1 /*
2  * This file implements the perfmon-2 subsystem which is used
3  * to program the IA-64 Performance Monitoring Unit (PMU).
4  *
5  * The initial version of perfmon.c was written by
6  * Ganesh Venkitachalam, IBM Corp.
7  *
8  * Then it was modified for perfmon-1.x by Stephane Eranian and
9  * David Mosberger, Hewlett Packard Co.
10  *
11  * Version Perfmon-2.x is a rewrite of perfmon-1.x
12  * by Stephane Eranian, Hewlett Packard Co.
13  *
14  * Copyright (C) 1999-2005  Hewlett Packard Co
15  *               Stephane Eranian <eranian@hpl.hp.com>
16  *               David Mosberger-Tang <davidm@hpl.hp.com>
17  *
18  * More information about perfmon available at:
19  * 	http://www.hpl.hp.com/research/linux/perfmon
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
30 #include <linux/mm.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
44 #include <linux/slab.h>
45 
46 #include <asm/errno.h>
47 #include <asm/intrinsics.h>
48 #include <asm/page.h>
49 #include <asm/perfmon.h>
50 #include <asm/processor.h>
51 #include <asm/signal.h>
52 #include <asm/system.h>
53 #include <asm/uaccess.h>
54 #include <asm/delay.h>
55 
56 #ifdef CONFIG_PERFMON
57 /*
58  * perfmon context state
59  */
60 #define PFM_CTX_UNLOADED	1	/* context is not loaded onto any task */
61 #define PFM_CTX_LOADED		2	/* context is loaded onto a task */
62 #define PFM_CTX_MASKED		3	/* context is loaded but monitoring is masked due to overflow */
63 #define PFM_CTX_ZOMBIE		4	/* owner of the context is closing it */
64 
65 #define PFM_INVALID_ACTIVATION	(~0UL)
66 
67 #define PFM_NUM_PMC_REGS	64	/* PMC save area for ctxsw */
68 #define PFM_NUM_PMD_REGS	64	/* PMD save area for ctxsw */
69 
70 /*
71  * depth of message queue
72  */
73 #define PFM_MAX_MSGS		32
74 #define PFM_CTXQ_EMPTY(g)	((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
75 
76 /*
77  * type of a PMU register (bitmask).
78  * bitmask structure:
79  * 	bit0   : register implemented
80  * 	bit1   : end marker
81  * 	bit2-3 : reserved
82  * 	bit4   : pmc has pmc.pm
83  * 	bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
84  * 	bit6-7 : register type
85  * 	bit8-31: reserved
86  */
87 #define PFM_REG_NOTIMPL		0x0 /* not implemented at all */
88 #define PFM_REG_IMPL		0x1 /* register implemented */
89 #define PFM_REG_END		0x2 /* end marker */
90 #define PFM_REG_MONITOR		(0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
91 #define PFM_REG_COUNTING	(0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
92 #define PFM_REG_CONTROL		(0x4<<4|PFM_REG_IMPL) /* PMU control register */
93 #define	PFM_REG_CONFIG		(0x8<<4|PFM_REG_IMPL) /* configuration register */
94 #define PFM_REG_BUFFER	 	(0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
95 
96 #define PMC_IS_LAST(i)	(pmu_conf->pmc_desc[i].type & PFM_REG_END)
97 #define PMD_IS_LAST(i)	(pmu_conf->pmd_desc[i].type & PFM_REG_END)
98 
99 #define PMC_OVFL_NOTIFY(ctx, i)	((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
100 
101 /* i assumed unsigned */
102 #define PMC_IS_IMPL(i)	  (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
103 #define PMD_IS_IMPL(i)	  (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
104 
105 /* XXX: these assume that register i is implemented */
106 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
108 #define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
109 #define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
110 
111 #define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
112 #define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
113 #define PMD_PMD_DEP(i)	   pmu_conf->pmd_desc[i].dep_pmd[0]
114 #define PMC_PMD_DEP(i)	   pmu_conf->pmc_desc[i].dep_pmd[0]
115 
116 #define PFM_NUM_IBRS	  IA64_NUM_DBG_REGS
117 #define PFM_NUM_DBRS	  IA64_NUM_DBG_REGS
118 
119 #define CTX_OVFL_NOBLOCK(c)	((c)->ctx_fl_block == 0)
120 #define CTX_HAS_SMPL(c)		((c)->ctx_fl_is_sampling)
121 #define PFM_CTX_TASK(h)		(h)->ctx_task
122 
123 #define PMU_PMC_OI		5 /* position of pmc.oi bit */
124 
125 /* XXX: does not support more than 64 PMDs */
126 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
127 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
128 
129 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
130 
131 #define CTX_USED_IBR(ctx,n) 	(ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USED_DBR(ctx,n) 	(ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
133 #define CTX_USES_DBREGS(ctx)	(((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
134 #define PFM_CODE_RR	0	/* requesting code range restriction */
135 #define PFM_DATA_RR	1	/* requestion data range restriction */
136 
137 #define PFM_CPUINFO_CLEAR(v)	pfm_get_cpu_var(pfm_syst_info) &= ~(v)
138 #define PFM_CPUINFO_SET(v)	pfm_get_cpu_var(pfm_syst_info) |= (v)
139 #define PFM_CPUINFO_GET()	pfm_get_cpu_var(pfm_syst_info)
140 
141 #define RDEP(x)	(1UL<<(x))
142 
143 /*
144  * context protection macros
145  * in SMP:
146  * 	- we need to protect against CPU concurrency (spin_lock)
147  * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
148  * in UP:
149  * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
150  *
151  * spin_lock_irqsave()/spin_unlock_irqrestore():
152  * 	in SMP: local_irq_disable + spin_lock
153  * 	in UP : local_irq_disable
154  *
155  * spin_lock()/spin_lock():
156  * 	in UP : removed automatically
157  * 	in SMP: protect against context accesses from other CPU. interrupts
158  * 	        are not masked. This is useful for the PMU interrupt handler
159  * 	        because we know we will not get PMU concurrency in that code.
160  */
161 #define PROTECT_CTX(c, f) \
162 	do {  \
163 		DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
164 		spin_lock_irqsave(&(c)->ctx_lock, f); \
165 		DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
166 	} while(0)
167 
168 #define UNPROTECT_CTX(c, f) \
169 	do { \
170 		DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
171 		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
172 	} while(0)
173 
174 #define PROTECT_CTX_NOPRINT(c, f) \
175 	do {  \
176 		spin_lock_irqsave(&(c)->ctx_lock, f); \
177 	} while(0)
178 
179 
180 #define UNPROTECT_CTX_NOPRINT(c, f) \
181 	do { \
182 		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
183 	} while(0)
184 
185 
186 #define PROTECT_CTX_NOIRQ(c) \
187 	do {  \
188 		spin_lock(&(c)->ctx_lock); \
189 	} while(0)
190 
191 #define UNPROTECT_CTX_NOIRQ(c) \
192 	do { \
193 		spin_unlock(&(c)->ctx_lock); \
194 	} while(0)
195 
196 
197 #ifdef CONFIG_SMP
198 
199 #define GET_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)
200 #define INC_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)++
201 #define SET_ACTIVATION(c)	(c)->ctx_last_activation = GET_ACTIVATION()
202 
203 #else /* !CONFIG_SMP */
204 #define SET_ACTIVATION(t) 	do {} while(0)
205 #define GET_ACTIVATION(t) 	do {} while(0)
206 #define INC_ACTIVATION(t) 	do {} while(0)
207 #endif /* CONFIG_SMP */
208 
209 #define SET_PMU_OWNER(t, c)	do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
210 #define GET_PMU_OWNER()		pfm_get_cpu_var(pmu_owner)
211 #define GET_PMU_CTX()		pfm_get_cpu_var(pmu_ctx)
212 
213 #define LOCK_PFS(g)	    	spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
214 #define UNLOCK_PFS(g)	    	spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
215 
216 #define PFM_REG_RETFLAG_SET(flags, val)	do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
217 
218 /*
219  * cmp0 must be the value of pmc0
220  */
221 #define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
222 
223 #define PFMFS_MAGIC 0xa0b4d889
224 
225 /*
226  * debugging
227  */
228 #define PFM_DEBUGGING 1
229 #ifdef PFM_DEBUGGING
230 #define DPRINT(a) \
231 	do { \
232 		if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
233 	} while (0)
234 
235 #define DPRINT_ovfl(a) \
236 	do { \
237 		if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
238 	} while (0)
239 #endif
240 
241 /*
242  * 64-bit software counter structure
243  *
244  * the next_reset_type is applied to the next call to pfm_reset_regs()
245  */
246 typedef struct {
247 	unsigned long	val;		/* virtual 64bit counter value */
248 	unsigned long	lval;		/* last reset value */
249 	unsigned long	long_reset;	/* reset value on sampling overflow */
250 	unsigned long	short_reset;    /* reset value on overflow */
251 	unsigned long	reset_pmds[4];  /* which other pmds to reset when this counter overflows */
252 	unsigned long	smpl_pmds[4];   /* which pmds are accessed when counter overflow */
253 	unsigned long	seed;		/* seed for random-number generator */
254 	unsigned long	mask;		/* mask for random-number generator */
255 	unsigned int 	flags;		/* notify/do not notify */
256 	unsigned long	eventid;	/* overflow event identifier */
257 } pfm_counter_t;
258 
259 /*
260  * context flags
261  */
262 typedef struct {
263 	unsigned int block:1;		/* when 1, task will blocked on user notifications */
264 	unsigned int system:1;		/* do system wide monitoring */
265 	unsigned int using_dbreg:1;	/* using range restrictions (debug registers) */
266 	unsigned int is_sampling:1;	/* true if using a custom format */
267 	unsigned int excl_idle:1;	/* exclude idle task in system wide session */
268 	unsigned int going_zombie:1;	/* context is zombie (MASKED+blocking) */
269 	unsigned int trap_reason:2;	/* reason for going into pfm_handle_work() */
270 	unsigned int no_msg:1;		/* no message sent on overflow */
271 	unsigned int can_restart:1;	/* allowed to issue a PFM_RESTART */
272 	unsigned int reserved:22;
273 } pfm_context_flags_t;
274 
275 #define PFM_TRAP_REASON_NONE		0x0	/* default value */
276 #define PFM_TRAP_REASON_BLOCK		0x1	/* we need to block on overflow */
277 #define PFM_TRAP_REASON_RESET		0x2	/* we need to reset PMDs */
278 
279 
280 /*
281  * perfmon context: encapsulates all the state of a monitoring session
282  */
283 
284 typedef struct pfm_context {
285 	spinlock_t		ctx_lock;		/* context protection */
286 
287 	pfm_context_flags_t	ctx_flags;		/* bitmask of flags  (block reason incl.) */
288 	unsigned int		ctx_state;		/* state: active/inactive (no bitfield) */
289 
290 	struct task_struct 	*ctx_task;		/* task to which context is attached */
291 
292 	unsigned long		ctx_ovfl_regs[4];	/* which registers overflowed (notification) */
293 
294 	struct completion	ctx_restart_done;  	/* use for blocking notification mode */
295 
296 	unsigned long		ctx_used_pmds[4];	/* bitmask of PMD used            */
297 	unsigned long		ctx_all_pmds[4];	/* bitmask of all accessible PMDs */
298 	unsigned long		ctx_reload_pmds[4];	/* bitmask of force reload PMD on ctxsw in */
299 
300 	unsigned long		ctx_all_pmcs[4];	/* bitmask of all accessible PMCs */
301 	unsigned long		ctx_reload_pmcs[4];	/* bitmask of force reload PMC on ctxsw in */
302 	unsigned long		ctx_used_monitors[4];	/* bitmask of monitor PMC being used */
303 
304 	unsigned long		ctx_pmcs[PFM_NUM_PMC_REGS];	/*  saved copies of PMC values */
305 
306 	unsigned int		ctx_used_ibrs[1];		/* bitmask of used IBR (speedup ctxsw in) */
307 	unsigned int		ctx_used_dbrs[1];		/* bitmask of used DBR (speedup ctxsw in) */
308 	unsigned long		ctx_dbrs[IA64_NUM_DBG_REGS];	/* DBR values (cache) when not loaded */
309 	unsigned long		ctx_ibrs[IA64_NUM_DBG_REGS];	/* IBR values (cache) when not loaded */
310 
311 	pfm_counter_t		ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
312 
313 	unsigned long		th_pmcs[PFM_NUM_PMC_REGS];	/* PMC thread save state */
314 	unsigned long		th_pmds[PFM_NUM_PMD_REGS];	/* PMD thread save state */
315 
316 	unsigned long		ctx_saved_psr_up;	/* only contains psr.up value */
317 
318 	unsigned long		ctx_last_activation;	/* context last activation number for last_cpu */
319 	unsigned int		ctx_last_cpu;		/* CPU id of current or last CPU used (SMP only) */
320 	unsigned int		ctx_cpu;		/* cpu to which perfmon is applied (system wide) */
321 
322 	int			ctx_fd;			/* file descriptor used my this context */
323 	pfm_ovfl_arg_t		ctx_ovfl_arg;		/* argument to custom buffer format handler */
324 
325 	pfm_buffer_fmt_t	*ctx_buf_fmt;		/* buffer format callbacks */
326 	void			*ctx_smpl_hdr;		/* points to sampling buffer header kernel vaddr */
327 	unsigned long		ctx_smpl_size;		/* size of sampling buffer */
328 	void			*ctx_smpl_vaddr;	/* user level virtual address of smpl buffer */
329 
330 	wait_queue_head_t 	ctx_msgq_wait;
331 	pfm_msg_t		ctx_msgq[PFM_MAX_MSGS];
332 	int			ctx_msgq_head;
333 	int			ctx_msgq_tail;
334 	struct fasync_struct	*ctx_async_queue;
335 
336 	wait_queue_head_t 	ctx_zombieq;		/* termination cleanup wait queue */
337 } pfm_context_t;
338 
339 /*
340  * magic number used to verify that structure is really
341  * a perfmon context
342  */
343 #define PFM_IS_FILE(f)		((f)->f_op == &pfm_file_ops)
344 
345 #define PFM_GET_CTX(t)	 	((pfm_context_t *)(t)->thread.pfm_context)
346 
347 #ifdef CONFIG_SMP
348 #define SET_LAST_CPU(ctx, v)	(ctx)->ctx_last_cpu = (v)
349 #define GET_LAST_CPU(ctx)	(ctx)->ctx_last_cpu
350 #else
351 #define SET_LAST_CPU(ctx, v)	do {} while(0)
352 #define GET_LAST_CPU(ctx)	do {} while(0)
353 #endif
354 
355 
356 #define ctx_fl_block		ctx_flags.block
357 #define ctx_fl_system		ctx_flags.system
358 #define ctx_fl_using_dbreg	ctx_flags.using_dbreg
359 #define ctx_fl_is_sampling	ctx_flags.is_sampling
360 #define ctx_fl_excl_idle	ctx_flags.excl_idle
361 #define ctx_fl_going_zombie	ctx_flags.going_zombie
362 #define ctx_fl_trap_reason	ctx_flags.trap_reason
363 #define ctx_fl_no_msg		ctx_flags.no_msg
364 #define ctx_fl_can_restart	ctx_flags.can_restart
365 
366 #define PFM_SET_WORK_PENDING(t, v)	do { (t)->thread.pfm_needs_checking = v; } while(0);
367 #define PFM_GET_WORK_PENDING(t)		(t)->thread.pfm_needs_checking
368 
369 /*
370  * global information about all sessions
371  * mostly used to synchronize between system wide and per-process
372  */
373 typedef struct {
374 	spinlock_t		pfs_lock;		   /* lock the structure */
375 
376 	unsigned int		pfs_task_sessions;	   /* number of per task sessions */
377 	unsigned int		pfs_sys_sessions;	   /* number of per system wide sessions */
378 	unsigned int		pfs_sys_use_dbregs;	   /* incremented when a system wide session uses debug regs */
379 	unsigned int		pfs_ptrace_use_dbregs;	   /* incremented when a process uses debug regs */
380 	struct task_struct	*pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
381 } pfm_session_t;
382 
383 /*
384  * information about a PMC or PMD.
385  * dep_pmd[]: a bitmask of dependent PMD registers
386  * dep_pmc[]: a bitmask of dependent PMC registers
387  */
388 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
389 typedef struct {
390 	unsigned int		type;
391 	int			pm_pos;
392 	unsigned long		default_value;	/* power-on default value */
393 	unsigned long		reserved_mask;	/* bitmask of reserved bits */
394 	pfm_reg_check_t		read_check;
395 	pfm_reg_check_t		write_check;
396 	unsigned long		dep_pmd[4];
397 	unsigned long		dep_pmc[4];
398 } pfm_reg_desc_t;
399 
400 /* assume cnum is a valid monitor */
401 #define PMC_PM(cnum, val)	(((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
402 
403 /*
404  * This structure is initialized at boot time and contains
405  * a description of the PMU main characteristics.
406  *
407  * If the probe function is defined, detection is based
408  * on its return value:
409  * 	- 0 means recognized PMU
410  * 	- anything else means not supported
411  * When the probe function is not defined, then the pmu_family field
412  * is used and it must match the host CPU family such that:
413  * 	- cpu->family & config->pmu_family != 0
414  */
415 typedef struct {
416 	unsigned long  ovfl_val;	/* overflow value for counters */
417 
418 	pfm_reg_desc_t *pmc_desc;	/* detailed PMC register dependencies descriptions */
419 	pfm_reg_desc_t *pmd_desc;	/* detailed PMD register dependencies descriptions */
420 
421 	unsigned int   num_pmcs;	/* number of PMCS: computed at init time */
422 	unsigned int   num_pmds;	/* number of PMDS: computed at init time */
423 	unsigned long  impl_pmcs[4];	/* bitmask of implemented PMCS */
424 	unsigned long  impl_pmds[4];	/* bitmask of implemented PMDS */
425 
426 	char	      *pmu_name;	/* PMU family name */
427 	unsigned int  pmu_family;	/* cpuid family pattern used to identify pmu */
428 	unsigned int  flags;		/* pmu specific flags */
429 	unsigned int  num_ibrs;		/* number of IBRS: computed at init time */
430 	unsigned int  num_dbrs;		/* number of DBRS: computed at init time */
431 	unsigned int  num_counters;	/* PMC/PMD counting pairs : computed at init time */
432 	int           (*probe)(void);   /* customized probe routine */
433 	unsigned int  use_rr_dbregs:1;	/* set if debug registers used for range restriction */
434 } pmu_config_t;
435 /*
436  * PMU specific flags
437  */
438 #define PFM_PMU_IRQ_RESEND	1	/* PMU needs explicit IRQ resend */
439 
440 /*
441  * debug register related type definitions
442  */
443 typedef struct {
444 	unsigned long ibr_mask:56;
445 	unsigned long ibr_plm:4;
446 	unsigned long ibr_ig:3;
447 	unsigned long ibr_x:1;
448 } ibr_mask_reg_t;
449 
450 typedef struct {
451 	unsigned long dbr_mask:56;
452 	unsigned long dbr_plm:4;
453 	unsigned long dbr_ig:2;
454 	unsigned long dbr_w:1;
455 	unsigned long dbr_r:1;
456 } dbr_mask_reg_t;
457 
458 typedef union {
459 	unsigned long  val;
460 	ibr_mask_reg_t ibr;
461 	dbr_mask_reg_t dbr;
462 } dbreg_t;
463 
464 
465 /*
466  * perfmon command descriptions
467  */
468 typedef struct {
469 	int		(*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
470 	char		*cmd_name;
471 	int		cmd_flags;
472 	unsigned int	cmd_narg;
473 	size_t		cmd_argsize;
474 	int		(*cmd_getsize)(void *arg, size_t *sz);
475 } pfm_cmd_desc_t;
476 
477 #define PFM_CMD_FD		0x01	/* command requires a file descriptor */
478 #define PFM_CMD_ARG_READ	0x02	/* command must read argument(s) */
479 #define PFM_CMD_ARG_RW		0x04	/* command must read/write argument(s) */
480 #define PFM_CMD_STOP		0x08	/* command does not work on zombie context */
481 
482 
483 #define PFM_CMD_NAME(cmd)	pfm_cmd_tab[(cmd)].cmd_name
484 #define PFM_CMD_READ_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
485 #define PFM_CMD_RW_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
486 #define PFM_CMD_USE_FD(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
487 #define PFM_CMD_STOPPED(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
488 
489 #define PFM_CMD_ARG_MANY	-1 /* cannot be zero */
490 
491 typedef struct {
492 	unsigned long pfm_spurious_ovfl_intr_count;	/* keep track of spurious ovfl interrupts */
493 	unsigned long pfm_replay_ovfl_intr_count;	/* keep track of replayed ovfl interrupts */
494 	unsigned long pfm_ovfl_intr_count; 		/* keep track of ovfl interrupts */
495 	unsigned long pfm_ovfl_intr_cycles;		/* cycles spent processing ovfl interrupts */
496 	unsigned long pfm_ovfl_intr_cycles_min;		/* min cycles spent processing ovfl interrupts */
497 	unsigned long pfm_ovfl_intr_cycles_max;		/* max cycles spent processing ovfl interrupts */
498 	unsigned long pfm_smpl_handler_calls;
499 	unsigned long pfm_smpl_handler_cycles;
500 	char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
501 } pfm_stats_t;
502 
503 /*
504  * perfmon internal variables
505  */
506 static pfm_stats_t		pfm_stats[NR_CPUS];
507 static pfm_session_t		pfm_sessions;	/* global sessions information */
508 
509 static DEFINE_SPINLOCK(pfm_alt_install_check);
510 static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
511 
512 static struct proc_dir_entry 	*perfmon_dir;
513 static pfm_uuid_t		pfm_null_uuid = {0,};
514 
515 static spinlock_t		pfm_buffer_fmt_lock;
516 static LIST_HEAD(pfm_buffer_fmt_list);
517 
518 static pmu_config_t		*pmu_conf;
519 
520 /* sysctl() controls */
521 pfm_sysctl_t pfm_sysctl;
522 EXPORT_SYMBOL(pfm_sysctl);
523 
524 static ctl_table pfm_ctl_table[]={
525 	{
526 		.procname	= "debug",
527 		.data		= &pfm_sysctl.debug,
528 		.maxlen		= sizeof(int),
529 		.mode		= 0666,
530 		.proc_handler	= proc_dointvec,
531 	},
532 	{
533 		.procname	= "debug_ovfl",
534 		.data		= &pfm_sysctl.debug_ovfl,
535 		.maxlen		= sizeof(int),
536 		.mode		= 0666,
537 		.proc_handler	= proc_dointvec,
538 	},
539 	{
540 		.procname	= "fastctxsw",
541 		.data		= &pfm_sysctl.fastctxsw,
542 		.maxlen		= sizeof(int),
543 		.mode		= 0600,
544 		.proc_handler	= proc_dointvec,
545 	},
546 	{
547 		.procname	= "expert_mode",
548 		.data		= &pfm_sysctl.expert_mode,
549 		.maxlen		= sizeof(int),
550 		.mode		= 0600,
551 		.proc_handler	= proc_dointvec,
552 	},
553 	{}
554 };
555 static ctl_table pfm_sysctl_dir[] = {
556 	{
557 		.procname	= "perfmon",
558 		.mode		= 0555,
559 		.child		= pfm_ctl_table,
560 	},
561  	{}
562 };
563 static ctl_table pfm_sysctl_root[] = {
564 	{
565 		.procname	= "kernel",
566 		.mode		= 0555,
567 		.child		= pfm_sysctl_dir,
568 	},
569  	{}
570 };
571 static struct ctl_table_header *pfm_sysctl_header;
572 
573 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
574 
575 #define pfm_get_cpu_var(v)		__ia64_per_cpu_var(v)
576 #define pfm_get_cpu_data(a,b)		per_cpu(a, b)
577 
578 static inline void
pfm_put_task(struct task_struct * task)579 pfm_put_task(struct task_struct *task)
580 {
581 	if (task != current) put_task_struct(task);
582 }
583 
584 static inline void
pfm_reserve_page(unsigned long a)585 pfm_reserve_page(unsigned long a)
586 {
587 	SetPageReserved(vmalloc_to_page((void *)a));
588 }
589 static inline void
pfm_unreserve_page(unsigned long a)590 pfm_unreserve_page(unsigned long a)
591 {
592 	ClearPageReserved(vmalloc_to_page((void*)a));
593 }
594 
595 static inline unsigned long
pfm_protect_ctx_ctxsw(pfm_context_t * x)596 pfm_protect_ctx_ctxsw(pfm_context_t *x)
597 {
598 	spin_lock(&(x)->ctx_lock);
599 	return 0UL;
600 }
601 
602 static inline void
pfm_unprotect_ctx_ctxsw(pfm_context_t * x,unsigned long f)603 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
604 {
605 	spin_unlock(&(x)->ctx_lock);
606 }
607 
608 static inline unsigned int
pfm_do_munmap(struct mm_struct * mm,unsigned long addr,size_t len,int acct)609 pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
610 {
611 	return do_munmap(mm, addr, len);
612 }
613 
614 static inline unsigned long
pfm_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,unsigned long exec)615 pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
616 {
617 	return get_unmapped_area(file, addr, len, pgoff, flags);
618 }
619 
620 /* forward declaration */
621 static const struct dentry_operations pfmfs_dentry_operations;
622 
623 static struct dentry *
pfmfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)624 pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
625 {
626 	return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
627 			PFMFS_MAGIC);
628 }
629 
630 static struct file_system_type pfm_fs_type = {
631 	.name     = "pfmfs",
632 	.mount    = pfmfs_mount,
633 	.kill_sb  = kill_anon_super,
634 };
635 
636 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
637 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
638 DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
639 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
640 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
641 
642 
643 /* forward declaration */
644 static const struct file_operations pfm_file_ops;
645 
646 /*
647  * forward declarations
648  */
649 #ifndef CONFIG_SMP
650 static void pfm_lazy_save_regs (struct task_struct *ta);
651 #endif
652 
653 void dump_pmu_state(const char *);
654 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
655 
656 #include "perfmon_itanium.h"
657 #include "perfmon_mckinley.h"
658 #include "perfmon_montecito.h"
659 #include "perfmon_generic.h"
660 
661 static pmu_config_t *pmu_confs[]={
662 	&pmu_conf_mont,
663 	&pmu_conf_mck,
664 	&pmu_conf_ita,
665 	&pmu_conf_gen, /* must be last */
666 	NULL
667 };
668 
669 
670 static int pfm_end_notify_user(pfm_context_t *ctx);
671 
672 static inline void
pfm_clear_psr_pp(void)673 pfm_clear_psr_pp(void)
674 {
675 	ia64_rsm(IA64_PSR_PP);
676 	ia64_srlz_i();
677 }
678 
679 static inline void
pfm_set_psr_pp(void)680 pfm_set_psr_pp(void)
681 {
682 	ia64_ssm(IA64_PSR_PP);
683 	ia64_srlz_i();
684 }
685 
686 static inline void
pfm_clear_psr_up(void)687 pfm_clear_psr_up(void)
688 {
689 	ia64_rsm(IA64_PSR_UP);
690 	ia64_srlz_i();
691 }
692 
693 static inline void
pfm_set_psr_up(void)694 pfm_set_psr_up(void)
695 {
696 	ia64_ssm(IA64_PSR_UP);
697 	ia64_srlz_i();
698 }
699 
700 static inline unsigned long
pfm_get_psr(void)701 pfm_get_psr(void)
702 {
703 	unsigned long tmp;
704 	tmp = ia64_getreg(_IA64_REG_PSR);
705 	ia64_srlz_i();
706 	return tmp;
707 }
708 
709 static inline void
pfm_set_psr_l(unsigned long val)710 pfm_set_psr_l(unsigned long val)
711 {
712 	ia64_setreg(_IA64_REG_PSR_L, val);
713 	ia64_srlz_i();
714 }
715 
716 static inline void
pfm_freeze_pmu(void)717 pfm_freeze_pmu(void)
718 {
719 	ia64_set_pmc(0,1UL);
720 	ia64_srlz_d();
721 }
722 
723 static inline void
pfm_unfreeze_pmu(void)724 pfm_unfreeze_pmu(void)
725 {
726 	ia64_set_pmc(0,0UL);
727 	ia64_srlz_d();
728 }
729 
730 static inline void
pfm_restore_ibrs(unsigned long * ibrs,unsigned int nibrs)731 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
732 {
733 	int i;
734 
735 	for (i=0; i < nibrs; i++) {
736 		ia64_set_ibr(i, ibrs[i]);
737 		ia64_dv_serialize_instruction();
738 	}
739 	ia64_srlz_i();
740 }
741 
742 static inline void
pfm_restore_dbrs(unsigned long * dbrs,unsigned int ndbrs)743 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
744 {
745 	int i;
746 
747 	for (i=0; i < ndbrs; i++) {
748 		ia64_set_dbr(i, dbrs[i]);
749 		ia64_dv_serialize_data();
750 	}
751 	ia64_srlz_d();
752 }
753 
754 /*
755  * PMD[i] must be a counter. no check is made
756  */
757 static inline unsigned long
pfm_read_soft_counter(pfm_context_t * ctx,int i)758 pfm_read_soft_counter(pfm_context_t *ctx, int i)
759 {
760 	return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
761 }
762 
763 /*
764  * PMD[i] must be a counter. no check is made
765  */
766 static inline void
pfm_write_soft_counter(pfm_context_t * ctx,int i,unsigned long val)767 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
768 {
769 	unsigned long ovfl_val = pmu_conf->ovfl_val;
770 
771 	ctx->ctx_pmds[i].val = val  & ~ovfl_val;
772 	/*
773 	 * writing to unimplemented part is ignore, so we do not need to
774 	 * mask off top part
775 	 */
776 	ia64_set_pmd(i, val & ovfl_val);
777 }
778 
779 static pfm_msg_t *
pfm_get_new_msg(pfm_context_t * ctx)780 pfm_get_new_msg(pfm_context_t *ctx)
781 {
782 	int idx, next;
783 
784 	next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
785 
786 	DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
787 	if (next == ctx->ctx_msgq_head) return NULL;
788 
789  	idx = 	ctx->ctx_msgq_tail;
790 	ctx->ctx_msgq_tail = next;
791 
792 	DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
793 
794 	return ctx->ctx_msgq+idx;
795 }
796 
797 static pfm_msg_t *
pfm_get_next_msg(pfm_context_t * ctx)798 pfm_get_next_msg(pfm_context_t *ctx)
799 {
800 	pfm_msg_t *msg;
801 
802 	DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
803 
804 	if (PFM_CTXQ_EMPTY(ctx)) return NULL;
805 
806 	/*
807 	 * get oldest message
808 	 */
809 	msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
810 
811 	/*
812 	 * and move forward
813 	 */
814 	ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
815 
816 	DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
817 
818 	return msg;
819 }
820 
821 static void
pfm_reset_msgq(pfm_context_t * ctx)822 pfm_reset_msgq(pfm_context_t *ctx)
823 {
824 	ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
825 	DPRINT(("ctx=%p msgq reset\n", ctx));
826 }
827 
828 static void *
pfm_rvmalloc(unsigned long size)829 pfm_rvmalloc(unsigned long size)
830 {
831 	void *mem;
832 	unsigned long addr;
833 
834 	size = PAGE_ALIGN(size);
835 	mem  = vzalloc(size);
836 	if (mem) {
837 		//printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
838 		addr = (unsigned long)mem;
839 		while (size > 0) {
840 			pfm_reserve_page(addr);
841 			addr+=PAGE_SIZE;
842 			size-=PAGE_SIZE;
843 		}
844 	}
845 	return mem;
846 }
847 
848 static void
pfm_rvfree(void * mem,unsigned long size)849 pfm_rvfree(void *mem, unsigned long size)
850 {
851 	unsigned long addr;
852 
853 	if (mem) {
854 		DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
855 		addr = (unsigned long) mem;
856 		while ((long) size > 0) {
857 			pfm_unreserve_page(addr);
858 			addr+=PAGE_SIZE;
859 			size-=PAGE_SIZE;
860 		}
861 		vfree(mem);
862 	}
863 	return;
864 }
865 
866 static pfm_context_t *
pfm_context_alloc(int ctx_flags)867 pfm_context_alloc(int ctx_flags)
868 {
869 	pfm_context_t *ctx;
870 
871 	/*
872 	 * allocate context descriptor
873 	 * must be able to free with interrupts disabled
874 	 */
875 	ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
876 	if (ctx) {
877 		DPRINT(("alloc ctx @%p\n", ctx));
878 
879 		/*
880 		 * init context protection lock
881 		 */
882 		spin_lock_init(&ctx->ctx_lock);
883 
884 		/*
885 		 * context is unloaded
886 		 */
887 		ctx->ctx_state = PFM_CTX_UNLOADED;
888 
889 		/*
890 		 * initialization of context's flags
891 		 */
892 		ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
893 		ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
894 		ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
895 		/*
896 		 * will move to set properties
897 		 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
898 		 */
899 
900 		/*
901 		 * init restart semaphore to locked
902 		 */
903 		init_completion(&ctx->ctx_restart_done);
904 
905 		/*
906 		 * activation is used in SMP only
907 		 */
908 		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
909 		SET_LAST_CPU(ctx, -1);
910 
911 		/*
912 		 * initialize notification message queue
913 		 */
914 		ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
915 		init_waitqueue_head(&ctx->ctx_msgq_wait);
916 		init_waitqueue_head(&ctx->ctx_zombieq);
917 
918 	}
919 	return ctx;
920 }
921 
922 static void
pfm_context_free(pfm_context_t * ctx)923 pfm_context_free(pfm_context_t *ctx)
924 {
925 	if (ctx) {
926 		DPRINT(("free ctx @%p\n", ctx));
927 		kfree(ctx);
928 	}
929 }
930 
931 static void
pfm_mask_monitoring(struct task_struct * task)932 pfm_mask_monitoring(struct task_struct *task)
933 {
934 	pfm_context_t *ctx = PFM_GET_CTX(task);
935 	unsigned long mask, val, ovfl_mask;
936 	int i;
937 
938 	DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
939 
940 	ovfl_mask = pmu_conf->ovfl_val;
941 	/*
942 	 * monitoring can only be masked as a result of a valid
943 	 * counter overflow. In UP, it means that the PMU still
944 	 * has an owner. Note that the owner can be different
945 	 * from the current task. However the PMU state belongs
946 	 * to the owner.
947 	 * In SMP, a valid overflow only happens when task is
948 	 * current. Therefore if we come here, we know that
949 	 * the PMU state belongs to the current task, therefore
950 	 * we can access the live registers.
951 	 *
952 	 * So in both cases, the live register contains the owner's
953 	 * state. We can ONLY touch the PMU registers and NOT the PSR.
954 	 *
955 	 * As a consequence to this call, the ctx->th_pmds[] array
956 	 * contains stale information which must be ignored
957 	 * when context is reloaded AND monitoring is active (see
958 	 * pfm_restart).
959 	 */
960 	mask = ctx->ctx_used_pmds[0];
961 	for (i = 0; mask; i++, mask>>=1) {
962 		/* skip non used pmds */
963 		if ((mask & 0x1) == 0) continue;
964 		val = ia64_get_pmd(i);
965 
966 		if (PMD_IS_COUNTING(i)) {
967 			/*
968 		 	 * we rebuild the full 64 bit value of the counter
969 		 	 */
970 			ctx->ctx_pmds[i].val += (val & ovfl_mask);
971 		} else {
972 			ctx->ctx_pmds[i].val = val;
973 		}
974 		DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
975 			i,
976 			ctx->ctx_pmds[i].val,
977 			val & ovfl_mask));
978 	}
979 	/*
980 	 * mask monitoring by setting the privilege level to 0
981 	 * we cannot use psr.pp/psr.up for this, it is controlled by
982 	 * the user
983 	 *
984 	 * if task is current, modify actual registers, otherwise modify
985 	 * thread save state, i.e., what will be restored in pfm_load_regs()
986 	 */
987 	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
988 	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
989 		if ((mask & 0x1) == 0UL) continue;
990 		ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
991 		ctx->th_pmcs[i] &= ~0xfUL;
992 		DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
993 	}
994 	/*
995 	 * make all of this visible
996 	 */
997 	ia64_srlz_d();
998 }
999 
1000 /*
1001  * must always be done with task == current
1002  *
1003  * context must be in MASKED state when calling
1004  */
1005 static void
pfm_restore_monitoring(struct task_struct * task)1006 pfm_restore_monitoring(struct task_struct *task)
1007 {
1008 	pfm_context_t *ctx = PFM_GET_CTX(task);
1009 	unsigned long mask, ovfl_mask;
1010 	unsigned long psr, val;
1011 	int i, is_system;
1012 
1013 	is_system = ctx->ctx_fl_system;
1014 	ovfl_mask = pmu_conf->ovfl_val;
1015 
1016 	if (task != current) {
1017 		printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1018 		return;
1019 	}
1020 	if (ctx->ctx_state != PFM_CTX_MASKED) {
1021 		printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1022 			task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1023 		return;
1024 	}
1025 	psr = pfm_get_psr();
1026 	/*
1027 	 * monitoring is masked via the PMC.
1028 	 * As we restore their value, we do not want each counter to
1029 	 * restart right away. We stop monitoring using the PSR,
1030 	 * restore the PMC (and PMD) and then re-establish the psr
1031 	 * as it was. Note that there can be no pending overflow at
1032 	 * this point, because monitoring was MASKED.
1033 	 *
1034 	 * system-wide session are pinned and self-monitoring
1035 	 */
1036 	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1037 		/* disable dcr pp */
1038 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1039 		pfm_clear_psr_pp();
1040 	} else {
1041 		pfm_clear_psr_up();
1042 	}
1043 	/*
1044 	 * first, we restore the PMD
1045 	 */
1046 	mask = ctx->ctx_used_pmds[0];
1047 	for (i = 0; mask; i++, mask>>=1) {
1048 		/* skip non used pmds */
1049 		if ((mask & 0x1) == 0) continue;
1050 
1051 		if (PMD_IS_COUNTING(i)) {
1052 			/*
1053 			 * we split the 64bit value according to
1054 			 * counter width
1055 			 */
1056 			val = ctx->ctx_pmds[i].val & ovfl_mask;
1057 			ctx->ctx_pmds[i].val &= ~ovfl_mask;
1058 		} else {
1059 			val = ctx->ctx_pmds[i].val;
1060 		}
1061 		ia64_set_pmd(i, val);
1062 
1063 		DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1064 			i,
1065 			ctx->ctx_pmds[i].val,
1066 			val));
1067 	}
1068 	/*
1069 	 * restore the PMCs
1070 	 */
1071 	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1072 	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1073 		if ((mask & 0x1) == 0UL) continue;
1074 		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1075 		ia64_set_pmc(i, ctx->th_pmcs[i]);
1076 		DPRINT(("[%d] pmc[%d]=0x%lx\n",
1077 					task_pid_nr(task), i, ctx->th_pmcs[i]));
1078 	}
1079 	ia64_srlz_d();
1080 
1081 	/*
1082 	 * must restore DBR/IBR because could be modified while masked
1083 	 * XXX: need to optimize
1084 	 */
1085 	if (ctx->ctx_fl_using_dbreg) {
1086 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1087 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1088 	}
1089 
1090 	/*
1091 	 * now restore PSR
1092 	 */
1093 	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1094 		/* enable dcr pp */
1095 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1096 		ia64_srlz_i();
1097 	}
1098 	pfm_set_psr_l(psr);
1099 }
1100 
1101 static inline void
pfm_save_pmds(unsigned long * pmds,unsigned long mask)1102 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1103 {
1104 	int i;
1105 
1106 	ia64_srlz_d();
1107 
1108 	for (i=0; mask; i++, mask>>=1) {
1109 		if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1110 	}
1111 }
1112 
1113 /*
1114  * reload from thread state (used for ctxw only)
1115  */
1116 static inline void
pfm_restore_pmds(unsigned long * pmds,unsigned long mask)1117 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1118 {
1119 	int i;
1120 	unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1121 
1122 	for (i=0; mask; i++, mask>>=1) {
1123 		if ((mask & 0x1) == 0) continue;
1124 		val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1125 		ia64_set_pmd(i, val);
1126 	}
1127 	ia64_srlz_d();
1128 }
1129 
1130 /*
1131  * propagate PMD from context to thread-state
1132  */
1133 static inline void
pfm_copy_pmds(struct task_struct * task,pfm_context_t * ctx)1134 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1135 {
1136 	unsigned long ovfl_val = pmu_conf->ovfl_val;
1137 	unsigned long mask = ctx->ctx_all_pmds[0];
1138 	unsigned long val;
1139 	int i;
1140 
1141 	DPRINT(("mask=0x%lx\n", mask));
1142 
1143 	for (i=0; mask; i++, mask>>=1) {
1144 
1145 		val = ctx->ctx_pmds[i].val;
1146 
1147 		/*
1148 		 * We break up the 64 bit value into 2 pieces
1149 		 * the lower bits go to the machine state in the
1150 		 * thread (will be reloaded on ctxsw in).
1151 		 * The upper part stays in the soft-counter.
1152 		 */
1153 		if (PMD_IS_COUNTING(i)) {
1154 			ctx->ctx_pmds[i].val = val & ~ovfl_val;
1155 			 val &= ovfl_val;
1156 		}
1157 		ctx->th_pmds[i] = val;
1158 
1159 		DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1160 			i,
1161 			ctx->th_pmds[i],
1162 			ctx->ctx_pmds[i].val));
1163 	}
1164 }
1165 
1166 /*
1167  * propagate PMC from context to thread-state
1168  */
1169 static inline void
pfm_copy_pmcs(struct task_struct * task,pfm_context_t * ctx)1170 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1171 {
1172 	unsigned long mask = ctx->ctx_all_pmcs[0];
1173 	int i;
1174 
1175 	DPRINT(("mask=0x%lx\n", mask));
1176 
1177 	for (i=0; mask; i++, mask>>=1) {
1178 		/* masking 0 with ovfl_val yields 0 */
1179 		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1180 		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1181 	}
1182 }
1183 
1184 
1185 
1186 static inline void
pfm_restore_pmcs(unsigned long * pmcs,unsigned long mask)1187 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1188 {
1189 	int i;
1190 
1191 	for (i=0; mask; i++, mask>>=1) {
1192 		if ((mask & 0x1) == 0) continue;
1193 		ia64_set_pmc(i, pmcs[i]);
1194 	}
1195 	ia64_srlz_d();
1196 }
1197 
1198 static inline int
pfm_uuid_cmp(pfm_uuid_t a,pfm_uuid_t b)1199 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1200 {
1201 	return memcmp(a, b, sizeof(pfm_uuid_t));
1202 }
1203 
1204 static inline int
pfm_buf_fmt_exit(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,struct pt_regs * regs)1205 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1206 {
1207 	int ret = 0;
1208 	if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1209 	return ret;
1210 }
1211 
1212 static inline int
pfm_buf_fmt_getsize(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg,unsigned long * size)1213 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1214 {
1215 	int ret = 0;
1216 	if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1217 	return ret;
1218 }
1219 
1220 
1221 static inline int
pfm_buf_fmt_validate(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg)1222 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1223 		     int cpu, void *arg)
1224 {
1225 	int ret = 0;
1226 	if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1227 	return ret;
1228 }
1229 
1230 static inline int
pfm_buf_fmt_init(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,unsigned int flags,int cpu,void * arg)1231 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1232 		     int cpu, void *arg)
1233 {
1234 	int ret = 0;
1235 	if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1236 	return ret;
1237 }
1238 
1239 static inline int
pfm_buf_fmt_restart(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1240 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1241 {
1242 	int ret = 0;
1243 	if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1244 	return ret;
1245 }
1246 
1247 static inline int
pfm_buf_fmt_restart_active(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1248 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1249 {
1250 	int ret = 0;
1251 	if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1252 	return ret;
1253 }
1254 
1255 static pfm_buffer_fmt_t *
__pfm_find_buffer_fmt(pfm_uuid_t uuid)1256 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1257 {
1258 	struct list_head * pos;
1259 	pfm_buffer_fmt_t * entry;
1260 
1261 	list_for_each(pos, &pfm_buffer_fmt_list) {
1262 		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1263 		if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1264 			return entry;
1265 	}
1266 	return NULL;
1267 }
1268 
1269 /*
1270  * find a buffer format based on its uuid
1271  */
1272 static pfm_buffer_fmt_t *
pfm_find_buffer_fmt(pfm_uuid_t uuid)1273 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1274 {
1275 	pfm_buffer_fmt_t * fmt;
1276 	spin_lock(&pfm_buffer_fmt_lock);
1277 	fmt = __pfm_find_buffer_fmt(uuid);
1278 	spin_unlock(&pfm_buffer_fmt_lock);
1279 	return fmt;
1280 }
1281 
1282 int
pfm_register_buffer_fmt(pfm_buffer_fmt_t * fmt)1283 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1284 {
1285 	int ret = 0;
1286 
1287 	/* some sanity checks */
1288 	if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1289 
1290 	/* we need at least a handler */
1291 	if (fmt->fmt_handler == NULL) return -EINVAL;
1292 
1293 	/*
1294 	 * XXX: need check validity of fmt_arg_size
1295 	 */
1296 
1297 	spin_lock(&pfm_buffer_fmt_lock);
1298 
1299 	if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1300 		printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1301 		ret = -EBUSY;
1302 		goto out;
1303 	}
1304 	list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1305 	printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1306 
1307 out:
1308 	spin_unlock(&pfm_buffer_fmt_lock);
1309  	return ret;
1310 }
1311 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1312 
1313 int
pfm_unregister_buffer_fmt(pfm_uuid_t uuid)1314 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1315 {
1316 	pfm_buffer_fmt_t *fmt;
1317 	int ret = 0;
1318 
1319 	spin_lock(&pfm_buffer_fmt_lock);
1320 
1321 	fmt = __pfm_find_buffer_fmt(uuid);
1322 	if (!fmt) {
1323 		printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1324 		ret = -EINVAL;
1325 		goto out;
1326 	}
1327 	list_del_init(&fmt->fmt_list);
1328 	printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1329 
1330 out:
1331 	spin_unlock(&pfm_buffer_fmt_lock);
1332 	return ret;
1333 
1334 }
1335 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1336 
1337 extern void update_pal_halt_status(int);
1338 
1339 static int
pfm_reserve_session(struct task_struct * task,int is_syswide,unsigned int cpu)1340 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1341 {
1342 	unsigned long flags;
1343 	/*
1344 	 * validity checks on cpu_mask have been done upstream
1345 	 */
1346 	LOCK_PFS(flags);
1347 
1348 	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1349 		pfm_sessions.pfs_sys_sessions,
1350 		pfm_sessions.pfs_task_sessions,
1351 		pfm_sessions.pfs_sys_use_dbregs,
1352 		is_syswide,
1353 		cpu));
1354 
1355 	if (is_syswide) {
1356 		/*
1357 		 * cannot mix system wide and per-task sessions
1358 		 */
1359 		if (pfm_sessions.pfs_task_sessions > 0UL) {
1360 			DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1361 			  	pfm_sessions.pfs_task_sessions));
1362 			goto abort;
1363 		}
1364 
1365 		if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1366 
1367 		DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1368 
1369 		pfm_sessions.pfs_sys_session[cpu] = task;
1370 
1371 		pfm_sessions.pfs_sys_sessions++ ;
1372 
1373 	} else {
1374 		if (pfm_sessions.pfs_sys_sessions) goto abort;
1375 		pfm_sessions.pfs_task_sessions++;
1376 	}
1377 
1378 	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1379 		pfm_sessions.pfs_sys_sessions,
1380 		pfm_sessions.pfs_task_sessions,
1381 		pfm_sessions.pfs_sys_use_dbregs,
1382 		is_syswide,
1383 		cpu));
1384 
1385 	/*
1386 	 * disable default_idle() to go to PAL_HALT
1387 	 */
1388 	update_pal_halt_status(0);
1389 
1390 	UNLOCK_PFS(flags);
1391 
1392 	return 0;
1393 
1394 error_conflict:
1395 	DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1396   		task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1397 		cpu));
1398 abort:
1399 	UNLOCK_PFS(flags);
1400 
1401 	return -EBUSY;
1402 
1403 }
1404 
1405 static int
pfm_unreserve_session(pfm_context_t * ctx,int is_syswide,unsigned int cpu)1406 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1407 {
1408 	unsigned long flags;
1409 	/*
1410 	 * validity checks on cpu_mask have been done upstream
1411 	 */
1412 	LOCK_PFS(flags);
1413 
1414 	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1415 		pfm_sessions.pfs_sys_sessions,
1416 		pfm_sessions.pfs_task_sessions,
1417 		pfm_sessions.pfs_sys_use_dbregs,
1418 		is_syswide,
1419 		cpu));
1420 
1421 
1422 	if (is_syswide) {
1423 		pfm_sessions.pfs_sys_session[cpu] = NULL;
1424 		/*
1425 		 * would not work with perfmon+more than one bit in cpu_mask
1426 		 */
1427 		if (ctx && ctx->ctx_fl_using_dbreg) {
1428 			if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1429 				printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1430 			} else {
1431 				pfm_sessions.pfs_sys_use_dbregs--;
1432 			}
1433 		}
1434 		pfm_sessions.pfs_sys_sessions--;
1435 	} else {
1436 		pfm_sessions.pfs_task_sessions--;
1437 	}
1438 	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1439 		pfm_sessions.pfs_sys_sessions,
1440 		pfm_sessions.pfs_task_sessions,
1441 		pfm_sessions.pfs_sys_use_dbregs,
1442 		is_syswide,
1443 		cpu));
1444 
1445 	/*
1446 	 * if possible, enable default_idle() to go into PAL_HALT
1447 	 */
1448 	if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1449 		update_pal_halt_status(1);
1450 
1451 	UNLOCK_PFS(flags);
1452 
1453 	return 0;
1454 }
1455 
1456 /*
1457  * removes virtual mapping of the sampling buffer.
1458  * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1459  * a PROTECT_CTX() section.
1460  */
1461 static int
pfm_remove_smpl_mapping(struct task_struct * task,void * vaddr,unsigned long size)1462 pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1463 {
1464 	int r;
1465 
1466 	/* sanity checks */
1467 	if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1468 		printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1469 		return -EINVAL;
1470 	}
1471 
1472 	DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1473 
1474 	/*
1475 	 * does the actual unmapping
1476 	 */
1477 	down_write(&task->mm->mmap_sem);
1478 
1479 	DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1480 
1481 	r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1482 
1483 	up_write(&task->mm->mmap_sem);
1484 	if (r !=0) {
1485 		printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1486 	}
1487 
1488 	DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1489 
1490 	return 0;
1491 }
1492 
1493 /*
1494  * free actual physical storage used by sampling buffer
1495  */
1496 #if 0
1497 static int
1498 pfm_free_smpl_buffer(pfm_context_t *ctx)
1499 {
1500 	pfm_buffer_fmt_t *fmt;
1501 
1502 	if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1503 
1504 	/*
1505 	 * we won't use the buffer format anymore
1506 	 */
1507 	fmt = ctx->ctx_buf_fmt;
1508 
1509 	DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1510 		ctx->ctx_smpl_hdr,
1511 		ctx->ctx_smpl_size,
1512 		ctx->ctx_smpl_vaddr));
1513 
1514 	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1515 
1516 	/*
1517 	 * free the buffer
1518 	 */
1519 	pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1520 
1521 	ctx->ctx_smpl_hdr  = NULL;
1522 	ctx->ctx_smpl_size = 0UL;
1523 
1524 	return 0;
1525 
1526 invalid_free:
1527 	printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1528 	return -EINVAL;
1529 }
1530 #endif
1531 
1532 static inline void
pfm_exit_smpl_buffer(pfm_buffer_fmt_t * fmt)1533 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1534 {
1535 	if (fmt == NULL) return;
1536 
1537 	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1538 
1539 }
1540 
1541 /*
1542  * pfmfs should _never_ be mounted by userland - too much of security hassle,
1543  * no real gain from having the whole whorehouse mounted. So we don't need
1544  * any operations on the root directory. However, we need a non-trivial
1545  * d_name - pfm: will go nicely and kill the special-casing in procfs.
1546  */
1547 static struct vfsmount *pfmfs_mnt __read_mostly;
1548 
1549 static int __init
init_pfm_fs(void)1550 init_pfm_fs(void)
1551 {
1552 	int err = register_filesystem(&pfm_fs_type);
1553 	if (!err) {
1554 		pfmfs_mnt = kern_mount(&pfm_fs_type);
1555 		err = PTR_ERR(pfmfs_mnt);
1556 		if (IS_ERR(pfmfs_mnt))
1557 			unregister_filesystem(&pfm_fs_type);
1558 		else
1559 			err = 0;
1560 	}
1561 	return err;
1562 }
1563 
1564 static ssize_t
pfm_read(struct file * filp,char __user * buf,size_t size,loff_t * ppos)1565 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1566 {
1567 	pfm_context_t *ctx;
1568 	pfm_msg_t *msg;
1569 	ssize_t ret;
1570 	unsigned long flags;
1571   	DECLARE_WAITQUEUE(wait, current);
1572 	if (PFM_IS_FILE(filp) == 0) {
1573 		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1574 		return -EINVAL;
1575 	}
1576 
1577 	ctx = filp->private_data;
1578 	if (ctx == NULL) {
1579 		printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1580 		return -EINVAL;
1581 	}
1582 
1583 	/*
1584 	 * check even when there is no message
1585 	 */
1586 	if (size < sizeof(pfm_msg_t)) {
1587 		DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1588 		return -EINVAL;
1589 	}
1590 
1591 	PROTECT_CTX(ctx, flags);
1592 
1593   	/*
1594 	 * put ourselves on the wait queue
1595 	 */
1596   	add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1597 
1598 
1599   	for(;;) {
1600 		/*
1601 		 * check wait queue
1602 		 */
1603 
1604   		set_current_state(TASK_INTERRUPTIBLE);
1605 
1606 		DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1607 
1608 		ret = 0;
1609 		if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1610 
1611 		UNPROTECT_CTX(ctx, flags);
1612 
1613 		/*
1614 		 * check non-blocking read
1615 		 */
1616       		ret = -EAGAIN;
1617 		if(filp->f_flags & O_NONBLOCK) break;
1618 
1619 		/*
1620 		 * check pending signals
1621 		 */
1622 		if(signal_pending(current)) {
1623 			ret = -EINTR;
1624 			break;
1625 		}
1626       		/*
1627 		 * no message, so wait
1628 		 */
1629       		schedule();
1630 
1631 		PROTECT_CTX(ctx, flags);
1632 	}
1633 	DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1634   	set_current_state(TASK_RUNNING);
1635 	remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1636 
1637 	if (ret < 0) goto abort;
1638 
1639 	ret = -EINVAL;
1640 	msg = pfm_get_next_msg(ctx);
1641 	if (msg == NULL) {
1642 		printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1643 		goto abort_locked;
1644 	}
1645 
1646 	DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1647 
1648 	ret = -EFAULT;
1649   	if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1650 
1651 abort_locked:
1652 	UNPROTECT_CTX(ctx, flags);
1653 abort:
1654 	return ret;
1655 }
1656 
1657 static ssize_t
pfm_write(struct file * file,const char __user * ubuf,size_t size,loff_t * ppos)1658 pfm_write(struct file *file, const char __user *ubuf,
1659 			  size_t size, loff_t *ppos)
1660 {
1661 	DPRINT(("pfm_write called\n"));
1662 	return -EINVAL;
1663 }
1664 
1665 static unsigned int
pfm_poll(struct file * filp,poll_table * wait)1666 pfm_poll(struct file *filp, poll_table * wait)
1667 {
1668 	pfm_context_t *ctx;
1669 	unsigned long flags;
1670 	unsigned int mask = 0;
1671 
1672 	if (PFM_IS_FILE(filp) == 0) {
1673 		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1674 		return 0;
1675 	}
1676 
1677 	ctx = filp->private_data;
1678 	if (ctx == NULL) {
1679 		printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1680 		return 0;
1681 	}
1682 
1683 
1684 	DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1685 
1686 	poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1687 
1688 	PROTECT_CTX(ctx, flags);
1689 
1690 	if (PFM_CTXQ_EMPTY(ctx) == 0)
1691 		mask =  POLLIN | POLLRDNORM;
1692 
1693 	UNPROTECT_CTX(ctx, flags);
1694 
1695 	DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1696 
1697 	return mask;
1698 }
1699 
1700 static long
pfm_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1701 pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1702 {
1703 	DPRINT(("pfm_ioctl called\n"));
1704 	return -EINVAL;
1705 }
1706 
1707 /*
1708  * interrupt cannot be masked when coming here
1709  */
1710 static inline int
pfm_do_fasync(int fd,struct file * filp,pfm_context_t * ctx,int on)1711 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1712 {
1713 	int ret;
1714 
1715 	ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1716 
1717 	DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1718 		task_pid_nr(current),
1719 		fd,
1720 		on,
1721 		ctx->ctx_async_queue, ret));
1722 
1723 	return ret;
1724 }
1725 
1726 static int
pfm_fasync(int fd,struct file * filp,int on)1727 pfm_fasync(int fd, struct file *filp, int on)
1728 {
1729 	pfm_context_t *ctx;
1730 	int ret;
1731 
1732 	if (PFM_IS_FILE(filp) == 0) {
1733 		printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1734 		return -EBADF;
1735 	}
1736 
1737 	ctx = filp->private_data;
1738 	if (ctx == NULL) {
1739 		printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1740 		return -EBADF;
1741 	}
1742 	/*
1743 	 * we cannot mask interrupts during this call because this may
1744 	 * may go to sleep if memory is not readily avalaible.
1745 	 *
1746 	 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1747 	 * done in caller. Serialization of this function is ensured by caller.
1748 	 */
1749 	ret = pfm_do_fasync(fd, filp, ctx, on);
1750 
1751 
1752 	DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1753 		fd,
1754 		on,
1755 		ctx->ctx_async_queue, ret));
1756 
1757 	return ret;
1758 }
1759 
1760 #ifdef CONFIG_SMP
1761 /*
1762  * this function is exclusively called from pfm_close().
1763  * The context is not protected at that time, nor are interrupts
1764  * on the remote CPU. That's necessary to avoid deadlocks.
1765  */
1766 static void
pfm_syswide_force_stop(void * info)1767 pfm_syswide_force_stop(void *info)
1768 {
1769 	pfm_context_t   *ctx = (pfm_context_t *)info;
1770 	struct pt_regs *regs = task_pt_regs(current);
1771 	struct task_struct *owner;
1772 	unsigned long flags;
1773 	int ret;
1774 
1775 	if (ctx->ctx_cpu != smp_processor_id()) {
1776 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1777 			ctx->ctx_cpu,
1778 			smp_processor_id());
1779 		return;
1780 	}
1781 	owner = GET_PMU_OWNER();
1782 	if (owner != ctx->ctx_task) {
1783 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1784 			smp_processor_id(),
1785 			task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1786 		return;
1787 	}
1788 	if (GET_PMU_CTX() != ctx) {
1789 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1790 			smp_processor_id(),
1791 			GET_PMU_CTX(), ctx);
1792 		return;
1793 	}
1794 
1795 	DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1796 	/*
1797 	 * the context is already protected in pfm_close(), we simply
1798 	 * need to mask interrupts to avoid a PMU interrupt race on
1799 	 * this CPU
1800 	 */
1801 	local_irq_save(flags);
1802 
1803 	ret = pfm_context_unload(ctx, NULL, 0, regs);
1804 	if (ret) {
1805 		DPRINT(("context_unload returned %d\n", ret));
1806 	}
1807 
1808 	/*
1809 	 * unmask interrupts, PMU interrupts are now spurious here
1810 	 */
1811 	local_irq_restore(flags);
1812 }
1813 
1814 static void
pfm_syswide_cleanup_other_cpu(pfm_context_t * ctx)1815 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1816 {
1817 	int ret;
1818 
1819 	DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1820 	ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1821 	DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1822 }
1823 #endif /* CONFIG_SMP */
1824 
1825 /*
1826  * called for each close(). Partially free resources.
1827  * When caller is self-monitoring, the context is unloaded.
1828  */
1829 static int
pfm_flush(struct file * filp,fl_owner_t id)1830 pfm_flush(struct file *filp, fl_owner_t id)
1831 {
1832 	pfm_context_t *ctx;
1833 	struct task_struct *task;
1834 	struct pt_regs *regs;
1835 	unsigned long flags;
1836 	unsigned long smpl_buf_size = 0UL;
1837 	void *smpl_buf_vaddr = NULL;
1838 	int state, is_system;
1839 
1840 	if (PFM_IS_FILE(filp) == 0) {
1841 		DPRINT(("bad magic for\n"));
1842 		return -EBADF;
1843 	}
1844 
1845 	ctx = filp->private_data;
1846 	if (ctx == NULL) {
1847 		printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1848 		return -EBADF;
1849 	}
1850 
1851 	/*
1852 	 * remove our file from the async queue, if we use this mode.
1853 	 * This can be done without the context being protected. We come
1854 	 * here when the context has become unreachable by other tasks.
1855 	 *
1856 	 * We may still have active monitoring at this point and we may
1857 	 * end up in pfm_overflow_handler(). However, fasync_helper()
1858 	 * operates with interrupts disabled and it cleans up the
1859 	 * queue. If the PMU handler is called prior to entering
1860 	 * fasync_helper() then it will send a signal. If it is
1861 	 * invoked after, it will find an empty queue and no
1862 	 * signal will be sent. In both case, we are safe
1863 	 */
1864 	PROTECT_CTX(ctx, flags);
1865 
1866 	state     = ctx->ctx_state;
1867 	is_system = ctx->ctx_fl_system;
1868 
1869 	task = PFM_CTX_TASK(ctx);
1870 	regs = task_pt_regs(task);
1871 
1872 	DPRINT(("ctx_state=%d is_current=%d\n",
1873 		state,
1874 		task == current ? 1 : 0));
1875 
1876 	/*
1877 	 * if state == UNLOADED, then task is NULL
1878 	 */
1879 
1880 	/*
1881 	 * we must stop and unload because we are losing access to the context.
1882 	 */
1883 	if (task == current) {
1884 #ifdef CONFIG_SMP
1885 		/*
1886 		 * the task IS the owner but it migrated to another CPU: that's bad
1887 		 * but we must handle this cleanly. Unfortunately, the kernel does
1888 		 * not provide a mechanism to block migration (while the context is loaded).
1889 		 *
1890 		 * We need to release the resource on the ORIGINAL cpu.
1891 		 */
1892 		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1893 
1894 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1895 			/*
1896 			 * keep context protected but unmask interrupt for IPI
1897 			 */
1898 			local_irq_restore(flags);
1899 
1900 			pfm_syswide_cleanup_other_cpu(ctx);
1901 
1902 			/*
1903 			 * restore interrupt masking
1904 			 */
1905 			local_irq_save(flags);
1906 
1907 			/*
1908 			 * context is unloaded at this point
1909 			 */
1910 		} else
1911 #endif /* CONFIG_SMP */
1912 		{
1913 
1914 			DPRINT(("forcing unload\n"));
1915 			/*
1916 		 	* stop and unload, returning with state UNLOADED
1917 		 	* and session unreserved.
1918 		 	*/
1919 			pfm_context_unload(ctx, NULL, 0, regs);
1920 
1921 			DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1922 		}
1923 	}
1924 
1925 	/*
1926 	 * remove virtual mapping, if any, for the calling task.
1927 	 * cannot reset ctx field until last user is calling close().
1928 	 *
1929 	 * ctx_smpl_vaddr must never be cleared because it is needed
1930 	 * by every task with access to the context
1931 	 *
1932 	 * When called from do_exit(), the mm context is gone already, therefore
1933 	 * mm is NULL, i.e., the VMA is already gone  and we do not have to
1934 	 * do anything here
1935 	 */
1936 	if (ctx->ctx_smpl_vaddr && current->mm) {
1937 		smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1938 		smpl_buf_size  = ctx->ctx_smpl_size;
1939 	}
1940 
1941 	UNPROTECT_CTX(ctx, flags);
1942 
1943 	/*
1944 	 * if there was a mapping, then we systematically remove it
1945 	 * at this point. Cannot be done inside critical section
1946 	 * because some VM function reenables interrupts.
1947 	 *
1948 	 */
1949 	if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1950 
1951 	return 0;
1952 }
1953 /*
1954  * called either on explicit close() or from exit_files().
1955  * Only the LAST user of the file gets to this point, i.e., it is
1956  * called only ONCE.
1957  *
1958  * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1959  * (fput()),i.e, last task to access the file. Nobody else can access the
1960  * file at this point.
1961  *
1962  * When called from exit_files(), the VMA has been freed because exit_mm()
1963  * is executed before exit_files().
1964  *
1965  * When called from exit_files(), the current task is not yet ZOMBIE but we
1966  * flush the PMU state to the context.
1967  */
1968 static int
pfm_close(struct inode * inode,struct file * filp)1969 pfm_close(struct inode *inode, struct file *filp)
1970 {
1971 	pfm_context_t *ctx;
1972 	struct task_struct *task;
1973 	struct pt_regs *regs;
1974   	DECLARE_WAITQUEUE(wait, current);
1975 	unsigned long flags;
1976 	unsigned long smpl_buf_size = 0UL;
1977 	void *smpl_buf_addr = NULL;
1978 	int free_possible = 1;
1979 	int state, is_system;
1980 
1981 	DPRINT(("pfm_close called private=%p\n", filp->private_data));
1982 
1983 	if (PFM_IS_FILE(filp) == 0) {
1984 		DPRINT(("bad magic\n"));
1985 		return -EBADF;
1986 	}
1987 
1988 	ctx = filp->private_data;
1989 	if (ctx == NULL) {
1990 		printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1991 		return -EBADF;
1992 	}
1993 
1994 	PROTECT_CTX(ctx, flags);
1995 
1996 	state     = ctx->ctx_state;
1997 	is_system = ctx->ctx_fl_system;
1998 
1999 	task = PFM_CTX_TASK(ctx);
2000 	regs = task_pt_regs(task);
2001 
2002 	DPRINT(("ctx_state=%d is_current=%d\n",
2003 		state,
2004 		task == current ? 1 : 0));
2005 
2006 	/*
2007 	 * if task == current, then pfm_flush() unloaded the context
2008 	 */
2009 	if (state == PFM_CTX_UNLOADED) goto doit;
2010 
2011 	/*
2012 	 * context is loaded/masked and task != current, we need to
2013 	 * either force an unload or go zombie
2014 	 */
2015 
2016 	/*
2017 	 * The task is currently blocked or will block after an overflow.
2018 	 * we must force it to wakeup to get out of the
2019 	 * MASKED state and transition to the unloaded state by itself.
2020 	 *
2021 	 * This situation is only possible for per-task mode
2022 	 */
2023 	if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2024 
2025 		/*
2026 		 * set a "partial" zombie state to be checked
2027 		 * upon return from down() in pfm_handle_work().
2028 		 *
2029 		 * We cannot use the ZOMBIE state, because it is checked
2030 		 * by pfm_load_regs() which is called upon wakeup from down().
2031 		 * In such case, it would free the context and then we would
2032 		 * return to pfm_handle_work() which would access the
2033 		 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2034 		 * but visible to pfm_handle_work().
2035 		 *
2036 		 * For some window of time, we have a zombie context with
2037 		 * ctx_state = MASKED  and not ZOMBIE
2038 		 */
2039 		ctx->ctx_fl_going_zombie = 1;
2040 
2041 		/*
2042 		 * force task to wake up from MASKED state
2043 		 */
2044 		complete(&ctx->ctx_restart_done);
2045 
2046 		DPRINT(("waking up ctx_state=%d\n", state));
2047 
2048 		/*
2049 		 * put ourself to sleep waiting for the other
2050 		 * task to report completion
2051 		 *
2052 		 * the context is protected by mutex, therefore there
2053 		 * is no risk of being notified of completion before
2054 		 * begin actually on the waitq.
2055 		 */
2056   		set_current_state(TASK_INTERRUPTIBLE);
2057   		add_wait_queue(&ctx->ctx_zombieq, &wait);
2058 
2059 		UNPROTECT_CTX(ctx, flags);
2060 
2061 		/*
2062 		 * XXX: check for signals :
2063 		 * 	- ok for explicit close
2064 		 * 	- not ok when coming from exit_files()
2065 		 */
2066       		schedule();
2067 
2068 
2069 		PROTECT_CTX(ctx, flags);
2070 
2071 
2072 		remove_wait_queue(&ctx->ctx_zombieq, &wait);
2073   		set_current_state(TASK_RUNNING);
2074 
2075 		/*
2076 		 * context is unloaded at this point
2077 		 */
2078 		DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2079 	}
2080 	else if (task != current) {
2081 #ifdef CONFIG_SMP
2082 		/*
2083 	 	 * switch context to zombie state
2084 	 	 */
2085 		ctx->ctx_state = PFM_CTX_ZOMBIE;
2086 
2087 		DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2088 		/*
2089 		 * cannot free the context on the spot. deferred until
2090 		 * the task notices the ZOMBIE state
2091 		 */
2092 		free_possible = 0;
2093 #else
2094 		pfm_context_unload(ctx, NULL, 0, regs);
2095 #endif
2096 	}
2097 
2098 doit:
2099 	/* reload state, may have changed during  opening of critical section */
2100 	state = ctx->ctx_state;
2101 
2102 	/*
2103 	 * the context is still attached to a task (possibly current)
2104 	 * we cannot destroy it right now
2105 	 */
2106 
2107 	/*
2108 	 * we must free the sampling buffer right here because
2109 	 * we cannot rely on it being cleaned up later by the
2110 	 * monitored task. It is not possible to free vmalloc'ed
2111 	 * memory in pfm_load_regs(). Instead, we remove the buffer
2112 	 * now. should there be subsequent PMU overflow originally
2113 	 * meant for sampling, the will be converted to spurious
2114 	 * and that's fine because the monitoring tools is gone anyway.
2115 	 */
2116 	if (ctx->ctx_smpl_hdr) {
2117 		smpl_buf_addr = ctx->ctx_smpl_hdr;
2118 		smpl_buf_size = ctx->ctx_smpl_size;
2119 		/* no more sampling */
2120 		ctx->ctx_smpl_hdr = NULL;
2121 		ctx->ctx_fl_is_sampling = 0;
2122 	}
2123 
2124 	DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2125 		state,
2126 		free_possible,
2127 		smpl_buf_addr,
2128 		smpl_buf_size));
2129 
2130 	if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2131 
2132 	/*
2133 	 * UNLOADED that the session has already been unreserved.
2134 	 */
2135 	if (state == PFM_CTX_ZOMBIE) {
2136 		pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2137 	}
2138 
2139 	/*
2140 	 * disconnect file descriptor from context must be done
2141 	 * before we unlock.
2142 	 */
2143 	filp->private_data = NULL;
2144 
2145 	/*
2146 	 * if we free on the spot, the context is now completely unreachable
2147 	 * from the callers side. The monitored task side is also cut, so we
2148 	 * can freely cut.
2149 	 *
2150 	 * If we have a deferred free, only the caller side is disconnected.
2151 	 */
2152 	UNPROTECT_CTX(ctx, flags);
2153 
2154 	/*
2155 	 * All memory free operations (especially for vmalloc'ed memory)
2156 	 * MUST be done with interrupts ENABLED.
2157 	 */
2158 	if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2159 
2160 	/*
2161 	 * return the memory used by the context
2162 	 */
2163 	if (free_possible) pfm_context_free(ctx);
2164 
2165 	return 0;
2166 }
2167 
2168 static int
pfm_no_open(struct inode * irrelevant,struct file * dontcare)2169 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2170 {
2171 	DPRINT(("pfm_no_open called\n"));
2172 	return -ENXIO;
2173 }
2174 
2175 
2176 
2177 static const struct file_operations pfm_file_ops = {
2178 	.llseek		= no_llseek,
2179 	.read		= pfm_read,
2180 	.write		= pfm_write,
2181 	.poll		= pfm_poll,
2182 	.unlocked_ioctl = pfm_ioctl,
2183 	.open		= pfm_no_open,	/* special open code to disallow open via /proc */
2184 	.fasync		= pfm_fasync,
2185 	.release	= pfm_close,
2186 	.flush		= pfm_flush
2187 };
2188 
2189 static int
pfmfs_delete_dentry(const struct dentry * dentry)2190 pfmfs_delete_dentry(const struct dentry *dentry)
2191 {
2192 	return 1;
2193 }
2194 
pfmfs_dname(struct dentry * dentry,char * buffer,int buflen)2195 static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2196 {
2197 	return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2198 			     dentry->d_inode->i_ino);
2199 }
2200 
2201 static const struct dentry_operations pfmfs_dentry_operations = {
2202 	.d_delete = pfmfs_delete_dentry,
2203 	.d_dname = pfmfs_dname,
2204 };
2205 
2206 
2207 static struct file *
pfm_alloc_file(pfm_context_t * ctx)2208 pfm_alloc_file(pfm_context_t *ctx)
2209 {
2210 	struct file *file;
2211 	struct inode *inode;
2212 	struct path path;
2213 	struct qstr this = { .name = "" };
2214 
2215 	/*
2216 	 * allocate a new inode
2217 	 */
2218 	inode = new_inode(pfmfs_mnt->mnt_sb);
2219 	if (!inode)
2220 		return ERR_PTR(-ENOMEM);
2221 
2222 	DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2223 
2224 	inode->i_mode = S_IFCHR|S_IRUGO;
2225 	inode->i_uid  = current_fsuid();
2226 	inode->i_gid  = current_fsgid();
2227 
2228 	/*
2229 	 * allocate a new dcache entry
2230 	 */
2231 	path.dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2232 	if (!path.dentry) {
2233 		iput(inode);
2234 		return ERR_PTR(-ENOMEM);
2235 	}
2236 	path.mnt = mntget(pfmfs_mnt);
2237 
2238 	d_add(path.dentry, inode);
2239 
2240 	file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2241 	if (!file) {
2242 		path_put(&path);
2243 		return ERR_PTR(-ENFILE);
2244 	}
2245 
2246 	file->f_flags = O_RDONLY;
2247 	file->private_data = ctx;
2248 
2249 	return file;
2250 }
2251 
2252 static int
pfm_remap_buffer(struct vm_area_struct * vma,unsigned long buf,unsigned long addr,unsigned long size)2253 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2254 {
2255 	DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2256 
2257 	while (size > 0) {
2258 		unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2259 
2260 
2261 		if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2262 			return -ENOMEM;
2263 
2264 		addr  += PAGE_SIZE;
2265 		buf   += PAGE_SIZE;
2266 		size  -= PAGE_SIZE;
2267 	}
2268 	return 0;
2269 }
2270 
2271 /*
2272  * allocate a sampling buffer and remaps it into the user address space of the task
2273  */
2274 static int
pfm_smpl_buffer_alloc(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned long rsize,void ** user_vaddr)2275 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2276 {
2277 	struct mm_struct *mm = task->mm;
2278 	struct vm_area_struct *vma = NULL;
2279 	unsigned long size;
2280 	void *smpl_buf;
2281 
2282 
2283 	/*
2284 	 * the fixed header + requested size and align to page boundary
2285 	 */
2286 	size = PAGE_ALIGN(rsize);
2287 
2288 	DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2289 
2290 	/*
2291 	 * check requested size to avoid Denial-of-service attacks
2292 	 * XXX: may have to refine this test
2293 	 * Check against address space limit.
2294 	 *
2295 	 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2296 	 * 	return -ENOMEM;
2297 	 */
2298 	if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2299 		return -ENOMEM;
2300 
2301 	/*
2302 	 * We do the easy to undo allocations first.
2303  	 *
2304 	 * pfm_rvmalloc(), clears the buffer, so there is no leak
2305 	 */
2306 	smpl_buf = pfm_rvmalloc(size);
2307 	if (smpl_buf == NULL) {
2308 		DPRINT(("Can't allocate sampling buffer\n"));
2309 		return -ENOMEM;
2310 	}
2311 
2312 	DPRINT(("smpl_buf @%p\n", smpl_buf));
2313 
2314 	/* allocate vma */
2315 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2316 	if (!vma) {
2317 		DPRINT(("Cannot allocate vma\n"));
2318 		goto error_kmem;
2319 	}
2320 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2321 
2322 	/*
2323 	 * partially initialize the vma for the sampling buffer
2324 	 */
2325 	vma->vm_mm	     = mm;
2326 	vma->vm_file	     = filp;
2327 	vma->vm_flags	     = VM_READ| VM_MAYREAD |VM_RESERVED;
2328 	vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2329 
2330 	/*
2331 	 * Now we have everything we need and we can initialize
2332 	 * and connect all the data structures
2333 	 */
2334 
2335 	ctx->ctx_smpl_hdr   = smpl_buf;
2336 	ctx->ctx_smpl_size  = size; /* aligned size */
2337 
2338 	/*
2339 	 * Let's do the difficult operations next.
2340 	 *
2341 	 * now we atomically find some area in the address space and
2342 	 * remap the buffer in it.
2343 	 */
2344 	down_write(&task->mm->mmap_sem);
2345 
2346 	/* find some free area in address space, must have mmap sem held */
2347 	vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2348 	if (vma->vm_start == 0UL) {
2349 		DPRINT(("Cannot find unmapped area for size %ld\n", size));
2350 		up_write(&task->mm->mmap_sem);
2351 		goto error;
2352 	}
2353 	vma->vm_end = vma->vm_start + size;
2354 	vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2355 
2356 	DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2357 
2358 	/* can only be applied to current task, need to have the mm semaphore held when called */
2359 	if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2360 		DPRINT(("Can't remap buffer\n"));
2361 		up_write(&task->mm->mmap_sem);
2362 		goto error;
2363 	}
2364 
2365 	get_file(filp);
2366 
2367 	/*
2368 	 * now insert the vma in the vm list for the process, must be
2369 	 * done with mmap lock held
2370 	 */
2371 	insert_vm_struct(mm, vma);
2372 
2373 	mm->total_vm  += size >> PAGE_SHIFT;
2374 	vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2375 							vma_pages(vma));
2376 	up_write(&task->mm->mmap_sem);
2377 
2378 	/*
2379 	 * keep track of user level virtual address
2380 	 */
2381 	ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2382 	*(unsigned long *)user_vaddr = vma->vm_start;
2383 
2384 	return 0;
2385 
2386 error:
2387 	kmem_cache_free(vm_area_cachep, vma);
2388 error_kmem:
2389 	pfm_rvfree(smpl_buf, size);
2390 
2391 	return -ENOMEM;
2392 }
2393 
2394 /*
2395  * XXX: do something better here
2396  */
2397 static int
pfm_bad_permissions(struct task_struct * task)2398 pfm_bad_permissions(struct task_struct *task)
2399 {
2400 	const struct cred *tcred;
2401 	uid_t uid = current_uid();
2402 	gid_t gid = current_gid();
2403 	int ret;
2404 
2405 	rcu_read_lock();
2406 	tcred = __task_cred(task);
2407 
2408 	/* inspired by ptrace_attach() */
2409 	DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2410 		uid,
2411 		gid,
2412 		tcred->euid,
2413 		tcred->suid,
2414 		tcred->uid,
2415 		tcred->egid,
2416 		tcred->sgid));
2417 
2418 	ret = ((uid != tcred->euid)
2419 	       || (uid != tcred->suid)
2420 	       || (uid != tcred->uid)
2421 	       || (gid != tcred->egid)
2422 	       || (gid != tcred->sgid)
2423 	       || (gid != tcred->gid)) && !capable(CAP_SYS_PTRACE);
2424 
2425 	rcu_read_unlock();
2426 	return ret;
2427 }
2428 
2429 static int
pfarg_is_sane(struct task_struct * task,pfarg_context_t * pfx)2430 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2431 {
2432 	int ctx_flags;
2433 
2434 	/* valid signal */
2435 
2436 	ctx_flags = pfx->ctx_flags;
2437 
2438 	if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2439 
2440 		/*
2441 		 * cannot block in this mode
2442 		 */
2443 		if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2444 			DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2445 			return -EINVAL;
2446 		}
2447 	} else {
2448 	}
2449 	/* probably more to add here */
2450 
2451 	return 0;
2452 }
2453 
2454 static int
pfm_setup_buffer_fmt(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned int ctx_flags,unsigned int cpu,pfarg_context_t * arg)2455 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2456 		     unsigned int cpu, pfarg_context_t *arg)
2457 {
2458 	pfm_buffer_fmt_t *fmt = NULL;
2459 	unsigned long size = 0UL;
2460 	void *uaddr = NULL;
2461 	void *fmt_arg = NULL;
2462 	int ret = 0;
2463 #define PFM_CTXARG_BUF_ARG(a)	(pfm_buffer_fmt_t *)(a+1)
2464 
2465 	/* invoke and lock buffer format, if found */
2466 	fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2467 	if (fmt == NULL) {
2468 		DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2469 		return -EINVAL;
2470 	}
2471 
2472 	/*
2473 	 * buffer argument MUST be contiguous to pfarg_context_t
2474 	 */
2475 	if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2476 
2477 	ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2478 
2479 	DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2480 
2481 	if (ret) goto error;
2482 
2483 	/* link buffer format and context */
2484 	ctx->ctx_buf_fmt = fmt;
2485 	ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2486 
2487 	/*
2488 	 * check if buffer format wants to use perfmon buffer allocation/mapping service
2489 	 */
2490 	ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2491 	if (ret) goto error;
2492 
2493 	if (size) {
2494 		/*
2495 		 * buffer is always remapped into the caller's address space
2496 		 */
2497 		ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2498 		if (ret) goto error;
2499 
2500 		/* keep track of user address of buffer */
2501 		arg->ctx_smpl_vaddr = uaddr;
2502 	}
2503 	ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2504 
2505 error:
2506 	return ret;
2507 }
2508 
2509 static void
pfm_reset_pmu_state(pfm_context_t * ctx)2510 pfm_reset_pmu_state(pfm_context_t *ctx)
2511 {
2512 	int i;
2513 
2514 	/*
2515 	 * install reset values for PMC.
2516 	 */
2517 	for (i=1; PMC_IS_LAST(i) == 0; i++) {
2518 		if (PMC_IS_IMPL(i) == 0) continue;
2519 		ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2520 		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2521 	}
2522 	/*
2523 	 * PMD registers are set to 0UL when the context in memset()
2524 	 */
2525 
2526 	/*
2527 	 * On context switched restore, we must restore ALL pmc and ALL pmd even
2528 	 * when they are not actively used by the task. In UP, the incoming process
2529 	 * may otherwise pick up left over PMC, PMD state from the previous process.
2530 	 * As opposed to PMD, stale PMC can cause harm to the incoming
2531 	 * process because they may change what is being measured.
2532 	 * Therefore, we must systematically reinstall the entire
2533 	 * PMC state. In SMP, the same thing is possible on the
2534 	 * same CPU but also on between 2 CPUs.
2535 	 *
2536 	 * The problem with PMD is information leaking especially
2537 	 * to user level when psr.sp=0
2538 	 *
2539 	 * There is unfortunately no easy way to avoid this problem
2540 	 * on either UP or SMP. This definitively slows down the
2541 	 * pfm_load_regs() function.
2542 	 */
2543 
2544 	 /*
2545 	  * bitmask of all PMCs accessible to this context
2546 	  *
2547 	  * PMC0 is treated differently.
2548 	  */
2549 	ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2550 
2551 	/*
2552 	 * bitmask of all PMDs that are accessible to this context
2553 	 */
2554 	ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2555 
2556 	DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2557 
2558 	/*
2559 	 * useful in case of re-enable after disable
2560 	 */
2561 	ctx->ctx_used_ibrs[0] = 0UL;
2562 	ctx->ctx_used_dbrs[0] = 0UL;
2563 }
2564 
2565 static int
pfm_ctx_getsize(void * arg,size_t * sz)2566 pfm_ctx_getsize(void *arg, size_t *sz)
2567 {
2568 	pfarg_context_t *req = (pfarg_context_t *)arg;
2569 	pfm_buffer_fmt_t *fmt;
2570 
2571 	*sz = 0;
2572 
2573 	if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2574 
2575 	fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2576 	if (fmt == NULL) {
2577 		DPRINT(("cannot find buffer format\n"));
2578 		return -EINVAL;
2579 	}
2580 	/* get just enough to copy in user parameters */
2581 	*sz = fmt->fmt_arg_size;
2582 	DPRINT(("arg_size=%lu\n", *sz));
2583 
2584 	return 0;
2585 }
2586 
2587 
2588 
2589 /*
2590  * cannot attach if :
2591  * 	- kernel task
2592  * 	- task not owned by caller
2593  * 	- task incompatible with context mode
2594  */
2595 static int
pfm_task_incompatible(pfm_context_t * ctx,struct task_struct * task)2596 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2597 {
2598 	/*
2599 	 * no kernel task or task not owner by caller
2600 	 */
2601 	if (task->mm == NULL) {
2602 		DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2603 		return -EPERM;
2604 	}
2605 	if (pfm_bad_permissions(task)) {
2606 		DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2607 		return -EPERM;
2608 	}
2609 	/*
2610 	 * cannot block in self-monitoring mode
2611 	 */
2612 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2613 		DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2614 		return -EINVAL;
2615 	}
2616 
2617 	if (task->exit_state == EXIT_ZOMBIE) {
2618 		DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2619 		return -EBUSY;
2620 	}
2621 
2622 	/*
2623 	 * always ok for self
2624 	 */
2625 	if (task == current) return 0;
2626 
2627 	if (!task_is_stopped_or_traced(task)) {
2628 		DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2629 		return -EBUSY;
2630 	}
2631 	/*
2632 	 * make sure the task is off any CPU
2633 	 */
2634 	wait_task_inactive(task, 0);
2635 
2636 	/* more to come... */
2637 
2638 	return 0;
2639 }
2640 
2641 static int
pfm_get_task(pfm_context_t * ctx,pid_t pid,struct task_struct ** task)2642 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2643 {
2644 	struct task_struct *p = current;
2645 	int ret;
2646 
2647 	/* XXX: need to add more checks here */
2648 	if (pid < 2) return -EPERM;
2649 
2650 	if (pid != task_pid_vnr(current)) {
2651 
2652 		read_lock(&tasklist_lock);
2653 
2654 		p = find_task_by_vpid(pid);
2655 
2656 		/* make sure task cannot go away while we operate on it */
2657 		if (p) get_task_struct(p);
2658 
2659 		read_unlock(&tasklist_lock);
2660 
2661 		if (p == NULL) return -ESRCH;
2662 	}
2663 
2664 	ret = pfm_task_incompatible(ctx, p);
2665 	if (ret == 0) {
2666 		*task = p;
2667 	} else if (p != current) {
2668 		pfm_put_task(p);
2669 	}
2670 	return ret;
2671 }
2672 
2673 
2674 
2675 static int
pfm_context_create(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2676 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2677 {
2678 	pfarg_context_t *req = (pfarg_context_t *)arg;
2679 	struct file *filp;
2680 	struct path path;
2681 	int ctx_flags;
2682 	int fd;
2683 	int ret;
2684 
2685 	/* let's check the arguments first */
2686 	ret = pfarg_is_sane(current, req);
2687 	if (ret < 0)
2688 		return ret;
2689 
2690 	ctx_flags = req->ctx_flags;
2691 
2692 	ret = -ENOMEM;
2693 
2694 	fd = get_unused_fd();
2695 	if (fd < 0)
2696 		return fd;
2697 
2698 	ctx = pfm_context_alloc(ctx_flags);
2699 	if (!ctx)
2700 		goto error;
2701 
2702 	filp = pfm_alloc_file(ctx);
2703 	if (IS_ERR(filp)) {
2704 		ret = PTR_ERR(filp);
2705 		goto error_file;
2706 	}
2707 
2708 	req->ctx_fd = ctx->ctx_fd = fd;
2709 
2710 	/*
2711 	 * does the user want to sample?
2712 	 */
2713 	if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2714 		ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2715 		if (ret)
2716 			goto buffer_error;
2717 	}
2718 
2719 	DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2720 		ctx,
2721 		ctx_flags,
2722 		ctx->ctx_fl_system,
2723 		ctx->ctx_fl_block,
2724 		ctx->ctx_fl_excl_idle,
2725 		ctx->ctx_fl_no_msg,
2726 		ctx->ctx_fd));
2727 
2728 	/*
2729 	 * initialize soft PMU state
2730 	 */
2731 	pfm_reset_pmu_state(ctx);
2732 
2733 	fd_install(fd, filp);
2734 
2735 	return 0;
2736 
2737 buffer_error:
2738 	path = filp->f_path;
2739 	put_filp(filp);
2740 	path_put(&path);
2741 
2742 	if (ctx->ctx_buf_fmt) {
2743 		pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2744 	}
2745 error_file:
2746 	pfm_context_free(ctx);
2747 
2748 error:
2749 	put_unused_fd(fd);
2750 	return ret;
2751 }
2752 
2753 static inline unsigned long
pfm_new_counter_value(pfm_counter_t * reg,int is_long_reset)2754 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2755 {
2756 	unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2757 	unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2758 	extern unsigned long carta_random32 (unsigned long seed);
2759 
2760 	if (reg->flags & PFM_REGFL_RANDOM) {
2761 		new_seed = carta_random32(old_seed);
2762 		val -= (old_seed & mask);	/* counter values are negative numbers! */
2763 		if ((mask >> 32) != 0)
2764 			/* construct a full 64-bit random value: */
2765 			new_seed |= carta_random32(old_seed >> 32) << 32;
2766 		reg->seed = new_seed;
2767 	}
2768 	reg->lval = val;
2769 	return val;
2770 }
2771 
2772 static void
pfm_reset_regs_masked(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2773 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2774 {
2775 	unsigned long mask = ovfl_regs[0];
2776 	unsigned long reset_others = 0UL;
2777 	unsigned long val;
2778 	int i;
2779 
2780 	/*
2781 	 * now restore reset value on sampling overflowed counters
2782 	 */
2783 	mask >>= PMU_FIRST_COUNTER;
2784 	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2785 
2786 		if ((mask & 0x1UL) == 0UL) continue;
2787 
2788 		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2789 		reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2790 
2791 		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2792 	}
2793 
2794 	/*
2795 	 * Now take care of resetting the other registers
2796 	 */
2797 	for(i = 0; reset_others; i++, reset_others >>= 1) {
2798 
2799 		if ((reset_others & 0x1) == 0) continue;
2800 
2801 		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2802 
2803 		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2804 			  is_long_reset ? "long" : "short", i, val));
2805 	}
2806 }
2807 
2808 static void
pfm_reset_regs(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2809 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2810 {
2811 	unsigned long mask = ovfl_regs[0];
2812 	unsigned long reset_others = 0UL;
2813 	unsigned long val;
2814 	int i;
2815 
2816 	DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2817 
2818 	if (ctx->ctx_state == PFM_CTX_MASKED) {
2819 		pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2820 		return;
2821 	}
2822 
2823 	/*
2824 	 * now restore reset value on sampling overflowed counters
2825 	 */
2826 	mask >>= PMU_FIRST_COUNTER;
2827 	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2828 
2829 		if ((mask & 0x1UL) == 0UL) continue;
2830 
2831 		val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2832 		reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2833 
2834 		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2835 
2836 		pfm_write_soft_counter(ctx, i, val);
2837 	}
2838 
2839 	/*
2840 	 * Now take care of resetting the other registers
2841 	 */
2842 	for(i = 0; reset_others; i++, reset_others >>= 1) {
2843 
2844 		if ((reset_others & 0x1) == 0) continue;
2845 
2846 		val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2847 
2848 		if (PMD_IS_COUNTING(i)) {
2849 			pfm_write_soft_counter(ctx, i, val);
2850 		} else {
2851 			ia64_set_pmd(i, val);
2852 		}
2853 		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2854 			  is_long_reset ? "long" : "short", i, val));
2855 	}
2856 	ia64_srlz_d();
2857 }
2858 
2859 static int
pfm_write_pmcs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2860 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2861 {
2862 	struct task_struct *task;
2863 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
2864 	unsigned long value, pmc_pm;
2865 	unsigned long smpl_pmds, reset_pmds, impl_pmds;
2866 	unsigned int cnum, reg_flags, flags, pmc_type;
2867 	int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2868 	int is_monitor, is_counting, state;
2869 	int ret = -EINVAL;
2870 	pfm_reg_check_t	wr_func;
2871 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2872 
2873 	state     = ctx->ctx_state;
2874 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2875 	is_system = ctx->ctx_fl_system;
2876 	task      = ctx->ctx_task;
2877 	impl_pmds = pmu_conf->impl_pmds[0];
2878 
2879 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2880 
2881 	if (is_loaded) {
2882 		/*
2883 		 * In system wide and when the context is loaded, access can only happen
2884 		 * when the caller is running on the CPU being monitored by the session.
2885 		 * It does not have to be the owner (ctx_task) of the context per se.
2886 		 */
2887 		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2888 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2889 			return -EBUSY;
2890 		}
2891 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2892 	}
2893 	expert_mode = pfm_sysctl.expert_mode;
2894 
2895 	for (i = 0; i < count; i++, req++) {
2896 
2897 		cnum       = req->reg_num;
2898 		reg_flags  = req->reg_flags;
2899 		value      = req->reg_value;
2900 		smpl_pmds  = req->reg_smpl_pmds[0];
2901 		reset_pmds = req->reg_reset_pmds[0];
2902 		flags      = 0;
2903 
2904 
2905 		if (cnum >= PMU_MAX_PMCS) {
2906 			DPRINT(("pmc%u is invalid\n", cnum));
2907 			goto error;
2908 		}
2909 
2910 		pmc_type   = pmu_conf->pmc_desc[cnum].type;
2911 		pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2912 		is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2913 		is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2914 
2915 		/*
2916 		 * we reject all non implemented PMC as well
2917 		 * as attempts to modify PMC[0-3] which are used
2918 		 * as status registers by the PMU
2919 		 */
2920 		if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2921 			DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2922 			goto error;
2923 		}
2924 		wr_func = pmu_conf->pmc_desc[cnum].write_check;
2925 		/*
2926 		 * If the PMC is a monitor, then if the value is not the default:
2927 		 * 	- system-wide session: PMCx.pm=1 (privileged monitor)
2928 		 * 	- per-task           : PMCx.pm=0 (user monitor)
2929 		 */
2930 		if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2931 			DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2932 				cnum,
2933 				pmc_pm,
2934 				is_system));
2935 			goto error;
2936 		}
2937 
2938 		if (is_counting) {
2939 			/*
2940 		 	 * enforce generation of overflow interrupt. Necessary on all
2941 		 	 * CPUs.
2942 		 	 */
2943 			value |= 1 << PMU_PMC_OI;
2944 
2945 			if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2946 				flags |= PFM_REGFL_OVFL_NOTIFY;
2947 			}
2948 
2949 			if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2950 
2951 			/* verify validity of smpl_pmds */
2952 			if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2953 				DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2954 				goto error;
2955 			}
2956 
2957 			/* verify validity of reset_pmds */
2958 			if ((reset_pmds & impl_pmds) != reset_pmds) {
2959 				DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2960 				goto error;
2961 			}
2962 		} else {
2963 			if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2964 				DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2965 				goto error;
2966 			}
2967 			/* eventid on non-counting monitors are ignored */
2968 		}
2969 
2970 		/*
2971 		 * execute write checker, if any
2972 		 */
2973 		if (likely(expert_mode == 0 && wr_func)) {
2974 			ret = (*wr_func)(task, ctx, cnum, &value, regs);
2975 			if (ret) goto error;
2976 			ret = -EINVAL;
2977 		}
2978 
2979 		/*
2980 		 * no error on this register
2981 		 */
2982 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2983 
2984 		/*
2985 		 * Now we commit the changes to the software state
2986 		 */
2987 
2988 		/*
2989 		 * update overflow information
2990 		 */
2991 		if (is_counting) {
2992 			/*
2993 		 	 * full flag update each time a register is programmed
2994 		 	 */
2995 			ctx->ctx_pmds[cnum].flags = flags;
2996 
2997 			ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2998 			ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2999 			ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
3000 
3001 			/*
3002 			 * Mark all PMDS to be accessed as used.
3003 			 *
3004 			 * We do not keep track of PMC because we have to
3005 			 * systematically restore ALL of them.
3006 			 *
3007 			 * We do not update the used_monitors mask, because
3008 			 * if we have not programmed them, then will be in
3009 			 * a quiescent state, therefore we will not need to
3010 			 * mask/restore then when context is MASKED.
3011 			 */
3012 			CTX_USED_PMD(ctx, reset_pmds);
3013 			CTX_USED_PMD(ctx, smpl_pmds);
3014 			/*
3015 		 	 * make sure we do not try to reset on
3016 		 	 * restart because we have established new values
3017 		 	 */
3018 			if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3019 		}
3020 		/*
3021 		 * Needed in case the user does not initialize the equivalent
3022 		 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3023 		 * possible leak here.
3024 		 */
3025 		CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3026 
3027 		/*
3028 		 * keep track of the monitor PMC that we are using.
3029 		 * we save the value of the pmc in ctx_pmcs[] and if
3030 		 * the monitoring is not stopped for the context we also
3031 		 * place it in the saved state area so that it will be
3032 		 * picked up later by the context switch code.
3033 		 *
3034 		 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3035 		 *
3036 		 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
3037 		 * monitoring needs to be stopped.
3038 		 */
3039 		if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3040 
3041 		/*
3042 		 * update context state
3043 		 */
3044 		ctx->ctx_pmcs[cnum] = value;
3045 
3046 		if (is_loaded) {
3047 			/*
3048 			 * write thread state
3049 			 */
3050 			if (is_system == 0) ctx->th_pmcs[cnum] = value;
3051 
3052 			/*
3053 			 * write hardware register if we can
3054 			 */
3055 			if (can_access_pmu) {
3056 				ia64_set_pmc(cnum, value);
3057 			}
3058 #ifdef CONFIG_SMP
3059 			else {
3060 				/*
3061 				 * per-task SMP only here
3062 				 *
3063 			 	 * we are guaranteed that the task is not running on the other CPU,
3064 			 	 * we indicate that this PMD will need to be reloaded if the task
3065 			 	 * is rescheduled on the CPU it ran last on.
3066 			 	 */
3067 				ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3068 			}
3069 #endif
3070 		}
3071 
3072 		DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3073 			  cnum,
3074 			  value,
3075 			  is_loaded,
3076 			  can_access_pmu,
3077 			  flags,
3078 			  ctx->ctx_all_pmcs[0],
3079 			  ctx->ctx_used_pmds[0],
3080 			  ctx->ctx_pmds[cnum].eventid,
3081 			  smpl_pmds,
3082 			  reset_pmds,
3083 			  ctx->ctx_reload_pmcs[0],
3084 			  ctx->ctx_used_monitors[0],
3085 			  ctx->ctx_ovfl_regs[0]));
3086 	}
3087 
3088 	/*
3089 	 * make sure the changes are visible
3090 	 */
3091 	if (can_access_pmu) ia64_srlz_d();
3092 
3093 	return 0;
3094 error:
3095 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3096 	return ret;
3097 }
3098 
3099 static int
pfm_write_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3100 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3101 {
3102 	struct task_struct *task;
3103 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3104 	unsigned long value, hw_value, ovfl_mask;
3105 	unsigned int cnum;
3106 	int i, can_access_pmu = 0, state;
3107 	int is_counting, is_loaded, is_system, expert_mode;
3108 	int ret = -EINVAL;
3109 	pfm_reg_check_t wr_func;
3110 
3111 
3112 	state     = ctx->ctx_state;
3113 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3114 	is_system = ctx->ctx_fl_system;
3115 	ovfl_mask = pmu_conf->ovfl_val;
3116 	task      = ctx->ctx_task;
3117 
3118 	if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3119 
3120 	/*
3121 	 * on both UP and SMP, we can only write to the PMC when the task is
3122 	 * the owner of the local PMU.
3123 	 */
3124 	if (likely(is_loaded)) {
3125 		/*
3126 		 * In system wide and when the context is loaded, access can only happen
3127 		 * when the caller is running on the CPU being monitored by the session.
3128 		 * It does not have to be the owner (ctx_task) of the context per se.
3129 		 */
3130 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3131 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3132 			return -EBUSY;
3133 		}
3134 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3135 	}
3136 	expert_mode = pfm_sysctl.expert_mode;
3137 
3138 	for (i = 0; i < count; i++, req++) {
3139 
3140 		cnum  = req->reg_num;
3141 		value = req->reg_value;
3142 
3143 		if (!PMD_IS_IMPL(cnum)) {
3144 			DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3145 			goto abort_mission;
3146 		}
3147 		is_counting = PMD_IS_COUNTING(cnum);
3148 		wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3149 
3150 		/*
3151 		 * execute write checker, if any
3152 		 */
3153 		if (unlikely(expert_mode == 0 && wr_func)) {
3154 			unsigned long v = value;
3155 
3156 			ret = (*wr_func)(task, ctx, cnum, &v, regs);
3157 			if (ret) goto abort_mission;
3158 
3159 			value = v;
3160 			ret   = -EINVAL;
3161 		}
3162 
3163 		/*
3164 		 * no error on this register
3165 		 */
3166 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3167 
3168 		/*
3169 		 * now commit changes to software state
3170 		 */
3171 		hw_value = value;
3172 
3173 		/*
3174 		 * update virtualized (64bits) counter
3175 		 */
3176 		if (is_counting) {
3177 			/*
3178 			 * write context state
3179 			 */
3180 			ctx->ctx_pmds[cnum].lval = value;
3181 
3182 			/*
3183 			 * when context is load we use the split value
3184 			 */
3185 			if (is_loaded) {
3186 				hw_value = value &  ovfl_mask;
3187 				value    = value & ~ovfl_mask;
3188 			}
3189 		}
3190 		/*
3191 		 * update reset values (not just for counters)
3192 		 */
3193 		ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3194 		ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3195 
3196 		/*
3197 		 * update randomization parameters (not just for counters)
3198 		 */
3199 		ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3200 		ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3201 
3202 		/*
3203 		 * update context value
3204 		 */
3205 		ctx->ctx_pmds[cnum].val  = value;
3206 
3207 		/*
3208 		 * Keep track of what we use
3209 		 *
3210 		 * We do not keep track of PMC because we have to
3211 		 * systematically restore ALL of them.
3212 		 */
3213 		CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3214 
3215 		/*
3216 		 * mark this PMD register used as well
3217 		 */
3218 		CTX_USED_PMD(ctx, RDEP(cnum));
3219 
3220 		/*
3221 		 * make sure we do not try to reset on
3222 		 * restart because we have established new values
3223 		 */
3224 		if (is_counting && state == PFM_CTX_MASKED) {
3225 			ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3226 		}
3227 
3228 		if (is_loaded) {
3229 			/*
3230 		 	 * write thread state
3231 		 	 */
3232 			if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3233 
3234 			/*
3235 			 * write hardware register if we can
3236 			 */
3237 			if (can_access_pmu) {
3238 				ia64_set_pmd(cnum, hw_value);
3239 			} else {
3240 #ifdef CONFIG_SMP
3241 				/*
3242 			 	 * we are guaranteed that the task is not running on the other CPU,
3243 			 	 * we indicate that this PMD will need to be reloaded if the task
3244 			 	 * is rescheduled on the CPU it ran last on.
3245 			 	 */
3246 				ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3247 #endif
3248 			}
3249 		}
3250 
3251 		DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3252 			  "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3253 			cnum,
3254 			value,
3255 			is_loaded,
3256 			can_access_pmu,
3257 			hw_value,
3258 			ctx->ctx_pmds[cnum].val,
3259 			ctx->ctx_pmds[cnum].short_reset,
3260 			ctx->ctx_pmds[cnum].long_reset,
3261 			PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3262 			ctx->ctx_pmds[cnum].seed,
3263 			ctx->ctx_pmds[cnum].mask,
3264 			ctx->ctx_used_pmds[0],
3265 			ctx->ctx_pmds[cnum].reset_pmds[0],
3266 			ctx->ctx_reload_pmds[0],
3267 			ctx->ctx_all_pmds[0],
3268 			ctx->ctx_ovfl_regs[0]));
3269 	}
3270 
3271 	/*
3272 	 * make changes visible
3273 	 */
3274 	if (can_access_pmu) ia64_srlz_d();
3275 
3276 	return 0;
3277 
3278 abort_mission:
3279 	/*
3280 	 * for now, we have only one possibility for error
3281 	 */
3282 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3283 	return ret;
3284 }
3285 
3286 /*
3287  * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3288  * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3289  * interrupt is delivered during the call, it will be kept pending until we leave, making
3290  * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3291  * guaranteed to return consistent data to the user, it may simply be old. It is not
3292  * trivial to treat the overflow while inside the call because you may end up in
3293  * some module sampling buffer code causing deadlocks.
3294  */
3295 static int
pfm_read_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3296 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3297 {
3298 	struct task_struct *task;
3299 	unsigned long val = 0UL, lval, ovfl_mask, sval;
3300 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3301 	unsigned int cnum, reg_flags = 0;
3302 	int i, can_access_pmu = 0, state;
3303 	int is_loaded, is_system, is_counting, expert_mode;
3304 	int ret = -EINVAL;
3305 	pfm_reg_check_t rd_func;
3306 
3307 	/*
3308 	 * access is possible when loaded only for
3309 	 * self-monitoring tasks or in UP mode
3310 	 */
3311 
3312 	state     = ctx->ctx_state;
3313 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3314 	is_system = ctx->ctx_fl_system;
3315 	ovfl_mask = pmu_conf->ovfl_val;
3316 	task      = ctx->ctx_task;
3317 
3318 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3319 
3320 	if (likely(is_loaded)) {
3321 		/*
3322 		 * In system wide and when the context is loaded, access can only happen
3323 		 * when the caller is running on the CPU being monitored by the session.
3324 		 * It does not have to be the owner (ctx_task) of the context per se.
3325 		 */
3326 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3327 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3328 			return -EBUSY;
3329 		}
3330 		/*
3331 		 * this can be true when not self-monitoring only in UP
3332 		 */
3333 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3334 
3335 		if (can_access_pmu) ia64_srlz_d();
3336 	}
3337 	expert_mode = pfm_sysctl.expert_mode;
3338 
3339 	DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3340 		is_loaded,
3341 		can_access_pmu,
3342 		state));
3343 
3344 	/*
3345 	 * on both UP and SMP, we can only read the PMD from the hardware register when
3346 	 * the task is the owner of the local PMU.
3347 	 */
3348 
3349 	for (i = 0; i < count; i++, req++) {
3350 
3351 		cnum        = req->reg_num;
3352 		reg_flags   = req->reg_flags;
3353 
3354 		if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3355 		/*
3356 		 * we can only read the register that we use. That includes
3357 		 * the one we explicitly initialize AND the one we want included
3358 		 * in the sampling buffer (smpl_regs).
3359 		 *
3360 		 * Having this restriction allows optimization in the ctxsw routine
3361 		 * without compromising security (leaks)
3362 		 */
3363 		if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3364 
3365 		sval        = ctx->ctx_pmds[cnum].val;
3366 		lval        = ctx->ctx_pmds[cnum].lval;
3367 		is_counting = PMD_IS_COUNTING(cnum);
3368 
3369 		/*
3370 		 * If the task is not the current one, then we check if the
3371 		 * PMU state is still in the local live register due to lazy ctxsw.
3372 		 * If true, then we read directly from the registers.
3373 		 */
3374 		if (can_access_pmu){
3375 			val = ia64_get_pmd(cnum);
3376 		} else {
3377 			/*
3378 			 * context has been saved
3379 			 * if context is zombie, then task does not exist anymore.
3380 			 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3381 			 */
3382 			val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3383 		}
3384 		rd_func = pmu_conf->pmd_desc[cnum].read_check;
3385 
3386 		if (is_counting) {
3387 			/*
3388 			 * XXX: need to check for overflow when loaded
3389 			 */
3390 			val &= ovfl_mask;
3391 			val += sval;
3392 		}
3393 
3394 		/*
3395 		 * execute read checker, if any
3396 		 */
3397 		if (unlikely(expert_mode == 0 && rd_func)) {
3398 			unsigned long v = val;
3399 			ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3400 			if (ret) goto error;
3401 			val = v;
3402 			ret = -EINVAL;
3403 		}
3404 
3405 		PFM_REG_RETFLAG_SET(reg_flags, 0);
3406 
3407 		DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3408 
3409 		/*
3410 		 * update register return value, abort all if problem during copy.
3411 		 * we only modify the reg_flags field. no check mode is fine because
3412 		 * access has been verified upfront in sys_perfmonctl().
3413 		 */
3414 		req->reg_value            = val;
3415 		req->reg_flags            = reg_flags;
3416 		req->reg_last_reset_val   = lval;
3417 	}
3418 
3419 	return 0;
3420 
3421 error:
3422 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3423 	return ret;
3424 }
3425 
3426 int
pfm_mod_write_pmcs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3427 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3428 {
3429 	pfm_context_t *ctx;
3430 
3431 	if (req == NULL) return -EINVAL;
3432 
3433  	ctx = GET_PMU_CTX();
3434 
3435 	if (ctx == NULL) return -EINVAL;
3436 
3437 	/*
3438 	 * for now limit to current task, which is enough when calling
3439 	 * from overflow handler
3440 	 */
3441 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3442 
3443 	return pfm_write_pmcs(ctx, req, nreq, regs);
3444 }
3445 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3446 
3447 int
pfm_mod_read_pmds(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3448 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3449 {
3450 	pfm_context_t *ctx;
3451 
3452 	if (req == NULL) return -EINVAL;
3453 
3454  	ctx = GET_PMU_CTX();
3455 
3456 	if (ctx == NULL) return -EINVAL;
3457 
3458 	/*
3459 	 * for now limit to current task, which is enough when calling
3460 	 * from overflow handler
3461 	 */
3462 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3463 
3464 	return pfm_read_pmds(ctx, req, nreq, regs);
3465 }
3466 EXPORT_SYMBOL(pfm_mod_read_pmds);
3467 
3468 /*
3469  * Only call this function when a process it trying to
3470  * write the debug registers (reading is always allowed)
3471  */
3472 int
pfm_use_debug_registers(struct task_struct * task)3473 pfm_use_debug_registers(struct task_struct *task)
3474 {
3475 	pfm_context_t *ctx = task->thread.pfm_context;
3476 	unsigned long flags;
3477 	int ret = 0;
3478 
3479 	if (pmu_conf->use_rr_dbregs == 0) return 0;
3480 
3481 	DPRINT(("called for [%d]\n", task_pid_nr(task)));
3482 
3483 	/*
3484 	 * do it only once
3485 	 */
3486 	if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3487 
3488 	/*
3489 	 * Even on SMP, we do not need to use an atomic here because
3490 	 * the only way in is via ptrace() and this is possible only when the
3491 	 * process is stopped. Even in the case where the ctxsw out is not totally
3492 	 * completed by the time we come here, there is no way the 'stopped' process
3493 	 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3494 	 * So this is always safe.
3495 	 */
3496 	if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3497 
3498 	LOCK_PFS(flags);
3499 
3500 	/*
3501 	 * We cannot allow setting breakpoints when system wide monitoring
3502 	 * sessions are using the debug registers.
3503 	 */
3504 	if (pfm_sessions.pfs_sys_use_dbregs> 0)
3505 		ret = -1;
3506 	else
3507 		pfm_sessions.pfs_ptrace_use_dbregs++;
3508 
3509 	DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3510 		  pfm_sessions.pfs_ptrace_use_dbregs,
3511 		  pfm_sessions.pfs_sys_use_dbregs,
3512 		  task_pid_nr(task), ret));
3513 
3514 	UNLOCK_PFS(flags);
3515 
3516 	return ret;
3517 }
3518 
3519 /*
3520  * This function is called for every task that exits with the
3521  * IA64_THREAD_DBG_VALID set. This indicates a task which was
3522  * able to use the debug registers for debugging purposes via
3523  * ptrace(). Therefore we know it was not using them for
3524  * performance monitoring, so we only decrement the number
3525  * of "ptraced" debug register users to keep the count up to date
3526  */
3527 int
pfm_release_debug_registers(struct task_struct * task)3528 pfm_release_debug_registers(struct task_struct *task)
3529 {
3530 	unsigned long flags;
3531 	int ret;
3532 
3533 	if (pmu_conf->use_rr_dbregs == 0) return 0;
3534 
3535 	LOCK_PFS(flags);
3536 	if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3537 		printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3538 		ret = -1;
3539 	}  else {
3540 		pfm_sessions.pfs_ptrace_use_dbregs--;
3541 		ret = 0;
3542 	}
3543 	UNLOCK_PFS(flags);
3544 
3545 	return ret;
3546 }
3547 
3548 static int
pfm_restart(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3549 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3550 {
3551 	struct task_struct *task;
3552 	pfm_buffer_fmt_t *fmt;
3553 	pfm_ovfl_ctrl_t rst_ctrl;
3554 	int state, is_system;
3555 	int ret = 0;
3556 
3557 	state     = ctx->ctx_state;
3558 	fmt       = ctx->ctx_buf_fmt;
3559 	is_system = ctx->ctx_fl_system;
3560 	task      = PFM_CTX_TASK(ctx);
3561 
3562 	switch(state) {
3563 		case PFM_CTX_MASKED:
3564 			break;
3565 		case PFM_CTX_LOADED:
3566 			if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3567 			/* fall through */
3568 		case PFM_CTX_UNLOADED:
3569 		case PFM_CTX_ZOMBIE:
3570 			DPRINT(("invalid state=%d\n", state));
3571 			return -EBUSY;
3572 		default:
3573 			DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3574 			return -EINVAL;
3575 	}
3576 
3577 	/*
3578  	 * In system wide and when the context is loaded, access can only happen
3579  	 * when the caller is running on the CPU being monitored by the session.
3580  	 * It does not have to be the owner (ctx_task) of the context per se.
3581  	 */
3582 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3583 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3584 		return -EBUSY;
3585 	}
3586 
3587 	/* sanity check */
3588 	if (unlikely(task == NULL)) {
3589 		printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3590 		return -EINVAL;
3591 	}
3592 
3593 	if (task == current || is_system) {
3594 
3595 		fmt = ctx->ctx_buf_fmt;
3596 
3597 		DPRINT(("restarting self %d ovfl=0x%lx\n",
3598 			task_pid_nr(task),
3599 			ctx->ctx_ovfl_regs[0]));
3600 
3601 		if (CTX_HAS_SMPL(ctx)) {
3602 
3603 			prefetch(ctx->ctx_smpl_hdr);
3604 
3605 			rst_ctrl.bits.mask_monitoring = 0;
3606 			rst_ctrl.bits.reset_ovfl_pmds = 0;
3607 
3608 			if (state == PFM_CTX_LOADED)
3609 				ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3610 			else
3611 				ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3612 		} else {
3613 			rst_ctrl.bits.mask_monitoring = 0;
3614 			rst_ctrl.bits.reset_ovfl_pmds = 1;
3615 		}
3616 
3617 		if (ret == 0) {
3618 			if (rst_ctrl.bits.reset_ovfl_pmds)
3619 				pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3620 
3621 			if (rst_ctrl.bits.mask_monitoring == 0) {
3622 				DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3623 
3624 				if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3625 			} else {
3626 				DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3627 
3628 				// cannot use pfm_stop_monitoring(task, regs);
3629 			}
3630 		}
3631 		/*
3632 		 * clear overflowed PMD mask to remove any stale information
3633 		 */
3634 		ctx->ctx_ovfl_regs[0] = 0UL;
3635 
3636 		/*
3637 		 * back to LOADED state
3638 		 */
3639 		ctx->ctx_state = PFM_CTX_LOADED;
3640 
3641 		/*
3642 		 * XXX: not really useful for self monitoring
3643 		 */
3644 		ctx->ctx_fl_can_restart = 0;
3645 
3646 		return 0;
3647 	}
3648 
3649 	/*
3650 	 * restart another task
3651 	 */
3652 
3653 	/*
3654 	 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3655 	 * one is seen by the task.
3656 	 */
3657 	if (state == PFM_CTX_MASKED) {
3658 		if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3659 		/*
3660 		 * will prevent subsequent restart before this one is
3661 		 * seen by other task
3662 		 */
3663 		ctx->ctx_fl_can_restart = 0;
3664 	}
3665 
3666 	/*
3667 	 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3668 	 * the task is blocked or on its way to block. That's the normal
3669 	 * restart path. If the monitoring is not masked, then the task
3670 	 * can be actively monitoring and we cannot directly intervene.
3671 	 * Therefore we use the trap mechanism to catch the task and
3672 	 * force it to reset the buffer/reset PMDs.
3673 	 *
3674 	 * if non-blocking, then we ensure that the task will go into
3675 	 * pfm_handle_work() before returning to user mode.
3676 	 *
3677 	 * We cannot explicitly reset another task, it MUST always
3678 	 * be done by the task itself. This works for system wide because
3679 	 * the tool that is controlling the session is logically doing
3680 	 * "self-monitoring".
3681 	 */
3682 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3683 		DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3684 		complete(&ctx->ctx_restart_done);
3685 	} else {
3686 		DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3687 
3688 		ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3689 
3690 		PFM_SET_WORK_PENDING(task, 1);
3691 
3692 		set_notify_resume(task);
3693 
3694 		/*
3695 		 * XXX: send reschedule if task runs on another CPU
3696 		 */
3697 	}
3698 	return 0;
3699 }
3700 
3701 static int
pfm_debug(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3702 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3703 {
3704 	unsigned int m = *(unsigned int *)arg;
3705 
3706 	pfm_sysctl.debug = m == 0 ? 0 : 1;
3707 
3708 	printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3709 
3710 	if (m == 0) {
3711 		memset(pfm_stats, 0, sizeof(pfm_stats));
3712 		for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3713 	}
3714 	return 0;
3715 }
3716 
3717 /*
3718  * arg can be NULL and count can be zero for this function
3719  */
3720 static int
pfm_write_ibr_dbr(int mode,pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3721 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3722 {
3723 	struct thread_struct *thread = NULL;
3724 	struct task_struct *task;
3725 	pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3726 	unsigned long flags;
3727 	dbreg_t dbreg;
3728 	unsigned int rnum;
3729 	int first_time;
3730 	int ret = 0, state;
3731 	int i, can_access_pmu = 0;
3732 	int is_system, is_loaded;
3733 
3734 	if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3735 
3736 	state     = ctx->ctx_state;
3737 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3738 	is_system = ctx->ctx_fl_system;
3739 	task      = ctx->ctx_task;
3740 
3741 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3742 
3743 	/*
3744 	 * on both UP and SMP, we can only write to the PMC when the task is
3745 	 * the owner of the local PMU.
3746 	 */
3747 	if (is_loaded) {
3748 		thread = &task->thread;
3749 		/*
3750 		 * In system wide and when the context is loaded, access can only happen
3751 		 * when the caller is running on the CPU being monitored by the session.
3752 		 * It does not have to be the owner (ctx_task) of the context per se.
3753 		 */
3754 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3755 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3756 			return -EBUSY;
3757 		}
3758 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3759 	}
3760 
3761 	/*
3762 	 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3763 	 * ensuring that no real breakpoint can be installed via this call.
3764 	 *
3765 	 * IMPORTANT: regs can be NULL in this function
3766 	 */
3767 
3768 	first_time = ctx->ctx_fl_using_dbreg == 0;
3769 
3770 	/*
3771 	 * don't bother if we are loaded and task is being debugged
3772 	 */
3773 	if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3774 		DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3775 		return -EBUSY;
3776 	}
3777 
3778 	/*
3779 	 * check for debug registers in system wide mode
3780 	 *
3781 	 * If though a check is done in pfm_context_load(),
3782 	 * we must repeat it here, in case the registers are
3783 	 * written after the context is loaded
3784 	 */
3785 	if (is_loaded) {
3786 		LOCK_PFS(flags);
3787 
3788 		if (first_time && is_system) {
3789 			if (pfm_sessions.pfs_ptrace_use_dbregs)
3790 				ret = -EBUSY;
3791 			else
3792 				pfm_sessions.pfs_sys_use_dbregs++;
3793 		}
3794 		UNLOCK_PFS(flags);
3795 	}
3796 
3797 	if (ret != 0) return ret;
3798 
3799 	/*
3800 	 * mark ourself as user of the debug registers for
3801 	 * perfmon purposes.
3802 	 */
3803 	ctx->ctx_fl_using_dbreg = 1;
3804 
3805 	/*
3806  	 * clear hardware registers to make sure we don't
3807  	 * pick up stale state.
3808 	 *
3809 	 * for a system wide session, we do not use
3810 	 * thread.dbr, thread.ibr because this process
3811 	 * never leaves the current CPU and the state
3812 	 * is shared by all processes running on it
3813  	 */
3814 	if (first_time && can_access_pmu) {
3815 		DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3816 		for (i=0; i < pmu_conf->num_ibrs; i++) {
3817 			ia64_set_ibr(i, 0UL);
3818 			ia64_dv_serialize_instruction();
3819 		}
3820 		ia64_srlz_i();
3821 		for (i=0; i < pmu_conf->num_dbrs; i++) {
3822 			ia64_set_dbr(i, 0UL);
3823 			ia64_dv_serialize_data();
3824 		}
3825 		ia64_srlz_d();
3826 	}
3827 
3828 	/*
3829 	 * Now install the values into the registers
3830 	 */
3831 	for (i = 0; i < count; i++, req++) {
3832 
3833 		rnum      = req->dbreg_num;
3834 		dbreg.val = req->dbreg_value;
3835 
3836 		ret = -EINVAL;
3837 
3838 		if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3839 			DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3840 				  rnum, dbreg.val, mode, i, count));
3841 
3842 			goto abort_mission;
3843 		}
3844 
3845 		/*
3846 		 * make sure we do not install enabled breakpoint
3847 		 */
3848 		if (rnum & 0x1) {
3849 			if (mode == PFM_CODE_RR)
3850 				dbreg.ibr.ibr_x = 0;
3851 			else
3852 				dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3853 		}
3854 
3855 		PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3856 
3857 		/*
3858 		 * Debug registers, just like PMC, can only be modified
3859 		 * by a kernel call. Moreover, perfmon() access to those
3860 		 * registers are centralized in this routine. The hardware
3861 		 * does not modify the value of these registers, therefore,
3862 		 * if we save them as they are written, we can avoid having
3863 		 * to save them on context switch out. This is made possible
3864 		 * by the fact that when perfmon uses debug registers, ptrace()
3865 		 * won't be able to modify them concurrently.
3866 		 */
3867 		if (mode == PFM_CODE_RR) {
3868 			CTX_USED_IBR(ctx, rnum);
3869 
3870 			if (can_access_pmu) {
3871 				ia64_set_ibr(rnum, dbreg.val);
3872 				ia64_dv_serialize_instruction();
3873 			}
3874 
3875 			ctx->ctx_ibrs[rnum] = dbreg.val;
3876 
3877 			DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3878 				rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3879 		} else {
3880 			CTX_USED_DBR(ctx, rnum);
3881 
3882 			if (can_access_pmu) {
3883 				ia64_set_dbr(rnum, dbreg.val);
3884 				ia64_dv_serialize_data();
3885 			}
3886 			ctx->ctx_dbrs[rnum] = dbreg.val;
3887 
3888 			DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3889 				rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3890 		}
3891 	}
3892 
3893 	return 0;
3894 
3895 abort_mission:
3896 	/*
3897 	 * in case it was our first attempt, we undo the global modifications
3898 	 */
3899 	if (first_time) {
3900 		LOCK_PFS(flags);
3901 		if (ctx->ctx_fl_system) {
3902 			pfm_sessions.pfs_sys_use_dbregs--;
3903 		}
3904 		UNLOCK_PFS(flags);
3905 		ctx->ctx_fl_using_dbreg = 0;
3906 	}
3907 	/*
3908 	 * install error return flag
3909 	 */
3910 	PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3911 
3912 	return ret;
3913 }
3914 
3915 static int
pfm_write_ibrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3916 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3917 {
3918 	return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3919 }
3920 
3921 static int
pfm_write_dbrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3922 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3923 {
3924 	return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3925 }
3926 
3927 int
pfm_mod_write_ibrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3928 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3929 {
3930 	pfm_context_t *ctx;
3931 
3932 	if (req == NULL) return -EINVAL;
3933 
3934  	ctx = GET_PMU_CTX();
3935 
3936 	if (ctx == NULL) return -EINVAL;
3937 
3938 	/*
3939 	 * for now limit to current task, which is enough when calling
3940 	 * from overflow handler
3941 	 */
3942 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3943 
3944 	return pfm_write_ibrs(ctx, req, nreq, regs);
3945 }
3946 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3947 
3948 int
pfm_mod_write_dbrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3949 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3950 {
3951 	pfm_context_t *ctx;
3952 
3953 	if (req == NULL) return -EINVAL;
3954 
3955  	ctx = GET_PMU_CTX();
3956 
3957 	if (ctx == NULL) return -EINVAL;
3958 
3959 	/*
3960 	 * for now limit to current task, which is enough when calling
3961 	 * from overflow handler
3962 	 */
3963 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3964 
3965 	return pfm_write_dbrs(ctx, req, nreq, regs);
3966 }
3967 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3968 
3969 
3970 static int
pfm_get_features(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3971 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3972 {
3973 	pfarg_features_t *req = (pfarg_features_t *)arg;
3974 
3975 	req->ft_version = PFM_VERSION;
3976 	return 0;
3977 }
3978 
3979 static int
pfm_stop(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3980 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3981 {
3982 	struct pt_regs *tregs;
3983 	struct task_struct *task = PFM_CTX_TASK(ctx);
3984 	int state, is_system;
3985 
3986 	state     = ctx->ctx_state;
3987 	is_system = ctx->ctx_fl_system;
3988 
3989 	/*
3990 	 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3991 	 */
3992 	if (state == PFM_CTX_UNLOADED) return -EINVAL;
3993 
3994 	/*
3995  	 * In system wide and when the context is loaded, access can only happen
3996  	 * when the caller is running on the CPU being monitored by the session.
3997  	 * It does not have to be the owner (ctx_task) of the context per se.
3998  	 */
3999 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4000 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4001 		return -EBUSY;
4002 	}
4003 	DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4004 		task_pid_nr(PFM_CTX_TASK(ctx)),
4005 		state,
4006 		is_system));
4007 	/*
4008 	 * in system mode, we need to update the PMU directly
4009 	 * and the user level state of the caller, which may not
4010 	 * necessarily be the creator of the context.
4011 	 */
4012 	if (is_system) {
4013 		/*
4014 		 * Update local PMU first
4015 		 *
4016 		 * disable dcr pp
4017 		 */
4018 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4019 		ia64_srlz_i();
4020 
4021 		/*
4022 		 * update local cpuinfo
4023 		 */
4024 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4025 
4026 		/*
4027 		 * stop monitoring, does srlz.i
4028 		 */
4029 		pfm_clear_psr_pp();
4030 
4031 		/*
4032 		 * stop monitoring in the caller
4033 		 */
4034 		ia64_psr(regs)->pp = 0;
4035 
4036 		return 0;
4037 	}
4038 	/*
4039 	 * per-task mode
4040 	 */
4041 
4042 	if (task == current) {
4043 		/* stop monitoring  at kernel level */
4044 		pfm_clear_psr_up();
4045 
4046 		/*
4047 	 	 * stop monitoring at the user level
4048 	 	 */
4049 		ia64_psr(regs)->up = 0;
4050 	} else {
4051 		tregs = task_pt_regs(task);
4052 
4053 		/*
4054 	 	 * stop monitoring at the user level
4055 	 	 */
4056 		ia64_psr(tregs)->up = 0;
4057 
4058 		/*
4059 		 * monitoring disabled in kernel at next reschedule
4060 		 */
4061 		ctx->ctx_saved_psr_up = 0;
4062 		DPRINT(("task=[%d]\n", task_pid_nr(task)));
4063 	}
4064 	return 0;
4065 }
4066 
4067 
4068 static int
pfm_start(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4069 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4070 {
4071 	struct pt_regs *tregs;
4072 	int state, is_system;
4073 
4074 	state     = ctx->ctx_state;
4075 	is_system = ctx->ctx_fl_system;
4076 
4077 	if (state != PFM_CTX_LOADED) return -EINVAL;
4078 
4079 	/*
4080  	 * In system wide and when the context is loaded, access can only happen
4081  	 * when the caller is running on the CPU being monitored by the session.
4082  	 * It does not have to be the owner (ctx_task) of the context per se.
4083  	 */
4084 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4085 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4086 		return -EBUSY;
4087 	}
4088 
4089 	/*
4090 	 * in system mode, we need to update the PMU directly
4091 	 * and the user level state of the caller, which may not
4092 	 * necessarily be the creator of the context.
4093 	 */
4094 	if (is_system) {
4095 
4096 		/*
4097 		 * set user level psr.pp for the caller
4098 		 */
4099 		ia64_psr(regs)->pp = 1;
4100 
4101 		/*
4102 		 * now update the local PMU and cpuinfo
4103 		 */
4104 		PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4105 
4106 		/*
4107 		 * start monitoring at kernel level
4108 		 */
4109 		pfm_set_psr_pp();
4110 
4111 		/* enable dcr pp */
4112 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4113 		ia64_srlz_i();
4114 
4115 		return 0;
4116 	}
4117 
4118 	/*
4119 	 * per-process mode
4120 	 */
4121 
4122 	if (ctx->ctx_task == current) {
4123 
4124 		/* start monitoring at kernel level */
4125 		pfm_set_psr_up();
4126 
4127 		/*
4128 		 * activate monitoring at user level
4129 		 */
4130 		ia64_psr(regs)->up = 1;
4131 
4132 	} else {
4133 		tregs = task_pt_regs(ctx->ctx_task);
4134 
4135 		/*
4136 		 * start monitoring at the kernel level the next
4137 		 * time the task is scheduled
4138 		 */
4139 		ctx->ctx_saved_psr_up = IA64_PSR_UP;
4140 
4141 		/*
4142 		 * activate monitoring at user level
4143 		 */
4144 		ia64_psr(tregs)->up = 1;
4145 	}
4146 	return 0;
4147 }
4148 
4149 static int
pfm_get_pmc_reset(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4150 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4151 {
4152 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
4153 	unsigned int cnum;
4154 	int i;
4155 	int ret = -EINVAL;
4156 
4157 	for (i = 0; i < count; i++, req++) {
4158 
4159 		cnum = req->reg_num;
4160 
4161 		if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4162 
4163 		req->reg_value = PMC_DFL_VAL(cnum);
4164 
4165 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4166 
4167 		DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4168 	}
4169 	return 0;
4170 
4171 abort_mission:
4172 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4173 	return ret;
4174 }
4175 
4176 static int
pfm_check_task_exist(pfm_context_t * ctx)4177 pfm_check_task_exist(pfm_context_t *ctx)
4178 {
4179 	struct task_struct *g, *t;
4180 	int ret = -ESRCH;
4181 
4182 	read_lock(&tasklist_lock);
4183 
4184 	do_each_thread (g, t) {
4185 		if (t->thread.pfm_context == ctx) {
4186 			ret = 0;
4187 			goto out;
4188 		}
4189 	} while_each_thread (g, t);
4190 out:
4191 	read_unlock(&tasklist_lock);
4192 
4193 	DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4194 
4195 	return ret;
4196 }
4197 
4198 static int
pfm_context_load(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4199 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4200 {
4201 	struct task_struct *task;
4202 	struct thread_struct *thread;
4203 	struct pfm_context_t *old;
4204 	unsigned long flags;
4205 #ifndef CONFIG_SMP
4206 	struct task_struct *owner_task = NULL;
4207 #endif
4208 	pfarg_load_t *req = (pfarg_load_t *)arg;
4209 	unsigned long *pmcs_source, *pmds_source;
4210 	int the_cpu;
4211 	int ret = 0;
4212 	int state, is_system, set_dbregs = 0;
4213 
4214 	state     = ctx->ctx_state;
4215 	is_system = ctx->ctx_fl_system;
4216 	/*
4217 	 * can only load from unloaded or terminated state
4218 	 */
4219 	if (state != PFM_CTX_UNLOADED) {
4220 		DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4221 			req->load_pid,
4222 			ctx->ctx_state));
4223 		return -EBUSY;
4224 	}
4225 
4226 	DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4227 
4228 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4229 		DPRINT(("cannot use blocking mode on self\n"));
4230 		return -EINVAL;
4231 	}
4232 
4233 	ret = pfm_get_task(ctx, req->load_pid, &task);
4234 	if (ret) {
4235 		DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4236 		return ret;
4237 	}
4238 
4239 	ret = -EINVAL;
4240 
4241 	/*
4242 	 * system wide is self monitoring only
4243 	 */
4244 	if (is_system && task != current) {
4245 		DPRINT(("system wide is self monitoring only load_pid=%d\n",
4246 			req->load_pid));
4247 		goto error;
4248 	}
4249 
4250 	thread = &task->thread;
4251 
4252 	ret = 0;
4253 	/*
4254 	 * cannot load a context which is using range restrictions,
4255 	 * into a task that is being debugged.
4256 	 */
4257 	if (ctx->ctx_fl_using_dbreg) {
4258 		if (thread->flags & IA64_THREAD_DBG_VALID) {
4259 			ret = -EBUSY;
4260 			DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4261 			goto error;
4262 		}
4263 		LOCK_PFS(flags);
4264 
4265 		if (is_system) {
4266 			if (pfm_sessions.pfs_ptrace_use_dbregs) {
4267 				DPRINT(("cannot load [%d] dbregs in use\n",
4268 							task_pid_nr(task)));
4269 				ret = -EBUSY;
4270 			} else {
4271 				pfm_sessions.pfs_sys_use_dbregs++;
4272 				DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4273 				set_dbregs = 1;
4274 			}
4275 		}
4276 
4277 		UNLOCK_PFS(flags);
4278 
4279 		if (ret) goto error;
4280 	}
4281 
4282 	/*
4283 	 * SMP system-wide monitoring implies self-monitoring.
4284 	 *
4285 	 * The programming model expects the task to
4286 	 * be pinned on a CPU throughout the session.
4287 	 * Here we take note of the current CPU at the
4288 	 * time the context is loaded. No call from
4289 	 * another CPU will be allowed.
4290 	 *
4291 	 * The pinning via shed_setaffinity()
4292 	 * must be done by the calling task prior
4293 	 * to this call.
4294 	 *
4295 	 * systemwide: keep track of CPU this session is supposed to run on
4296 	 */
4297 	the_cpu = ctx->ctx_cpu = smp_processor_id();
4298 
4299 	ret = -EBUSY;
4300 	/*
4301 	 * now reserve the session
4302 	 */
4303 	ret = pfm_reserve_session(current, is_system, the_cpu);
4304 	if (ret) goto error;
4305 
4306 	/*
4307 	 * task is necessarily stopped at this point.
4308 	 *
4309 	 * If the previous context was zombie, then it got removed in
4310 	 * pfm_save_regs(). Therefore we should not see it here.
4311 	 * If we see a context, then this is an active context
4312 	 *
4313 	 * XXX: needs to be atomic
4314 	 */
4315 	DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4316 		thread->pfm_context, ctx));
4317 
4318 	ret = -EBUSY;
4319 	old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4320 	if (old != NULL) {
4321 		DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4322 		goto error_unres;
4323 	}
4324 
4325 	pfm_reset_msgq(ctx);
4326 
4327 	ctx->ctx_state = PFM_CTX_LOADED;
4328 
4329 	/*
4330 	 * link context to task
4331 	 */
4332 	ctx->ctx_task = task;
4333 
4334 	if (is_system) {
4335 		/*
4336 		 * we load as stopped
4337 		 */
4338 		PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4339 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4340 
4341 		if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4342 	} else {
4343 		thread->flags |= IA64_THREAD_PM_VALID;
4344 	}
4345 
4346 	/*
4347 	 * propagate into thread-state
4348 	 */
4349 	pfm_copy_pmds(task, ctx);
4350 	pfm_copy_pmcs(task, ctx);
4351 
4352 	pmcs_source = ctx->th_pmcs;
4353 	pmds_source = ctx->th_pmds;
4354 
4355 	/*
4356 	 * always the case for system-wide
4357 	 */
4358 	if (task == current) {
4359 
4360 		if (is_system == 0) {
4361 
4362 			/* allow user level control */
4363 			ia64_psr(regs)->sp = 0;
4364 			DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4365 
4366 			SET_LAST_CPU(ctx, smp_processor_id());
4367 			INC_ACTIVATION();
4368 			SET_ACTIVATION(ctx);
4369 #ifndef CONFIG_SMP
4370 			/*
4371 			 * push the other task out, if any
4372 			 */
4373 			owner_task = GET_PMU_OWNER();
4374 			if (owner_task) pfm_lazy_save_regs(owner_task);
4375 #endif
4376 		}
4377 		/*
4378 		 * load all PMD from ctx to PMU (as opposed to thread state)
4379 		 * restore all PMC from ctx to PMU
4380 		 */
4381 		pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4382 		pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4383 
4384 		ctx->ctx_reload_pmcs[0] = 0UL;
4385 		ctx->ctx_reload_pmds[0] = 0UL;
4386 
4387 		/*
4388 		 * guaranteed safe by earlier check against DBG_VALID
4389 		 */
4390 		if (ctx->ctx_fl_using_dbreg) {
4391 			pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4392 			pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4393 		}
4394 		/*
4395 		 * set new ownership
4396 		 */
4397 		SET_PMU_OWNER(task, ctx);
4398 
4399 		DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4400 	} else {
4401 		/*
4402 		 * when not current, task MUST be stopped, so this is safe
4403 		 */
4404 		regs = task_pt_regs(task);
4405 
4406 		/* force a full reload */
4407 		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4408 		SET_LAST_CPU(ctx, -1);
4409 
4410 		/* initial saved psr (stopped) */
4411 		ctx->ctx_saved_psr_up = 0UL;
4412 		ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4413 	}
4414 
4415 	ret = 0;
4416 
4417 error_unres:
4418 	if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4419 error:
4420 	/*
4421 	 * we must undo the dbregs setting (for system-wide)
4422 	 */
4423 	if (ret && set_dbregs) {
4424 		LOCK_PFS(flags);
4425 		pfm_sessions.pfs_sys_use_dbregs--;
4426 		UNLOCK_PFS(flags);
4427 	}
4428 	/*
4429 	 * release task, there is now a link with the context
4430 	 */
4431 	if (is_system == 0 && task != current) {
4432 		pfm_put_task(task);
4433 
4434 		if (ret == 0) {
4435 			ret = pfm_check_task_exist(ctx);
4436 			if (ret) {
4437 				ctx->ctx_state = PFM_CTX_UNLOADED;
4438 				ctx->ctx_task  = NULL;
4439 			}
4440 		}
4441 	}
4442 	return ret;
4443 }
4444 
4445 /*
4446  * in this function, we do not need to increase the use count
4447  * for the task via get_task_struct(), because we hold the
4448  * context lock. If the task were to disappear while having
4449  * a context attached, it would go through pfm_exit_thread()
4450  * which also grabs the context lock  and would therefore be blocked
4451  * until we are here.
4452  */
4453 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4454 
4455 static int
pfm_context_unload(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4456 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4457 {
4458 	struct task_struct *task = PFM_CTX_TASK(ctx);
4459 	struct pt_regs *tregs;
4460 	int prev_state, is_system;
4461 	int ret;
4462 
4463 	DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4464 
4465 	prev_state = ctx->ctx_state;
4466 	is_system  = ctx->ctx_fl_system;
4467 
4468 	/*
4469 	 * unload only when necessary
4470 	 */
4471 	if (prev_state == PFM_CTX_UNLOADED) {
4472 		DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4473 		return 0;
4474 	}
4475 
4476 	/*
4477 	 * clear psr and dcr bits
4478 	 */
4479 	ret = pfm_stop(ctx, NULL, 0, regs);
4480 	if (ret) return ret;
4481 
4482 	ctx->ctx_state = PFM_CTX_UNLOADED;
4483 
4484 	/*
4485 	 * in system mode, we need to update the PMU directly
4486 	 * and the user level state of the caller, which may not
4487 	 * necessarily be the creator of the context.
4488 	 */
4489 	if (is_system) {
4490 
4491 		/*
4492 		 * Update cpuinfo
4493 		 *
4494 		 * local PMU is taken care of in pfm_stop()
4495 		 */
4496 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4497 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4498 
4499 		/*
4500 		 * save PMDs in context
4501 		 * release ownership
4502 		 */
4503 		pfm_flush_pmds(current, ctx);
4504 
4505 		/*
4506 		 * at this point we are done with the PMU
4507 		 * so we can unreserve the resource.
4508 		 */
4509 		if (prev_state != PFM_CTX_ZOMBIE)
4510 			pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4511 
4512 		/*
4513 		 * disconnect context from task
4514 		 */
4515 		task->thread.pfm_context = NULL;
4516 		/*
4517 		 * disconnect task from context
4518 		 */
4519 		ctx->ctx_task = NULL;
4520 
4521 		/*
4522 		 * There is nothing more to cleanup here.
4523 		 */
4524 		return 0;
4525 	}
4526 
4527 	/*
4528 	 * per-task mode
4529 	 */
4530 	tregs = task == current ? regs : task_pt_regs(task);
4531 
4532 	if (task == current) {
4533 		/*
4534 		 * cancel user level control
4535 		 */
4536 		ia64_psr(regs)->sp = 1;
4537 
4538 		DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4539 	}
4540 	/*
4541 	 * save PMDs to context
4542 	 * release ownership
4543 	 */
4544 	pfm_flush_pmds(task, ctx);
4545 
4546 	/*
4547 	 * at this point we are done with the PMU
4548 	 * so we can unreserve the resource.
4549 	 *
4550 	 * when state was ZOMBIE, we have already unreserved.
4551 	 */
4552 	if (prev_state != PFM_CTX_ZOMBIE)
4553 		pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4554 
4555 	/*
4556 	 * reset activation counter and psr
4557 	 */
4558 	ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4559 	SET_LAST_CPU(ctx, -1);
4560 
4561 	/*
4562 	 * PMU state will not be restored
4563 	 */
4564 	task->thread.flags &= ~IA64_THREAD_PM_VALID;
4565 
4566 	/*
4567 	 * break links between context and task
4568 	 */
4569 	task->thread.pfm_context  = NULL;
4570 	ctx->ctx_task             = NULL;
4571 
4572 	PFM_SET_WORK_PENDING(task, 0);
4573 
4574 	ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4575 	ctx->ctx_fl_can_restart  = 0;
4576 	ctx->ctx_fl_going_zombie = 0;
4577 
4578 	DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4579 
4580 	return 0;
4581 }
4582 
4583 
4584 /*
4585  * called only from exit_thread(): task == current
4586  * we come here only if current has a context attached (loaded or masked)
4587  */
4588 void
pfm_exit_thread(struct task_struct * task)4589 pfm_exit_thread(struct task_struct *task)
4590 {
4591 	pfm_context_t *ctx;
4592 	unsigned long flags;
4593 	struct pt_regs *regs = task_pt_regs(task);
4594 	int ret, state;
4595 	int free_ok = 0;
4596 
4597 	ctx = PFM_GET_CTX(task);
4598 
4599 	PROTECT_CTX(ctx, flags);
4600 
4601 	DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4602 
4603 	state = ctx->ctx_state;
4604 	switch(state) {
4605 		case PFM_CTX_UNLOADED:
4606 			/*
4607 	 		 * only comes to this function if pfm_context is not NULL, i.e., cannot
4608 			 * be in unloaded state
4609 	 		 */
4610 			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4611 			break;
4612 		case PFM_CTX_LOADED:
4613 		case PFM_CTX_MASKED:
4614 			ret = pfm_context_unload(ctx, NULL, 0, regs);
4615 			if (ret) {
4616 				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4617 			}
4618 			DPRINT(("ctx unloaded for current state was %d\n", state));
4619 
4620 			pfm_end_notify_user(ctx);
4621 			break;
4622 		case PFM_CTX_ZOMBIE:
4623 			ret = pfm_context_unload(ctx, NULL, 0, regs);
4624 			if (ret) {
4625 				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4626 			}
4627 			free_ok = 1;
4628 			break;
4629 		default:
4630 			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4631 			break;
4632 	}
4633 	UNPROTECT_CTX(ctx, flags);
4634 
4635 	{ u64 psr = pfm_get_psr();
4636 	  BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4637 	  BUG_ON(GET_PMU_OWNER());
4638 	  BUG_ON(ia64_psr(regs)->up);
4639 	  BUG_ON(ia64_psr(regs)->pp);
4640 	}
4641 
4642 	/*
4643 	 * All memory free operations (especially for vmalloc'ed memory)
4644 	 * MUST be done with interrupts ENABLED.
4645 	 */
4646 	if (free_ok) pfm_context_free(ctx);
4647 }
4648 
4649 /*
4650  * functions MUST be listed in the increasing order of their index (see permfon.h)
4651  */
4652 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4653 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4654 #define PFM_CMD_PCLRWS	(PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4655 #define PFM_CMD_PCLRW	(PFM_CMD_FD|PFM_CMD_ARG_RW)
4656 #define PFM_CMD_NONE	{ NULL, "no-cmd", 0, 0, 0, NULL}
4657 
4658 static pfm_cmd_desc_t pfm_cmd_tab[]={
4659 /* 0  */PFM_CMD_NONE,
4660 /* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4661 /* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4662 /* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4663 /* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4664 /* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4665 /* 6  */PFM_CMD_NONE,
4666 /* 7  */PFM_CMD_NONE,
4667 /* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4668 /* 9  */PFM_CMD_NONE,
4669 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4670 /* 11 */PFM_CMD_NONE,
4671 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4672 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4673 /* 14 */PFM_CMD_NONE,
4674 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4675 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4676 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4677 /* 18 */PFM_CMD_NONE,
4678 /* 19 */PFM_CMD_NONE,
4679 /* 20 */PFM_CMD_NONE,
4680 /* 21 */PFM_CMD_NONE,
4681 /* 22 */PFM_CMD_NONE,
4682 /* 23 */PFM_CMD_NONE,
4683 /* 24 */PFM_CMD_NONE,
4684 /* 25 */PFM_CMD_NONE,
4685 /* 26 */PFM_CMD_NONE,
4686 /* 27 */PFM_CMD_NONE,
4687 /* 28 */PFM_CMD_NONE,
4688 /* 29 */PFM_CMD_NONE,
4689 /* 30 */PFM_CMD_NONE,
4690 /* 31 */PFM_CMD_NONE,
4691 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4692 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4693 };
4694 #define PFM_CMD_COUNT	(sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4695 
4696 static int
pfm_check_task_state(pfm_context_t * ctx,int cmd,unsigned long flags)4697 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4698 {
4699 	struct task_struct *task;
4700 	int state, old_state;
4701 
4702 recheck:
4703 	state = ctx->ctx_state;
4704 	task  = ctx->ctx_task;
4705 
4706 	if (task == NULL) {
4707 		DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4708 		return 0;
4709 	}
4710 
4711 	DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4712 		ctx->ctx_fd,
4713 		state,
4714 		task_pid_nr(task),
4715 		task->state, PFM_CMD_STOPPED(cmd)));
4716 
4717 	/*
4718 	 * self-monitoring always ok.
4719 	 *
4720 	 * for system-wide the caller can either be the creator of the
4721 	 * context (to one to which the context is attached to) OR
4722 	 * a task running on the same CPU as the session.
4723 	 */
4724 	if (task == current || ctx->ctx_fl_system) return 0;
4725 
4726 	/*
4727 	 * we are monitoring another thread
4728 	 */
4729 	switch(state) {
4730 		case PFM_CTX_UNLOADED:
4731 			/*
4732 			 * if context is UNLOADED we are safe to go
4733 			 */
4734 			return 0;
4735 		case PFM_CTX_ZOMBIE:
4736 			/*
4737 			 * no command can operate on a zombie context
4738 			 */
4739 			DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4740 			return -EINVAL;
4741 		case PFM_CTX_MASKED:
4742 			/*
4743 			 * PMU state has been saved to software even though
4744 			 * the thread may still be running.
4745 			 */
4746 			if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4747 	}
4748 
4749 	/*
4750 	 * context is LOADED or MASKED. Some commands may need to have
4751 	 * the task stopped.
4752 	 *
4753 	 * We could lift this restriction for UP but it would mean that
4754 	 * the user has no guarantee the task would not run between
4755 	 * two successive calls to perfmonctl(). That's probably OK.
4756 	 * If this user wants to ensure the task does not run, then
4757 	 * the task must be stopped.
4758 	 */
4759 	if (PFM_CMD_STOPPED(cmd)) {
4760 		if (!task_is_stopped_or_traced(task)) {
4761 			DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4762 			return -EBUSY;
4763 		}
4764 		/*
4765 		 * task is now stopped, wait for ctxsw out
4766 		 *
4767 		 * This is an interesting point in the code.
4768 		 * We need to unprotect the context because
4769 		 * the pfm_save_regs() routines needs to grab
4770 		 * the same lock. There are danger in doing
4771 		 * this because it leaves a window open for
4772 		 * another task to get access to the context
4773 		 * and possibly change its state. The one thing
4774 		 * that is not possible is for the context to disappear
4775 		 * because we are protected by the VFS layer, i.e.,
4776 		 * get_fd()/put_fd().
4777 		 */
4778 		old_state = state;
4779 
4780 		UNPROTECT_CTX(ctx, flags);
4781 
4782 		wait_task_inactive(task, 0);
4783 
4784 		PROTECT_CTX(ctx, flags);
4785 
4786 		/*
4787 		 * we must recheck to verify if state has changed
4788 		 */
4789 		if (ctx->ctx_state != old_state) {
4790 			DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4791 			goto recheck;
4792 		}
4793 	}
4794 	return 0;
4795 }
4796 
4797 /*
4798  * system-call entry point (must return long)
4799  */
4800 asmlinkage long
sys_perfmonctl(int fd,int cmd,void __user * arg,int count)4801 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4802 {
4803 	struct file *file = NULL;
4804 	pfm_context_t *ctx = NULL;
4805 	unsigned long flags = 0UL;
4806 	void *args_k = NULL;
4807 	long ret; /* will expand int return types */
4808 	size_t base_sz, sz, xtra_sz = 0;
4809 	int narg, completed_args = 0, call_made = 0, cmd_flags;
4810 	int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4811 	int (*getsize)(void *arg, size_t *sz);
4812 #define PFM_MAX_ARGSIZE	4096
4813 
4814 	/*
4815 	 * reject any call if perfmon was disabled at initialization
4816 	 */
4817 	if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4818 
4819 	if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4820 		DPRINT(("invalid cmd=%d\n", cmd));
4821 		return -EINVAL;
4822 	}
4823 
4824 	func      = pfm_cmd_tab[cmd].cmd_func;
4825 	narg      = pfm_cmd_tab[cmd].cmd_narg;
4826 	base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4827 	getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4828 	cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4829 
4830 	if (unlikely(func == NULL)) {
4831 		DPRINT(("invalid cmd=%d\n", cmd));
4832 		return -EINVAL;
4833 	}
4834 
4835 	DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4836 		PFM_CMD_NAME(cmd),
4837 		cmd,
4838 		narg,
4839 		base_sz,
4840 		count));
4841 
4842 	/*
4843 	 * check if number of arguments matches what the command expects
4844 	 */
4845 	if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4846 		return -EINVAL;
4847 
4848 restart_args:
4849 	sz = xtra_sz + base_sz*count;
4850 	/*
4851 	 * limit abuse to min page size
4852 	 */
4853 	if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4854 		printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4855 		return -E2BIG;
4856 	}
4857 
4858 	/*
4859 	 * allocate default-sized argument buffer
4860 	 */
4861 	if (likely(count && args_k == NULL)) {
4862 		args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4863 		if (args_k == NULL) return -ENOMEM;
4864 	}
4865 
4866 	ret = -EFAULT;
4867 
4868 	/*
4869 	 * copy arguments
4870 	 *
4871 	 * assume sz = 0 for command without parameters
4872 	 */
4873 	if (sz && copy_from_user(args_k, arg, sz)) {
4874 		DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4875 		goto error_args;
4876 	}
4877 
4878 	/*
4879 	 * check if command supports extra parameters
4880 	 */
4881 	if (completed_args == 0 && getsize) {
4882 		/*
4883 		 * get extra parameters size (based on main argument)
4884 		 */
4885 		ret = (*getsize)(args_k, &xtra_sz);
4886 		if (ret) goto error_args;
4887 
4888 		completed_args = 1;
4889 
4890 		DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4891 
4892 		/* retry if necessary */
4893 		if (likely(xtra_sz)) goto restart_args;
4894 	}
4895 
4896 	if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4897 
4898 	ret = -EBADF;
4899 
4900 	file = fget(fd);
4901 	if (unlikely(file == NULL)) {
4902 		DPRINT(("invalid fd %d\n", fd));
4903 		goto error_args;
4904 	}
4905 	if (unlikely(PFM_IS_FILE(file) == 0)) {
4906 		DPRINT(("fd %d not related to perfmon\n", fd));
4907 		goto error_args;
4908 	}
4909 
4910 	ctx = file->private_data;
4911 	if (unlikely(ctx == NULL)) {
4912 		DPRINT(("no context for fd %d\n", fd));
4913 		goto error_args;
4914 	}
4915 	prefetch(&ctx->ctx_state);
4916 
4917 	PROTECT_CTX(ctx, flags);
4918 
4919 	/*
4920 	 * check task is stopped
4921 	 */
4922 	ret = pfm_check_task_state(ctx, cmd, flags);
4923 	if (unlikely(ret)) goto abort_locked;
4924 
4925 skip_fd:
4926 	ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4927 
4928 	call_made = 1;
4929 
4930 abort_locked:
4931 	if (likely(ctx)) {
4932 		DPRINT(("context unlocked\n"));
4933 		UNPROTECT_CTX(ctx, flags);
4934 	}
4935 
4936 	/* copy argument back to user, if needed */
4937 	if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4938 
4939 error_args:
4940 	if (file)
4941 		fput(file);
4942 
4943 	kfree(args_k);
4944 
4945 	DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4946 
4947 	return ret;
4948 }
4949 
4950 static void
pfm_resume_after_ovfl(pfm_context_t * ctx,unsigned long ovfl_regs,struct pt_regs * regs)4951 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4952 {
4953 	pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4954 	pfm_ovfl_ctrl_t rst_ctrl;
4955 	int state;
4956 	int ret = 0;
4957 
4958 	state = ctx->ctx_state;
4959 	/*
4960 	 * Unlock sampling buffer and reset index atomically
4961 	 * XXX: not really needed when blocking
4962 	 */
4963 	if (CTX_HAS_SMPL(ctx)) {
4964 
4965 		rst_ctrl.bits.mask_monitoring = 0;
4966 		rst_ctrl.bits.reset_ovfl_pmds = 0;
4967 
4968 		if (state == PFM_CTX_LOADED)
4969 			ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4970 		else
4971 			ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4972 	} else {
4973 		rst_ctrl.bits.mask_monitoring = 0;
4974 		rst_ctrl.bits.reset_ovfl_pmds = 1;
4975 	}
4976 
4977 	if (ret == 0) {
4978 		if (rst_ctrl.bits.reset_ovfl_pmds) {
4979 			pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4980 		}
4981 		if (rst_ctrl.bits.mask_monitoring == 0) {
4982 			DPRINT(("resuming monitoring\n"));
4983 			if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4984 		} else {
4985 			DPRINT(("stopping monitoring\n"));
4986 			//pfm_stop_monitoring(current, regs);
4987 		}
4988 		ctx->ctx_state = PFM_CTX_LOADED;
4989 	}
4990 }
4991 
4992 /*
4993  * context MUST BE LOCKED when calling
4994  * can only be called for current
4995  */
4996 static void
pfm_context_force_terminate(pfm_context_t * ctx,struct pt_regs * regs)4997 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4998 {
4999 	int ret;
5000 
5001 	DPRINT(("entering for [%d]\n", task_pid_nr(current)));
5002 
5003 	ret = pfm_context_unload(ctx, NULL, 0, regs);
5004 	if (ret) {
5005 		printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
5006 	}
5007 
5008 	/*
5009 	 * and wakeup controlling task, indicating we are now disconnected
5010 	 */
5011 	wake_up_interruptible(&ctx->ctx_zombieq);
5012 
5013 	/*
5014 	 * given that context is still locked, the controlling
5015 	 * task will only get access when we return from
5016 	 * pfm_handle_work().
5017 	 */
5018 }
5019 
5020 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5021 
5022  /*
5023   * pfm_handle_work() can be called with interrupts enabled
5024   * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5025   * call may sleep, therefore we must re-enable interrupts
5026   * to avoid deadlocks. It is safe to do so because this function
5027   * is called ONLY when returning to user level (pUStk=1), in which case
5028   * there is no risk of kernel stack overflow due to deep
5029   * interrupt nesting.
5030   */
5031 void
pfm_handle_work(void)5032 pfm_handle_work(void)
5033 {
5034 	pfm_context_t *ctx;
5035 	struct pt_regs *regs;
5036 	unsigned long flags, dummy_flags;
5037 	unsigned long ovfl_regs;
5038 	unsigned int reason;
5039 	int ret;
5040 
5041 	ctx = PFM_GET_CTX(current);
5042 	if (ctx == NULL) {
5043 		printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5044 			task_pid_nr(current));
5045 		return;
5046 	}
5047 
5048 	PROTECT_CTX(ctx, flags);
5049 
5050 	PFM_SET_WORK_PENDING(current, 0);
5051 
5052 	regs = task_pt_regs(current);
5053 
5054 	/*
5055 	 * extract reason for being here and clear
5056 	 */
5057 	reason = ctx->ctx_fl_trap_reason;
5058 	ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5059 	ovfl_regs = ctx->ctx_ovfl_regs[0];
5060 
5061 	DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5062 
5063 	/*
5064 	 * must be done before we check for simple-reset mode
5065 	 */
5066 	if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5067 		goto do_zombie;
5068 
5069 	//if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5070 	if (reason == PFM_TRAP_REASON_RESET)
5071 		goto skip_blocking;
5072 
5073 	/*
5074 	 * restore interrupt mask to what it was on entry.
5075 	 * Could be enabled/diasbled.
5076 	 */
5077 	UNPROTECT_CTX(ctx, flags);
5078 
5079 	/*
5080 	 * force interrupt enable because of down_interruptible()
5081 	 */
5082 	local_irq_enable();
5083 
5084 	DPRINT(("before block sleeping\n"));
5085 
5086 	/*
5087 	 * may go through without blocking on SMP systems
5088 	 * if restart has been received already by the time we call down()
5089 	 */
5090 	ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5091 
5092 	DPRINT(("after block sleeping ret=%d\n", ret));
5093 
5094 	/*
5095 	 * lock context and mask interrupts again
5096 	 * We save flags into a dummy because we may have
5097 	 * altered interrupts mask compared to entry in this
5098 	 * function.
5099 	 */
5100 	PROTECT_CTX(ctx, dummy_flags);
5101 
5102 	/*
5103 	 * we need to read the ovfl_regs only after wake-up
5104 	 * because we may have had pfm_write_pmds() in between
5105 	 * and that can changed PMD values and therefore
5106 	 * ovfl_regs is reset for these new PMD values.
5107 	 */
5108 	ovfl_regs = ctx->ctx_ovfl_regs[0];
5109 
5110 	if (ctx->ctx_fl_going_zombie) {
5111 do_zombie:
5112 		DPRINT(("context is zombie, bailing out\n"));
5113 		pfm_context_force_terminate(ctx, regs);
5114 		goto nothing_to_do;
5115 	}
5116 	/*
5117 	 * in case of interruption of down() we don't restart anything
5118 	 */
5119 	if (ret < 0)
5120 		goto nothing_to_do;
5121 
5122 skip_blocking:
5123 	pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5124 	ctx->ctx_ovfl_regs[0] = 0UL;
5125 
5126 nothing_to_do:
5127 	/*
5128 	 * restore flags as they were upon entry
5129 	 */
5130 	UNPROTECT_CTX(ctx, flags);
5131 }
5132 
5133 static int
pfm_notify_user(pfm_context_t * ctx,pfm_msg_t * msg)5134 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5135 {
5136 	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5137 		DPRINT(("ignoring overflow notification, owner is zombie\n"));
5138 		return 0;
5139 	}
5140 
5141 	DPRINT(("waking up somebody\n"));
5142 
5143 	if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5144 
5145 	/*
5146 	 * safe, we are not in intr handler, nor in ctxsw when
5147 	 * we come here
5148 	 */
5149 	kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5150 
5151 	return 0;
5152 }
5153 
5154 static int
pfm_ovfl_notify_user(pfm_context_t * ctx,unsigned long ovfl_pmds)5155 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5156 {
5157 	pfm_msg_t *msg = NULL;
5158 
5159 	if (ctx->ctx_fl_no_msg == 0) {
5160 		msg = pfm_get_new_msg(ctx);
5161 		if (msg == NULL) {
5162 			printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5163 			return -1;
5164 		}
5165 
5166 		msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5167 		msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5168 		msg->pfm_ovfl_msg.msg_active_set   = 0;
5169 		msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5170 		msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5171 		msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5172 		msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5173 		msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5174 	}
5175 
5176 	DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5177 		msg,
5178 		ctx->ctx_fl_no_msg,
5179 		ctx->ctx_fd,
5180 		ovfl_pmds));
5181 
5182 	return pfm_notify_user(ctx, msg);
5183 }
5184 
5185 static int
pfm_end_notify_user(pfm_context_t * ctx)5186 pfm_end_notify_user(pfm_context_t *ctx)
5187 {
5188 	pfm_msg_t *msg;
5189 
5190 	msg = pfm_get_new_msg(ctx);
5191 	if (msg == NULL) {
5192 		printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5193 		return -1;
5194 	}
5195 	/* no leak */
5196 	memset(msg, 0, sizeof(*msg));
5197 
5198 	msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5199 	msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5200 	msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5201 
5202 	DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5203 		msg,
5204 		ctx->ctx_fl_no_msg,
5205 		ctx->ctx_fd));
5206 
5207 	return pfm_notify_user(ctx, msg);
5208 }
5209 
5210 /*
5211  * main overflow processing routine.
5212  * it can be called from the interrupt path or explicitly during the context switch code
5213  */
pfm_overflow_handler(struct task_struct * task,pfm_context_t * ctx,unsigned long pmc0,struct pt_regs * regs)5214 static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5215 				unsigned long pmc0, struct pt_regs *regs)
5216 {
5217 	pfm_ovfl_arg_t *ovfl_arg;
5218 	unsigned long mask;
5219 	unsigned long old_val, ovfl_val, new_val;
5220 	unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5221 	unsigned long tstamp;
5222 	pfm_ovfl_ctrl_t	ovfl_ctrl;
5223 	unsigned int i, has_smpl;
5224 	int must_notify = 0;
5225 
5226 	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5227 
5228 	/*
5229 	 * sanity test. Should never happen
5230 	 */
5231 	if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5232 
5233 	tstamp   = ia64_get_itc();
5234 	mask     = pmc0 >> PMU_FIRST_COUNTER;
5235 	ovfl_val = pmu_conf->ovfl_val;
5236 	has_smpl = CTX_HAS_SMPL(ctx);
5237 
5238 	DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5239 		     "used_pmds=0x%lx\n",
5240 			pmc0,
5241 			task ? task_pid_nr(task): -1,
5242 			(regs ? regs->cr_iip : 0),
5243 			CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5244 			ctx->ctx_used_pmds[0]));
5245 
5246 
5247 	/*
5248 	 * first we update the virtual counters
5249 	 * assume there was a prior ia64_srlz_d() issued
5250 	 */
5251 	for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5252 
5253 		/* skip pmd which did not overflow */
5254 		if ((mask & 0x1) == 0) continue;
5255 
5256 		/*
5257 		 * Note that the pmd is not necessarily 0 at this point as qualified events
5258 		 * may have happened before the PMU was frozen. The residual count is not
5259 		 * taken into consideration here but will be with any read of the pmd via
5260 		 * pfm_read_pmds().
5261 		 */
5262 		old_val              = new_val = ctx->ctx_pmds[i].val;
5263 		new_val             += 1 + ovfl_val;
5264 		ctx->ctx_pmds[i].val = new_val;
5265 
5266 		/*
5267 		 * check for overflow condition
5268 		 */
5269 		if (likely(old_val > new_val)) {
5270 			ovfl_pmds |= 1UL << i;
5271 			if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5272 		}
5273 
5274 		DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5275 			i,
5276 			new_val,
5277 			old_val,
5278 			ia64_get_pmd(i) & ovfl_val,
5279 			ovfl_pmds,
5280 			ovfl_notify));
5281 	}
5282 
5283 	/*
5284 	 * there was no 64-bit overflow, nothing else to do
5285 	 */
5286 	if (ovfl_pmds == 0UL) return;
5287 
5288 	/*
5289 	 * reset all control bits
5290 	 */
5291 	ovfl_ctrl.val = 0;
5292 	reset_pmds    = 0UL;
5293 
5294 	/*
5295 	 * if a sampling format module exists, then we "cache" the overflow by
5296 	 * calling the module's handler() routine.
5297 	 */
5298 	if (has_smpl) {
5299 		unsigned long start_cycles, end_cycles;
5300 		unsigned long pmd_mask;
5301 		int j, k, ret = 0;
5302 		int this_cpu = smp_processor_id();
5303 
5304 		pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5305 		ovfl_arg = &ctx->ctx_ovfl_arg;
5306 
5307 		prefetch(ctx->ctx_smpl_hdr);
5308 
5309 		for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5310 
5311 			mask = 1UL << i;
5312 
5313 			if ((pmd_mask & 0x1) == 0) continue;
5314 
5315 			ovfl_arg->ovfl_pmd      = (unsigned char )i;
5316 			ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5317 			ovfl_arg->active_set    = 0;
5318 			ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5319 			ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5320 
5321 			ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5322 			ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5323 			ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5324 
5325 			/*
5326 		 	 * copy values of pmds of interest. Sampling format may copy them
5327 		 	 * into sampling buffer.
5328 		 	 */
5329 			if (smpl_pmds) {
5330 				for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5331 					if ((smpl_pmds & 0x1) == 0) continue;
5332 					ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5333 					DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5334 				}
5335 			}
5336 
5337 			pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5338 
5339 			start_cycles = ia64_get_itc();
5340 
5341 			/*
5342 		 	 * call custom buffer format record (handler) routine
5343 		 	 */
5344 			ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5345 
5346 			end_cycles = ia64_get_itc();
5347 
5348 			/*
5349 			 * For those controls, we take the union because they have
5350 			 * an all or nothing behavior.
5351 			 */
5352 			ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5353 			ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5354 			ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5355 			/*
5356 			 * build the bitmask of pmds to reset now
5357 			 */
5358 			if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5359 
5360 			pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5361 		}
5362 		/*
5363 		 * when the module cannot handle the rest of the overflows, we abort right here
5364 		 */
5365 		if (ret && pmd_mask) {
5366 			DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5367 				pmd_mask<<PMU_FIRST_COUNTER));
5368 		}
5369 		/*
5370 		 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5371 		 */
5372 		ovfl_pmds &= ~reset_pmds;
5373 	} else {
5374 		/*
5375 		 * when no sampling module is used, then the default
5376 		 * is to notify on overflow if requested by user
5377 		 */
5378 		ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5379 		ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5380 		ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5381 		ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5382 		/*
5383 		 * if needed, we reset all overflowed pmds
5384 		 */
5385 		if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5386 	}
5387 
5388 	DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5389 
5390 	/*
5391 	 * reset the requested PMD registers using the short reset values
5392 	 */
5393 	if (reset_pmds) {
5394 		unsigned long bm = reset_pmds;
5395 		pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5396 	}
5397 
5398 	if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5399 		/*
5400 		 * keep track of what to reset when unblocking
5401 		 */
5402 		ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5403 
5404 		/*
5405 		 * check for blocking context
5406 		 */
5407 		if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5408 
5409 			ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5410 
5411 			/*
5412 			 * set the perfmon specific checking pending work for the task
5413 			 */
5414 			PFM_SET_WORK_PENDING(task, 1);
5415 
5416 			/*
5417 			 * when coming from ctxsw, current still points to the
5418 			 * previous task, therefore we must work with task and not current.
5419 			 */
5420 			set_notify_resume(task);
5421 		}
5422 		/*
5423 		 * defer until state is changed (shorten spin window). the context is locked
5424 		 * anyway, so the signal receiver would come spin for nothing.
5425 		 */
5426 		must_notify = 1;
5427 	}
5428 
5429 	DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5430 			GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5431 			PFM_GET_WORK_PENDING(task),
5432 			ctx->ctx_fl_trap_reason,
5433 			ovfl_pmds,
5434 			ovfl_notify,
5435 			ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5436 	/*
5437 	 * in case monitoring must be stopped, we toggle the psr bits
5438 	 */
5439 	if (ovfl_ctrl.bits.mask_monitoring) {
5440 		pfm_mask_monitoring(task);
5441 		ctx->ctx_state = PFM_CTX_MASKED;
5442 		ctx->ctx_fl_can_restart = 1;
5443 	}
5444 
5445 	/*
5446 	 * send notification now
5447 	 */
5448 	if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5449 
5450 	return;
5451 
5452 sanity_check:
5453 	printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5454 			smp_processor_id(),
5455 			task ? task_pid_nr(task) : -1,
5456 			pmc0);
5457 	return;
5458 
5459 stop_monitoring:
5460 	/*
5461 	 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5462 	 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5463 	 * come here as zombie only if the task is the current task. In which case, we
5464 	 * can access the PMU  hardware directly.
5465 	 *
5466 	 * Note that zombies do have PM_VALID set. So here we do the minimal.
5467 	 *
5468 	 * In case the context was zombified it could not be reclaimed at the time
5469 	 * the monitoring program exited. At this point, the PMU reservation has been
5470 	 * returned, the sampiing buffer has been freed. We must convert this call
5471 	 * into a spurious interrupt. However, we must also avoid infinite overflows
5472 	 * by stopping monitoring for this task. We can only come here for a per-task
5473 	 * context. All we need to do is to stop monitoring using the psr bits which
5474 	 * are always task private. By re-enabling secure montioring, we ensure that
5475 	 * the monitored task will not be able to re-activate monitoring.
5476 	 * The task will eventually be context switched out, at which point the context
5477 	 * will be reclaimed (that includes releasing ownership of the PMU).
5478 	 *
5479 	 * So there might be a window of time where the number of per-task session is zero
5480 	 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5481 	 * context. This is safe because if a per-task session comes in, it will push this one
5482 	 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5483 	 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5484 	 * also push our zombie context out.
5485 	 *
5486 	 * Overall pretty hairy stuff....
5487 	 */
5488 	DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5489 	pfm_clear_psr_up();
5490 	ia64_psr(regs)->up = 0;
5491 	ia64_psr(regs)->sp = 1;
5492 	return;
5493 }
5494 
5495 static int
pfm_do_interrupt_handler(void * arg,struct pt_regs * regs)5496 pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5497 {
5498 	struct task_struct *task;
5499 	pfm_context_t *ctx;
5500 	unsigned long flags;
5501 	u64 pmc0;
5502 	int this_cpu = smp_processor_id();
5503 	int retval = 0;
5504 
5505 	pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5506 
5507 	/*
5508 	 * srlz.d done before arriving here
5509 	 */
5510 	pmc0 = ia64_get_pmc(0);
5511 
5512 	task = GET_PMU_OWNER();
5513 	ctx  = GET_PMU_CTX();
5514 
5515 	/*
5516 	 * if we have some pending bits set
5517 	 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5518 	 */
5519 	if (PMC0_HAS_OVFL(pmc0) && task) {
5520 		/*
5521 		 * we assume that pmc0.fr is always set here
5522 		 */
5523 
5524 		/* sanity check */
5525 		if (!ctx) goto report_spurious1;
5526 
5527 		if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5528 			goto report_spurious2;
5529 
5530 		PROTECT_CTX_NOPRINT(ctx, flags);
5531 
5532 		pfm_overflow_handler(task, ctx, pmc0, regs);
5533 
5534 		UNPROTECT_CTX_NOPRINT(ctx, flags);
5535 
5536 	} else {
5537 		pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5538 		retval = -1;
5539 	}
5540 	/*
5541 	 * keep it unfrozen at all times
5542 	 */
5543 	pfm_unfreeze_pmu();
5544 
5545 	return retval;
5546 
5547 report_spurious1:
5548 	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5549 		this_cpu, task_pid_nr(task));
5550 	pfm_unfreeze_pmu();
5551 	return -1;
5552 report_spurious2:
5553 	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5554 		this_cpu,
5555 		task_pid_nr(task));
5556 	pfm_unfreeze_pmu();
5557 	return -1;
5558 }
5559 
5560 static irqreturn_t
pfm_interrupt_handler(int irq,void * arg)5561 pfm_interrupt_handler(int irq, void *arg)
5562 {
5563 	unsigned long start_cycles, total_cycles;
5564 	unsigned long min, max;
5565 	int this_cpu;
5566 	int ret;
5567 	struct pt_regs *regs = get_irq_regs();
5568 
5569 	this_cpu = get_cpu();
5570 	if (likely(!pfm_alt_intr_handler)) {
5571 		min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5572 		max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5573 
5574 		start_cycles = ia64_get_itc();
5575 
5576 		ret = pfm_do_interrupt_handler(arg, regs);
5577 
5578 		total_cycles = ia64_get_itc();
5579 
5580 		/*
5581 		 * don't measure spurious interrupts
5582 		 */
5583 		if (likely(ret == 0)) {
5584 			total_cycles -= start_cycles;
5585 
5586 			if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5587 			if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5588 
5589 			pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5590 		}
5591 	}
5592 	else {
5593 		(*pfm_alt_intr_handler->handler)(irq, arg, regs);
5594 	}
5595 
5596 	put_cpu();
5597 	return IRQ_HANDLED;
5598 }
5599 
5600 /*
5601  * /proc/perfmon interface, for debug only
5602  */
5603 
5604 #define PFM_PROC_SHOW_HEADER	((void *)(long)nr_cpu_ids+1)
5605 
5606 static void *
pfm_proc_start(struct seq_file * m,loff_t * pos)5607 pfm_proc_start(struct seq_file *m, loff_t *pos)
5608 {
5609 	if (*pos == 0) {
5610 		return PFM_PROC_SHOW_HEADER;
5611 	}
5612 
5613 	while (*pos <= nr_cpu_ids) {
5614 		if (cpu_online(*pos - 1)) {
5615 			return (void *)*pos;
5616 		}
5617 		++*pos;
5618 	}
5619 	return NULL;
5620 }
5621 
5622 static void *
pfm_proc_next(struct seq_file * m,void * v,loff_t * pos)5623 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5624 {
5625 	++*pos;
5626 	return pfm_proc_start(m, pos);
5627 }
5628 
5629 static void
pfm_proc_stop(struct seq_file * m,void * v)5630 pfm_proc_stop(struct seq_file *m, void *v)
5631 {
5632 }
5633 
5634 static void
pfm_proc_show_header(struct seq_file * m)5635 pfm_proc_show_header(struct seq_file *m)
5636 {
5637 	struct list_head * pos;
5638 	pfm_buffer_fmt_t * entry;
5639 	unsigned long flags;
5640 
5641  	seq_printf(m,
5642 		"perfmon version           : %u.%u\n"
5643 		"model                     : %s\n"
5644 		"fastctxsw                 : %s\n"
5645 		"expert mode               : %s\n"
5646 		"ovfl_mask                 : 0x%lx\n"
5647 		"PMU flags                 : 0x%x\n",
5648 		PFM_VERSION_MAJ, PFM_VERSION_MIN,
5649 		pmu_conf->pmu_name,
5650 		pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5651 		pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5652 		pmu_conf->ovfl_val,
5653 		pmu_conf->flags);
5654 
5655   	LOCK_PFS(flags);
5656 
5657  	seq_printf(m,
5658  		"proc_sessions             : %u\n"
5659  		"sys_sessions              : %u\n"
5660  		"sys_use_dbregs            : %u\n"
5661  		"ptrace_use_dbregs         : %u\n",
5662  		pfm_sessions.pfs_task_sessions,
5663  		pfm_sessions.pfs_sys_sessions,
5664  		pfm_sessions.pfs_sys_use_dbregs,
5665  		pfm_sessions.pfs_ptrace_use_dbregs);
5666 
5667   	UNLOCK_PFS(flags);
5668 
5669 	spin_lock(&pfm_buffer_fmt_lock);
5670 
5671 	list_for_each(pos, &pfm_buffer_fmt_list) {
5672 		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5673 		seq_printf(m, "format                    : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5674 			entry->fmt_uuid[0],
5675 			entry->fmt_uuid[1],
5676 			entry->fmt_uuid[2],
5677 			entry->fmt_uuid[3],
5678 			entry->fmt_uuid[4],
5679 			entry->fmt_uuid[5],
5680 			entry->fmt_uuid[6],
5681 			entry->fmt_uuid[7],
5682 			entry->fmt_uuid[8],
5683 			entry->fmt_uuid[9],
5684 			entry->fmt_uuid[10],
5685 			entry->fmt_uuid[11],
5686 			entry->fmt_uuid[12],
5687 			entry->fmt_uuid[13],
5688 			entry->fmt_uuid[14],
5689 			entry->fmt_uuid[15],
5690 			entry->fmt_name);
5691 	}
5692 	spin_unlock(&pfm_buffer_fmt_lock);
5693 
5694 }
5695 
5696 static int
pfm_proc_show(struct seq_file * m,void * v)5697 pfm_proc_show(struct seq_file *m, void *v)
5698 {
5699 	unsigned long psr;
5700 	unsigned int i;
5701 	int cpu;
5702 
5703 	if (v == PFM_PROC_SHOW_HEADER) {
5704 		pfm_proc_show_header(m);
5705 		return 0;
5706 	}
5707 
5708 	/* show info for CPU (v - 1) */
5709 
5710 	cpu = (long)v - 1;
5711 	seq_printf(m,
5712 		"CPU%-2d overflow intrs      : %lu\n"
5713 		"CPU%-2d overflow cycles     : %lu\n"
5714 		"CPU%-2d overflow min        : %lu\n"
5715 		"CPU%-2d overflow max        : %lu\n"
5716 		"CPU%-2d smpl handler calls  : %lu\n"
5717 		"CPU%-2d smpl handler cycles : %lu\n"
5718 		"CPU%-2d spurious intrs      : %lu\n"
5719 		"CPU%-2d replay   intrs      : %lu\n"
5720 		"CPU%-2d syst_wide           : %d\n"
5721 		"CPU%-2d dcr_pp              : %d\n"
5722 		"CPU%-2d exclude idle        : %d\n"
5723 		"CPU%-2d owner               : %d\n"
5724 		"CPU%-2d context             : %p\n"
5725 		"CPU%-2d activations         : %lu\n",
5726 		cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5727 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5728 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5729 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5730 		cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5731 		cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5732 		cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5733 		cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5734 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5735 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5736 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5737 		cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5738 		cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5739 		cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5740 
5741 	if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5742 
5743 		psr = pfm_get_psr();
5744 
5745 		ia64_srlz_d();
5746 
5747 		seq_printf(m,
5748 			"CPU%-2d psr                 : 0x%lx\n"
5749 			"CPU%-2d pmc0                : 0x%lx\n",
5750 			cpu, psr,
5751 			cpu, ia64_get_pmc(0));
5752 
5753 		for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5754 			if (PMC_IS_COUNTING(i) == 0) continue;
5755    			seq_printf(m,
5756 				"CPU%-2d pmc%u                : 0x%lx\n"
5757    				"CPU%-2d pmd%u                : 0x%lx\n",
5758 				cpu, i, ia64_get_pmc(i),
5759 				cpu, i, ia64_get_pmd(i));
5760   		}
5761 	}
5762 	return 0;
5763 }
5764 
5765 const struct seq_operations pfm_seq_ops = {
5766 	.start =	pfm_proc_start,
5767  	.next =		pfm_proc_next,
5768  	.stop =		pfm_proc_stop,
5769  	.show =		pfm_proc_show
5770 };
5771 
5772 static int
pfm_proc_open(struct inode * inode,struct file * file)5773 pfm_proc_open(struct inode *inode, struct file *file)
5774 {
5775 	return seq_open(file, &pfm_seq_ops);
5776 }
5777 
5778 
5779 /*
5780  * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5781  * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5782  * is active or inactive based on mode. We must rely on the value in
5783  * local_cpu_data->pfm_syst_info
5784  */
5785 void
pfm_syst_wide_update_task(struct task_struct * task,unsigned long info,int is_ctxswin)5786 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5787 {
5788 	struct pt_regs *regs;
5789 	unsigned long dcr;
5790 	unsigned long dcr_pp;
5791 
5792 	dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5793 
5794 	/*
5795 	 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5796 	 * on every CPU, so we can rely on the pid to identify the idle task.
5797 	 */
5798 	if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5799 		regs = task_pt_regs(task);
5800 		ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5801 		return;
5802 	}
5803 	/*
5804 	 * if monitoring has started
5805 	 */
5806 	if (dcr_pp) {
5807 		dcr = ia64_getreg(_IA64_REG_CR_DCR);
5808 		/*
5809 		 * context switching in?
5810 		 */
5811 		if (is_ctxswin) {
5812 			/* mask monitoring for the idle task */
5813 			ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5814 			pfm_clear_psr_pp();
5815 			ia64_srlz_i();
5816 			return;
5817 		}
5818 		/*
5819 		 * context switching out
5820 		 * restore monitoring for next task
5821 		 *
5822 		 * Due to inlining this odd if-then-else construction generates
5823 		 * better code.
5824 		 */
5825 		ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5826 		pfm_set_psr_pp();
5827 		ia64_srlz_i();
5828 	}
5829 }
5830 
5831 #ifdef CONFIG_SMP
5832 
5833 static void
pfm_force_cleanup(pfm_context_t * ctx,struct pt_regs * regs)5834 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5835 {
5836 	struct task_struct *task = ctx->ctx_task;
5837 
5838 	ia64_psr(regs)->up = 0;
5839 	ia64_psr(regs)->sp = 1;
5840 
5841 	if (GET_PMU_OWNER() == task) {
5842 		DPRINT(("cleared ownership for [%d]\n",
5843 					task_pid_nr(ctx->ctx_task)));
5844 		SET_PMU_OWNER(NULL, NULL);
5845 	}
5846 
5847 	/*
5848 	 * disconnect the task from the context and vice-versa
5849 	 */
5850 	PFM_SET_WORK_PENDING(task, 0);
5851 
5852 	task->thread.pfm_context  = NULL;
5853 	task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5854 
5855 	DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5856 }
5857 
5858 
5859 /*
5860  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5861  */
5862 void
pfm_save_regs(struct task_struct * task)5863 pfm_save_regs(struct task_struct *task)
5864 {
5865 	pfm_context_t *ctx;
5866 	unsigned long flags;
5867 	u64 psr;
5868 
5869 
5870 	ctx = PFM_GET_CTX(task);
5871 	if (ctx == NULL) return;
5872 
5873 	/*
5874  	 * we always come here with interrupts ALREADY disabled by
5875  	 * the scheduler. So we simply need to protect against concurrent
5876 	 * access, not CPU concurrency.
5877 	 */
5878 	flags = pfm_protect_ctx_ctxsw(ctx);
5879 
5880 	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5881 		struct pt_regs *regs = task_pt_regs(task);
5882 
5883 		pfm_clear_psr_up();
5884 
5885 		pfm_force_cleanup(ctx, regs);
5886 
5887 		BUG_ON(ctx->ctx_smpl_hdr);
5888 
5889 		pfm_unprotect_ctx_ctxsw(ctx, flags);
5890 
5891 		pfm_context_free(ctx);
5892 		return;
5893 	}
5894 
5895 	/*
5896 	 * save current PSR: needed because we modify it
5897 	 */
5898 	ia64_srlz_d();
5899 	psr = pfm_get_psr();
5900 
5901 	BUG_ON(psr & (IA64_PSR_I));
5902 
5903 	/*
5904 	 * stop monitoring:
5905 	 * This is the last instruction which may generate an overflow
5906 	 *
5907 	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5908 	 * It will be restored from ipsr when going back to user level
5909 	 */
5910 	pfm_clear_psr_up();
5911 
5912 	/*
5913 	 * keep a copy of psr.up (for reload)
5914 	 */
5915 	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5916 
5917 	/*
5918 	 * release ownership of this PMU.
5919 	 * PM interrupts are masked, so nothing
5920 	 * can happen.
5921 	 */
5922 	SET_PMU_OWNER(NULL, NULL);
5923 
5924 	/*
5925 	 * we systematically save the PMD as we have no
5926 	 * guarantee we will be schedule at that same
5927 	 * CPU again.
5928 	 */
5929 	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5930 
5931 	/*
5932 	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5933 	 * we will need it on the restore path to check
5934 	 * for pending overflow.
5935 	 */
5936 	ctx->th_pmcs[0] = ia64_get_pmc(0);
5937 
5938 	/*
5939 	 * unfreeze PMU if had pending overflows
5940 	 */
5941 	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5942 
5943 	/*
5944 	 * finally, allow context access.
5945 	 * interrupts will still be masked after this call.
5946 	 */
5947 	pfm_unprotect_ctx_ctxsw(ctx, flags);
5948 }
5949 
5950 #else /* !CONFIG_SMP */
5951 void
pfm_save_regs(struct task_struct * task)5952 pfm_save_regs(struct task_struct *task)
5953 {
5954 	pfm_context_t *ctx;
5955 	u64 psr;
5956 
5957 	ctx = PFM_GET_CTX(task);
5958 	if (ctx == NULL) return;
5959 
5960 	/*
5961 	 * save current PSR: needed because we modify it
5962 	 */
5963 	psr = pfm_get_psr();
5964 
5965 	BUG_ON(psr & (IA64_PSR_I));
5966 
5967 	/*
5968 	 * stop monitoring:
5969 	 * This is the last instruction which may generate an overflow
5970 	 *
5971 	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5972 	 * It will be restored from ipsr when going back to user level
5973 	 */
5974 	pfm_clear_psr_up();
5975 
5976 	/*
5977 	 * keep a copy of psr.up (for reload)
5978 	 */
5979 	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5980 }
5981 
5982 static void
pfm_lazy_save_regs(struct task_struct * task)5983 pfm_lazy_save_regs (struct task_struct *task)
5984 {
5985 	pfm_context_t *ctx;
5986 	unsigned long flags;
5987 
5988 	{ u64 psr  = pfm_get_psr();
5989 	  BUG_ON(psr & IA64_PSR_UP);
5990 	}
5991 
5992 	ctx = PFM_GET_CTX(task);
5993 
5994 	/*
5995 	 * we need to mask PMU overflow here to
5996 	 * make sure that we maintain pmc0 until
5997 	 * we save it. overflow interrupts are
5998 	 * treated as spurious if there is no
5999 	 * owner.
6000 	 *
6001 	 * XXX: I don't think this is necessary
6002 	 */
6003 	PROTECT_CTX(ctx,flags);
6004 
6005 	/*
6006 	 * release ownership of this PMU.
6007 	 * must be done before we save the registers.
6008 	 *
6009 	 * after this call any PMU interrupt is treated
6010 	 * as spurious.
6011 	 */
6012 	SET_PMU_OWNER(NULL, NULL);
6013 
6014 	/*
6015 	 * save all the pmds we use
6016 	 */
6017 	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
6018 
6019 	/*
6020 	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6021 	 * it is needed to check for pended overflow
6022 	 * on the restore path
6023 	 */
6024 	ctx->th_pmcs[0] = ia64_get_pmc(0);
6025 
6026 	/*
6027 	 * unfreeze PMU if had pending overflows
6028 	 */
6029 	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6030 
6031 	/*
6032 	 * now get can unmask PMU interrupts, they will
6033 	 * be treated as purely spurious and we will not
6034 	 * lose any information
6035 	 */
6036 	UNPROTECT_CTX(ctx,flags);
6037 }
6038 #endif /* CONFIG_SMP */
6039 
6040 #ifdef CONFIG_SMP
6041 /*
6042  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6043  */
6044 void
pfm_load_regs(struct task_struct * task)6045 pfm_load_regs (struct task_struct *task)
6046 {
6047 	pfm_context_t *ctx;
6048 	unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6049 	unsigned long flags;
6050 	u64 psr, psr_up;
6051 	int need_irq_resend;
6052 
6053 	ctx = PFM_GET_CTX(task);
6054 	if (unlikely(ctx == NULL)) return;
6055 
6056 	BUG_ON(GET_PMU_OWNER());
6057 
6058 	/*
6059 	 * possible on unload
6060 	 */
6061 	if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6062 
6063 	/*
6064  	 * we always come here with interrupts ALREADY disabled by
6065  	 * the scheduler. So we simply need to protect against concurrent
6066 	 * access, not CPU concurrency.
6067 	 */
6068 	flags = pfm_protect_ctx_ctxsw(ctx);
6069 	psr   = pfm_get_psr();
6070 
6071 	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6072 
6073 	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6074 	BUG_ON(psr & IA64_PSR_I);
6075 
6076 	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6077 		struct pt_regs *regs = task_pt_regs(task);
6078 
6079 		BUG_ON(ctx->ctx_smpl_hdr);
6080 
6081 		pfm_force_cleanup(ctx, regs);
6082 
6083 		pfm_unprotect_ctx_ctxsw(ctx, flags);
6084 
6085 		/*
6086 		 * this one (kmalloc'ed) is fine with interrupts disabled
6087 		 */
6088 		pfm_context_free(ctx);
6089 
6090 		return;
6091 	}
6092 
6093 	/*
6094 	 * we restore ALL the debug registers to avoid picking up
6095 	 * stale state.
6096 	 */
6097 	if (ctx->ctx_fl_using_dbreg) {
6098 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6099 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6100 	}
6101 	/*
6102 	 * retrieve saved psr.up
6103 	 */
6104 	psr_up = ctx->ctx_saved_psr_up;
6105 
6106 	/*
6107 	 * if we were the last user of the PMU on that CPU,
6108 	 * then nothing to do except restore psr
6109 	 */
6110 	if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6111 
6112 		/*
6113 		 * retrieve partial reload masks (due to user modifications)
6114 		 */
6115 		pmc_mask = ctx->ctx_reload_pmcs[0];
6116 		pmd_mask = ctx->ctx_reload_pmds[0];
6117 
6118 	} else {
6119 		/*
6120 	 	 * To avoid leaking information to the user level when psr.sp=0,
6121 	 	 * we must reload ALL implemented pmds (even the ones we don't use).
6122 	 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6123 	 	 * we initialized or requested (sampling) so there is no risk there.
6124 	 	 */
6125 		pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6126 
6127 		/*
6128 	 	 * ALL accessible PMCs are systematically reloaded, unused registers
6129 	 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6130 	 	 * up stale configuration.
6131 	 	 *
6132 	 	 * PMC0 is never in the mask. It is always restored separately.
6133 	 	 */
6134 		pmc_mask = ctx->ctx_all_pmcs[0];
6135 	}
6136 	/*
6137 	 * when context is MASKED, we will restore PMC with plm=0
6138 	 * and PMD with stale information, but that's ok, nothing
6139 	 * will be captured.
6140 	 *
6141 	 * XXX: optimize here
6142 	 */
6143 	if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6144 	if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6145 
6146 	/*
6147 	 * check for pending overflow at the time the state
6148 	 * was saved.
6149 	 */
6150 	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6151 		/*
6152 		 * reload pmc0 with the overflow information
6153 		 * On McKinley PMU, this will trigger a PMU interrupt
6154 		 */
6155 		ia64_set_pmc(0, ctx->th_pmcs[0]);
6156 		ia64_srlz_d();
6157 		ctx->th_pmcs[0] = 0UL;
6158 
6159 		/*
6160 		 * will replay the PMU interrupt
6161 		 */
6162 		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6163 
6164 		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6165 	}
6166 
6167 	/*
6168 	 * we just did a reload, so we reset the partial reload fields
6169 	 */
6170 	ctx->ctx_reload_pmcs[0] = 0UL;
6171 	ctx->ctx_reload_pmds[0] = 0UL;
6172 
6173 	SET_LAST_CPU(ctx, smp_processor_id());
6174 
6175 	/*
6176 	 * dump activation value for this PMU
6177 	 */
6178 	INC_ACTIVATION();
6179 	/*
6180 	 * record current activation for this context
6181 	 */
6182 	SET_ACTIVATION(ctx);
6183 
6184 	/*
6185 	 * establish new ownership.
6186 	 */
6187 	SET_PMU_OWNER(task, ctx);
6188 
6189 	/*
6190 	 * restore the psr.up bit. measurement
6191 	 * is active again.
6192 	 * no PMU interrupt can happen at this point
6193 	 * because we still have interrupts disabled.
6194 	 */
6195 	if (likely(psr_up)) pfm_set_psr_up();
6196 
6197 	/*
6198 	 * allow concurrent access to context
6199 	 */
6200 	pfm_unprotect_ctx_ctxsw(ctx, flags);
6201 }
6202 #else /*  !CONFIG_SMP */
6203 /*
6204  * reload PMU state for UP kernels
6205  * in 2.5 we come here with interrupts disabled
6206  */
6207 void
pfm_load_regs(struct task_struct * task)6208 pfm_load_regs (struct task_struct *task)
6209 {
6210 	pfm_context_t *ctx;
6211 	struct task_struct *owner;
6212 	unsigned long pmd_mask, pmc_mask;
6213 	u64 psr, psr_up;
6214 	int need_irq_resend;
6215 
6216 	owner = GET_PMU_OWNER();
6217 	ctx   = PFM_GET_CTX(task);
6218 	psr   = pfm_get_psr();
6219 
6220 	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6221 	BUG_ON(psr & IA64_PSR_I);
6222 
6223 	/*
6224 	 * we restore ALL the debug registers to avoid picking up
6225 	 * stale state.
6226 	 *
6227 	 * This must be done even when the task is still the owner
6228 	 * as the registers may have been modified via ptrace()
6229 	 * (not perfmon) by the previous task.
6230 	 */
6231 	if (ctx->ctx_fl_using_dbreg) {
6232 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6233 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6234 	}
6235 
6236 	/*
6237 	 * retrieved saved psr.up
6238 	 */
6239 	psr_up = ctx->ctx_saved_psr_up;
6240 	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6241 
6242 	/*
6243 	 * short path, our state is still there, just
6244 	 * need to restore psr and we go
6245 	 *
6246 	 * we do not touch either PMC nor PMD. the psr is not touched
6247 	 * by the overflow_handler. So we are safe w.r.t. to interrupt
6248 	 * concurrency even without interrupt masking.
6249 	 */
6250 	if (likely(owner == task)) {
6251 		if (likely(psr_up)) pfm_set_psr_up();
6252 		return;
6253 	}
6254 
6255 	/*
6256 	 * someone else is still using the PMU, first push it out and
6257 	 * then we'll be able to install our stuff !
6258 	 *
6259 	 * Upon return, there will be no owner for the current PMU
6260 	 */
6261 	if (owner) pfm_lazy_save_regs(owner);
6262 
6263 	/*
6264 	 * To avoid leaking information to the user level when psr.sp=0,
6265 	 * we must reload ALL implemented pmds (even the ones we don't use).
6266 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6267 	 * we initialized or requested (sampling) so there is no risk there.
6268 	 */
6269 	pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6270 
6271 	/*
6272 	 * ALL accessible PMCs are systematically reloaded, unused registers
6273 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6274 	 * up stale configuration.
6275 	 *
6276 	 * PMC0 is never in the mask. It is always restored separately
6277 	 */
6278 	pmc_mask = ctx->ctx_all_pmcs[0];
6279 
6280 	pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6281 	pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6282 
6283 	/*
6284 	 * check for pending overflow at the time the state
6285 	 * was saved.
6286 	 */
6287 	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6288 		/*
6289 		 * reload pmc0 with the overflow information
6290 		 * On McKinley PMU, this will trigger a PMU interrupt
6291 		 */
6292 		ia64_set_pmc(0, ctx->th_pmcs[0]);
6293 		ia64_srlz_d();
6294 
6295 		ctx->th_pmcs[0] = 0UL;
6296 
6297 		/*
6298 		 * will replay the PMU interrupt
6299 		 */
6300 		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6301 
6302 		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6303 	}
6304 
6305 	/*
6306 	 * establish new ownership.
6307 	 */
6308 	SET_PMU_OWNER(task, ctx);
6309 
6310 	/*
6311 	 * restore the psr.up bit. measurement
6312 	 * is active again.
6313 	 * no PMU interrupt can happen at this point
6314 	 * because we still have interrupts disabled.
6315 	 */
6316 	if (likely(psr_up)) pfm_set_psr_up();
6317 }
6318 #endif /* CONFIG_SMP */
6319 
6320 /*
6321  * this function assumes monitoring is stopped
6322  */
6323 static void
pfm_flush_pmds(struct task_struct * task,pfm_context_t * ctx)6324 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6325 {
6326 	u64 pmc0;
6327 	unsigned long mask2, val, pmd_val, ovfl_val;
6328 	int i, can_access_pmu = 0;
6329 	int is_self;
6330 
6331 	/*
6332 	 * is the caller the task being monitored (or which initiated the
6333 	 * session for system wide measurements)
6334 	 */
6335 	is_self = ctx->ctx_task == task ? 1 : 0;
6336 
6337 	/*
6338 	 * can access PMU is task is the owner of the PMU state on the current CPU
6339 	 * or if we are running on the CPU bound to the context in system-wide mode
6340 	 * (that is not necessarily the task the context is attached to in this mode).
6341 	 * In system-wide we always have can_access_pmu true because a task running on an
6342 	 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6343 	 */
6344 	can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6345 	if (can_access_pmu) {
6346 		/*
6347 		 * Mark the PMU as not owned
6348 		 * This will cause the interrupt handler to do nothing in case an overflow
6349 		 * interrupt was in-flight
6350 		 * This also guarantees that pmc0 will contain the final state
6351 		 * It virtually gives us full control on overflow processing from that point
6352 		 * on.
6353 		 */
6354 		SET_PMU_OWNER(NULL, NULL);
6355 		DPRINT(("releasing ownership\n"));
6356 
6357 		/*
6358 		 * read current overflow status:
6359 		 *
6360 		 * we are guaranteed to read the final stable state
6361 		 */
6362 		ia64_srlz_d();
6363 		pmc0 = ia64_get_pmc(0); /* slow */
6364 
6365 		/*
6366 		 * reset freeze bit, overflow status information destroyed
6367 		 */
6368 		pfm_unfreeze_pmu();
6369 	} else {
6370 		pmc0 = ctx->th_pmcs[0];
6371 		/*
6372 		 * clear whatever overflow status bits there were
6373 		 */
6374 		ctx->th_pmcs[0] = 0;
6375 	}
6376 	ovfl_val = pmu_conf->ovfl_val;
6377 	/*
6378 	 * we save all the used pmds
6379 	 * we take care of overflows for counting PMDs
6380 	 *
6381 	 * XXX: sampling situation is not taken into account here
6382 	 */
6383 	mask2 = ctx->ctx_used_pmds[0];
6384 
6385 	DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6386 
6387 	for (i = 0; mask2; i++, mask2>>=1) {
6388 
6389 		/* skip non used pmds */
6390 		if ((mask2 & 0x1) == 0) continue;
6391 
6392 		/*
6393 		 * can access PMU always true in system wide mode
6394 		 */
6395 		val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6396 
6397 		if (PMD_IS_COUNTING(i)) {
6398 			DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6399 				task_pid_nr(task),
6400 				i,
6401 				ctx->ctx_pmds[i].val,
6402 				val & ovfl_val));
6403 
6404 			/*
6405 			 * we rebuild the full 64 bit value of the counter
6406 			 */
6407 			val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6408 
6409 			/*
6410 			 * now everything is in ctx_pmds[] and we need
6411 			 * to clear the saved context from save_regs() such that
6412 			 * pfm_read_pmds() gets the correct value
6413 			 */
6414 			pmd_val = 0UL;
6415 
6416 			/*
6417 			 * take care of overflow inline
6418 			 */
6419 			if (pmc0 & (1UL << i)) {
6420 				val += 1 + ovfl_val;
6421 				DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6422 			}
6423 		}
6424 
6425 		DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6426 
6427 		if (is_self) ctx->th_pmds[i] = pmd_val;
6428 
6429 		ctx->ctx_pmds[i].val = val;
6430 	}
6431 }
6432 
6433 static struct irqaction perfmon_irqaction = {
6434 	.handler = pfm_interrupt_handler,
6435 	.flags   = IRQF_DISABLED,
6436 	.name    = "perfmon"
6437 };
6438 
6439 static void
pfm_alt_save_pmu_state(void * data)6440 pfm_alt_save_pmu_state(void *data)
6441 {
6442 	struct pt_regs *regs;
6443 
6444 	regs = task_pt_regs(current);
6445 
6446 	DPRINT(("called\n"));
6447 
6448 	/*
6449 	 * should not be necessary but
6450 	 * let's take not risk
6451 	 */
6452 	pfm_clear_psr_up();
6453 	pfm_clear_psr_pp();
6454 	ia64_psr(regs)->pp = 0;
6455 
6456 	/*
6457 	 * This call is required
6458 	 * May cause a spurious interrupt on some processors
6459 	 */
6460 	pfm_freeze_pmu();
6461 
6462 	ia64_srlz_d();
6463 }
6464 
6465 void
pfm_alt_restore_pmu_state(void * data)6466 pfm_alt_restore_pmu_state(void *data)
6467 {
6468 	struct pt_regs *regs;
6469 
6470 	regs = task_pt_regs(current);
6471 
6472 	DPRINT(("called\n"));
6473 
6474 	/*
6475 	 * put PMU back in state expected
6476 	 * by perfmon
6477 	 */
6478 	pfm_clear_psr_up();
6479 	pfm_clear_psr_pp();
6480 	ia64_psr(regs)->pp = 0;
6481 
6482 	/*
6483 	 * perfmon runs with PMU unfrozen at all times
6484 	 */
6485 	pfm_unfreeze_pmu();
6486 
6487 	ia64_srlz_d();
6488 }
6489 
6490 int
pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6491 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6492 {
6493 	int ret, i;
6494 	int reserve_cpu;
6495 
6496 	/* some sanity checks */
6497 	if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6498 
6499 	/* do the easy test first */
6500 	if (pfm_alt_intr_handler) return -EBUSY;
6501 
6502 	/* one at a time in the install or remove, just fail the others */
6503 	if (!spin_trylock(&pfm_alt_install_check)) {
6504 		return -EBUSY;
6505 	}
6506 
6507 	/* reserve our session */
6508 	for_each_online_cpu(reserve_cpu) {
6509 		ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6510 		if (ret) goto cleanup_reserve;
6511 	}
6512 
6513 	/* save the current system wide pmu states */
6514 	ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6515 	if (ret) {
6516 		DPRINT(("on_each_cpu() failed: %d\n", ret));
6517 		goto cleanup_reserve;
6518 	}
6519 
6520 	/* officially change to the alternate interrupt handler */
6521 	pfm_alt_intr_handler = hdl;
6522 
6523 	spin_unlock(&pfm_alt_install_check);
6524 
6525 	return 0;
6526 
6527 cleanup_reserve:
6528 	for_each_online_cpu(i) {
6529 		/* don't unreserve more than we reserved */
6530 		if (i >= reserve_cpu) break;
6531 
6532 		pfm_unreserve_session(NULL, 1, i);
6533 	}
6534 
6535 	spin_unlock(&pfm_alt_install_check);
6536 
6537 	return ret;
6538 }
6539 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6540 
6541 int
pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6542 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6543 {
6544 	int i;
6545 	int ret;
6546 
6547 	if (hdl == NULL) return -EINVAL;
6548 
6549 	/* cannot remove someone else's handler! */
6550 	if (pfm_alt_intr_handler != hdl) return -EINVAL;
6551 
6552 	/* one at a time in the install or remove, just fail the others */
6553 	if (!spin_trylock(&pfm_alt_install_check)) {
6554 		return -EBUSY;
6555 	}
6556 
6557 	pfm_alt_intr_handler = NULL;
6558 
6559 	ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6560 	if (ret) {
6561 		DPRINT(("on_each_cpu() failed: %d\n", ret));
6562 	}
6563 
6564 	for_each_online_cpu(i) {
6565 		pfm_unreserve_session(NULL, 1, i);
6566 	}
6567 
6568 	spin_unlock(&pfm_alt_install_check);
6569 
6570 	return 0;
6571 }
6572 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6573 
6574 /*
6575  * perfmon initialization routine, called from the initcall() table
6576  */
6577 static int init_pfm_fs(void);
6578 
6579 static int __init
pfm_probe_pmu(void)6580 pfm_probe_pmu(void)
6581 {
6582 	pmu_config_t **p;
6583 	int family;
6584 
6585 	family = local_cpu_data->family;
6586 	p      = pmu_confs;
6587 
6588 	while(*p) {
6589 		if ((*p)->probe) {
6590 			if ((*p)->probe() == 0) goto found;
6591 		} else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6592 			goto found;
6593 		}
6594 		p++;
6595 	}
6596 	return -1;
6597 found:
6598 	pmu_conf = *p;
6599 	return 0;
6600 }
6601 
6602 static const struct file_operations pfm_proc_fops = {
6603 	.open		= pfm_proc_open,
6604 	.read		= seq_read,
6605 	.llseek		= seq_lseek,
6606 	.release	= seq_release,
6607 };
6608 
6609 int __init
pfm_init(void)6610 pfm_init(void)
6611 {
6612 	unsigned int n, n_counters, i;
6613 
6614 	printk("perfmon: version %u.%u IRQ %u\n",
6615 		PFM_VERSION_MAJ,
6616 		PFM_VERSION_MIN,
6617 		IA64_PERFMON_VECTOR);
6618 
6619 	if (pfm_probe_pmu()) {
6620 		printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6621 				local_cpu_data->family);
6622 		return -ENODEV;
6623 	}
6624 
6625 	/*
6626 	 * compute the number of implemented PMD/PMC from the
6627 	 * description tables
6628 	 */
6629 	n = 0;
6630 	for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6631 		if (PMC_IS_IMPL(i) == 0) continue;
6632 		pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6633 		n++;
6634 	}
6635 	pmu_conf->num_pmcs = n;
6636 
6637 	n = 0; n_counters = 0;
6638 	for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6639 		if (PMD_IS_IMPL(i) == 0) continue;
6640 		pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6641 		n++;
6642 		if (PMD_IS_COUNTING(i)) n_counters++;
6643 	}
6644 	pmu_conf->num_pmds      = n;
6645 	pmu_conf->num_counters  = n_counters;
6646 
6647 	/*
6648 	 * sanity checks on the number of debug registers
6649 	 */
6650 	if (pmu_conf->use_rr_dbregs) {
6651 		if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6652 			printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6653 			pmu_conf = NULL;
6654 			return -1;
6655 		}
6656 		if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6657 			printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6658 			pmu_conf = NULL;
6659 			return -1;
6660 		}
6661 	}
6662 
6663 	printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6664 	       pmu_conf->pmu_name,
6665 	       pmu_conf->num_pmcs,
6666 	       pmu_conf->num_pmds,
6667 	       pmu_conf->num_counters,
6668 	       ffz(pmu_conf->ovfl_val));
6669 
6670 	/* sanity check */
6671 	if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6672 		printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6673 		pmu_conf = NULL;
6674 		return -1;
6675 	}
6676 
6677 	/*
6678 	 * create /proc/perfmon (mostly for debugging purposes)
6679 	 */
6680 	perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6681 	if (perfmon_dir == NULL) {
6682 		printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6683 		pmu_conf = NULL;
6684 		return -1;
6685 	}
6686 
6687 	/*
6688 	 * create /proc/sys/kernel/perfmon (for debugging purposes)
6689 	 */
6690 	pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6691 
6692 	/*
6693 	 * initialize all our spinlocks
6694 	 */
6695 	spin_lock_init(&pfm_sessions.pfs_lock);
6696 	spin_lock_init(&pfm_buffer_fmt_lock);
6697 
6698 	init_pfm_fs();
6699 
6700 	for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6701 
6702 	return 0;
6703 }
6704 
6705 __initcall(pfm_init);
6706 
6707 /*
6708  * this function is called before pfm_init()
6709  */
6710 void
pfm_init_percpu(void)6711 pfm_init_percpu (void)
6712 {
6713 	static int first_time=1;
6714 	/*
6715 	 * make sure no measurement is active
6716 	 * (may inherit programmed PMCs from EFI).
6717 	 */
6718 	pfm_clear_psr_pp();
6719 	pfm_clear_psr_up();
6720 
6721 	/*
6722 	 * we run with the PMU not frozen at all times
6723 	 */
6724 	pfm_unfreeze_pmu();
6725 
6726 	if (first_time) {
6727 		register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6728 		first_time=0;
6729 	}
6730 
6731 	ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6732 	ia64_srlz_d();
6733 }
6734 
6735 /*
6736  * used for debug purposes only
6737  */
6738 void
dump_pmu_state(const char * from)6739 dump_pmu_state(const char *from)
6740 {
6741 	struct task_struct *task;
6742 	struct pt_regs *regs;
6743 	pfm_context_t *ctx;
6744 	unsigned long psr, dcr, info, flags;
6745 	int i, this_cpu;
6746 
6747 	local_irq_save(flags);
6748 
6749 	this_cpu = smp_processor_id();
6750 	regs     = task_pt_regs(current);
6751 	info     = PFM_CPUINFO_GET();
6752 	dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6753 
6754 	if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6755 		local_irq_restore(flags);
6756 		return;
6757 	}
6758 
6759 	printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6760 		this_cpu,
6761 		from,
6762 		task_pid_nr(current),
6763 		regs->cr_iip,
6764 		current->comm);
6765 
6766 	task = GET_PMU_OWNER();
6767 	ctx  = GET_PMU_CTX();
6768 
6769 	printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6770 
6771 	psr = pfm_get_psr();
6772 
6773 	printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6774 		this_cpu,
6775 		ia64_get_pmc(0),
6776 		psr & IA64_PSR_PP ? 1 : 0,
6777 		psr & IA64_PSR_UP ? 1 : 0,
6778 		dcr & IA64_DCR_PP ? 1 : 0,
6779 		info,
6780 		ia64_psr(regs)->up,
6781 		ia64_psr(regs)->pp);
6782 
6783 	ia64_psr(regs)->up = 0;
6784 	ia64_psr(regs)->pp = 0;
6785 
6786 	for (i=1; PMC_IS_LAST(i) == 0; i++) {
6787 		if (PMC_IS_IMPL(i) == 0) continue;
6788 		printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6789 	}
6790 
6791 	for (i=1; PMD_IS_LAST(i) == 0; i++) {
6792 		if (PMD_IS_IMPL(i) == 0) continue;
6793 		printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6794 	}
6795 
6796 	if (ctx) {
6797 		printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6798 				this_cpu,
6799 				ctx->ctx_state,
6800 				ctx->ctx_smpl_vaddr,
6801 				ctx->ctx_smpl_hdr,
6802 				ctx->ctx_msgq_head,
6803 				ctx->ctx_msgq_tail,
6804 				ctx->ctx_saved_psr_up);
6805 	}
6806 	local_irq_restore(flags);
6807 }
6808 
6809 /*
6810  * called from process.c:copy_thread(). task is new child.
6811  */
6812 void
pfm_inherit(struct task_struct * task,struct pt_regs * regs)6813 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6814 {
6815 	struct thread_struct *thread;
6816 
6817 	DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6818 
6819 	thread = &task->thread;
6820 
6821 	/*
6822 	 * cut links inherited from parent (current)
6823 	 */
6824 	thread->pfm_context = NULL;
6825 
6826 	PFM_SET_WORK_PENDING(task, 0);
6827 
6828 	/*
6829 	 * the psr bits are already set properly in copy_threads()
6830 	 */
6831 }
6832 #else  /* !CONFIG_PERFMON */
6833 asmlinkage long
sys_perfmonctl(int fd,int cmd,void * arg,int count)6834 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6835 {
6836 	return -ENOSYS;
6837 }
6838 #endif /* CONFIG_PERFMON */
6839