = 0;
6444 
6445 	/*
6446 	 * This call is required
6447 	 * May cause a spurious interrupt on some processors
6448 	 */
6449 	pfm_freeze_pmu();
6450 
6451 	ia64_srlz_d();
6452 }
6453 
6454 void
pfm_alt_restore_pmu_state(void * data)6455 pfm_alt_restore_pmu_state(void *data)
6456 {
6457 	struct pt_regs *regs;
6458 
6459 	regs = task_pt_regs(current);
6460 
6461 	DPRINT(("called\n"));
6462 
6463 	/*
6464 	 * put PMU back in state expected
6465 	 * by perfmon
6466 	 */
6467 	pfm_clear_psr_up();
6468 	pfm_clear_psr_pp();
6469 	ia64_psr(regs)->pp = 0;
6470 
6471 	/*
6472 	 * perfmon runs with PMU unfrozen at all times
6473 	 */
6474 	pfm_unfreeze_pmu();
6475 
6476 	ia64_srlz_d();
6477 }
6478 
6479 int
pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6480 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6481 {
6482 	int ret, i;
6483 	int reserve_cpu;
6484 
6485 	/* some sanity checks */
6486 	if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6487 
6488 	/* do the easy test first */
6489 	if (pfm_alt_intr_handler) return -EBUSY;
6490 
6491 	/* one at a time in the install or remove, just fail the others */
6492 	if (!spin_trylock(&pfm_alt_install_check)) {
6493 		return -EBUSY;
6494 	}
6495 
6496 	/* reserve our session */
6497 	for_each_online_cpu(reserve_cpu) {
6498 		ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6499 		if (ret) goto cleanup_reserve;
6500 	}
6501 
6502 	/* save the current system wide pmu states */
6503 	ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6504 	if (ret) {
6505 		DPRINT(("on_each_cpu() failed: %d\n", ret));
6506 		goto cleanup_reserve;
6507 	}
6508 
6509 	/* officially change to the alternate interrupt handler */
6510 	pfm_alt_intr_handler = hdl;
6511 
6512 	spin_unlock(&pfm_alt_install_check);
6513 
6514 	return 0;
6515 
6516 cleanup_reserve:
6517 	for_each_online_cpu(i) {
6518 		/* don't unreserve more than we reserved */
6519 		if (i >= reserve_cpu) break;
6520 
6521 		pfm_unreserve_session(NULL, 1, i);
6522 	}
6523 
6524 	spin_unlock(&pfm_alt_install_check);
6525 
6526 	return ret;
6527 }
6528 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6529 
6530 int
pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6531 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6532 {
6533 	int i;
6534 	int ret;
6535 
6536 	if (hdl == NULL) return -EINVAL;
6537 
6538 	/* cannot remove someone else's handler! */
6539 	if (pfm_alt_intr_handler != hdl) return -EINVAL;
6540 
6541 	/* one at a time in the install or remove, just fail the others */
6542 	if (!spin_trylock(&pfm_alt_install_check)) {
6543 		return -EBUSY;
6544 	}
6545 
6546 	pfm_alt_intr_handler = NULL;
6547 
6548 	ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6549 	if (ret) {
6550 		DPRINT(("on_each_cpu() failed: %d\n", ret));
6551 	}
6552 
6553 	for_each_online_cpu(i) {
6554 		pfm_unreserve_session(NULL, 1, i);
6555 	}
6556 
6557 	spin_unlock(&pfm_alt_install_check);
6558 
6559 	return 0;
6560 }
6561 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6562 
6563 /*
6564  * perfmon initialization routine, called from the initcall() table
6565  */
6566 static int init_pfm_fs(void);
6567 
6568 static int __init
pfm_probe_pmu(void)6569 pfm_probe_pmu(void)
6570 {
6571 	pmu_config_t **p;
6572 	int family;
6573 
6574 	family = local_cpu_data->family;
6575 	p      = pmu_confs;
6576 
6577 	while(*p) {
6578 		if ((*p)->probe) {
6579 			if ((*p)->probe() == 0) goto found;
6580 		} else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6581 			goto found;
6582 		}
6583 		p++;
6584 	}
6585 	return -1;
6586 found:
6587 	pmu_conf = *p;
6588 	return 0;
6589 }
6590 
6591 static const struct file_operations pfm_proc_fops = {
6592 	.open		= pfm_proc_open,
6593 	.read		= seq_read,
6594 	.llseek		= seq_lseek,
6595 	.release	= seq_release,
6596 };
6597 
6598 int __init
pfm_init(void)6599 pfm_init(void)
6600 {
6601 	unsigned int n, n_counters, i;
6602 
6603 	printk("perfmon: version %u.%u IRQ %u\n",
6604 		PFM_VERSION_MAJ,
6605 		PFM_VERSION_MIN,
6606 		IA64_PERFMON_VECTOR);
6607 
6608 	if (pfm_probe_pmu()) {
6609 		printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6610 				local_cpu_data->family);
6611 		return -ENODEV;
6612 	}
6613 
6614 	/*
6615 	 * compute the number of implemented PMD/PMC from the
6616 	 * description tables
6617 	 */
6618 	n = 0;
6619 	for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6620 		if (PMC_IS_IMPL(i) == 0) continue;
6621 		pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6622 		n++;
6623 	}
6624 	pmu_conf->num_pmcs = n;
6625 
6626 	n = 0; n_counters = 0;
6627 	for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6628 		if (PMD_IS_IMPL(i) == 0) continue;
6629 		pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6630 		n++;
6631 		if (PMD_IS_COUNTING(i)) n_counters++;
6632 	}
6633 	pmu_conf->num_pmds      = n;
6634 	pmu_conf->num_counters  = n_counters;
6635 
6636 	/*
6637 	 * sanity checks on the number of debug registers
6638 	 */
6639 	if (pmu_conf->use_rr_dbregs) {
6640 		if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6641 			printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6642 			pmu_conf = NULL;
6643 			return -1;
6644 		}
6645 		if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6646 			printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6647 			pmu_conf = NULL;
6648 			return -1;
6649 		}
6650 	}
6651 
6652 	printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6653 	       pmu_conf->pmu_name,
6654 	       pmu_conf->num_pmcs,
6655 	       pmu_conf->num_pmds,
6656 	       pmu_conf->num_counters,
6657 	       ffz(pmu_conf->ovfl_val));
6658 
6659 	/* sanity check */
6660 	if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6661 		printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6662 		pmu_conf = NULL;
6663 		return -1;
6664 	}
6665 
6666 	/*
6667 	 * create /proc/perfmon (mostly for debugging purposes)
6668 	 */
6669 	perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6670 	if (perfmon_dir == NULL) {
6671 		printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6672 		pmu_conf = NULL;
6673 		return -1;
6674 	}
6675 
6676 	/*
6677 	 * create /proc/sys/kernel/perfmon (for debugging purposes)
6678 	 */
6679 	pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6680 
6681 	/*
6682 	 * initialize all our spinlocks
6683 	 */
6684 	spin_lock_init(&pfm_sessions.pfs_lock);
6685 	spin_lock_init(&pfm_buffer_fmt_lock);
6686 
6687 	init_pfm_fs();
6688 
6689 	for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6690 
6691 	return 0;
6692 }
6693 
6694 __initcall(pfm_init);
6695 
6696 /*
6697  * this function is called before pfm_init()
6698  */
6699 void
pfm_init_percpu(void)6700 pfm_init_percpu (void)
6701 {
6702 	static int first_time=1;
6703 	/*
6704 	 * make sure no measurement is active
6705 	 * (may inherit programmed PMCs from EFI).
6706 	 */
6707 	pfm_clear_psr_pp();
6708 	pfm_clear_psr_up();
6709 
6710 	/*
6711 	 * we run with the PMU not frozen at all times
6712 	 */
6713 	pfm_unfreeze_pmu();
6714 
6715 	if (first_time) {
6716 		register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6717 		first_time=0;
6718 	}
6719 
6720 	ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6721 	ia64_srlz_d();
6722 }
6723 
6724 /*
6725  * used for debug purposes only
6726  */
6727 void
dump_pmu_state(const char * from)6728 dump_pmu_state(const char *from)
6729 {
6730 	struct task_struct *task;
6731 	struct pt_regs *regs;
6732 	pfm_context_t *ctx;
6733 	unsigned long psr, dcr, info, flags;
6734 	int i, this_cpu;
6735 
6736 	local_irq_save(flags);
6737 
6738 	this_cpu = smp_processor_id();
6739 	regs     = task_pt_regs(current);
6740 	info     = PFM_CPUINFO_GET();
6741 	dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6742 
6743 	if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6744 		local_irq_restore(flags);
6745 		return;
6746 	}
6747 
6748 	printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6749 		this_cpu,
6750 		from,
6751 		task_pid_nr(current),
6752 		regs->cr_iip,
6753 		current->comm);
6754 
6755 	task = GET_PMU_OWNER();
6756 	ctx  = GET_PMU_CTX();
6757 
6758 	printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6759 
6760 	psr = pfm_get_psr();
6761 
6762 	printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6763 		this_cpu,
6764 		ia64_get_pmc(0),
6765 		psr & IA64_PSR_PP ? 1 : 0,
6766 		psr & IA64_PSR_UP ? 1 : 0,
6767 		dcr & IA64_DCR_PP ? 1 : 0,
6768 		info,
6769 		ia64_psr(regs)->up,
6770 		ia64_psr(regs)->pp);
6771 
6772 	ia64_psr(regs)->up = 0;
6773 	ia64_psr(regs)->pp = 0;
6774 
6775 	for (i=1; PMC_IS_LAST(i) == 0; i++) {
6776 		if (PMC_IS_IMPL(i) == 0) continue;
6777 		printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6778 	}
6779 
6780 	for (i=1; PMD_IS_LAST(i) == 0; i++) {
6781 		if (PMD_IS_IMPL(i) == 0) continue;
6782 		printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6783 	}
6784 
6785 	if (ctx) {
6786 		printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6787 				this_cpu,
6788 				ctx->ctx_state,
6789 				ctx->ctx_smpl_vaddr,
6790 				ctx->ctx_smpl_hdr,
6791 				ctx->ctx_msgq_head,
6792 				ctx->ctx_msgq_tail,
6793 				ctx->ctx_saved_psr_up);
6794 	}
6795 	local_irq_restore(flags);
6796 }
6797 
6798 /*
6799  * called from process.c:copy_thread(). task is new child.
6800  */
6801 void
pfm_inherit(struct task_struct * task,struct pt_regs * regs)6802 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6803 {
6804 	struct thread_struct *thread;
6805 
6806 	DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6807 
6808 	thread = &task->thread;
6809 
6810 	/*
6811 	 * cut links inherited from parent (current)
6812 	 */
6813 	thread->pfm_context = NULL;
6814 
6815 	PFM_SET_WORK_PENDING(task, 0);
6816 
6817 	/*
6818 	 * the psr bits are already set properly in copy_threads()
6819 	 */
6820 }
6821 #else  /* !CONFIG_PERFMON */
6822 asmlinkage long
sys_perfmonctl(int fd,int cmd,void * arg,int count)6823 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6824 {
6825 	return -ENOSYS;
6826 }
6827 #endif /* CONFIG_PERFMON */
6828