1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66 struct task_struct *p;
67 remote_function_f func;
68 void *info;
69 int ret;
70 };
71
remote_function(void * data)72 static void remote_function(void *data)
73 {
74 struct remote_function_call *tfc = data;
75 struct task_struct *p = tfc->p;
76
77 if (p) {
78 /* -EAGAIN */
79 if (task_cpu(p) != smp_processor_id())
80 return;
81
82 /*
83 * Now that we're on right CPU with IRQs disabled, we can test
84 * if we hit the right task without races.
85 */
86
87 tfc->ret = -ESRCH; /* No such (running) process */
88 if (p != current)
89 return;
90 }
91
92 tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96 * task_function_call - call a function on the cpu on which a task runs
97 * @p: the task to evaluate
98 * @func: the function to be called
99 * @info: the function call argument
100 *
101 * Calls the function @func when the task is currently running. This might
102 * be on the current CPU, which just calls the function directly. This will
103 * retry due to any failures in smp_call_function_single(), such as if the
104 * task_cpu() goes offline concurrently.
105 *
106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107 */
108 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 struct remote_function_call data = {
112 .p = p,
113 .func = func,
114 .info = info,
115 .ret = -EAGAIN,
116 };
117 int ret;
118
119 for (;;) {
120 ret = smp_call_function_single(task_cpu(p), remote_function,
121 &data, 1);
122 if (!ret)
123 ret = data.ret;
124
125 if (ret != -EAGAIN)
126 break;
127
128 cond_resched();
129 }
130
131 return ret;
132 }
133
134 /**
135 * cpu_function_call - call a function on the cpu
136 * @cpu: target cpu to queue this function
137 * @func: the function to be called
138 * @info: the function call argument
139 *
140 * Calls the function @func on the remote cpu.
141 *
142 * returns: @func return value or -ENXIO when the cpu is offline
143 */
cpu_function_call(int cpu,remote_function_f func,void * info)144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 struct remote_function_call data = {
147 .p = NULL,
148 .func = func,
149 .info = info,
150 .ret = -ENXIO, /* No such CPU */
151 };
152
153 smp_call_function_single(cpu, remote_function, &data, 1);
154
155 return data.ret;
156 }
157
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 struct perf_event_context *ctx)
160 {
161 raw_spin_lock(&cpuctx->ctx.lock);
162 if (ctx)
163 raw_spin_lock(&ctx->lock);
164 }
165
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 struct perf_event_context *ctx)
168 {
169 if (ctx)
170 raw_spin_unlock(&ctx->lock);
171 raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
is_kernel_event(struct perf_event * event)176 static bool is_kernel_event(struct perf_event *event)
177 {
178 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182
perf_cpu_task_ctx(void)183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 lockdep_assert_irqs_disabled();
186 return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188
189 /*
190 * On task ctx scheduling...
191 *
192 * When !ctx->nr_events a task context will not be scheduled. This means
193 * we can disable the scheduler hooks (for performance) without leaving
194 * pending task ctx state.
195 *
196 * This however results in two special cases:
197 *
198 * - removing the last event from a task ctx; this is relatively straight
199 * forward and is done in __perf_remove_from_context.
200 *
201 * - adding the first event to a task ctx; this is tricky because we cannot
202 * rely on ctx->is_active and therefore cannot use event_function_call().
203 * See perf_install_in_context().
204 *
205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206 */
207
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 struct perf_event_context *, void *);
210
211 struct event_function_struct {
212 struct perf_event *event;
213 event_f func;
214 void *data;
215 };
216
event_function(void * info)217 static int event_function(void *info)
218 {
219 struct event_function_struct *efs = info;
220 struct perf_event *event = efs->event;
221 struct perf_event_context *ctx = event->ctx;
222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 int ret = 0;
225
226 lockdep_assert_irqs_disabled();
227
228 perf_ctx_lock(cpuctx, task_ctx);
229 /*
230 * Since we do the IPI call without holding ctx->lock things can have
231 * changed, double check we hit the task we set out to hit.
232 */
233 if (ctx->task) {
234 if (ctx->task != current) {
235 ret = -ESRCH;
236 goto unlock;
237 }
238
239 /*
240 * We only use event_function_call() on established contexts,
241 * and event_function() is only ever called when active (or
242 * rather, we'll have bailed in task_function_call() or the
243 * above ctx->task != current test), therefore we must have
244 * ctx->is_active here.
245 */
246 WARN_ON_ONCE(!ctx->is_active);
247 /*
248 * And since we have ctx->is_active, cpuctx->task_ctx must
249 * match.
250 */
251 WARN_ON_ONCE(task_ctx != ctx);
252 } else {
253 WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 }
255
256 efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 perf_ctx_unlock(cpuctx, task_ctx);
259
260 return ret;
261 }
262
event_function_call(struct perf_event * event,event_f func,void * data)263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 struct perf_event_context *ctx = event->ctx;
266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 struct event_function_struct efs = {
268 .event = event,
269 .func = func,
270 .data = data,
271 };
272
273 if (!event->parent) {
274 /*
275 * If this is a !child event, we must hold ctx::mutex to
276 * stabilize the event->ctx relation. See
277 * perf_event_ctx_lock().
278 */
279 lockdep_assert_held(&ctx->mutex);
280 }
281
282 if (!task) {
283 cpu_function_call(event->cpu, event_function, &efs);
284 return;
285 }
286
287 if (task == TASK_TOMBSTONE)
288 return;
289
290 again:
291 if (!task_function_call(task, event_function, &efs))
292 return;
293
294 raw_spin_lock_irq(&ctx->lock);
295 /*
296 * Reload the task pointer, it might have been changed by
297 * a concurrent perf_event_context_sched_out().
298 */
299 task = ctx->task;
300 if (task == TASK_TOMBSTONE) {
301 raw_spin_unlock_irq(&ctx->lock);
302 return;
303 }
304 if (ctx->is_active) {
305 raw_spin_unlock_irq(&ctx->lock);
306 goto again;
307 }
308 func(event, NULL, ctx, data);
309 raw_spin_unlock_irq(&ctx->lock);
310 }
311
312 /*
313 * Similar to event_function_call() + event_function(), but hard assumes IRQs
314 * are already disabled and we're on the right CPU.
315 */
event_function_local(struct perf_event * event,event_f func,void * data)316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318 struct perf_event_context *ctx = event->ctx;
319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320 struct task_struct *task = READ_ONCE(ctx->task);
321 struct perf_event_context *task_ctx = NULL;
322
323 lockdep_assert_irqs_disabled();
324
325 if (task) {
326 if (task == TASK_TOMBSTONE)
327 return;
328
329 task_ctx = ctx;
330 }
331
332 perf_ctx_lock(cpuctx, task_ctx);
333
334 task = ctx->task;
335 if (task == TASK_TOMBSTONE)
336 goto unlock;
337
338 if (task) {
339 /*
340 * We must be either inactive or active and the right task,
341 * otherwise we're screwed, since we cannot IPI to somewhere
342 * else.
343 */
344 if (ctx->is_active) {
345 if (WARN_ON_ONCE(task != current))
346 goto unlock;
347
348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 goto unlock;
350 }
351 } else {
352 WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 }
354
355 func(event, cpuctx, ctx, data);
356 unlock:
357 perf_ctx_unlock(cpuctx, task_ctx);
358 }
359
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 PERF_FLAG_FD_OUTPUT |\
362 PERF_FLAG_PID_CGROUP |\
363 PERF_FLAG_FD_CLOEXEC)
364
365 /*
366 * branch priv levels that need permission checks
367 */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369 (PERF_SAMPLE_BRANCH_KERNEL |\
370 PERF_SAMPLE_BRANCH_HV)
371
372 enum event_type_t {
373 EVENT_FLEXIBLE = 0x1,
374 EVENT_PINNED = 0x2,
375 EVENT_TIME = 0x4,
376 /* see ctx_resched() for details */
377 EVENT_CPU = 0x8,
378 EVENT_CGROUP = 0x10,
379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381
382 /*
383 * perf_sched_events : >0 events exist
384 */
385
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411
412 /*
413 * perf event paranoia level:
414 * -1 - not paranoid at all
415 * 0 - disallow raw tracepoint access for unpriv
416 * 1 - disallow cpu events for unpriv
417 * 2 - disallow kernel profiling for unpriv
418 */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423
424 /*
425 * max perf event sample rate
426 */
427 #define DEFAULT_MAX_SAMPLE_RATE 100000
428 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
430
431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
432
433 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
435
436 static int perf_sample_allowed_ns __read_mostly =
437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438
update_perf_cpu_limits(void)439 static void update_perf_cpu_limits(void)
440 {
441 u64 tmp = perf_sample_period_ns;
442
443 tmp *= sysctl_perf_cpu_time_max_percent;
444 tmp = div_u64(tmp, 100);
445 if (!tmp)
446 tmp = 1;
447
448 WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452
perf_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)453 int perf_proc_update_handler(struct ctl_table *table, int write,
454 void *buffer, size_t *lenp, loff_t *ppos)
455 {
456 int ret;
457 int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 /*
459 * If throttling is disabled don't allow the write:
460 */
461 if (write && (perf_cpu == 100 || perf_cpu == 0))
462 return -EINVAL;
463
464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 if (ret || !write)
466 return ret;
467
468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 update_perf_cpu_limits();
471
472 return 0;
473 }
474
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478 void *buffer, size_t *lenp, loff_t *ppos)
479 {
480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481
482 if (ret || !write)
483 return ret;
484
485 if (sysctl_perf_cpu_time_max_percent == 100 ||
486 sysctl_perf_cpu_time_max_percent == 0) {
487 printk(KERN_WARNING
488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 WRITE_ONCE(perf_sample_allowed_ns, 0);
490 } else {
491 update_perf_cpu_limits();
492 }
493
494 return 0;
495 }
496
497 /*
498 * perf samples are done in some very critical code paths (NMIs).
499 * If they take too much CPU time, the system can lock up and not
500 * get any real work done. This will drop the sample rate when
501 * we detect that events are taking too long.
502 */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505
506 static u64 __report_avg;
507 static u64 __report_allowed;
508
perf_duration_warn(struct irq_work * w)509 static void perf_duration_warn(struct irq_work *w)
510 {
511 printk_ratelimited(KERN_INFO
512 "perf: interrupt took too long (%lld > %lld), lowering "
513 "kernel.perf_event_max_sample_rate to %d\n",
514 __report_avg, __report_allowed,
515 sysctl_perf_event_sample_rate);
516 }
517
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519
perf_sample_event_took(u64 sample_len_ns)520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 u64 running_len;
524 u64 avg_len;
525 u32 max;
526
527 if (max_len == 0)
528 return;
529
530 /* Decay the counter by 1 average sample. */
531 running_len = __this_cpu_read(running_sample_length);
532 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 running_len += sample_len_ns;
534 __this_cpu_write(running_sample_length, running_len);
535
536 /*
537 * Note: this will be biased artifically low until we have
538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 * from having to maintain a count.
540 */
541 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 if (avg_len <= max_len)
543 return;
544
545 __report_avg = avg_len;
546 __report_allowed = max_len;
547
548 /*
549 * Compute a throttle threshold 25% below the current duration.
550 */
551 avg_len += avg_len / 4;
552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 if (avg_len < max)
554 max /= (u32)avg_len;
555 else
556 max = 1;
557
558 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 WRITE_ONCE(max_samples_per_tick, max);
560
561 sysctl_perf_event_sample_rate = max * HZ;
562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563
564 if (!irq_work_queue(&perf_duration_work)) {
565 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566 "kernel.perf_event_max_sample_rate to %d\n",
567 __report_avg, __report_allowed,
568 sysctl_perf_event_sample_rate);
569 }
570 }
571
572 static atomic64_t perf_event_id;
573
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576
perf_event_print_debug(void)577 void __weak perf_event_print_debug(void) { }
578
perf_clock(void)579 static inline u64 perf_clock(void)
580 {
581 return local_clock();
582 }
583
perf_event_clock(struct perf_event * event)584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 return event->clock();
587 }
588
589 /*
590 * State based event timekeeping...
591 *
592 * The basic idea is to use event->state to determine which (if any) time
593 * fields to increment with the current delta. This means we only need to
594 * update timestamps when we change state or when they are explicitly requested
595 * (read).
596 *
597 * Event groups make things a little more complicated, but not terribly so. The
598 * rules for a group are that if the group leader is OFF the entire group is
599 * OFF, irrespecive of what the group member states are. This results in
600 * __perf_effective_state().
601 *
602 * A futher ramification is that when a group leader flips between OFF and
603 * !OFF, we need to update all group member times.
604 *
605 *
606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607 * need to make sure the relevant context time is updated before we try and
608 * update our timestamps.
609 */
610
611 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)612 __perf_effective_state(struct perf_event *event)
613 {
614 struct perf_event *leader = event->group_leader;
615
616 if (leader->state <= PERF_EVENT_STATE_OFF)
617 return leader->state;
618
619 return event->state;
620 }
621
622 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 enum perf_event_state state = __perf_effective_state(event);
626 u64 delta = now - event->tstamp;
627
628 *enabled = event->total_time_enabled;
629 if (state >= PERF_EVENT_STATE_INACTIVE)
630 *enabled += delta;
631
632 *running = event->total_time_running;
633 if (state >= PERF_EVENT_STATE_ACTIVE)
634 *running += delta;
635 }
636
perf_event_update_time(struct perf_event * event)637 static void perf_event_update_time(struct perf_event *event)
638 {
639 u64 now = perf_event_time(event);
640
641 __perf_update_times(event, now, &event->total_time_enabled,
642 &event->total_time_running);
643 event->tstamp = now;
644 }
645
perf_event_update_sibling_time(struct perf_event * leader)646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 struct perf_event *sibling;
649
650 for_each_sibling_event(sibling, leader)
651 perf_event_update_time(sibling);
652 }
653
654 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 if (event->state == state)
658 return;
659
660 perf_event_update_time(event);
661 /*
662 * If a group leader gets enabled/disabled all its siblings
663 * are affected too.
664 */
665 if ((event->state < 0) ^ (state < 0))
666 perf_event_update_sibling_time(event);
667
668 WRITE_ONCE(event->state, state);
669 }
670
671 /*
672 * UP store-release, load-acquire
673 */
674
675 #define __store_release(ptr, val) \
676 do { \
677 barrier(); \
678 WRITE_ONCE(*(ptr), (val)); \
679 } while (0)
680
681 #define __load_acquire(ptr) \
682 ({ \
683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \
684 barrier(); \
685 ___p; \
686 })
687
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690 struct perf_event_pmu_context *pmu_ctx;
691
692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 if (cgroup && !pmu_ctx->nr_cgroups)
694 continue;
695 perf_pmu_disable(pmu_ctx->pmu);
696 }
697 }
698
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701 struct perf_event_pmu_context *pmu_ctx;
702
703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 if (cgroup && !pmu_ctx->nr_cgroups)
705 continue;
706 perf_pmu_enable(pmu_ctx->pmu);
707 }
708 }
709
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712
713 #ifdef CONFIG_CGROUP_PERF
714
715 static inline bool
perf_cgroup_match(struct perf_event * event)716 perf_cgroup_match(struct perf_event *event)
717 {
718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719
720 /* @event doesn't care about cgroup */
721 if (!event->cgrp)
722 return true;
723
724 /* wants specific cgroup scope but @cpuctx isn't associated with any */
725 if (!cpuctx->cgrp)
726 return false;
727
728 /*
729 * Cgroup scoping is recursive. An event enabled for a cgroup is
730 * also enabled for all its descendant cgroups. If @cpuctx's
731 * cgroup is a descendant of @event's (the test covers identity
732 * case), it's a match.
733 */
734 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 event->cgrp->css.cgroup);
736 }
737
perf_detach_cgroup(struct perf_event * event)738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740 css_put(&event->cgrp->css);
741 event->cgrp = NULL;
742 }
743
is_cgroup_event(struct perf_event * event)744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746 return event->cgrp != NULL;
747 }
748
perf_cgroup_event_time(struct perf_event * event)749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751 struct perf_cgroup_info *t;
752
753 t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 return t->time;
755 }
756
perf_cgroup_event_time_now(struct perf_event * event,u64 now)757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759 struct perf_cgroup_info *t;
760
761 t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 if (!__load_acquire(&t->active))
763 return t->time;
764 now += READ_ONCE(t->timeoffset);
765 return now;
766 }
767
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770 if (adv)
771 info->time += now - info->timestamp;
772 info->timestamp = now;
773 /*
774 * see update_context_time()
775 */
776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781 struct perf_cgroup *cgrp = cpuctx->cgrp;
782 struct cgroup_subsys_state *css;
783 struct perf_cgroup_info *info;
784
785 if (cgrp) {
786 u64 now = perf_clock();
787
788 for (css = &cgrp->css; css; css = css->parent) {
789 cgrp = container_of(css, struct perf_cgroup, css);
790 info = this_cpu_ptr(cgrp->info);
791
792 __update_cgrp_time(info, now, true);
793 if (final)
794 __store_release(&info->active, 0);
795 }
796 }
797 }
798
update_cgrp_time_from_event(struct perf_event * event)799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801 struct perf_cgroup_info *info;
802
803 /*
804 * ensure we access cgroup data only when needed and
805 * when we know the cgroup is pinned (css_get)
806 */
807 if (!is_cgroup_event(event))
808 return;
809
810 info = this_cpu_ptr(event->cgrp->info);
811 /*
812 * Do not update time when cgroup is not active
813 */
814 if (info->active)
815 __update_cgrp_time(info, perf_clock(), true);
816 }
817
818 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821 struct perf_event_context *ctx = &cpuctx->ctx;
822 struct perf_cgroup *cgrp = cpuctx->cgrp;
823 struct perf_cgroup_info *info;
824 struct cgroup_subsys_state *css;
825
826 /*
827 * ctx->lock held by caller
828 * ensure we do not access cgroup data
829 * unless we have the cgroup pinned (css_get)
830 */
831 if (!cgrp)
832 return;
833
834 WARN_ON_ONCE(!ctx->nr_cgroups);
835
836 for (css = &cgrp->css; css; css = css->parent) {
837 cgrp = container_of(css, struct perf_cgroup, css);
838 info = this_cpu_ptr(cgrp->info);
839 __update_cgrp_time(info, ctx->timestamp, false);
840 __store_release(&info->active, 1);
841 }
842 }
843
844 /*
845 * reschedule events based on the cgroup constraint of task.
846 */
perf_cgroup_switch(struct task_struct * task)847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850 struct perf_cgroup *cgrp;
851
852 /*
853 * cpuctx->cgrp is set when the first cgroup event enabled,
854 * and is cleared when the last cgroup event disabled.
855 */
856 if (READ_ONCE(cpuctx->cgrp) == NULL)
857 return;
858
859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860
861 cgrp = perf_cgroup_from_task(task, NULL);
862 if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 return;
864
865 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866 perf_ctx_disable(&cpuctx->ctx, true);
867
868 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869 /*
870 * must not be done before ctxswout due
871 * to update_cgrp_time_from_cpuctx() in
872 * ctx_sched_out()
873 */
874 cpuctx->cgrp = cgrp;
875 /*
876 * set cgrp before ctxsw in to allow
877 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 * to not have to pass task around
879 */
880 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881
882 perf_ctx_enable(&cpuctx->ctx, true);
883 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887 struct cgroup_subsys_state *css)
888 {
889 struct perf_cpu_context *cpuctx;
890 struct perf_event **storage;
891 int cpu, heap_size, ret = 0;
892
893 /*
894 * Allow storage to have sufficent space for an iterator for each
895 * possibly nested cgroup plus an iterator for events with no cgroup.
896 */
897 for (heap_size = 1; css; css = css->parent)
898 heap_size++;
899
900 for_each_possible_cpu(cpu) {
901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902 if (heap_size <= cpuctx->heap_size)
903 continue;
904
905 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 GFP_KERNEL, cpu_to_node(cpu));
907 if (!storage) {
908 ret = -ENOMEM;
909 break;
910 }
911
912 raw_spin_lock_irq(&cpuctx->ctx.lock);
913 if (cpuctx->heap_size < heap_size) {
914 swap(cpuctx->heap, storage);
915 if (storage == cpuctx->heap_default)
916 storage = NULL;
917 cpuctx->heap_size = heap_size;
918 }
919 raw_spin_unlock_irq(&cpuctx->ctx.lock);
920
921 kfree(storage);
922 }
923
924 return ret;
925 }
926
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 struct perf_event_attr *attr,
929 struct perf_event *group_leader)
930 {
931 struct perf_cgroup *cgrp;
932 struct cgroup_subsys_state *css;
933 struct fd f = fdget(fd);
934 int ret = 0;
935
936 if (!f.file)
937 return -EBADF;
938
939 css = css_tryget_online_from_dir(f.file->f_path.dentry,
940 &perf_event_cgrp_subsys);
941 if (IS_ERR(css)) {
942 ret = PTR_ERR(css);
943 goto out;
944 }
945
946 ret = perf_cgroup_ensure_storage(event, css);
947 if (ret)
948 goto out;
949
950 cgrp = container_of(css, struct perf_cgroup, css);
951 event->cgrp = cgrp;
952
953 /*
954 * all events in a group must monitor
955 * the same cgroup because a task belongs
956 * to only one perf cgroup at a time
957 */
958 if (group_leader && group_leader->cgrp != cgrp) {
959 perf_detach_cgroup(event);
960 ret = -EINVAL;
961 }
962 out:
963 fdput(f);
964 return ret;
965 }
966
967 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970 struct perf_cpu_context *cpuctx;
971
972 if (!is_cgroup_event(event))
973 return;
974
975 event->pmu_ctx->nr_cgroups++;
976
977 /*
978 * Because cgroup events are always per-cpu events,
979 * @ctx == &cpuctx->ctx.
980 */
981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982
983 if (ctx->nr_cgroups++)
984 return;
985
986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988
989 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992 struct perf_cpu_context *cpuctx;
993
994 if (!is_cgroup_event(event))
995 return;
996
997 event->pmu_ctx->nr_cgroups--;
998
999 /*
1000 * Because cgroup events are always per-cpu events,
1001 * @ctx == &cpuctx->ctx.
1002 */
1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004
1005 if (--ctx->nr_cgroups)
1006 return;
1007
1008 cpuctx->cgrp = NULL;
1009 }
1010
1011 #else /* !CONFIG_CGROUP_PERF */
1012
1013 static inline bool
perf_cgroup_match(struct perf_event * event)1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016 return true;
1017 }
1018
perf_detach_cgroup(struct perf_event * event)1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021
is_cgroup_event(struct perf_event * event)1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024 return 0;
1025 }
1026
update_cgrp_time_from_event(struct perf_event * event)1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 bool final)
1033 {
1034 }
1035
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 struct perf_event_attr *attr,
1038 struct perf_event *group_leader)
1039 {
1040 return -EINVAL;
1041 }
1042
1043 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047
perf_cgroup_event_time(struct perf_event * event)1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050 return 0;
1051 }
1052
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055 return 0;
1056 }
1057
1058 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062
1063 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067
perf_cgroup_switch(struct task_struct * task)1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072
1073 /*
1074 * set default to be dependent on timer tick just
1075 * like original code
1076 */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079 * function must be called with interrupts disabled
1080 */
perf_mux_hrtimer_handler(struct hrtimer * hr)1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083 struct perf_cpu_pmu_context *cpc;
1084 bool rotations;
1085
1086 lockdep_assert_irqs_disabled();
1087
1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 rotations = perf_rotate_context(cpc);
1090
1091 raw_spin_lock(&cpc->hrtimer_lock);
1092 if (rotations)
1093 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094 else
1095 cpc->hrtimer_active = 0;
1096 raw_spin_unlock(&cpc->hrtimer_lock);
1097
1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103 struct hrtimer *timer = &cpc->hrtimer;
1104 struct pmu *pmu = cpc->epc.pmu;
1105 u64 interval;
1106
1107 /*
1108 * check default is sane, if not set then force to
1109 * default interval (1/tick)
1110 */
1111 interval = pmu->hrtimer_interval_ms;
1112 if (interval < 1)
1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114
1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116
1117 raw_spin_lock_init(&cpc->hrtimer_lock);
1118 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119 timer->function = perf_mux_hrtimer_handler;
1120 }
1121
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124 struct hrtimer *timer = &cpc->hrtimer;
1125 unsigned long flags;
1126
1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 if (!cpc->hrtimer_active) {
1129 cpc->hrtimer_active = 1;
1130 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132 }
1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134
1135 return 0;
1136 }
1137
perf_mux_hrtimer_restart_ipi(void * arg)1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140 return perf_mux_hrtimer_restart(arg);
1141 }
1142
perf_pmu_disable(struct pmu * pmu)1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 if (!(*count)++)
1147 pmu->pmu_disable(pmu);
1148 }
1149
perf_pmu_enable(struct pmu * pmu)1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 if (!--(*count))
1154 pmu->pmu_enable(pmu);
1155 }
1156
perf_assert_pmu_disabled(struct pmu * pmu)1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161
get_ctx(struct perf_event_context * ctx)1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164 refcount_inc(&ctx->refcount);
1165 }
1166
alloc_task_ctx_data(struct pmu * pmu)1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169 if (pmu->task_ctx_cache)
1170 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171
1172 return NULL;
1173 }
1174
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177 if (pmu->task_ctx_cache && task_ctx_data)
1178 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180
free_ctx(struct rcu_head * head)1181 static void free_ctx(struct rcu_head *head)
1182 {
1183 struct perf_event_context *ctx;
1184
1185 ctx = container_of(head, struct perf_event_context, rcu_head);
1186 kfree(ctx);
1187 }
1188
put_ctx(struct perf_event_context * ctx)1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191 if (refcount_dec_and_test(&ctx->refcount)) {
1192 if (ctx->parent_ctx)
1193 put_ctx(ctx->parent_ctx);
1194 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195 put_task_struct(ctx->task);
1196 call_rcu(&ctx->rcu_head, free_ctx);
1197 }
1198 }
1199
1200 /*
1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202 * perf_pmu_migrate_context() we need some magic.
1203 *
1204 * Those places that change perf_event::ctx will hold both
1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206 *
1207 * Lock ordering is by mutex address. There are two other sites where
1208 * perf_event_context::mutex nests and those are:
1209 *
1210 * - perf_event_exit_task_context() [ child , 0 ]
1211 * perf_event_exit_event()
1212 * put_event() [ parent, 1 ]
1213 *
1214 * - perf_event_init_context() [ parent, 0 ]
1215 * inherit_task_group()
1216 * inherit_group()
1217 * inherit_event()
1218 * perf_event_alloc()
1219 * perf_init_event()
1220 * perf_try_init_event() [ child , 1 ]
1221 *
1222 * While it appears there is an obvious deadlock here -- the parent and child
1223 * nesting levels are inverted between the two. This is in fact safe because
1224 * life-time rules separate them. That is an exiting task cannot fork, and a
1225 * spawning task cannot (yet) exit.
1226 *
1227 * But remember that these are parent<->child context relations, and
1228 * migration does not affect children, therefore these two orderings should not
1229 * interact.
1230 *
1231 * The change in perf_event::ctx does not affect children (as claimed above)
1232 * because the sys_perf_event_open() case will install a new event and break
1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234 * concerned with cpuctx and that doesn't have children.
1235 *
1236 * The places that change perf_event::ctx will issue:
1237 *
1238 * perf_remove_from_context();
1239 * synchronize_rcu();
1240 * perf_install_in_context();
1241 *
1242 * to affect the change. The remove_from_context() + synchronize_rcu() should
1243 * quiesce the event, after which we can install it in the new location. This
1244 * means that only external vectors (perf_fops, prctl) can perturb the event
1245 * while in transit. Therefore all such accessors should also acquire
1246 * perf_event_context::mutex to serialize against this.
1247 *
1248 * However; because event->ctx can change while we're waiting to acquire
1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250 * function.
1251 *
1252 * Lock order:
1253 * exec_update_lock
1254 * task_struct::perf_event_mutex
1255 * perf_event_context::mutex
1256 * perf_event::child_mutex;
1257 * perf_event_context::lock
1258 * perf_event::mmap_mutex
1259 * mmap_lock
1260 * perf_addr_filters_head::lock
1261 *
1262 * cpu_hotplug_lock
1263 * pmus_lock
1264 * cpuctx->mutex / perf_event_context::mutex
1265 */
1266 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269 struct perf_event_context *ctx;
1270
1271 again:
1272 rcu_read_lock();
1273 ctx = READ_ONCE(event->ctx);
1274 if (!refcount_inc_not_zero(&ctx->refcount)) {
1275 rcu_read_unlock();
1276 goto again;
1277 }
1278 rcu_read_unlock();
1279
1280 mutex_lock_nested(&ctx->mutex, nesting);
1281 if (event->ctx != ctx) {
1282 mutex_unlock(&ctx->mutex);
1283 put_ctx(ctx);
1284 goto again;
1285 }
1286
1287 return ctx;
1288 }
1289
1290 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293 return perf_event_ctx_lock_nested(event, 0);
1294 }
1295
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297 struct perf_event_context *ctx)
1298 {
1299 mutex_unlock(&ctx->mutex);
1300 put_ctx(ctx);
1301 }
1302
1303 /*
1304 * This must be done under the ctx->lock, such as to serialize against
1305 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306 * calling scheduler related locks and ctx->lock nests inside those.
1307 */
1308 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312
1313 lockdep_assert_held(&ctx->lock);
1314
1315 if (parent_ctx)
1316 ctx->parent_ctx = NULL;
1317 ctx->generation++;
1318
1319 return parent_ctx;
1320 }
1321
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 enum pid_type type)
1324 {
1325 u32 nr;
1326 /*
1327 * only top level events have the pid namespace they were created in
1328 */
1329 if (event->parent)
1330 event = event->parent;
1331
1332 nr = __task_pid_nr_ns(p, type, event->ns);
1333 /* avoid -1 if it is idle thread or runs in another ns */
1334 if (!nr && !pid_alive(p))
1335 nr = -1;
1336 return nr;
1337 }
1338
perf_event_pid(struct perf_event * event,struct task_struct * p)1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343
perf_event_tid(struct perf_event * event,struct task_struct * p)1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346 return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348
1349 /*
1350 * If we inherit events we want to return the parent event id
1351 * to userspace.
1352 */
primary_event_id(struct perf_event * event)1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355 u64 id = event->id;
1356
1357 if (event->parent)
1358 id = event->parent->id;
1359
1360 return id;
1361 }
1362
1363 /*
1364 * Get the perf_event_context for a task and lock it.
1365 *
1366 * This has to cope with the fact that until it is locked,
1367 * the context could get moved to another task.
1368 */
1369 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372 struct perf_event_context *ctx;
1373
1374 retry:
1375 /*
1376 * One of the few rules of preemptible RCU is that one cannot do
1377 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378 * part of the read side critical section was irqs-enabled -- see
1379 * rcu_read_unlock_special().
1380 *
1381 * Since ctx->lock nests under rq->lock we must ensure the entire read
1382 * side critical section has interrupts disabled.
1383 */
1384 local_irq_save(*flags);
1385 rcu_read_lock();
1386 ctx = rcu_dereference(task->perf_event_ctxp);
1387 if (ctx) {
1388 /*
1389 * If this context is a clone of another, it might
1390 * get swapped for another underneath us by
1391 * perf_event_task_sched_out, though the
1392 * rcu_read_lock() protects us from any context
1393 * getting freed. Lock the context and check if it
1394 * got swapped before we could get the lock, and retry
1395 * if so. If we locked the right context, then it
1396 * can't get swapped on us any more.
1397 */
1398 raw_spin_lock(&ctx->lock);
1399 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400 raw_spin_unlock(&ctx->lock);
1401 rcu_read_unlock();
1402 local_irq_restore(*flags);
1403 goto retry;
1404 }
1405
1406 if (ctx->task == TASK_TOMBSTONE ||
1407 !refcount_inc_not_zero(&ctx->refcount)) {
1408 raw_spin_unlock(&ctx->lock);
1409 ctx = NULL;
1410 } else {
1411 WARN_ON_ONCE(ctx->task != task);
1412 }
1413 }
1414 rcu_read_unlock();
1415 if (!ctx)
1416 local_irq_restore(*flags);
1417 return ctx;
1418 }
1419
1420 /*
1421 * Get the context for a task and increment its pin_count so it
1422 * can't get swapped to another task. This also increments its
1423 * reference count so that the context can't get freed.
1424 */
1425 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428 struct perf_event_context *ctx;
1429 unsigned long flags;
1430
1431 ctx = perf_lock_task_context(task, &flags);
1432 if (ctx) {
1433 ++ctx->pin_count;
1434 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435 }
1436 return ctx;
1437 }
1438
perf_unpin_context(struct perf_event_context * ctx)1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441 unsigned long flags;
1442
1443 raw_spin_lock_irqsave(&ctx->lock, flags);
1444 --ctx->pin_count;
1445 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447
1448 /*
1449 * Update the record of the current time in a context.
1450 */
__update_context_time(struct perf_event_context * ctx,bool adv)1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453 u64 now = perf_clock();
1454
1455 lockdep_assert_held(&ctx->lock);
1456
1457 if (adv)
1458 ctx->time += now - ctx->timestamp;
1459 ctx->timestamp = now;
1460
1461 /*
1462 * The above: time' = time + (now - timestamp), can be re-arranged
1463 * into: time` = now + (time - timestamp), which gives a single value
1464 * offset to compute future time without locks on.
1465 *
1466 * See perf_event_time_now(), which can be used from NMI context where
1467 * it's (obviously) not possible to acquire ctx->lock in order to read
1468 * both the above values in a consistent manner.
1469 */
1470 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472
update_context_time(struct perf_event_context * ctx)1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475 __update_context_time(ctx, true);
1476 }
1477
perf_event_time(struct perf_event * event)1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480 struct perf_event_context *ctx = event->ctx;
1481
1482 if (unlikely(!ctx))
1483 return 0;
1484
1485 if (is_cgroup_event(event))
1486 return perf_cgroup_event_time(event);
1487
1488 return ctx->time;
1489 }
1490
perf_event_time_now(struct perf_event * event,u64 now)1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493 struct perf_event_context *ctx = event->ctx;
1494
1495 if (unlikely(!ctx))
1496 return 0;
1497
1498 if (is_cgroup_event(event))
1499 return perf_cgroup_event_time_now(event, now);
1500
1501 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502 return ctx->time;
1503
1504 now += READ_ONCE(ctx->timeoffset);
1505 return now;
1506 }
1507
get_event_type(struct perf_event * event)1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510 struct perf_event_context *ctx = event->ctx;
1511 enum event_type_t event_type;
1512
1513 lockdep_assert_held(&ctx->lock);
1514
1515 /*
1516 * It's 'group type', really, because if our group leader is
1517 * pinned, so are we.
1518 */
1519 if (event->group_leader != event)
1520 event = event->group_leader;
1521
1522 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523 if (!ctx->task)
1524 event_type |= EVENT_CPU;
1525
1526 return event_type;
1527 }
1528
1529 /*
1530 * Helper function to initialize event group nodes.
1531 */
init_event_group(struct perf_event * event)1532 static void init_event_group(struct perf_event *event)
1533 {
1534 RB_CLEAR_NODE(&event->group_node);
1535 event->group_index = 0;
1536 }
1537
1538 /*
1539 * Extract pinned or flexible groups from the context
1540 * based on event attrs bits.
1541 */
1542 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545 if (event->attr.pinned)
1546 return &ctx->pinned_groups;
1547 else
1548 return &ctx->flexible_groups;
1549 }
1550
1551 /*
1552 * Helper function to initializes perf_event_group trees.
1553 */
perf_event_groups_init(struct perf_event_groups * groups)1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556 groups->tree = RB_ROOT;
1557 groups->index = 0;
1558 }
1559
event_cgroup(const struct perf_event * event)1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562 struct cgroup *cgroup = NULL;
1563
1564 #ifdef CONFIG_CGROUP_PERF
1565 if (event->cgrp)
1566 cgroup = event->cgrp->css.cgroup;
1567 #endif
1568
1569 return cgroup;
1570 }
1571
1572 /*
1573 * Compare function for event groups;
1574 *
1575 * Implements complex key that first sorts by CPU and then by virtual index
1576 * which provides ordering when rotating groups for the same CPU.
1577 */
1578 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580 const struct cgroup *left_cgroup, const u64 left_group_index,
1581 const struct perf_event *right)
1582 {
1583 if (left_cpu < right->cpu)
1584 return -1;
1585 if (left_cpu > right->cpu)
1586 return 1;
1587
1588 if (left_pmu) {
1589 if (left_pmu < right->pmu_ctx->pmu)
1590 return -1;
1591 if (left_pmu > right->pmu_ctx->pmu)
1592 return 1;
1593 }
1594
1595 #ifdef CONFIG_CGROUP_PERF
1596 {
1597 const struct cgroup *right_cgroup = event_cgroup(right);
1598
1599 if (left_cgroup != right_cgroup) {
1600 if (!left_cgroup) {
1601 /*
1602 * Left has no cgroup but right does, no
1603 * cgroups come first.
1604 */
1605 return -1;
1606 }
1607 if (!right_cgroup) {
1608 /*
1609 * Right has no cgroup but left does, no
1610 * cgroups come first.
1611 */
1612 return 1;
1613 }
1614 /* Two dissimilar cgroups, order by id. */
1615 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616 return -1;
1617
1618 return 1;
1619 }
1620 }
1621 #endif
1622
1623 if (left_group_index < right->group_index)
1624 return -1;
1625 if (left_group_index > right->group_index)
1626 return 1;
1627
1628 return 0;
1629 }
1630
1631 #define __node_2_pe(node) \
1632 rb_entry((node), struct perf_event, group_node)
1633
__group_less(struct rb_node * a,const struct rb_node * b)1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636 struct perf_event *e = __node_2_pe(a);
1637 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638 e->group_index, __node_2_pe(b)) < 0;
1639 }
1640
1641 struct __group_key {
1642 int cpu;
1643 struct pmu *pmu;
1644 struct cgroup *cgroup;
1645 };
1646
__group_cmp(const void * key,const struct rb_node * node)1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649 const struct __group_key *a = key;
1650 const struct perf_event *b = __node_2_pe(node);
1651
1652 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655
1656 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659 const struct __group_key *a = key;
1660 const struct perf_event *b = __node_2_pe(node);
1661
1662 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664 b->group_index, b);
1665 }
1666
1667 /*
1668 * Insert @event into @groups' tree; using
1669 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670 * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671 */
1672 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674 struct perf_event *event)
1675 {
1676 event->group_index = ++groups->index;
1677
1678 rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680
1681 /*
1682 * Helper function to insert event into the pinned or flexible groups.
1683 */
1684 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687 struct perf_event_groups *groups;
1688
1689 groups = get_event_groups(event, ctx);
1690 perf_event_groups_insert(groups, event);
1691 }
1692
1693 /*
1694 * Delete a group from a tree.
1695 */
1696 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698 struct perf_event *event)
1699 {
1700 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701 RB_EMPTY_ROOT(&groups->tree));
1702
1703 rb_erase(&event->group_node, &groups->tree);
1704 init_event_group(event);
1705 }
1706
1707 /*
1708 * Helper function to delete event from its groups.
1709 */
1710 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713 struct perf_event_groups *groups;
1714
1715 groups = get_event_groups(event, ctx);
1716 perf_event_groups_delete(groups, event);
1717 }
1718
1719 /*
1720 * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721 */
1722 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724 struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726 struct __group_key key = {
1727 .cpu = cpu,
1728 .pmu = pmu,
1729 .cgroup = cgrp,
1730 };
1731 struct rb_node *node;
1732
1733 node = rb_find_first(&key, &groups->tree, __group_cmp);
1734 if (node)
1735 return __node_2_pe(node);
1736
1737 return NULL;
1738 }
1739
1740 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743 struct __group_key key = {
1744 .cpu = event->cpu,
1745 .pmu = pmu,
1746 .cgroup = event_cgroup(event),
1747 };
1748 struct rb_node *next;
1749
1750 next = rb_next_match(&key, &event->group_node, __group_cmp);
1751 if (next)
1752 return __node_2_pe(next);
1753
1754 return NULL;
1755 }
1756
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \
1758 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \
1759 event; event = perf_event_groups_next(event, pmu))
1760
1761 /*
1762 * Iterate through the whole groups tree.
1763 */
1764 #define perf_event_groups_for_each(event, groups) \
1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1766 typeof(*event), group_node); event; \
1767 event = rb_entry_safe(rb_next(&event->group_node), \
1768 typeof(*event), group_node))
1769
1770 /*
1771 * Add an event from the lists for its context.
1772 * Must be called with ctx->mutex and ctx->lock held.
1773 */
1774 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777 lockdep_assert_held(&ctx->lock);
1778
1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 event->attach_state |= PERF_ATTACH_CONTEXT;
1781
1782 event->tstamp = perf_event_time(event);
1783
1784 /*
1785 * If we're a stand alone event or group leader, we go to the context
1786 * list, group events are kept attached to the group so that
1787 * perf_group_detach can, at all times, locate all siblings.
1788 */
1789 if (event->group_leader == event) {
1790 event->group_caps = event->event_caps;
1791 add_event_to_groups(event, ctx);
1792 }
1793
1794 list_add_rcu(&event->event_entry, &ctx->event_list);
1795 ctx->nr_events++;
1796 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797 ctx->nr_user++;
1798 if (event->attr.inherit_stat)
1799 ctx->nr_stat++;
1800
1801 if (event->state > PERF_EVENT_STATE_OFF)
1802 perf_cgroup_event_enable(event, ctx);
1803
1804 ctx->generation++;
1805 event->pmu_ctx->nr_events++;
1806 }
1807
1808 /*
1809 * Initialize event state based on the perf_event_attr::disabled.
1810 */
perf_event__state_init(struct perf_event * event)1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814 PERF_EVENT_STATE_INACTIVE;
1815 }
1816
__perf_event_read_size(u64 read_format,int nr_siblings)1817 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1818 {
1819 int entry = sizeof(u64); /* value */
1820 int size = 0;
1821 int nr = 1;
1822
1823 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824 size += sizeof(u64);
1825
1826 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827 size += sizeof(u64);
1828
1829 if (read_format & PERF_FORMAT_ID)
1830 entry += sizeof(u64);
1831
1832 if (read_format & PERF_FORMAT_LOST)
1833 entry += sizeof(u64);
1834
1835 if (read_format & PERF_FORMAT_GROUP) {
1836 nr += nr_siblings;
1837 size += sizeof(u64);
1838 }
1839
1840 /*
1841 * Since perf_event_validate_size() limits this to 16k and inhibits
1842 * adding more siblings, this will never overflow.
1843 */
1844 return size + nr * entry;
1845 }
1846
__perf_event_header_size(struct perf_event * event,u64 sample_type)1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1848 {
1849 struct perf_sample_data *data;
1850 u16 size = 0;
1851
1852 if (sample_type & PERF_SAMPLE_IP)
1853 size += sizeof(data->ip);
1854
1855 if (sample_type & PERF_SAMPLE_ADDR)
1856 size += sizeof(data->addr);
1857
1858 if (sample_type & PERF_SAMPLE_PERIOD)
1859 size += sizeof(data->period);
1860
1861 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1862 size += sizeof(data->weight.full);
1863
1864 if (sample_type & PERF_SAMPLE_READ)
1865 size += event->read_size;
1866
1867 if (sample_type & PERF_SAMPLE_DATA_SRC)
1868 size += sizeof(data->data_src.val);
1869
1870 if (sample_type & PERF_SAMPLE_TRANSACTION)
1871 size += sizeof(data->txn);
1872
1873 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1874 size += sizeof(data->phys_addr);
1875
1876 if (sample_type & PERF_SAMPLE_CGROUP)
1877 size += sizeof(data->cgroup);
1878
1879 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1880 size += sizeof(data->data_page_size);
1881
1882 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1883 size += sizeof(data->code_page_size);
1884
1885 event->header_size = size;
1886 }
1887
1888 /*
1889 * Called at perf_event creation and when events are attached/detached from a
1890 * group.
1891 */
perf_event__header_size(struct perf_event * event)1892 static void perf_event__header_size(struct perf_event *event)
1893 {
1894 event->read_size =
1895 __perf_event_read_size(event->attr.read_format,
1896 event->group_leader->nr_siblings);
1897 __perf_event_header_size(event, event->attr.sample_type);
1898 }
1899
perf_event__id_header_size(struct perf_event * event)1900 static void perf_event__id_header_size(struct perf_event *event)
1901 {
1902 struct perf_sample_data *data;
1903 u64 sample_type = event->attr.sample_type;
1904 u16 size = 0;
1905
1906 if (sample_type & PERF_SAMPLE_TID)
1907 size += sizeof(data->tid_entry);
1908
1909 if (sample_type & PERF_SAMPLE_TIME)
1910 size += sizeof(data->time);
1911
1912 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1913 size += sizeof(data->id);
1914
1915 if (sample_type & PERF_SAMPLE_ID)
1916 size += sizeof(data->id);
1917
1918 if (sample_type & PERF_SAMPLE_STREAM_ID)
1919 size += sizeof(data->stream_id);
1920
1921 if (sample_type & PERF_SAMPLE_CPU)
1922 size += sizeof(data->cpu_entry);
1923
1924 event->id_header_size = size;
1925 }
1926
1927 /*
1928 * Check that adding an event to the group does not result in anybody
1929 * overflowing the 64k event limit imposed by the output buffer.
1930 *
1931 * Specifically, check that the read_size for the event does not exceed 16k,
1932 * read_size being the one term that grows with groups size. Since read_size
1933 * depends on per-event read_format, also (re)check the existing events.
1934 *
1935 * This leaves 48k for the constant size fields and things like callchains,
1936 * branch stacks and register sets.
1937 */
perf_event_validate_size(struct perf_event * event)1938 static bool perf_event_validate_size(struct perf_event *event)
1939 {
1940 struct perf_event *sibling, *group_leader = event->group_leader;
1941
1942 if (__perf_event_read_size(event->attr.read_format,
1943 group_leader->nr_siblings + 1) > 16*1024)
1944 return false;
1945
1946 if (__perf_event_read_size(group_leader->attr.read_format,
1947 group_leader->nr_siblings + 1) > 16*1024)
1948 return false;
1949
1950 /*
1951 * When creating a new group leader, group_leader->ctx is initialized
1952 * after the size has been validated, but we cannot safely use
1953 * for_each_sibling_event() until group_leader->ctx is set. A new group
1954 * leader cannot have any siblings yet, so we can safely skip checking
1955 * the non-existent siblings.
1956 */
1957 if (event == group_leader)
1958 return true;
1959
1960 for_each_sibling_event(sibling, group_leader) {
1961 if (__perf_event_read_size(sibling->attr.read_format,
1962 group_leader->nr_siblings + 1) > 16*1024)
1963 return false;
1964 }
1965
1966 return true;
1967 }
1968
perf_group_attach(struct perf_event * event)1969 static void perf_group_attach(struct perf_event *event)
1970 {
1971 struct perf_event *group_leader = event->group_leader, *pos;
1972
1973 lockdep_assert_held(&event->ctx->lock);
1974
1975 /*
1976 * We can have double attach due to group movement (move_group) in
1977 * perf_event_open().
1978 */
1979 if (event->attach_state & PERF_ATTACH_GROUP)
1980 return;
1981
1982 event->attach_state |= PERF_ATTACH_GROUP;
1983
1984 if (group_leader == event)
1985 return;
1986
1987 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1988
1989 group_leader->group_caps &= event->event_caps;
1990
1991 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1992 group_leader->nr_siblings++;
1993 group_leader->group_generation++;
1994
1995 perf_event__header_size(group_leader);
1996
1997 for_each_sibling_event(pos, group_leader)
1998 perf_event__header_size(pos);
1999 }
2000
2001 /*
2002 * Remove an event from the lists for its context.
2003 * Must be called with ctx->mutex and ctx->lock held.
2004 */
2005 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2007 {
2008 WARN_ON_ONCE(event->ctx != ctx);
2009 lockdep_assert_held(&ctx->lock);
2010
2011 /*
2012 * We can have double detach due to exit/hot-unplug + close.
2013 */
2014 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2015 return;
2016
2017 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2018
2019 ctx->nr_events--;
2020 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2021 ctx->nr_user--;
2022 if (event->attr.inherit_stat)
2023 ctx->nr_stat--;
2024
2025 list_del_rcu(&event->event_entry);
2026
2027 if (event->group_leader == event)
2028 del_event_from_groups(event, ctx);
2029
2030 /*
2031 * If event was in error state, then keep it
2032 * that way, otherwise bogus counts will be
2033 * returned on read(). The only way to get out
2034 * of error state is by explicit re-enabling
2035 * of the event
2036 */
2037 if (event->state > PERF_EVENT_STATE_OFF) {
2038 perf_cgroup_event_disable(event, ctx);
2039 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2040 }
2041
2042 ctx->generation++;
2043 event->pmu_ctx->nr_events--;
2044 }
2045
2046 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2048 {
2049 if (!has_aux(aux_event))
2050 return 0;
2051
2052 if (!event->pmu->aux_output_match)
2053 return 0;
2054
2055 return event->pmu->aux_output_match(aux_event);
2056 }
2057
2058 static void put_event(struct perf_event *event);
2059 static void event_sched_out(struct perf_event *event,
2060 struct perf_event_context *ctx);
2061
perf_put_aux_event(struct perf_event * event)2062 static void perf_put_aux_event(struct perf_event *event)
2063 {
2064 struct perf_event_context *ctx = event->ctx;
2065 struct perf_event *iter;
2066
2067 /*
2068 * If event uses aux_event tear down the link
2069 */
2070 if (event->aux_event) {
2071 iter = event->aux_event;
2072 event->aux_event = NULL;
2073 put_event(iter);
2074 return;
2075 }
2076
2077 /*
2078 * If the event is an aux_event, tear down all links to
2079 * it from other events.
2080 */
2081 for_each_sibling_event(iter, event->group_leader) {
2082 if (iter->aux_event != event)
2083 continue;
2084
2085 iter->aux_event = NULL;
2086 put_event(event);
2087
2088 /*
2089 * If it's ACTIVE, schedule it out and put it into ERROR
2090 * state so that we don't try to schedule it again. Note
2091 * that perf_event_enable() will clear the ERROR status.
2092 */
2093 event_sched_out(iter, ctx);
2094 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2095 }
2096 }
2097
perf_need_aux_event(struct perf_event * event)2098 static bool perf_need_aux_event(struct perf_event *event)
2099 {
2100 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2101 }
2102
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2103 static int perf_get_aux_event(struct perf_event *event,
2104 struct perf_event *group_leader)
2105 {
2106 /*
2107 * Our group leader must be an aux event if we want to be
2108 * an aux_output. This way, the aux event will precede its
2109 * aux_output events in the group, and therefore will always
2110 * schedule first.
2111 */
2112 if (!group_leader)
2113 return 0;
2114
2115 /*
2116 * aux_output and aux_sample_size are mutually exclusive.
2117 */
2118 if (event->attr.aux_output && event->attr.aux_sample_size)
2119 return 0;
2120
2121 if (event->attr.aux_output &&
2122 !perf_aux_output_match(event, group_leader))
2123 return 0;
2124
2125 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2126 return 0;
2127
2128 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2129 return 0;
2130
2131 /*
2132 * Link aux_outputs to their aux event; this is undone in
2133 * perf_group_detach() by perf_put_aux_event(). When the
2134 * group in torn down, the aux_output events loose their
2135 * link to the aux_event and can't schedule any more.
2136 */
2137 event->aux_event = group_leader;
2138
2139 return 1;
2140 }
2141
get_event_list(struct perf_event * event)2142 static inline struct list_head *get_event_list(struct perf_event *event)
2143 {
2144 return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2145 &event->pmu_ctx->flexible_active;
2146 }
2147
2148 /*
2149 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2150 * cannot exist on their own, schedule them out and move them into the ERROR
2151 * state. Also see _perf_event_enable(), it will not be able to recover
2152 * this ERROR state.
2153 */
perf_remove_sibling_event(struct perf_event * event)2154 static inline void perf_remove_sibling_event(struct perf_event *event)
2155 {
2156 event_sched_out(event, event->ctx);
2157 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2158 }
2159
perf_group_detach(struct perf_event * event)2160 static void perf_group_detach(struct perf_event *event)
2161 {
2162 struct perf_event *leader = event->group_leader;
2163 struct perf_event *sibling, *tmp;
2164 struct perf_event_context *ctx = event->ctx;
2165
2166 lockdep_assert_held(&ctx->lock);
2167
2168 /*
2169 * We can have double detach due to exit/hot-unplug + close.
2170 */
2171 if (!(event->attach_state & PERF_ATTACH_GROUP))
2172 return;
2173
2174 event->attach_state &= ~PERF_ATTACH_GROUP;
2175
2176 perf_put_aux_event(event);
2177
2178 /*
2179 * If this is a sibling, remove it from its group.
2180 */
2181 if (leader != event) {
2182 list_del_init(&event->sibling_list);
2183 event->group_leader->nr_siblings--;
2184 event->group_leader->group_generation++;
2185 goto out;
2186 }
2187
2188 /*
2189 * If this was a group event with sibling events then
2190 * upgrade the siblings to singleton events by adding them
2191 * to whatever list we are on.
2192 */
2193 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2194
2195 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2196 perf_remove_sibling_event(sibling);
2197
2198 sibling->group_leader = sibling;
2199 list_del_init(&sibling->sibling_list);
2200
2201 /* Inherit group flags from the previous leader */
2202 sibling->group_caps = event->group_caps;
2203
2204 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2205 add_event_to_groups(sibling, event->ctx);
2206
2207 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2208 list_add_tail(&sibling->active_list, get_event_list(sibling));
2209 }
2210
2211 WARN_ON_ONCE(sibling->ctx != event->ctx);
2212 }
2213
2214 out:
2215 for_each_sibling_event(tmp, leader)
2216 perf_event__header_size(tmp);
2217
2218 perf_event__header_size(leader);
2219 }
2220
2221 static void sync_child_event(struct perf_event *child_event);
2222
perf_child_detach(struct perf_event * event)2223 static void perf_child_detach(struct perf_event *event)
2224 {
2225 struct perf_event *parent_event = event->parent;
2226
2227 if (!(event->attach_state & PERF_ATTACH_CHILD))
2228 return;
2229
2230 event->attach_state &= ~PERF_ATTACH_CHILD;
2231
2232 if (WARN_ON_ONCE(!parent_event))
2233 return;
2234
2235 lockdep_assert_held(&parent_event->child_mutex);
2236
2237 sync_child_event(event);
2238 list_del_init(&event->child_list);
2239 }
2240
is_orphaned_event(struct perf_event * event)2241 static bool is_orphaned_event(struct perf_event *event)
2242 {
2243 return event->state == PERF_EVENT_STATE_DEAD;
2244 }
2245
2246 static inline int
event_filter_match(struct perf_event * event)2247 event_filter_match(struct perf_event *event)
2248 {
2249 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2250 perf_cgroup_match(event);
2251 }
2252
2253 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2255 {
2256 struct perf_event_pmu_context *epc = event->pmu_ctx;
2257 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2258 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2259
2260 // XXX cpc serialization, probably per-cpu IRQ disabled
2261
2262 WARN_ON_ONCE(event->ctx != ctx);
2263 lockdep_assert_held(&ctx->lock);
2264
2265 if (event->state != PERF_EVENT_STATE_ACTIVE)
2266 return;
2267
2268 /*
2269 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2270 * we can schedule events _OUT_ individually through things like
2271 * __perf_remove_from_context().
2272 */
2273 list_del_init(&event->active_list);
2274
2275 perf_pmu_disable(event->pmu);
2276
2277 event->pmu->del(event, 0);
2278 event->oncpu = -1;
2279
2280 if (event->pending_disable) {
2281 event->pending_disable = 0;
2282 perf_cgroup_event_disable(event, ctx);
2283 state = PERF_EVENT_STATE_OFF;
2284 }
2285
2286 if (event->pending_sigtrap) {
2287 bool dec = true;
2288
2289 event->pending_sigtrap = 0;
2290 if (state != PERF_EVENT_STATE_OFF &&
2291 !event->pending_work) {
2292 event->pending_work = 1;
2293 dec = false;
2294 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2295 task_work_add(current, &event->pending_task, TWA_RESUME);
2296 }
2297 if (dec)
2298 local_dec(&event->ctx->nr_pending);
2299 }
2300
2301 perf_event_set_state(event, state);
2302
2303 if (!is_software_event(event))
2304 cpc->active_oncpu--;
2305 if (event->attr.freq && event->attr.sample_freq)
2306 ctx->nr_freq--;
2307 if (event->attr.exclusive || !cpc->active_oncpu)
2308 cpc->exclusive = 0;
2309
2310 perf_pmu_enable(event->pmu);
2311 }
2312
2313 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2314 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2315 {
2316 struct perf_event *event;
2317
2318 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2319 return;
2320
2321 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2322
2323 event_sched_out(group_event, ctx);
2324
2325 /*
2326 * Schedule out siblings (if any):
2327 */
2328 for_each_sibling_event(event, group_event)
2329 event_sched_out(event, ctx);
2330 }
2331
2332 #define DETACH_GROUP 0x01UL
2333 #define DETACH_CHILD 0x02UL
2334 #define DETACH_DEAD 0x04UL
2335
2336 /*
2337 * Cross CPU call to remove a performance event
2338 *
2339 * We disable the event on the hardware level first. After that we
2340 * remove it from the context list.
2341 */
2342 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2343 __perf_remove_from_context(struct perf_event *event,
2344 struct perf_cpu_context *cpuctx,
2345 struct perf_event_context *ctx,
2346 void *info)
2347 {
2348 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2349 unsigned long flags = (unsigned long)info;
2350
2351 if (ctx->is_active & EVENT_TIME) {
2352 update_context_time(ctx);
2353 update_cgrp_time_from_cpuctx(cpuctx, false);
2354 }
2355
2356 /*
2357 * Ensure event_sched_out() switches to OFF, at the very least
2358 * this avoids raising perf_pending_task() at this time.
2359 */
2360 if (flags & DETACH_DEAD)
2361 event->pending_disable = 1;
2362 event_sched_out(event, ctx);
2363 if (flags & DETACH_GROUP)
2364 perf_group_detach(event);
2365 if (flags & DETACH_CHILD)
2366 perf_child_detach(event);
2367 list_del_event(event, ctx);
2368 if (flags & DETACH_DEAD)
2369 event->state = PERF_EVENT_STATE_DEAD;
2370
2371 if (!pmu_ctx->nr_events) {
2372 pmu_ctx->rotate_necessary = 0;
2373
2374 if (ctx->task && ctx->is_active) {
2375 struct perf_cpu_pmu_context *cpc;
2376
2377 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2378 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2379 cpc->task_epc = NULL;
2380 }
2381 }
2382
2383 if (!ctx->nr_events && ctx->is_active) {
2384 if (ctx == &cpuctx->ctx)
2385 update_cgrp_time_from_cpuctx(cpuctx, true);
2386
2387 ctx->is_active = 0;
2388 if (ctx->task) {
2389 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2390 cpuctx->task_ctx = NULL;
2391 }
2392 }
2393 }
2394
2395 /*
2396 * Remove the event from a task's (or a CPU's) list of events.
2397 *
2398 * If event->ctx is a cloned context, callers must make sure that
2399 * every task struct that event->ctx->task could possibly point to
2400 * remains valid. This is OK when called from perf_release since
2401 * that only calls us on the top-level context, which can't be a clone.
2402 * When called from perf_event_exit_task, it's OK because the
2403 * context has been detached from its task.
2404 */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2405 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2406 {
2407 struct perf_event_context *ctx = event->ctx;
2408
2409 lockdep_assert_held(&ctx->mutex);
2410
2411 /*
2412 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2413 * to work in the face of TASK_TOMBSTONE, unlike every other
2414 * event_function_call() user.
2415 */
2416 raw_spin_lock_irq(&ctx->lock);
2417 if (!ctx->is_active) {
2418 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2419 ctx, (void *)flags);
2420 raw_spin_unlock_irq(&ctx->lock);
2421 return;
2422 }
2423 raw_spin_unlock_irq(&ctx->lock);
2424
2425 event_function_call(event, __perf_remove_from_context, (void *)flags);
2426 }
2427
2428 /*
2429 * Cross CPU call to disable a performance event
2430 */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2431 static void __perf_event_disable(struct perf_event *event,
2432 struct perf_cpu_context *cpuctx,
2433 struct perf_event_context *ctx,
2434 void *info)
2435 {
2436 if (event->state < PERF_EVENT_STATE_INACTIVE)
2437 return;
2438
2439 if (ctx->is_active & EVENT_TIME) {
2440 update_context_time(ctx);
2441 update_cgrp_time_from_event(event);
2442 }
2443
2444 perf_pmu_disable(event->pmu_ctx->pmu);
2445
2446 if (event == event->group_leader)
2447 group_sched_out(event, ctx);
2448 else
2449 event_sched_out(event, ctx);
2450
2451 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2452 perf_cgroup_event_disable(event, ctx);
2453
2454 perf_pmu_enable(event->pmu_ctx->pmu);
2455 }
2456
2457 /*
2458 * Disable an event.
2459 *
2460 * If event->ctx is a cloned context, callers must make sure that
2461 * every task struct that event->ctx->task could possibly point to
2462 * remains valid. This condition is satisfied when called through
2463 * perf_event_for_each_child or perf_event_for_each because they
2464 * hold the top-level event's child_mutex, so any descendant that
2465 * goes to exit will block in perf_event_exit_event().
2466 *
2467 * When called from perf_pending_irq it's OK because event->ctx
2468 * is the current context on this CPU and preemption is disabled,
2469 * hence we can't get into perf_event_task_sched_out for this context.
2470 */
_perf_event_disable(struct perf_event * event)2471 static void _perf_event_disable(struct perf_event *event)
2472 {
2473 struct perf_event_context *ctx = event->ctx;
2474
2475 raw_spin_lock_irq(&ctx->lock);
2476 if (event->state <= PERF_EVENT_STATE_OFF) {
2477 raw_spin_unlock_irq(&ctx->lock);
2478 return;
2479 }
2480 raw_spin_unlock_irq(&ctx->lock);
2481
2482 event_function_call(event, __perf_event_disable, NULL);
2483 }
2484
perf_event_disable_local(struct perf_event * event)2485 void perf_event_disable_local(struct perf_event *event)
2486 {
2487 event_function_local(event, __perf_event_disable, NULL);
2488 }
2489
2490 /*
2491 * Strictly speaking kernel users cannot create groups and therefore this
2492 * interface does not need the perf_event_ctx_lock() magic.
2493 */
perf_event_disable(struct perf_event * event)2494 void perf_event_disable(struct perf_event *event)
2495 {
2496 struct perf_event_context *ctx;
2497
2498 ctx = perf_event_ctx_lock(event);
2499 _perf_event_disable(event);
2500 perf_event_ctx_unlock(event, ctx);
2501 }
2502 EXPORT_SYMBOL_GPL(perf_event_disable);
2503
perf_event_disable_inatomic(struct perf_event * event)2504 void perf_event_disable_inatomic(struct perf_event *event)
2505 {
2506 event->pending_disable = 1;
2507 irq_work_queue(&event->pending_irq);
2508 }
2509
2510 #define MAX_INTERRUPTS (~0ULL)
2511
2512 static void perf_log_throttle(struct perf_event *event, int enable);
2513 static void perf_log_itrace_start(struct perf_event *event);
2514
2515 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2516 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2517 {
2518 struct perf_event_pmu_context *epc = event->pmu_ctx;
2519 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2520 int ret = 0;
2521
2522 WARN_ON_ONCE(event->ctx != ctx);
2523
2524 lockdep_assert_held(&ctx->lock);
2525
2526 if (event->state <= PERF_EVENT_STATE_OFF)
2527 return 0;
2528
2529 WRITE_ONCE(event->oncpu, smp_processor_id());
2530 /*
2531 * Order event::oncpu write to happen before the ACTIVE state is
2532 * visible. This allows perf_event_{stop,read}() to observe the correct
2533 * ->oncpu if it sees ACTIVE.
2534 */
2535 smp_wmb();
2536 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2537
2538 /*
2539 * Unthrottle events, since we scheduled we might have missed several
2540 * ticks already, also for a heavily scheduling task there is little
2541 * guarantee it'll get a tick in a timely manner.
2542 */
2543 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2544 perf_log_throttle(event, 1);
2545 event->hw.interrupts = 0;
2546 }
2547
2548 perf_pmu_disable(event->pmu);
2549
2550 perf_log_itrace_start(event);
2551
2552 if (event->pmu->add(event, PERF_EF_START)) {
2553 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2554 event->oncpu = -1;
2555 ret = -EAGAIN;
2556 goto out;
2557 }
2558
2559 if (!is_software_event(event))
2560 cpc->active_oncpu++;
2561 if (event->attr.freq && event->attr.sample_freq)
2562 ctx->nr_freq++;
2563
2564 if (event->attr.exclusive)
2565 cpc->exclusive = 1;
2566
2567 out:
2568 perf_pmu_enable(event->pmu);
2569
2570 return ret;
2571 }
2572
2573 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2574 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2575 {
2576 struct perf_event *event, *partial_group = NULL;
2577 struct pmu *pmu = group_event->pmu_ctx->pmu;
2578
2579 if (group_event->state == PERF_EVENT_STATE_OFF)
2580 return 0;
2581
2582 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2583
2584 if (event_sched_in(group_event, ctx))
2585 goto error;
2586
2587 /*
2588 * Schedule in siblings as one group (if any):
2589 */
2590 for_each_sibling_event(event, group_event) {
2591 if (event_sched_in(event, ctx)) {
2592 partial_group = event;
2593 goto group_error;
2594 }
2595 }
2596
2597 if (!pmu->commit_txn(pmu))
2598 return 0;
2599
2600 group_error:
2601 /*
2602 * Groups can be scheduled in as one unit only, so undo any
2603 * partial group before returning:
2604 * The events up to the failed event are scheduled out normally.
2605 */
2606 for_each_sibling_event(event, group_event) {
2607 if (event == partial_group)
2608 break;
2609
2610 event_sched_out(event, ctx);
2611 }
2612 event_sched_out(group_event, ctx);
2613
2614 error:
2615 pmu->cancel_txn(pmu);
2616 return -EAGAIN;
2617 }
2618
2619 /*
2620 * Work out whether we can put this event group on the CPU now.
2621 */
group_can_go_on(struct perf_event * event,int can_add_hw)2622 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2623 {
2624 struct perf_event_pmu_context *epc = event->pmu_ctx;
2625 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2626
2627 /*
2628 * Groups consisting entirely of software events can always go on.
2629 */
2630 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2631 return 1;
2632 /*
2633 * If an exclusive group is already on, no other hardware
2634 * events can go on.
2635 */
2636 if (cpc->exclusive)
2637 return 0;
2638 /*
2639 * If this group is exclusive and there are already
2640 * events on the CPU, it can't go on.
2641 */
2642 if (event->attr.exclusive && !list_empty(get_event_list(event)))
2643 return 0;
2644 /*
2645 * Otherwise, try to add it if all previous groups were able
2646 * to go on.
2647 */
2648 return can_add_hw;
2649 }
2650
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2651 static void add_event_to_ctx(struct perf_event *event,
2652 struct perf_event_context *ctx)
2653 {
2654 list_add_event(event, ctx);
2655 perf_group_attach(event);
2656 }
2657
task_ctx_sched_out(struct perf_event_context * ctx,enum event_type_t event_type)2658 static void task_ctx_sched_out(struct perf_event_context *ctx,
2659 enum event_type_t event_type)
2660 {
2661 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2662
2663 if (!cpuctx->task_ctx)
2664 return;
2665
2666 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2667 return;
2668
2669 ctx_sched_out(ctx, event_type);
2670 }
2671
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2672 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2673 struct perf_event_context *ctx)
2674 {
2675 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2676 if (ctx)
2677 ctx_sched_in(ctx, EVENT_PINNED);
2678 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2679 if (ctx)
2680 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2681 }
2682
2683 /*
2684 * We want to maintain the following priority of scheduling:
2685 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2686 * - task pinned (EVENT_PINNED)
2687 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2688 * - task flexible (EVENT_FLEXIBLE).
2689 *
2690 * In order to avoid unscheduling and scheduling back in everything every
2691 * time an event is added, only do it for the groups of equal priority and
2692 * below.
2693 *
2694 * This can be called after a batch operation on task events, in which case
2695 * event_type is a bit mask of the types of events involved. For CPU events,
2696 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2697 */
2698 /*
2699 * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2700 * event to the context or enabling existing event in the context. We can
2701 * probably optimize it by rescheduling only affected pmu_ctx.
2702 */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2703 static void ctx_resched(struct perf_cpu_context *cpuctx,
2704 struct perf_event_context *task_ctx,
2705 enum event_type_t event_type)
2706 {
2707 bool cpu_event = !!(event_type & EVENT_CPU);
2708
2709 /*
2710 * If pinned groups are involved, flexible groups also need to be
2711 * scheduled out.
2712 */
2713 if (event_type & EVENT_PINNED)
2714 event_type |= EVENT_FLEXIBLE;
2715
2716 event_type &= EVENT_ALL;
2717
2718 perf_ctx_disable(&cpuctx->ctx, false);
2719 if (task_ctx) {
2720 perf_ctx_disable(task_ctx, false);
2721 task_ctx_sched_out(task_ctx, event_type);
2722 }
2723
2724 /*
2725 * Decide which cpu ctx groups to schedule out based on the types
2726 * of events that caused rescheduling:
2727 * - EVENT_CPU: schedule out corresponding groups;
2728 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2729 * - otherwise, do nothing more.
2730 */
2731 if (cpu_event)
2732 ctx_sched_out(&cpuctx->ctx, event_type);
2733 else if (event_type & EVENT_PINNED)
2734 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2735
2736 perf_event_sched_in(cpuctx, task_ctx);
2737
2738 perf_ctx_enable(&cpuctx->ctx, false);
2739 if (task_ctx)
2740 perf_ctx_enable(task_ctx, false);
2741 }
2742
perf_pmu_resched(struct pmu * pmu)2743 void perf_pmu_resched(struct pmu *pmu)
2744 {
2745 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2746 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2747
2748 perf_ctx_lock(cpuctx, task_ctx);
2749 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2750 perf_ctx_unlock(cpuctx, task_ctx);
2751 }
2752
2753 /*
2754 * Cross CPU call to install and enable a performance event
2755 *
2756 * Very similar to remote_function() + event_function() but cannot assume that
2757 * things like ctx->is_active and cpuctx->task_ctx are set.
2758 */
__perf_install_in_context(void * info)2759 static int __perf_install_in_context(void *info)
2760 {
2761 struct perf_event *event = info;
2762 struct perf_event_context *ctx = event->ctx;
2763 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2764 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2765 bool reprogram = true;
2766 int ret = 0;
2767
2768 raw_spin_lock(&cpuctx->ctx.lock);
2769 if (ctx->task) {
2770 raw_spin_lock(&ctx->lock);
2771 task_ctx = ctx;
2772
2773 reprogram = (ctx->task == current);
2774
2775 /*
2776 * If the task is running, it must be running on this CPU,
2777 * otherwise we cannot reprogram things.
2778 *
2779 * If its not running, we don't care, ctx->lock will
2780 * serialize against it becoming runnable.
2781 */
2782 if (task_curr(ctx->task) && !reprogram) {
2783 ret = -ESRCH;
2784 goto unlock;
2785 }
2786
2787 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2788 } else if (task_ctx) {
2789 raw_spin_lock(&task_ctx->lock);
2790 }
2791
2792 #ifdef CONFIG_CGROUP_PERF
2793 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2794 /*
2795 * If the current cgroup doesn't match the event's
2796 * cgroup, we should not try to schedule it.
2797 */
2798 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2799 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2800 event->cgrp->css.cgroup);
2801 }
2802 #endif
2803
2804 if (reprogram) {
2805 ctx_sched_out(ctx, EVENT_TIME);
2806 add_event_to_ctx(event, ctx);
2807 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2808 } else {
2809 add_event_to_ctx(event, ctx);
2810 }
2811
2812 unlock:
2813 perf_ctx_unlock(cpuctx, task_ctx);
2814
2815 return ret;
2816 }
2817
2818 static bool exclusive_event_installable(struct perf_event *event,
2819 struct perf_event_context *ctx);
2820
2821 /*
2822 * Attach a performance event to a context.
2823 *
2824 * Very similar to event_function_call, see comment there.
2825 */
2826 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2827 perf_install_in_context(struct perf_event_context *ctx,
2828 struct perf_event *event,
2829 int cpu)
2830 {
2831 struct task_struct *task = READ_ONCE(ctx->task);
2832
2833 lockdep_assert_held(&ctx->mutex);
2834
2835 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2836
2837 if (event->cpu != -1)
2838 WARN_ON_ONCE(event->cpu != cpu);
2839
2840 /*
2841 * Ensures that if we can observe event->ctx, both the event and ctx
2842 * will be 'complete'. See perf_iterate_sb_cpu().
2843 */
2844 smp_store_release(&event->ctx, ctx);
2845
2846 /*
2847 * perf_event_attr::disabled events will not run and can be initialized
2848 * without IPI. Except when this is the first event for the context, in
2849 * that case we need the magic of the IPI to set ctx->is_active.
2850 *
2851 * The IOC_ENABLE that is sure to follow the creation of a disabled
2852 * event will issue the IPI and reprogram the hardware.
2853 */
2854 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2855 ctx->nr_events && !is_cgroup_event(event)) {
2856 raw_spin_lock_irq(&ctx->lock);
2857 if (ctx->task == TASK_TOMBSTONE) {
2858 raw_spin_unlock_irq(&ctx->lock);
2859 return;
2860 }
2861 add_event_to_ctx(event, ctx);
2862 raw_spin_unlock_irq(&ctx->lock);
2863 return;
2864 }
2865
2866 if (!task) {
2867 cpu_function_call(cpu, __perf_install_in_context, event);
2868 return;
2869 }
2870
2871 /*
2872 * Should not happen, we validate the ctx is still alive before calling.
2873 */
2874 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2875 return;
2876
2877 /*
2878 * Installing events is tricky because we cannot rely on ctx->is_active
2879 * to be set in case this is the nr_events 0 -> 1 transition.
2880 *
2881 * Instead we use task_curr(), which tells us if the task is running.
2882 * However, since we use task_curr() outside of rq::lock, we can race
2883 * against the actual state. This means the result can be wrong.
2884 *
2885 * If we get a false positive, we retry, this is harmless.
2886 *
2887 * If we get a false negative, things are complicated. If we are after
2888 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2889 * value must be correct. If we're before, it doesn't matter since
2890 * perf_event_context_sched_in() will program the counter.
2891 *
2892 * However, this hinges on the remote context switch having observed
2893 * our task->perf_event_ctxp[] store, such that it will in fact take
2894 * ctx::lock in perf_event_context_sched_in().
2895 *
2896 * We do this by task_function_call(), if the IPI fails to hit the task
2897 * we know any future context switch of task must see the
2898 * perf_event_ctpx[] store.
2899 */
2900
2901 /*
2902 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2903 * task_cpu() load, such that if the IPI then does not find the task
2904 * running, a future context switch of that task must observe the
2905 * store.
2906 */
2907 smp_mb();
2908 again:
2909 if (!task_function_call(task, __perf_install_in_context, event))
2910 return;
2911
2912 raw_spin_lock_irq(&ctx->lock);
2913 task = ctx->task;
2914 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2915 /*
2916 * Cannot happen because we already checked above (which also
2917 * cannot happen), and we hold ctx->mutex, which serializes us
2918 * against perf_event_exit_task_context().
2919 */
2920 raw_spin_unlock_irq(&ctx->lock);
2921 return;
2922 }
2923 /*
2924 * If the task is not running, ctx->lock will avoid it becoming so,
2925 * thus we can safely install the event.
2926 */
2927 if (task_curr(task)) {
2928 raw_spin_unlock_irq(&ctx->lock);
2929 goto again;
2930 }
2931 add_event_to_ctx(event, ctx);
2932 raw_spin_unlock_irq(&ctx->lock);
2933 }
2934
2935 /*
2936 * Cross CPU call to enable a performance event
2937 */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2938 static void __perf_event_enable(struct perf_event *event,
2939 struct perf_cpu_context *cpuctx,
2940 struct perf_event_context *ctx,
2941 void *info)
2942 {
2943 struct perf_event *leader = event->group_leader;
2944 struct perf_event_context *task_ctx;
2945
2946 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2947 event->state <= PERF_EVENT_STATE_ERROR)
2948 return;
2949
2950 if (ctx->is_active)
2951 ctx_sched_out(ctx, EVENT_TIME);
2952
2953 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2954 perf_cgroup_event_enable(event, ctx);
2955
2956 if (!ctx->is_active)
2957 return;
2958
2959 if (!event_filter_match(event)) {
2960 ctx_sched_in(ctx, EVENT_TIME);
2961 return;
2962 }
2963
2964 /*
2965 * If the event is in a group and isn't the group leader,
2966 * then don't put it on unless the group is on.
2967 */
2968 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2969 ctx_sched_in(ctx, EVENT_TIME);
2970 return;
2971 }
2972
2973 task_ctx = cpuctx->task_ctx;
2974 if (ctx->task)
2975 WARN_ON_ONCE(task_ctx != ctx);
2976
2977 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2978 }
2979
2980 /*
2981 * Enable an event.
2982 *
2983 * If event->ctx is a cloned context, callers must make sure that
2984 * every task struct that event->ctx->task could possibly point to
2985 * remains valid. This condition is satisfied when called through
2986 * perf_event_for_each_child or perf_event_for_each as described
2987 * for perf_event_disable.
2988 */
_perf_event_enable(struct perf_event * event)2989 static void _perf_event_enable(struct perf_event *event)
2990 {
2991 struct perf_event_context *ctx = event->ctx;
2992
2993 raw_spin_lock_irq(&ctx->lock);
2994 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2995 event->state < PERF_EVENT_STATE_ERROR) {
2996 out:
2997 raw_spin_unlock_irq(&ctx->lock);
2998 return;
2999 }
3000
3001 /*
3002 * If the event is in error state, clear that first.
3003 *
3004 * That way, if we see the event in error state below, we know that it
3005 * has gone back into error state, as distinct from the task having
3006 * been scheduled away before the cross-call arrived.
3007 */
3008 if (event->state == PERF_EVENT_STATE_ERROR) {
3009 /*
3010 * Detached SIBLING events cannot leave ERROR state.
3011 */
3012 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3013 event->group_leader == event)
3014 goto out;
3015
3016 event->state = PERF_EVENT_STATE_OFF;
3017 }
3018 raw_spin_unlock_irq(&ctx->lock);
3019
3020 event_function_call(event, __perf_event_enable, NULL);
3021 }
3022
3023 /*
3024 * See perf_event_disable();
3025 */
perf_event_enable(struct perf_event * event)3026 void perf_event_enable(struct perf_event *event)
3027 {
3028 struct perf_event_context *ctx;
3029
3030 ctx = perf_event_ctx_lock(event);
3031 _perf_event_enable(event);
3032 perf_event_ctx_unlock(event, ctx);
3033 }
3034 EXPORT_SYMBOL_GPL(perf_event_enable);
3035
3036 struct stop_event_data {
3037 struct perf_event *event;
3038 unsigned int restart;
3039 };
3040
__perf_event_stop(void * info)3041 static int __perf_event_stop(void *info)
3042 {
3043 struct stop_event_data *sd = info;
3044 struct perf_event *event = sd->event;
3045
3046 /* if it's already INACTIVE, do nothing */
3047 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3048 return 0;
3049
3050 /* matches smp_wmb() in event_sched_in() */
3051 smp_rmb();
3052
3053 /*
3054 * There is a window with interrupts enabled before we get here,
3055 * so we need to check again lest we try to stop another CPU's event.
3056 */
3057 if (READ_ONCE(event->oncpu) != smp_processor_id())
3058 return -EAGAIN;
3059
3060 event->pmu->stop(event, PERF_EF_UPDATE);
3061
3062 /*
3063 * May race with the actual stop (through perf_pmu_output_stop()),
3064 * but it is only used for events with AUX ring buffer, and such
3065 * events will refuse to restart because of rb::aux_mmap_count==0,
3066 * see comments in perf_aux_output_begin().
3067 *
3068 * Since this is happening on an event-local CPU, no trace is lost
3069 * while restarting.
3070 */
3071 if (sd->restart)
3072 event->pmu->start(event, 0);
3073
3074 return 0;
3075 }
3076
perf_event_stop(struct perf_event * event,int restart)3077 static int perf_event_stop(struct perf_event *event, int restart)
3078 {
3079 struct stop_event_data sd = {
3080 .event = event,
3081 .restart = restart,
3082 };
3083 int ret = 0;
3084
3085 do {
3086 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3087 return 0;
3088
3089 /* matches smp_wmb() in event_sched_in() */
3090 smp_rmb();
3091
3092 /*
3093 * We only want to restart ACTIVE events, so if the event goes
3094 * inactive here (event->oncpu==-1), there's nothing more to do;
3095 * fall through with ret==-ENXIO.
3096 */
3097 ret = cpu_function_call(READ_ONCE(event->oncpu),
3098 __perf_event_stop, &sd);
3099 } while (ret == -EAGAIN);
3100
3101 return ret;
3102 }
3103
3104 /*
3105 * In order to contain the amount of racy and tricky in the address filter
3106 * configuration management, it is a two part process:
3107 *
3108 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3109 * we update the addresses of corresponding vmas in
3110 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3111 * (p2) when an event is scheduled in (pmu::add), it calls
3112 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3113 * if the generation has changed since the previous call.
3114 *
3115 * If (p1) happens while the event is active, we restart it to force (p2).
3116 *
3117 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3118 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3119 * ioctl;
3120 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3121 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3122 * for reading;
3123 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3124 * of exec.
3125 */
perf_event_addr_filters_sync(struct perf_event * event)3126 void perf_event_addr_filters_sync(struct perf_event *event)
3127 {
3128 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3129
3130 if (!has_addr_filter(event))
3131 return;
3132
3133 raw_spin_lock(&ifh->lock);
3134 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3135 event->pmu->addr_filters_sync(event);
3136 event->hw.addr_filters_gen = event->addr_filters_gen;
3137 }
3138 raw_spin_unlock(&ifh->lock);
3139 }
3140 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3141
_perf_event_refresh(struct perf_event * event,int refresh)3142 static int _perf_event_refresh(struct perf_event *event, int refresh)
3143 {
3144 /*
3145 * not supported on inherited events
3146 */
3147 if (event->attr.inherit || !is_sampling_event(event))
3148 return -EINVAL;
3149
3150 atomic_add(refresh, &event->event_limit);
3151 _perf_event_enable(event);
3152
3153 return 0;
3154 }
3155
3156 /*
3157 * See perf_event_disable()
3158 */
perf_event_refresh(struct perf_event * event,int refresh)3159 int perf_event_refresh(struct perf_event *event, int refresh)
3160 {
3161 struct perf_event_context *ctx;
3162 int ret;
3163
3164 ctx = perf_event_ctx_lock(event);
3165 ret = _perf_event_refresh(event, refresh);
3166 perf_event_ctx_unlock(event, ctx);
3167
3168 return ret;
3169 }
3170 EXPORT_SYMBOL_GPL(perf_event_refresh);
3171
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3172 static int perf_event_modify_breakpoint(struct perf_event *bp,
3173 struct perf_event_attr *attr)
3174 {
3175 int err;
3176
3177 _perf_event_disable(bp);
3178
3179 err = modify_user_hw_breakpoint_check(bp, attr, true);
3180
3181 if (!bp->attr.disabled)
3182 _perf_event_enable(bp);
3183
3184 return err;
3185 }
3186
3187 /*
3188 * Copy event-type-independent attributes that may be modified.
3189 */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3190 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3191 const struct perf_event_attr *from)
3192 {
3193 to->sig_data = from->sig_data;
3194 }
3195
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3196 static int perf_event_modify_attr(struct perf_event *event,
3197 struct perf_event_attr *attr)
3198 {
3199 int (*func)(struct perf_event *, struct perf_event_attr *);
3200 struct perf_event *child;
3201 int err;
3202
3203 if (event->attr.type != attr->type)
3204 return -EINVAL;
3205
3206 switch (event->attr.type) {
3207 case PERF_TYPE_BREAKPOINT:
3208 func = perf_event_modify_breakpoint;
3209 break;
3210 default:
3211 /* Place holder for future additions. */
3212 return -EOPNOTSUPP;
3213 }
3214
3215 WARN_ON_ONCE(event->ctx->parent_ctx);
3216
3217 mutex_lock(&event->child_mutex);
3218 /*
3219 * Event-type-independent attributes must be copied before event-type
3220 * modification, which will validate that final attributes match the
3221 * source attributes after all relevant attributes have been copied.
3222 */
3223 perf_event_modify_copy_attr(&event->attr, attr);
3224 err = func(event, attr);
3225 if (err)
3226 goto out;
3227 list_for_each_entry(child, &event->child_list, child_list) {
3228 perf_event_modify_copy_attr(&child->attr, attr);
3229 err = func(child, attr);
3230 if (err)
3231 goto out;
3232 }
3233 out:
3234 mutex_unlock(&event->child_mutex);
3235 return err;
3236 }
3237
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3238 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3239 enum event_type_t event_type)
3240 {
3241 struct perf_event_context *ctx = pmu_ctx->ctx;
3242 struct perf_event *event, *tmp;
3243 struct pmu *pmu = pmu_ctx->pmu;
3244
3245 if (ctx->task && !ctx->is_active) {
3246 struct perf_cpu_pmu_context *cpc;
3247
3248 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3249 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3250 cpc->task_epc = NULL;
3251 }
3252
3253 if (!event_type)
3254 return;
3255
3256 perf_pmu_disable(pmu);
3257 if (event_type & EVENT_PINNED) {
3258 list_for_each_entry_safe(event, tmp,
3259 &pmu_ctx->pinned_active,
3260 active_list)
3261 group_sched_out(event, ctx);
3262 }
3263
3264 if (event_type & EVENT_FLEXIBLE) {
3265 list_for_each_entry_safe(event, tmp,
3266 &pmu_ctx->flexible_active,
3267 active_list)
3268 group_sched_out(event, ctx);
3269 /*
3270 * Since we cleared EVENT_FLEXIBLE, also clear
3271 * rotate_necessary, is will be reset by
3272 * ctx_flexible_sched_in() when needed.
3273 */
3274 pmu_ctx->rotate_necessary = 0;
3275 }
3276 perf_pmu_enable(pmu);
3277 }
3278
3279 static void
ctx_sched_out(struct perf_event_context * ctx,enum event_type_t event_type)3280 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3281 {
3282 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3283 struct perf_event_pmu_context *pmu_ctx;
3284 int is_active = ctx->is_active;
3285 bool cgroup = event_type & EVENT_CGROUP;
3286
3287 event_type &= ~EVENT_CGROUP;
3288
3289 lockdep_assert_held(&ctx->lock);
3290
3291 if (likely(!ctx->nr_events)) {
3292 /*
3293 * See __perf_remove_from_context().
3294 */
3295 WARN_ON_ONCE(ctx->is_active);
3296 if (ctx->task)
3297 WARN_ON_ONCE(cpuctx->task_ctx);
3298 return;
3299 }
3300
3301 /*
3302 * Always update time if it was set; not only when it changes.
3303 * Otherwise we can 'forget' to update time for any but the last
3304 * context we sched out. For example:
3305 *
3306 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3307 * ctx_sched_out(.event_type = EVENT_PINNED)
3308 *
3309 * would only update time for the pinned events.
3310 */
3311 if (is_active & EVENT_TIME) {
3312 /* update (and stop) ctx time */
3313 update_context_time(ctx);
3314 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3315 /*
3316 * CPU-release for the below ->is_active store,
3317 * see __load_acquire() in perf_event_time_now()
3318 */
3319 barrier();
3320 }
3321
3322 ctx->is_active &= ~event_type;
3323 if (!(ctx->is_active & EVENT_ALL))
3324 ctx->is_active = 0;
3325
3326 if (ctx->task) {
3327 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3328 if (!ctx->is_active)
3329 cpuctx->task_ctx = NULL;
3330 }
3331
3332 is_active ^= ctx->is_active; /* changed bits */
3333
3334 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3335 if (cgroup && !pmu_ctx->nr_cgroups)
3336 continue;
3337 __pmu_ctx_sched_out(pmu_ctx, is_active);
3338 }
3339 }
3340
3341 /*
3342 * Test whether two contexts are equivalent, i.e. whether they have both been
3343 * cloned from the same version of the same context.
3344 *
3345 * Equivalence is measured using a generation number in the context that is
3346 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3347 * and list_del_event().
3348 */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3349 static int context_equiv(struct perf_event_context *ctx1,
3350 struct perf_event_context *ctx2)
3351 {
3352 lockdep_assert_held(&ctx1->lock);
3353 lockdep_assert_held(&ctx2->lock);
3354
3355 /* Pinning disables the swap optimization */
3356 if (ctx1->pin_count || ctx2->pin_count)
3357 return 0;
3358
3359 /* If ctx1 is the parent of ctx2 */
3360 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3361 return 1;
3362
3363 /* If ctx2 is the parent of ctx1 */
3364 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3365 return 1;
3366
3367 /*
3368 * If ctx1 and ctx2 have the same parent; we flatten the parent
3369 * hierarchy, see perf_event_init_context().
3370 */
3371 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3372 ctx1->parent_gen == ctx2->parent_gen)
3373 return 1;
3374
3375 /* Unmatched */
3376 return 0;
3377 }
3378
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3379 static void __perf_event_sync_stat(struct perf_event *event,
3380 struct perf_event *next_event)
3381 {
3382 u64 value;
3383
3384 if (!event->attr.inherit_stat)
3385 return;
3386
3387 /*
3388 * Update the event value, we cannot use perf_event_read()
3389 * because we're in the middle of a context switch and have IRQs
3390 * disabled, which upsets smp_call_function_single(), however
3391 * we know the event must be on the current CPU, therefore we
3392 * don't need to use it.
3393 */
3394 if (event->state == PERF_EVENT_STATE_ACTIVE)
3395 event->pmu->read(event);
3396
3397 perf_event_update_time(event);
3398
3399 /*
3400 * In order to keep per-task stats reliable we need to flip the event
3401 * values when we flip the contexts.
3402 */
3403 value = local64_read(&next_event->count);
3404 value = local64_xchg(&event->count, value);
3405 local64_set(&next_event->count, value);
3406
3407 swap(event->total_time_enabled, next_event->total_time_enabled);
3408 swap(event->total_time_running, next_event->total_time_running);
3409
3410 /*
3411 * Since we swizzled the values, update the user visible data too.
3412 */
3413 perf_event_update_userpage(event);
3414 perf_event_update_userpage(next_event);
3415 }
3416
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3417 static void perf_event_sync_stat(struct perf_event_context *ctx,
3418 struct perf_event_context *next_ctx)
3419 {
3420 struct perf_event *event, *next_event;
3421
3422 if (!ctx->nr_stat)
3423 return;
3424
3425 update_context_time(ctx);
3426
3427 event = list_first_entry(&ctx->event_list,
3428 struct perf_event, event_entry);
3429
3430 next_event = list_first_entry(&next_ctx->event_list,
3431 struct perf_event, event_entry);
3432
3433 while (&event->event_entry != &ctx->event_list &&
3434 &next_event->event_entry != &next_ctx->event_list) {
3435
3436 __perf_event_sync_stat(event, next_event);
3437
3438 event = list_next_entry(event, event_entry);
3439 next_event = list_next_entry(next_event, event_entry);
3440 }
3441 }
3442
3443 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \
3444 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \
3445 pos2 = list_first_entry(head2, typeof(*pos2), member); \
3446 !list_entry_is_head(pos1, head1, member) && \
3447 !list_entry_is_head(pos2, head2, member); \
3448 pos1 = list_next_entry(pos1, member), \
3449 pos2 = list_next_entry(pos2, member))
3450
perf_event_swap_task_ctx_data(struct perf_event_context * prev_ctx,struct perf_event_context * next_ctx)3451 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3452 struct perf_event_context *next_ctx)
3453 {
3454 struct perf_event_pmu_context *prev_epc, *next_epc;
3455
3456 if (!prev_ctx->nr_task_data)
3457 return;
3458
3459 double_list_for_each_entry(prev_epc, next_epc,
3460 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3461 pmu_ctx_entry) {
3462
3463 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3464 continue;
3465
3466 /*
3467 * PMU specific parts of task perf context can require
3468 * additional synchronization. As an example of such
3469 * synchronization see implementation details of Intel
3470 * LBR call stack data profiling;
3471 */
3472 if (prev_epc->pmu->swap_task_ctx)
3473 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3474 else
3475 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3476 }
3477 }
3478
perf_ctx_sched_task_cb(struct perf_event_context * ctx,bool sched_in)3479 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3480 {
3481 struct perf_event_pmu_context *pmu_ctx;
3482 struct perf_cpu_pmu_context *cpc;
3483
3484 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3485 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3486
3487 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3488 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3489 }
3490 }
3491
3492 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3493 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3494 {
3495 struct perf_event_context *ctx = task->perf_event_ctxp;
3496 struct perf_event_context *next_ctx;
3497 struct perf_event_context *parent, *next_parent;
3498 int do_switch = 1;
3499
3500 if (likely(!ctx))
3501 return;
3502
3503 rcu_read_lock();
3504 next_ctx = rcu_dereference(next->perf_event_ctxp);
3505 if (!next_ctx)
3506 goto unlock;
3507
3508 parent = rcu_dereference(ctx->parent_ctx);
3509 next_parent = rcu_dereference(next_ctx->parent_ctx);
3510
3511 /* If neither context have a parent context; they cannot be clones. */
3512 if (!parent && !next_parent)
3513 goto unlock;
3514
3515 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3516 /*
3517 * Looks like the two contexts are clones, so we might be
3518 * able to optimize the context switch. We lock both
3519 * contexts and check that they are clones under the
3520 * lock (including re-checking that neither has been
3521 * uncloned in the meantime). It doesn't matter which
3522 * order we take the locks because no other cpu could
3523 * be trying to lock both of these tasks.
3524 */
3525 raw_spin_lock(&ctx->lock);
3526 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3527 if (context_equiv(ctx, next_ctx)) {
3528
3529 perf_ctx_disable(ctx, false);
3530
3531 /* PMIs are disabled; ctx->nr_pending is stable. */
3532 if (local_read(&ctx->nr_pending) ||
3533 local_read(&next_ctx->nr_pending)) {
3534 /*
3535 * Must not swap out ctx when there's pending
3536 * events that rely on the ctx->task relation.
3537 */
3538 raw_spin_unlock(&next_ctx->lock);
3539 rcu_read_unlock();
3540 goto inside_switch;
3541 }
3542
3543 WRITE_ONCE(ctx->task, next);
3544 WRITE_ONCE(next_ctx->task, task);
3545
3546 perf_ctx_sched_task_cb(ctx, false);
3547 perf_event_swap_task_ctx_data(ctx, next_ctx);
3548
3549 perf_ctx_enable(ctx, false);
3550
3551 /*
3552 * RCU_INIT_POINTER here is safe because we've not
3553 * modified the ctx and the above modification of
3554 * ctx->task and ctx->task_ctx_data are immaterial
3555 * since those values are always verified under
3556 * ctx->lock which we're now holding.
3557 */
3558 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3559 RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3560
3561 do_switch = 0;
3562
3563 perf_event_sync_stat(ctx, next_ctx);
3564 }
3565 raw_spin_unlock(&next_ctx->lock);
3566 raw_spin_unlock(&ctx->lock);
3567 }
3568 unlock:
3569 rcu_read_unlock();
3570
3571 if (do_switch) {
3572 raw_spin_lock(&ctx->lock);
3573 perf_ctx_disable(ctx, false);
3574
3575 inside_switch:
3576 perf_ctx_sched_task_cb(ctx, false);
3577 task_ctx_sched_out(ctx, EVENT_ALL);
3578
3579 perf_ctx_enable(ctx, false);
3580 raw_spin_unlock(&ctx->lock);
3581 }
3582 }
3583
3584 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3585 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3586
perf_sched_cb_dec(struct pmu * pmu)3587 void perf_sched_cb_dec(struct pmu *pmu)
3588 {
3589 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3590
3591 this_cpu_dec(perf_sched_cb_usages);
3592 barrier();
3593
3594 if (!--cpc->sched_cb_usage)
3595 list_del(&cpc->sched_cb_entry);
3596 }
3597
3598
perf_sched_cb_inc(struct pmu * pmu)3599 void perf_sched_cb_inc(struct pmu *pmu)
3600 {
3601 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3602
3603 if (!cpc->sched_cb_usage++)
3604 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3605
3606 barrier();
3607 this_cpu_inc(perf_sched_cb_usages);
3608 }
3609
3610 /*
3611 * This function provides the context switch callback to the lower code
3612 * layer. It is invoked ONLY when the context switch callback is enabled.
3613 *
3614 * This callback is relevant even to per-cpu events; for example multi event
3615 * PEBS requires this to provide PID/TID information. This requires we flush
3616 * all queued PEBS records before we context switch to a new task.
3617 */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,bool sched_in)3618 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3619 {
3620 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3621 struct pmu *pmu;
3622
3623 pmu = cpc->epc.pmu;
3624
3625 /* software PMUs will not have sched_task */
3626 if (WARN_ON_ONCE(!pmu->sched_task))
3627 return;
3628
3629 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3630 perf_pmu_disable(pmu);
3631
3632 pmu->sched_task(cpc->task_epc, sched_in);
3633
3634 perf_pmu_enable(pmu);
3635 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3636 }
3637
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3638 static void perf_pmu_sched_task(struct task_struct *prev,
3639 struct task_struct *next,
3640 bool sched_in)
3641 {
3642 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3643 struct perf_cpu_pmu_context *cpc;
3644
3645 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3646 if (prev == next || cpuctx->task_ctx)
3647 return;
3648
3649 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3650 __perf_pmu_sched_task(cpc, sched_in);
3651 }
3652
3653 static void perf_event_switch(struct task_struct *task,
3654 struct task_struct *next_prev, bool sched_in);
3655
3656 /*
3657 * Called from scheduler to remove the events of the current task,
3658 * with interrupts disabled.
3659 *
3660 * We stop each event and update the event value in event->count.
3661 *
3662 * This does not protect us against NMI, but disable()
3663 * sets the disabled bit in the control field of event _before_
3664 * accessing the event control register. If a NMI hits, then it will
3665 * not restart the event.
3666 */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3667 void __perf_event_task_sched_out(struct task_struct *task,
3668 struct task_struct *next)
3669 {
3670 if (__this_cpu_read(perf_sched_cb_usages))
3671 perf_pmu_sched_task(task, next, false);
3672
3673 if (atomic_read(&nr_switch_events))
3674 perf_event_switch(task, next, false);
3675
3676 perf_event_context_sched_out(task, next);
3677
3678 /*
3679 * if cgroup events exist on this CPU, then we need
3680 * to check if we have to switch out PMU state.
3681 * cgroup event are system-wide mode only
3682 */
3683 perf_cgroup_switch(next);
3684 }
3685
perf_less_group_idx(const void * l,const void * r)3686 static bool perf_less_group_idx(const void *l, const void *r)
3687 {
3688 const struct perf_event *le = *(const struct perf_event **)l;
3689 const struct perf_event *re = *(const struct perf_event **)r;
3690
3691 return le->group_index < re->group_index;
3692 }
3693
swap_ptr(void * l,void * r)3694 static void swap_ptr(void *l, void *r)
3695 {
3696 void **lp = l, **rp = r;
3697
3698 swap(*lp, *rp);
3699 }
3700
3701 static const struct min_heap_callbacks perf_min_heap = {
3702 .elem_size = sizeof(struct perf_event *),
3703 .less = perf_less_group_idx,
3704 .swp = swap_ptr,
3705 };
3706
__heap_add(struct min_heap * heap,struct perf_event * event)3707 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3708 {
3709 struct perf_event **itrs = heap->data;
3710
3711 if (event) {
3712 itrs[heap->nr] = event;
3713 heap->nr++;
3714 }
3715 }
3716
__link_epc(struct perf_event_pmu_context * pmu_ctx)3717 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3718 {
3719 struct perf_cpu_pmu_context *cpc;
3720
3721 if (!pmu_ctx->ctx->task)
3722 return;
3723
3724 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3725 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3726 cpc->task_epc = pmu_ctx;
3727 }
3728
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3729 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3730 struct perf_event_groups *groups, int cpu,
3731 struct pmu *pmu,
3732 int (*func)(struct perf_event *, void *),
3733 void *data)
3734 {
3735 #ifdef CONFIG_CGROUP_PERF
3736 struct cgroup_subsys_state *css = NULL;
3737 #endif
3738 struct perf_cpu_context *cpuctx = NULL;
3739 /* Space for per CPU and/or any CPU event iterators. */
3740 struct perf_event *itrs[2];
3741 struct min_heap event_heap;
3742 struct perf_event **evt;
3743 int ret;
3744
3745 if (pmu->filter && pmu->filter(pmu, cpu))
3746 return 0;
3747
3748 if (!ctx->task) {
3749 cpuctx = this_cpu_ptr(&perf_cpu_context);
3750 event_heap = (struct min_heap){
3751 .data = cpuctx->heap,
3752 .nr = 0,
3753 .size = cpuctx->heap_size,
3754 };
3755
3756 lockdep_assert_held(&cpuctx->ctx.lock);
3757
3758 #ifdef CONFIG_CGROUP_PERF
3759 if (cpuctx->cgrp)
3760 css = &cpuctx->cgrp->css;
3761 #endif
3762 } else {
3763 event_heap = (struct min_heap){
3764 .data = itrs,
3765 .nr = 0,
3766 .size = ARRAY_SIZE(itrs),
3767 };
3768 /* Events not within a CPU context may be on any CPU. */
3769 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3770 }
3771 evt = event_heap.data;
3772
3773 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3774
3775 #ifdef CONFIG_CGROUP_PERF
3776 for (; css; css = css->parent)
3777 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3778 #endif
3779
3780 if (event_heap.nr) {
3781 __link_epc((*evt)->pmu_ctx);
3782 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3783 }
3784
3785 min_heapify_all(&event_heap, &perf_min_heap);
3786
3787 while (event_heap.nr) {
3788 ret = func(*evt, data);
3789 if (ret)
3790 return ret;
3791
3792 *evt = perf_event_groups_next(*evt, pmu);
3793 if (*evt)
3794 min_heapify(&event_heap, 0, &perf_min_heap);
3795 else
3796 min_heap_pop(&event_heap, &perf_min_heap);
3797 }
3798
3799 return 0;
3800 }
3801
3802 /*
3803 * Because the userpage is strictly per-event (there is no concept of context,
3804 * so there cannot be a context indirection), every userpage must be updated
3805 * when context time starts :-(
3806 *
3807 * IOW, we must not miss EVENT_TIME edges.
3808 */
event_update_userpage(struct perf_event * event)3809 static inline bool event_update_userpage(struct perf_event *event)
3810 {
3811 if (likely(!atomic_read(&event->mmap_count)))
3812 return false;
3813
3814 perf_event_update_time(event);
3815 perf_event_update_userpage(event);
3816
3817 return true;
3818 }
3819
group_update_userpage(struct perf_event * group_event)3820 static inline void group_update_userpage(struct perf_event *group_event)
3821 {
3822 struct perf_event *event;
3823
3824 if (!event_update_userpage(group_event))
3825 return;
3826
3827 for_each_sibling_event(event, group_event)
3828 event_update_userpage(event);
3829 }
3830
merge_sched_in(struct perf_event * event,void * data)3831 static int merge_sched_in(struct perf_event *event, void *data)
3832 {
3833 struct perf_event_context *ctx = event->ctx;
3834 int *can_add_hw = data;
3835
3836 if (event->state <= PERF_EVENT_STATE_OFF)
3837 return 0;
3838
3839 if (!event_filter_match(event))
3840 return 0;
3841
3842 if (group_can_go_on(event, *can_add_hw)) {
3843 if (!group_sched_in(event, ctx))
3844 list_add_tail(&event->active_list, get_event_list(event));
3845 }
3846
3847 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3848 *can_add_hw = 0;
3849 if (event->attr.pinned) {
3850 perf_cgroup_event_disable(event, ctx);
3851 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3852 } else {
3853 struct perf_cpu_pmu_context *cpc;
3854
3855 event->pmu_ctx->rotate_necessary = 1;
3856 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3857 perf_mux_hrtimer_restart(cpc);
3858 group_update_userpage(event);
3859 }
3860 }
3861
3862 return 0;
3863 }
3864
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)3865 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3866 struct perf_event_groups *groups,
3867 struct pmu *pmu)
3868 {
3869 int can_add_hw = 1;
3870 visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3871 merge_sched_in, &can_add_hw);
3872 }
3873
ctx_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,bool cgroup)3874 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3875 struct perf_event_groups *groups,
3876 bool cgroup)
3877 {
3878 struct perf_event_pmu_context *pmu_ctx;
3879
3880 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3881 if (cgroup && !pmu_ctx->nr_cgroups)
3882 continue;
3883 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3884 }
3885 }
3886
__pmu_ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu)3887 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3888 struct pmu *pmu)
3889 {
3890 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3891 }
3892
3893 static void
ctx_sched_in(struct perf_event_context * ctx,enum event_type_t event_type)3894 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3895 {
3896 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3897 int is_active = ctx->is_active;
3898 bool cgroup = event_type & EVENT_CGROUP;
3899
3900 event_type &= ~EVENT_CGROUP;
3901
3902 lockdep_assert_held(&ctx->lock);
3903
3904 if (likely(!ctx->nr_events))
3905 return;
3906
3907 if (!(is_active & EVENT_TIME)) {
3908 /* start ctx time */
3909 __update_context_time(ctx, false);
3910 perf_cgroup_set_timestamp(cpuctx);
3911 /*
3912 * CPU-release for the below ->is_active store,
3913 * see __load_acquire() in perf_event_time_now()
3914 */
3915 barrier();
3916 }
3917
3918 ctx->is_active |= (event_type | EVENT_TIME);
3919 if (ctx->task) {
3920 if (!is_active)
3921 cpuctx->task_ctx = ctx;
3922 else
3923 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3924 }
3925
3926 is_active ^= ctx->is_active; /* changed bits */
3927
3928 /*
3929 * First go through the list and put on any pinned groups
3930 * in order to give them the best chance of going on.
3931 */
3932 if (is_active & EVENT_PINNED)
3933 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3934
3935 /* Then walk through the lower prio flexible groups */
3936 if (is_active & EVENT_FLEXIBLE)
3937 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3938 }
3939
perf_event_context_sched_in(struct task_struct * task)3940 static void perf_event_context_sched_in(struct task_struct *task)
3941 {
3942 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3943 struct perf_event_context *ctx;
3944
3945 rcu_read_lock();
3946 ctx = rcu_dereference(task->perf_event_ctxp);
3947 if (!ctx)
3948 goto rcu_unlock;
3949
3950 if (cpuctx->task_ctx == ctx) {
3951 perf_ctx_lock(cpuctx, ctx);
3952 perf_ctx_disable(ctx, false);
3953
3954 perf_ctx_sched_task_cb(ctx, true);
3955
3956 perf_ctx_enable(ctx, false);
3957 perf_ctx_unlock(cpuctx, ctx);
3958 goto rcu_unlock;
3959 }
3960
3961 perf_ctx_lock(cpuctx, ctx);
3962 /*
3963 * We must check ctx->nr_events while holding ctx->lock, such
3964 * that we serialize against perf_install_in_context().
3965 */
3966 if (!ctx->nr_events)
3967 goto unlock;
3968
3969 perf_ctx_disable(ctx, false);
3970 /*
3971 * We want to keep the following priority order:
3972 * cpu pinned (that don't need to move), task pinned,
3973 * cpu flexible, task flexible.
3974 *
3975 * However, if task's ctx is not carrying any pinned
3976 * events, no need to flip the cpuctx's events around.
3977 */
3978 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3979 perf_ctx_disable(&cpuctx->ctx, false);
3980 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3981 }
3982
3983 perf_event_sched_in(cpuctx, ctx);
3984
3985 perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3986
3987 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3988 perf_ctx_enable(&cpuctx->ctx, false);
3989
3990 perf_ctx_enable(ctx, false);
3991
3992 unlock:
3993 perf_ctx_unlock(cpuctx, ctx);
3994 rcu_unlock:
3995 rcu_read_unlock();
3996 }
3997
3998 /*
3999 * Called from scheduler to add the events of the current task
4000 * with interrupts disabled.
4001 *
4002 * We restore the event value and then enable it.
4003 *
4004 * This does not protect us against NMI, but enable()
4005 * sets the enabled bit in the control field of event _before_
4006 * accessing the event control register. If a NMI hits, then it will
4007 * keep the event running.
4008 */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4009 void __perf_event_task_sched_in(struct task_struct *prev,
4010 struct task_struct *task)
4011 {
4012 perf_event_context_sched_in(task);
4013
4014 if (atomic_read(&nr_switch_events))
4015 perf_event_switch(task, prev, true);
4016
4017 if (__this_cpu_read(perf_sched_cb_usages))
4018 perf_pmu_sched_task(prev, task, true);
4019 }
4020
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4021 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4022 {
4023 u64 frequency = event->attr.sample_freq;
4024 u64 sec = NSEC_PER_SEC;
4025 u64 divisor, dividend;
4026
4027 int count_fls, nsec_fls, frequency_fls, sec_fls;
4028
4029 count_fls = fls64(count);
4030 nsec_fls = fls64(nsec);
4031 frequency_fls = fls64(frequency);
4032 sec_fls = 30;
4033
4034 /*
4035 * We got @count in @nsec, with a target of sample_freq HZ
4036 * the target period becomes:
4037 *
4038 * @count * 10^9
4039 * period = -------------------
4040 * @nsec * sample_freq
4041 *
4042 */
4043
4044 /*
4045 * Reduce accuracy by one bit such that @a and @b converge
4046 * to a similar magnitude.
4047 */
4048 #define REDUCE_FLS(a, b) \
4049 do { \
4050 if (a##_fls > b##_fls) { \
4051 a >>= 1; \
4052 a##_fls--; \
4053 } else { \
4054 b >>= 1; \
4055 b##_fls--; \
4056 } \
4057 } while (0)
4058
4059 /*
4060 * Reduce accuracy until either term fits in a u64, then proceed with
4061 * the other, so that finally we can do a u64/u64 division.
4062 */
4063 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4064 REDUCE_FLS(nsec, frequency);
4065 REDUCE_FLS(sec, count);
4066 }
4067
4068 if (count_fls + sec_fls > 64) {
4069 divisor = nsec * frequency;
4070
4071 while (count_fls + sec_fls > 64) {
4072 REDUCE_FLS(count, sec);
4073 divisor >>= 1;
4074 }
4075
4076 dividend = count * sec;
4077 } else {
4078 dividend = count * sec;
4079
4080 while (nsec_fls + frequency_fls > 64) {
4081 REDUCE_FLS(nsec, frequency);
4082 dividend >>= 1;
4083 }
4084
4085 divisor = nsec * frequency;
4086 }
4087
4088 if (!divisor)
4089 return dividend;
4090
4091 return div64_u64(dividend, divisor);
4092 }
4093
4094 static DEFINE_PER_CPU(int, perf_throttled_count);
4095 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4096
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4097 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4098 {
4099 struct hw_perf_event *hwc = &event->hw;
4100 s64 period, sample_period;
4101 s64 delta;
4102
4103 period = perf_calculate_period(event, nsec, count);
4104
4105 delta = (s64)(period - hwc->sample_period);
4106 delta = (delta + 7) / 8; /* low pass filter */
4107
4108 sample_period = hwc->sample_period + delta;
4109
4110 if (!sample_period)
4111 sample_period = 1;
4112
4113 hwc->sample_period = sample_period;
4114
4115 if (local64_read(&hwc->period_left) > 8*sample_period) {
4116 if (disable)
4117 event->pmu->stop(event, PERF_EF_UPDATE);
4118
4119 local64_set(&hwc->period_left, 0);
4120
4121 if (disable)
4122 event->pmu->start(event, PERF_EF_RELOAD);
4123 }
4124 }
4125
4126 /*
4127 * combine freq adjustment with unthrottling to avoid two passes over the
4128 * events. At the same time, make sure, having freq events does not change
4129 * the rate of unthrottling as that would introduce bias.
4130 */
4131 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4132 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4133 {
4134 struct perf_event *event;
4135 struct hw_perf_event *hwc;
4136 u64 now, period = TICK_NSEC;
4137 s64 delta;
4138
4139 /*
4140 * only need to iterate over all events iff:
4141 * - context have events in frequency mode (needs freq adjust)
4142 * - there are events to unthrottle on this cpu
4143 */
4144 if (!(ctx->nr_freq || unthrottle))
4145 return;
4146
4147 raw_spin_lock(&ctx->lock);
4148
4149 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4150 if (event->state != PERF_EVENT_STATE_ACTIVE)
4151 continue;
4152
4153 // XXX use visit thingy to avoid the -1,cpu match
4154 if (!event_filter_match(event))
4155 continue;
4156
4157 perf_pmu_disable(event->pmu);
4158
4159 hwc = &event->hw;
4160
4161 if (hwc->interrupts == MAX_INTERRUPTS) {
4162 hwc->interrupts = 0;
4163 perf_log_throttle(event, 1);
4164 event->pmu->start(event, 0);
4165 }
4166
4167 if (!event->attr.freq || !event->attr.sample_freq)
4168 goto next;
4169
4170 /*
4171 * stop the event and update event->count
4172 */
4173 event->pmu->stop(event, PERF_EF_UPDATE);
4174
4175 now = local64_read(&event->count);
4176 delta = now - hwc->freq_count_stamp;
4177 hwc->freq_count_stamp = now;
4178
4179 /*
4180 * restart the event
4181 * reload only if value has changed
4182 * we have stopped the event so tell that
4183 * to perf_adjust_period() to avoid stopping it
4184 * twice.
4185 */
4186 if (delta > 0)
4187 perf_adjust_period(event, period, delta, false);
4188
4189 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4190 next:
4191 perf_pmu_enable(event->pmu);
4192 }
4193
4194 raw_spin_unlock(&ctx->lock);
4195 }
4196
4197 /*
4198 * Move @event to the tail of the @ctx's elegible events.
4199 */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4200 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4201 {
4202 /*
4203 * Rotate the first entry last of non-pinned groups. Rotation might be
4204 * disabled by the inheritance code.
4205 */
4206 if (ctx->rotate_disable)
4207 return;
4208
4209 perf_event_groups_delete(&ctx->flexible_groups, event);
4210 perf_event_groups_insert(&ctx->flexible_groups, event);
4211 }
4212
4213 /* pick an event from the flexible_groups to rotate */
4214 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4215 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4216 {
4217 struct perf_event *event;
4218 struct rb_node *node;
4219 struct rb_root *tree;
4220 struct __group_key key = {
4221 .pmu = pmu_ctx->pmu,
4222 };
4223
4224 /* pick the first active flexible event */
4225 event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4226 struct perf_event, active_list);
4227 if (event)
4228 goto out;
4229
4230 /* if no active flexible event, pick the first event */
4231 tree = &pmu_ctx->ctx->flexible_groups.tree;
4232
4233 if (!pmu_ctx->ctx->task) {
4234 key.cpu = smp_processor_id();
4235
4236 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4237 if (node)
4238 event = __node_2_pe(node);
4239 goto out;
4240 }
4241
4242 key.cpu = -1;
4243 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4244 if (node) {
4245 event = __node_2_pe(node);
4246 goto out;
4247 }
4248
4249 key.cpu = smp_processor_id();
4250 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4251 if (node)
4252 event = __node_2_pe(node);
4253
4254 out:
4255 /*
4256 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4257 * finds there are unschedulable events, it will set it again.
4258 */
4259 pmu_ctx->rotate_necessary = 0;
4260
4261 return event;
4262 }
4263
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4264 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4265 {
4266 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4267 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4268 struct perf_event *cpu_event = NULL, *task_event = NULL;
4269 int cpu_rotate, task_rotate;
4270 struct pmu *pmu;
4271
4272 /*
4273 * Since we run this from IRQ context, nobody can install new
4274 * events, thus the event count values are stable.
4275 */
4276
4277 cpu_epc = &cpc->epc;
4278 pmu = cpu_epc->pmu;
4279 task_epc = cpc->task_epc;
4280
4281 cpu_rotate = cpu_epc->rotate_necessary;
4282 task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4283
4284 if (!(cpu_rotate || task_rotate))
4285 return false;
4286
4287 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4288 perf_pmu_disable(pmu);
4289
4290 if (task_rotate)
4291 task_event = ctx_event_to_rotate(task_epc);
4292 if (cpu_rotate)
4293 cpu_event = ctx_event_to_rotate(cpu_epc);
4294
4295 /*
4296 * As per the order given at ctx_resched() first 'pop' task flexible
4297 * and then, if needed CPU flexible.
4298 */
4299 if (task_event || (task_epc && cpu_event)) {
4300 update_context_time(task_epc->ctx);
4301 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4302 }
4303
4304 if (cpu_event) {
4305 update_context_time(&cpuctx->ctx);
4306 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4307 rotate_ctx(&cpuctx->ctx, cpu_event);
4308 __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4309 }
4310
4311 if (task_event)
4312 rotate_ctx(task_epc->ctx, task_event);
4313
4314 if (task_event || (task_epc && cpu_event))
4315 __pmu_ctx_sched_in(task_epc->ctx, pmu);
4316
4317 perf_pmu_enable(pmu);
4318 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4319
4320 return true;
4321 }
4322
perf_event_task_tick(void)4323 void perf_event_task_tick(void)
4324 {
4325 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4326 struct perf_event_context *ctx;
4327 int throttled;
4328
4329 lockdep_assert_irqs_disabled();
4330
4331 __this_cpu_inc(perf_throttled_seq);
4332 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4333 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4334
4335 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4336
4337 rcu_read_lock();
4338 ctx = rcu_dereference(current->perf_event_ctxp);
4339 if (ctx)
4340 perf_adjust_freq_unthr_context(ctx, !!throttled);
4341 rcu_read_unlock();
4342 }
4343
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4344 static int event_enable_on_exec(struct perf_event *event,
4345 struct perf_event_context *ctx)
4346 {
4347 if (!event->attr.enable_on_exec)
4348 return 0;
4349
4350 event->attr.enable_on_exec = 0;
4351 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4352 return 0;
4353
4354 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4355
4356 return 1;
4357 }
4358
4359 /*
4360 * Enable all of a task's events that have been marked enable-on-exec.
4361 * This expects task == current.
4362 */
perf_event_enable_on_exec(struct perf_event_context * ctx)4363 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4364 {
4365 struct perf_event_context *clone_ctx = NULL;
4366 enum event_type_t event_type = 0;
4367 struct perf_cpu_context *cpuctx;
4368 struct perf_event *event;
4369 unsigned long flags;
4370 int enabled = 0;
4371
4372 local_irq_save(flags);
4373 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4374 goto out;
4375
4376 if (!ctx->nr_events)
4377 goto out;
4378
4379 cpuctx = this_cpu_ptr(&perf_cpu_context);
4380 perf_ctx_lock(cpuctx, ctx);
4381 ctx_sched_out(ctx, EVENT_TIME);
4382
4383 list_for_each_entry(event, &ctx->event_list, event_entry) {
4384 enabled |= event_enable_on_exec(event, ctx);
4385 event_type |= get_event_type(event);
4386 }
4387
4388 /*
4389 * Unclone and reschedule this context if we enabled any event.
4390 */
4391 if (enabled) {
4392 clone_ctx = unclone_ctx(ctx);
4393 ctx_resched(cpuctx, ctx, event_type);
4394 } else {
4395 ctx_sched_in(ctx, EVENT_TIME);
4396 }
4397 perf_ctx_unlock(cpuctx, ctx);
4398
4399 out:
4400 local_irq_restore(flags);
4401
4402 if (clone_ctx)
4403 put_ctx(clone_ctx);
4404 }
4405
4406 static void perf_remove_from_owner(struct perf_event *event);
4407 static void perf_event_exit_event(struct perf_event *event,
4408 struct perf_event_context *ctx);
4409
4410 /*
4411 * Removes all events from the current task that have been marked
4412 * remove-on-exec, and feeds their values back to parent events.
4413 */
perf_event_remove_on_exec(struct perf_event_context * ctx)4414 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4415 {
4416 struct perf_event_context *clone_ctx = NULL;
4417 struct perf_event *event, *next;
4418 unsigned long flags;
4419 bool modified = false;
4420
4421 mutex_lock(&ctx->mutex);
4422
4423 if (WARN_ON_ONCE(ctx->task != current))
4424 goto unlock;
4425
4426 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4427 if (!event->attr.remove_on_exec)
4428 continue;
4429
4430 if (!is_kernel_event(event))
4431 perf_remove_from_owner(event);
4432
4433 modified = true;
4434
4435 perf_event_exit_event(event, ctx);
4436 }
4437
4438 raw_spin_lock_irqsave(&ctx->lock, flags);
4439 if (modified)
4440 clone_ctx = unclone_ctx(ctx);
4441 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4442
4443 unlock:
4444 mutex_unlock(&ctx->mutex);
4445
4446 if (clone_ctx)
4447 put_ctx(clone_ctx);
4448 }
4449
4450 struct perf_read_data {
4451 struct perf_event *event;
4452 bool group;
4453 int ret;
4454 };
4455
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4456 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4457 {
4458 u16 local_pkg, event_pkg;
4459
4460 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4461 int local_cpu = smp_processor_id();
4462
4463 event_pkg = topology_physical_package_id(event_cpu);
4464 local_pkg = topology_physical_package_id(local_cpu);
4465
4466 if (event_pkg == local_pkg)
4467 return local_cpu;
4468 }
4469
4470 return event_cpu;
4471 }
4472
4473 /*
4474 * Cross CPU call to read the hardware event
4475 */
__perf_event_read(void * info)4476 static void __perf_event_read(void *info)
4477 {
4478 struct perf_read_data *data = info;
4479 struct perf_event *sub, *event = data->event;
4480 struct perf_event_context *ctx = event->ctx;
4481 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4482 struct pmu *pmu = event->pmu;
4483
4484 /*
4485 * If this is a task context, we need to check whether it is
4486 * the current task context of this cpu. If not it has been
4487 * scheduled out before the smp call arrived. In that case
4488 * event->count would have been updated to a recent sample
4489 * when the event was scheduled out.
4490 */
4491 if (ctx->task && cpuctx->task_ctx != ctx)
4492 return;
4493
4494 raw_spin_lock(&ctx->lock);
4495 if (ctx->is_active & EVENT_TIME) {
4496 update_context_time(ctx);
4497 update_cgrp_time_from_event(event);
4498 }
4499
4500 perf_event_update_time(event);
4501 if (data->group)
4502 perf_event_update_sibling_time(event);
4503
4504 if (event->state != PERF_EVENT_STATE_ACTIVE)
4505 goto unlock;
4506
4507 if (!data->group) {
4508 pmu->read(event);
4509 data->ret = 0;
4510 goto unlock;
4511 }
4512
4513 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4514
4515 pmu->read(event);
4516
4517 for_each_sibling_event(sub, event) {
4518 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4519 /*
4520 * Use sibling's PMU rather than @event's since
4521 * sibling could be on different (eg: software) PMU.
4522 */
4523 sub->pmu->read(sub);
4524 }
4525 }
4526
4527 data->ret = pmu->commit_txn(pmu);
4528
4529 unlock:
4530 raw_spin_unlock(&ctx->lock);
4531 }
4532
perf_event_count(struct perf_event * event)4533 static inline u64 perf_event_count(struct perf_event *event)
4534 {
4535 return local64_read(&event->count) + atomic64_read(&event->child_count);
4536 }
4537
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4538 static void calc_timer_values(struct perf_event *event,
4539 u64 *now,
4540 u64 *enabled,
4541 u64 *running)
4542 {
4543 u64 ctx_time;
4544
4545 *now = perf_clock();
4546 ctx_time = perf_event_time_now(event, *now);
4547 __perf_update_times(event, ctx_time, enabled, running);
4548 }
4549
4550 /*
4551 * NMI-safe method to read a local event, that is an event that
4552 * is:
4553 * - either for the current task, or for this CPU
4554 * - does not have inherit set, for inherited task events
4555 * will not be local and we cannot read them atomically
4556 * - must not have a pmu::count method
4557 */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4558 int perf_event_read_local(struct perf_event *event, u64 *value,
4559 u64 *enabled, u64 *running)
4560 {
4561 unsigned long flags;
4562 int ret = 0;
4563
4564 /*
4565 * Disabling interrupts avoids all counter scheduling (context
4566 * switches, timer based rotation and IPIs).
4567 */
4568 local_irq_save(flags);
4569
4570 /*
4571 * It must not be an event with inherit set, we cannot read
4572 * all child counters from atomic context.
4573 */
4574 if (event->attr.inherit) {
4575 ret = -EOPNOTSUPP;
4576 goto out;
4577 }
4578
4579 /* If this is a per-task event, it must be for current */
4580 if ((event->attach_state & PERF_ATTACH_TASK) &&
4581 event->hw.target != current) {
4582 ret = -EINVAL;
4583 goto out;
4584 }
4585
4586 /* If this is a per-CPU event, it must be for this CPU */
4587 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4588 event->cpu != smp_processor_id()) {
4589 ret = -EINVAL;
4590 goto out;
4591 }
4592
4593 /* If this is a pinned event it must be running on this CPU */
4594 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4595 ret = -EBUSY;
4596 goto out;
4597 }
4598
4599 /*
4600 * If the event is currently on this CPU, its either a per-task event,
4601 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4602 * oncpu == -1).
4603 */
4604 if (event->oncpu == smp_processor_id())
4605 event->pmu->read(event);
4606
4607 *value = local64_read(&event->count);
4608 if (enabled || running) {
4609 u64 __enabled, __running, __now;
4610
4611 calc_timer_values(event, &__now, &__enabled, &__running);
4612 if (enabled)
4613 *enabled = __enabled;
4614 if (running)
4615 *running = __running;
4616 }
4617 out:
4618 local_irq_restore(flags);
4619
4620 return ret;
4621 }
4622
perf_event_read(struct perf_event * event,bool group)4623 static int perf_event_read(struct perf_event *event, bool group)
4624 {
4625 enum perf_event_state state = READ_ONCE(event->state);
4626 int event_cpu, ret = 0;
4627
4628 /*
4629 * If event is enabled and currently active on a CPU, update the
4630 * value in the event structure:
4631 */
4632 again:
4633 if (state == PERF_EVENT_STATE_ACTIVE) {
4634 struct perf_read_data data;
4635
4636 /*
4637 * Orders the ->state and ->oncpu loads such that if we see
4638 * ACTIVE we must also see the right ->oncpu.
4639 *
4640 * Matches the smp_wmb() from event_sched_in().
4641 */
4642 smp_rmb();
4643
4644 event_cpu = READ_ONCE(event->oncpu);
4645 if ((unsigned)event_cpu >= nr_cpu_ids)
4646 return 0;
4647
4648 data = (struct perf_read_data){
4649 .event = event,
4650 .group = group,
4651 .ret = 0,
4652 };
4653
4654 preempt_disable();
4655 event_cpu = __perf_event_read_cpu(event, event_cpu);
4656
4657 /*
4658 * Purposely ignore the smp_call_function_single() return
4659 * value.
4660 *
4661 * If event_cpu isn't a valid CPU it means the event got
4662 * scheduled out and that will have updated the event count.
4663 *
4664 * Therefore, either way, we'll have an up-to-date event count
4665 * after this.
4666 */
4667 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4668 preempt_enable();
4669 ret = data.ret;
4670
4671 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4672 struct perf_event_context *ctx = event->ctx;
4673 unsigned long flags;
4674
4675 raw_spin_lock_irqsave(&ctx->lock, flags);
4676 state = event->state;
4677 if (state != PERF_EVENT_STATE_INACTIVE) {
4678 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4679 goto again;
4680 }
4681
4682 /*
4683 * May read while context is not active (e.g., thread is
4684 * blocked), in that case we cannot update context time
4685 */
4686 if (ctx->is_active & EVENT_TIME) {
4687 update_context_time(ctx);
4688 update_cgrp_time_from_event(event);
4689 }
4690
4691 perf_event_update_time(event);
4692 if (group)
4693 perf_event_update_sibling_time(event);
4694 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4695 }
4696
4697 return ret;
4698 }
4699
4700 /*
4701 * Initialize the perf_event context in a task_struct:
4702 */
__perf_event_init_context(struct perf_event_context * ctx)4703 static void __perf_event_init_context(struct perf_event_context *ctx)
4704 {
4705 raw_spin_lock_init(&ctx->lock);
4706 mutex_init(&ctx->mutex);
4707 INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4708 perf_event_groups_init(&ctx->pinned_groups);
4709 perf_event_groups_init(&ctx->flexible_groups);
4710 INIT_LIST_HEAD(&ctx->event_list);
4711 refcount_set(&ctx->refcount, 1);
4712 }
4713
4714 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4715 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4716 {
4717 epc->pmu = pmu;
4718 INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4719 INIT_LIST_HEAD(&epc->pinned_active);
4720 INIT_LIST_HEAD(&epc->flexible_active);
4721 atomic_set(&epc->refcount, 1);
4722 }
4723
4724 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4725 alloc_perf_context(struct task_struct *task)
4726 {
4727 struct perf_event_context *ctx;
4728
4729 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4730 if (!ctx)
4731 return NULL;
4732
4733 __perf_event_init_context(ctx);
4734 if (task)
4735 ctx->task = get_task_struct(task);
4736
4737 return ctx;
4738 }
4739
4740 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4741 find_lively_task_by_vpid(pid_t vpid)
4742 {
4743 struct task_struct *task;
4744
4745 rcu_read_lock();
4746 if (!vpid)
4747 task = current;
4748 else
4749 task = find_task_by_vpid(vpid);
4750 if (task)
4751 get_task_struct(task);
4752 rcu_read_unlock();
4753
4754 if (!task)
4755 return ERR_PTR(-ESRCH);
4756
4757 return task;
4758 }
4759
4760 /*
4761 * Returns a matching context with refcount and pincount.
4762 */
4763 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4764 find_get_context(struct task_struct *task, struct perf_event *event)
4765 {
4766 struct perf_event_context *ctx, *clone_ctx = NULL;
4767 struct perf_cpu_context *cpuctx;
4768 unsigned long flags;
4769 int err;
4770
4771 if (!task) {
4772 /* Must be root to operate on a CPU event: */
4773 err = perf_allow_cpu(&event->attr);
4774 if (err)
4775 return ERR_PTR(err);
4776
4777 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4778 ctx = &cpuctx->ctx;
4779 get_ctx(ctx);
4780 raw_spin_lock_irqsave(&ctx->lock, flags);
4781 ++ctx->pin_count;
4782 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4783
4784 return ctx;
4785 }
4786
4787 err = -EINVAL;
4788 retry:
4789 ctx = perf_lock_task_context(task, &flags);
4790 if (ctx) {
4791 clone_ctx = unclone_ctx(ctx);
4792 ++ctx->pin_count;
4793
4794 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4795
4796 if (clone_ctx)
4797 put_ctx(clone_ctx);
4798 } else {
4799 ctx = alloc_perf_context(task);
4800 err = -ENOMEM;
4801 if (!ctx)
4802 goto errout;
4803
4804 err = 0;
4805 mutex_lock(&task->perf_event_mutex);
4806 /*
4807 * If it has already passed perf_event_exit_task().
4808 * we must see PF_EXITING, it takes this mutex too.
4809 */
4810 if (task->flags & PF_EXITING)
4811 err = -ESRCH;
4812 else if (task->perf_event_ctxp)
4813 err = -EAGAIN;
4814 else {
4815 get_ctx(ctx);
4816 ++ctx->pin_count;
4817 rcu_assign_pointer(task->perf_event_ctxp, ctx);
4818 }
4819 mutex_unlock(&task->perf_event_mutex);
4820
4821 if (unlikely(err)) {
4822 put_ctx(ctx);
4823
4824 if (err == -EAGAIN)
4825 goto retry;
4826 goto errout;
4827 }
4828 }
4829
4830 return ctx;
4831
4832 errout:
4833 return ERR_PTR(err);
4834 }
4835
4836 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)4837 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4838 struct perf_event *event)
4839 {
4840 struct perf_event_pmu_context *new = NULL, *epc;
4841 void *task_ctx_data = NULL;
4842
4843 if (!ctx->task) {
4844 /*
4845 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4846 * relies on the fact that find_get_pmu_context() cannot fail
4847 * for CPU contexts.
4848 */
4849 struct perf_cpu_pmu_context *cpc;
4850
4851 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4852 epc = &cpc->epc;
4853 raw_spin_lock_irq(&ctx->lock);
4854 if (!epc->ctx) {
4855 atomic_set(&epc->refcount, 1);
4856 epc->embedded = 1;
4857 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4858 epc->ctx = ctx;
4859 } else {
4860 WARN_ON_ONCE(epc->ctx != ctx);
4861 atomic_inc(&epc->refcount);
4862 }
4863 raw_spin_unlock_irq(&ctx->lock);
4864 return epc;
4865 }
4866
4867 new = kzalloc(sizeof(*epc), GFP_KERNEL);
4868 if (!new)
4869 return ERR_PTR(-ENOMEM);
4870
4871 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4872 task_ctx_data = alloc_task_ctx_data(pmu);
4873 if (!task_ctx_data) {
4874 kfree(new);
4875 return ERR_PTR(-ENOMEM);
4876 }
4877 }
4878
4879 __perf_init_event_pmu_context(new, pmu);
4880
4881 /*
4882 * XXX
4883 *
4884 * lockdep_assert_held(&ctx->mutex);
4885 *
4886 * can't because perf_event_init_task() doesn't actually hold the
4887 * child_ctx->mutex.
4888 */
4889
4890 raw_spin_lock_irq(&ctx->lock);
4891 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4892 if (epc->pmu == pmu) {
4893 WARN_ON_ONCE(epc->ctx != ctx);
4894 atomic_inc(&epc->refcount);
4895 goto found_epc;
4896 }
4897 }
4898
4899 epc = new;
4900 new = NULL;
4901
4902 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4903 epc->ctx = ctx;
4904
4905 found_epc:
4906 if (task_ctx_data && !epc->task_ctx_data) {
4907 epc->task_ctx_data = task_ctx_data;
4908 task_ctx_data = NULL;
4909 ctx->nr_task_data++;
4910 }
4911 raw_spin_unlock_irq(&ctx->lock);
4912
4913 free_task_ctx_data(pmu, task_ctx_data);
4914 kfree(new);
4915
4916 return epc;
4917 }
4918
get_pmu_ctx(struct perf_event_pmu_context * epc)4919 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4920 {
4921 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4922 }
4923
free_epc_rcu(struct rcu_head * head)4924 static void free_epc_rcu(struct rcu_head *head)
4925 {
4926 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4927
4928 kfree(epc->task_ctx_data);
4929 kfree(epc);
4930 }
4931
put_pmu_ctx(struct perf_event_pmu_context * epc)4932 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4933 {
4934 struct perf_event_context *ctx = epc->ctx;
4935 unsigned long flags;
4936
4937 /*
4938 * XXX
4939 *
4940 * lockdep_assert_held(&ctx->mutex);
4941 *
4942 * can't because of the call-site in _free_event()/put_event()
4943 * which isn't always called under ctx->mutex.
4944 */
4945 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4946 return;
4947
4948 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4949
4950 list_del_init(&epc->pmu_ctx_entry);
4951 epc->ctx = NULL;
4952
4953 WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4954 WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4955
4956 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4957
4958 if (epc->embedded)
4959 return;
4960
4961 call_rcu(&epc->rcu_head, free_epc_rcu);
4962 }
4963
4964 static void perf_event_free_filter(struct perf_event *event);
4965
free_event_rcu(struct rcu_head * head)4966 static void free_event_rcu(struct rcu_head *head)
4967 {
4968 struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4969
4970 if (event->ns)
4971 put_pid_ns(event->ns);
4972 perf_event_free_filter(event);
4973 kmem_cache_free(perf_event_cache, event);
4974 }
4975
4976 static void ring_buffer_attach(struct perf_event *event,
4977 struct perf_buffer *rb);
4978
detach_sb_event(struct perf_event * event)4979 static void detach_sb_event(struct perf_event *event)
4980 {
4981 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4982
4983 raw_spin_lock(&pel->lock);
4984 list_del_rcu(&event->sb_list);
4985 raw_spin_unlock(&pel->lock);
4986 }
4987
is_sb_event(struct perf_event * event)4988 static bool is_sb_event(struct perf_event *event)
4989 {
4990 struct perf_event_attr *attr = &event->attr;
4991
4992 if (event->parent)
4993 return false;
4994
4995 if (event->attach_state & PERF_ATTACH_TASK)
4996 return false;
4997
4998 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4999 attr->comm || attr->comm_exec ||
5000 attr->task || attr->ksymbol ||
5001 attr->context_switch || attr->text_poke ||
5002 attr->bpf_event)
5003 return true;
5004 return false;
5005 }
5006
unaccount_pmu_sb_event(struct perf_event * event)5007 static void unaccount_pmu_sb_event(struct perf_event *event)
5008 {
5009 if (is_sb_event(event))
5010 detach_sb_event(event);
5011 }
5012
5013 #ifdef CONFIG_NO_HZ_FULL
5014 static DEFINE_SPINLOCK(nr_freq_lock);
5015 #endif
5016
unaccount_freq_event_nohz(void)5017 static void unaccount_freq_event_nohz(void)
5018 {
5019 #ifdef CONFIG_NO_HZ_FULL
5020 spin_lock(&nr_freq_lock);
5021 if (atomic_dec_and_test(&nr_freq_events))
5022 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5023 spin_unlock(&nr_freq_lock);
5024 #endif
5025 }
5026
unaccount_freq_event(void)5027 static void unaccount_freq_event(void)
5028 {
5029 if (tick_nohz_full_enabled())
5030 unaccount_freq_event_nohz();
5031 else
5032 atomic_dec(&nr_freq_events);
5033 }
5034
unaccount_event(struct perf_event * event)5035 static void unaccount_event(struct perf_event *event)
5036 {
5037 bool dec = false;
5038
5039 if (event->parent)
5040 return;
5041
5042 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5043 dec = true;
5044 if (event->attr.mmap || event->attr.mmap_data)
5045 atomic_dec(&nr_mmap_events);
5046 if (event->attr.build_id)
5047 atomic_dec(&nr_build_id_events);
5048 if (event->attr.comm)
5049 atomic_dec(&nr_comm_events);
5050 if (event->attr.namespaces)
5051 atomic_dec(&nr_namespaces_events);
5052 if (event->attr.cgroup)
5053 atomic_dec(&nr_cgroup_events);
5054 if (event->attr.task)
5055 atomic_dec(&nr_task_events);
5056 if (event->attr.freq)
5057 unaccount_freq_event();
5058 if (event->attr.context_switch) {
5059 dec = true;
5060 atomic_dec(&nr_switch_events);
5061 }
5062 if (is_cgroup_event(event))
5063 dec = true;
5064 if (has_branch_stack(event))
5065 dec = true;
5066 if (event->attr.ksymbol)
5067 atomic_dec(&nr_ksymbol_events);
5068 if (event->attr.bpf_event)
5069 atomic_dec(&nr_bpf_events);
5070 if (event->attr.text_poke)
5071 atomic_dec(&nr_text_poke_events);
5072
5073 if (dec) {
5074 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5075 schedule_delayed_work(&perf_sched_work, HZ);
5076 }
5077
5078 unaccount_pmu_sb_event(event);
5079 }
5080
perf_sched_delayed(struct work_struct * work)5081 static void perf_sched_delayed(struct work_struct *work)
5082 {
5083 mutex_lock(&perf_sched_mutex);
5084 if (atomic_dec_and_test(&perf_sched_count))
5085 static_branch_disable(&perf_sched_events);
5086 mutex_unlock(&perf_sched_mutex);
5087 }
5088
5089 /*
5090 * The following implement mutual exclusion of events on "exclusive" pmus
5091 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5092 * at a time, so we disallow creating events that might conflict, namely:
5093 *
5094 * 1) cpu-wide events in the presence of per-task events,
5095 * 2) per-task events in the presence of cpu-wide events,
5096 * 3) two matching events on the same perf_event_context.
5097 *
5098 * The former two cases are handled in the allocation path (perf_event_alloc(),
5099 * _free_event()), the latter -- before the first perf_install_in_context().
5100 */
exclusive_event_init(struct perf_event * event)5101 static int exclusive_event_init(struct perf_event *event)
5102 {
5103 struct pmu *pmu = event->pmu;
5104
5105 if (!is_exclusive_pmu(pmu))
5106 return 0;
5107
5108 /*
5109 * Prevent co-existence of per-task and cpu-wide events on the
5110 * same exclusive pmu.
5111 *
5112 * Negative pmu::exclusive_cnt means there are cpu-wide
5113 * events on this "exclusive" pmu, positive means there are
5114 * per-task events.
5115 *
5116 * Since this is called in perf_event_alloc() path, event::ctx
5117 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5118 * to mean "per-task event", because unlike other attach states it
5119 * never gets cleared.
5120 */
5121 if (event->attach_state & PERF_ATTACH_TASK) {
5122 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5123 return -EBUSY;
5124 } else {
5125 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5126 return -EBUSY;
5127 }
5128
5129 return 0;
5130 }
5131
exclusive_event_destroy(struct perf_event * event)5132 static void exclusive_event_destroy(struct perf_event *event)
5133 {
5134 struct pmu *pmu = event->pmu;
5135
5136 if (!is_exclusive_pmu(pmu))
5137 return;
5138
5139 /* see comment in exclusive_event_init() */
5140 if (event->attach_state & PERF_ATTACH_TASK)
5141 atomic_dec(&pmu->exclusive_cnt);
5142 else
5143 atomic_inc(&pmu->exclusive_cnt);
5144 }
5145
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5146 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5147 {
5148 if ((e1->pmu == e2->pmu) &&
5149 (e1->cpu == e2->cpu ||
5150 e1->cpu == -1 ||
5151 e2->cpu == -1))
5152 return true;
5153 return false;
5154 }
5155
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5156 static bool exclusive_event_installable(struct perf_event *event,
5157 struct perf_event_context *ctx)
5158 {
5159 struct perf_event *iter_event;
5160 struct pmu *pmu = event->pmu;
5161
5162 lockdep_assert_held(&ctx->mutex);
5163
5164 if (!is_exclusive_pmu(pmu))
5165 return true;
5166
5167 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5168 if (exclusive_event_match(iter_event, event))
5169 return false;
5170 }
5171
5172 return true;
5173 }
5174
5175 static void perf_addr_filters_splice(struct perf_event *event,
5176 struct list_head *head);
5177
_free_event(struct perf_event * event)5178 static void _free_event(struct perf_event *event)
5179 {
5180 irq_work_sync(&event->pending_irq);
5181
5182 unaccount_event(event);
5183
5184 security_perf_event_free(event);
5185
5186 if (event->rb) {
5187 /*
5188 * Can happen when we close an event with re-directed output.
5189 *
5190 * Since we have a 0 refcount, perf_mmap_close() will skip
5191 * over us; possibly making our ring_buffer_put() the last.
5192 */
5193 mutex_lock(&event->mmap_mutex);
5194 ring_buffer_attach(event, NULL);
5195 mutex_unlock(&event->mmap_mutex);
5196 }
5197
5198 if (is_cgroup_event(event))
5199 perf_detach_cgroup(event);
5200
5201 if (!event->parent) {
5202 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5203 put_callchain_buffers();
5204 }
5205
5206 perf_event_free_bpf_prog(event);
5207 perf_addr_filters_splice(event, NULL);
5208 kfree(event->addr_filter_ranges);
5209
5210 if (event->destroy)
5211 event->destroy(event);
5212
5213 /*
5214 * Must be after ->destroy(), due to uprobe_perf_close() using
5215 * hw.target.
5216 */
5217 if (event->hw.target)
5218 put_task_struct(event->hw.target);
5219
5220 if (event->pmu_ctx)
5221 put_pmu_ctx(event->pmu_ctx);
5222
5223 /*
5224 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5225 * all task references must be cleaned up.
5226 */
5227 if (event->ctx)
5228 put_ctx(event->ctx);
5229
5230 exclusive_event_destroy(event);
5231 module_put(event->pmu->module);
5232
5233 call_rcu(&event->rcu_head, free_event_rcu);
5234 }
5235
5236 /*
5237 * Used to free events which have a known refcount of 1, such as in error paths
5238 * where the event isn't exposed yet and inherited events.
5239 */
free_event(struct perf_event * event)5240 static void free_event(struct perf_event *event)
5241 {
5242 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5243 "unexpected event refcount: %ld; ptr=%p\n",
5244 atomic_long_read(&event->refcount), event)) {
5245 /* leak to avoid use-after-free */
5246 return;
5247 }
5248
5249 _free_event(event);
5250 }
5251
5252 /*
5253 * Remove user event from the owner task.
5254 */
perf_remove_from_owner(struct perf_event * event)5255 static void perf_remove_from_owner(struct perf_event *event)
5256 {
5257 struct task_struct *owner;
5258
5259 rcu_read_lock();
5260 /*
5261 * Matches the smp_store_release() in perf_event_exit_task(). If we
5262 * observe !owner it means the list deletion is complete and we can
5263 * indeed free this event, otherwise we need to serialize on
5264 * owner->perf_event_mutex.
5265 */
5266 owner = READ_ONCE(event->owner);
5267 if (owner) {
5268 /*
5269 * Since delayed_put_task_struct() also drops the last
5270 * task reference we can safely take a new reference
5271 * while holding the rcu_read_lock().
5272 */
5273 get_task_struct(owner);
5274 }
5275 rcu_read_unlock();
5276
5277 if (owner) {
5278 /*
5279 * If we're here through perf_event_exit_task() we're already
5280 * holding ctx->mutex which would be an inversion wrt. the
5281 * normal lock order.
5282 *
5283 * However we can safely take this lock because its the child
5284 * ctx->mutex.
5285 */
5286 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5287
5288 /*
5289 * We have to re-check the event->owner field, if it is cleared
5290 * we raced with perf_event_exit_task(), acquiring the mutex
5291 * ensured they're done, and we can proceed with freeing the
5292 * event.
5293 */
5294 if (event->owner) {
5295 list_del_init(&event->owner_entry);
5296 smp_store_release(&event->owner, NULL);
5297 }
5298 mutex_unlock(&owner->perf_event_mutex);
5299 put_task_struct(owner);
5300 }
5301 }
5302
put_event(struct perf_event * event)5303 static void put_event(struct perf_event *event)
5304 {
5305 if (!atomic_long_dec_and_test(&event->refcount))
5306 return;
5307
5308 _free_event(event);
5309 }
5310
5311 /*
5312 * Kill an event dead; while event:refcount will preserve the event
5313 * object, it will not preserve its functionality. Once the last 'user'
5314 * gives up the object, we'll destroy the thing.
5315 */
perf_event_release_kernel(struct perf_event * event)5316 int perf_event_release_kernel(struct perf_event *event)
5317 {
5318 struct perf_event_context *ctx = event->ctx;
5319 struct perf_event *child, *tmp;
5320 LIST_HEAD(free_list);
5321
5322 /*
5323 * If we got here through err_alloc: free_event(event); we will not
5324 * have attached to a context yet.
5325 */
5326 if (!ctx) {
5327 WARN_ON_ONCE(event->attach_state &
5328 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5329 goto no_ctx;
5330 }
5331
5332 if (!is_kernel_event(event))
5333 perf_remove_from_owner(event);
5334
5335 ctx = perf_event_ctx_lock(event);
5336 WARN_ON_ONCE(ctx->parent_ctx);
5337
5338 /*
5339 * Mark this event as STATE_DEAD, there is no external reference to it
5340 * anymore.
5341 *
5342 * Anybody acquiring event->child_mutex after the below loop _must_
5343 * also see this, most importantly inherit_event() which will avoid
5344 * placing more children on the list.
5345 *
5346 * Thus this guarantees that we will in fact observe and kill _ALL_
5347 * child events.
5348 */
5349 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5350
5351 perf_event_ctx_unlock(event, ctx);
5352
5353 again:
5354 mutex_lock(&event->child_mutex);
5355 list_for_each_entry(child, &event->child_list, child_list) {
5356
5357 /*
5358 * Cannot change, child events are not migrated, see the
5359 * comment with perf_event_ctx_lock_nested().
5360 */
5361 ctx = READ_ONCE(child->ctx);
5362 /*
5363 * Since child_mutex nests inside ctx::mutex, we must jump
5364 * through hoops. We start by grabbing a reference on the ctx.
5365 *
5366 * Since the event cannot get freed while we hold the
5367 * child_mutex, the context must also exist and have a !0
5368 * reference count.
5369 */
5370 get_ctx(ctx);
5371
5372 /*
5373 * Now that we have a ctx ref, we can drop child_mutex, and
5374 * acquire ctx::mutex without fear of it going away. Then we
5375 * can re-acquire child_mutex.
5376 */
5377 mutex_unlock(&event->child_mutex);
5378 mutex_lock(&ctx->mutex);
5379 mutex_lock(&event->child_mutex);
5380
5381 /*
5382 * Now that we hold ctx::mutex and child_mutex, revalidate our
5383 * state, if child is still the first entry, it didn't get freed
5384 * and we can continue doing so.
5385 */
5386 tmp = list_first_entry_or_null(&event->child_list,
5387 struct perf_event, child_list);
5388 if (tmp == child) {
5389 perf_remove_from_context(child, DETACH_GROUP);
5390 list_move(&child->child_list, &free_list);
5391 /*
5392 * This matches the refcount bump in inherit_event();
5393 * this can't be the last reference.
5394 */
5395 put_event(event);
5396 }
5397
5398 mutex_unlock(&event->child_mutex);
5399 mutex_unlock(&ctx->mutex);
5400 put_ctx(ctx);
5401 goto again;
5402 }
5403 mutex_unlock(&event->child_mutex);
5404
5405 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5406 void *var = &child->ctx->refcount;
5407
5408 list_del(&child->child_list);
5409 free_event(child);
5410
5411 /*
5412 * Wake any perf_event_free_task() waiting for this event to be
5413 * freed.
5414 */
5415 smp_mb(); /* pairs with wait_var_event() */
5416 wake_up_var(var);
5417 }
5418
5419 no_ctx:
5420 put_event(event); /* Must be the 'last' reference */
5421 return 0;
5422 }
5423 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5424
5425 /*
5426 * Called when the last reference to the file is gone.
5427 */
perf_release(struct inode * inode,struct file * file)5428 static int perf_release(struct inode *inode, struct file *file)
5429 {
5430 perf_event_release_kernel(file->private_data);
5431 return 0;
5432 }
5433
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5434 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5435 {
5436 struct perf_event *child;
5437 u64 total = 0;
5438
5439 *enabled = 0;
5440 *running = 0;
5441
5442 mutex_lock(&event->child_mutex);
5443
5444 (void)perf_event_read(event, false);
5445 total += perf_event_count(event);
5446
5447 *enabled += event->total_time_enabled +
5448 atomic64_read(&event->child_total_time_enabled);
5449 *running += event->total_time_running +
5450 atomic64_read(&event->child_total_time_running);
5451
5452 list_for_each_entry(child, &event->child_list, child_list) {
5453 (void)perf_event_read(child, false);
5454 total += perf_event_count(child);
5455 *enabled += child->total_time_enabled;
5456 *running += child->total_time_running;
5457 }
5458 mutex_unlock(&event->child_mutex);
5459
5460 return total;
5461 }
5462
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5463 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5464 {
5465 struct perf_event_context *ctx;
5466 u64 count;
5467
5468 ctx = perf_event_ctx_lock(event);
5469 count = __perf_event_read_value(event, enabled, running);
5470 perf_event_ctx_unlock(event, ctx);
5471
5472 return count;
5473 }
5474 EXPORT_SYMBOL_GPL(perf_event_read_value);
5475
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5476 static int __perf_read_group_add(struct perf_event *leader,
5477 u64 read_format, u64 *values)
5478 {
5479 struct perf_event_context *ctx = leader->ctx;
5480 struct perf_event *sub, *parent;
5481 unsigned long flags;
5482 int n = 1; /* skip @nr */
5483 int ret;
5484
5485 ret = perf_event_read(leader, true);
5486 if (ret)
5487 return ret;
5488
5489 raw_spin_lock_irqsave(&ctx->lock, flags);
5490 /*
5491 * Verify the grouping between the parent and child (inherited)
5492 * events is still in tact.
5493 *
5494 * Specifically:
5495 * - leader->ctx->lock pins leader->sibling_list
5496 * - parent->child_mutex pins parent->child_list
5497 * - parent->ctx->mutex pins parent->sibling_list
5498 *
5499 * Because parent->ctx != leader->ctx (and child_list nests inside
5500 * ctx->mutex), group destruction is not atomic between children, also
5501 * see perf_event_release_kernel(). Additionally, parent can grow the
5502 * group.
5503 *
5504 * Therefore it is possible to have parent and child groups in a
5505 * different configuration and summing over such a beast makes no sense
5506 * what so ever.
5507 *
5508 * Reject this.
5509 */
5510 parent = leader->parent;
5511 if (parent &&
5512 (parent->group_generation != leader->group_generation ||
5513 parent->nr_siblings != leader->nr_siblings)) {
5514 ret = -ECHILD;
5515 goto unlock;
5516 }
5517
5518 /*
5519 * Since we co-schedule groups, {enabled,running} times of siblings
5520 * will be identical to those of the leader, so we only publish one
5521 * set.
5522 */
5523 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5524 values[n++] += leader->total_time_enabled +
5525 atomic64_read(&leader->child_total_time_enabled);
5526 }
5527
5528 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5529 values[n++] += leader->total_time_running +
5530 atomic64_read(&leader->child_total_time_running);
5531 }
5532
5533 /*
5534 * Write {count,id} tuples for every sibling.
5535 */
5536 values[n++] += perf_event_count(leader);
5537 if (read_format & PERF_FORMAT_ID)
5538 values[n++] = primary_event_id(leader);
5539 if (read_format & PERF_FORMAT_LOST)
5540 values[n++] = atomic64_read(&leader->lost_samples);
5541
5542 for_each_sibling_event(sub, leader) {
5543 values[n++] += perf_event_count(sub);
5544 if (read_format & PERF_FORMAT_ID)
5545 values[n++] = primary_event_id(sub);
5546 if (read_format & PERF_FORMAT_LOST)
5547 values[n++] = atomic64_read(&sub->lost_samples);
5548 }
5549
5550 unlock:
5551 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5552 return ret;
5553 }
5554
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5555 static int perf_read_group(struct perf_event *event,
5556 u64 read_format, char __user *buf)
5557 {
5558 struct perf_event *leader = event->group_leader, *child;
5559 struct perf_event_context *ctx = leader->ctx;
5560 int ret;
5561 u64 *values;
5562
5563 lockdep_assert_held(&ctx->mutex);
5564
5565 values = kzalloc(event->read_size, GFP_KERNEL);
5566 if (!values)
5567 return -ENOMEM;
5568
5569 values[0] = 1 + leader->nr_siblings;
5570
5571 mutex_lock(&leader->child_mutex);
5572
5573 ret = __perf_read_group_add(leader, read_format, values);
5574 if (ret)
5575 goto unlock;
5576
5577 list_for_each_entry(child, &leader->child_list, child_list) {
5578 ret = __perf_read_group_add(child, read_format, values);
5579 if (ret)
5580 goto unlock;
5581 }
5582
5583 mutex_unlock(&leader->child_mutex);
5584
5585 ret = event->read_size;
5586 if (copy_to_user(buf, values, event->read_size))
5587 ret = -EFAULT;
5588 goto out;
5589
5590 unlock:
5591 mutex_unlock(&leader->child_mutex);
5592 out:
5593 kfree(values);
5594 return ret;
5595 }
5596
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5597 static int perf_read_one(struct perf_event *event,
5598 u64 read_format, char __user *buf)
5599 {
5600 u64 enabled, running;
5601 u64 values[5];
5602 int n = 0;
5603
5604 values[n++] = __perf_event_read_value(event, &enabled, &running);
5605 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5606 values[n++] = enabled;
5607 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5608 values[n++] = running;
5609 if (read_format & PERF_FORMAT_ID)
5610 values[n++] = primary_event_id(event);
5611 if (read_format & PERF_FORMAT_LOST)
5612 values[n++] = atomic64_read(&event->lost_samples);
5613
5614 if (copy_to_user(buf, values, n * sizeof(u64)))
5615 return -EFAULT;
5616
5617 return n * sizeof(u64);
5618 }
5619
is_event_hup(struct perf_event * event)5620 static bool is_event_hup(struct perf_event *event)
5621 {
5622 bool no_children;
5623
5624 if (event->state > PERF_EVENT_STATE_EXIT)
5625 return false;
5626
5627 mutex_lock(&event->child_mutex);
5628 no_children = list_empty(&event->child_list);
5629 mutex_unlock(&event->child_mutex);
5630 return no_children;
5631 }
5632
5633 /*
5634 * Read the performance event - simple non blocking version for now
5635 */
5636 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5637 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5638 {
5639 u64 read_format = event->attr.read_format;
5640 int ret;
5641
5642 /*
5643 * Return end-of-file for a read on an event that is in
5644 * error state (i.e. because it was pinned but it couldn't be
5645 * scheduled on to the CPU at some point).
5646 */
5647 if (event->state == PERF_EVENT_STATE_ERROR)
5648 return 0;
5649
5650 if (count < event->read_size)
5651 return -ENOSPC;
5652
5653 WARN_ON_ONCE(event->ctx->parent_ctx);
5654 if (read_format & PERF_FORMAT_GROUP)
5655 ret = perf_read_group(event, read_format, buf);
5656 else
5657 ret = perf_read_one(event, read_format, buf);
5658
5659 return ret;
5660 }
5661
5662 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5663 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5664 {
5665 struct perf_event *event = file->private_data;
5666 struct perf_event_context *ctx;
5667 int ret;
5668
5669 ret = security_perf_event_read(event);
5670 if (ret)
5671 return ret;
5672
5673 ctx = perf_event_ctx_lock(event);
5674 ret = __perf_read(event, buf, count);
5675 perf_event_ctx_unlock(event, ctx);
5676
5677 return ret;
5678 }
5679
perf_poll(struct file * file,poll_table * wait)5680 static __poll_t perf_poll(struct file *file, poll_table *wait)
5681 {
5682 struct perf_event *event = file->private_data;
5683 struct perf_buffer *rb;
5684 __poll_t events = EPOLLHUP;
5685
5686 poll_wait(file, &event->waitq, wait);
5687
5688 if (is_event_hup(event))
5689 return events;
5690
5691 /*
5692 * Pin the event->rb by taking event->mmap_mutex; otherwise
5693 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5694 */
5695 mutex_lock(&event->mmap_mutex);
5696 rb = event->rb;
5697 if (rb)
5698 events = atomic_xchg(&rb->poll, 0);
5699 mutex_unlock(&event->mmap_mutex);
5700 return events;
5701 }
5702
_perf_event_reset(struct perf_event * event)5703 static void _perf_event_reset(struct perf_event *event)
5704 {
5705 (void)perf_event_read(event, false);
5706 local64_set(&event->count, 0);
5707 perf_event_update_userpage(event);
5708 }
5709
5710 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5711 u64 perf_event_pause(struct perf_event *event, bool reset)
5712 {
5713 struct perf_event_context *ctx;
5714 u64 count;
5715
5716 ctx = perf_event_ctx_lock(event);
5717 WARN_ON_ONCE(event->attr.inherit);
5718 _perf_event_disable(event);
5719 count = local64_read(&event->count);
5720 if (reset)
5721 local64_set(&event->count, 0);
5722 perf_event_ctx_unlock(event, ctx);
5723
5724 return count;
5725 }
5726 EXPORT_SYMBOL_GPL(perf_event_pause);
5727
5728 /*
5729 * Holding the top-level event's child_mutex means that any
5730 * descendant process that has inherited this event will block
5731 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5732 * task existence requirements of perf_event_enable/disable.
5733 */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5734 static void perf_event_for_each_child(struct perf_event *event,
5735 void (*func)(struct perf_event *))
5736 {
5737 struct perf_event *child;
5738
5739 WARN_ON_ONCE(event->ctx->parent_ctx);
5740
5741 mutex_lock(&event->child_mutex);
5742 func(event);
5743 list_for_each_entry(child, &event->child_list, child_list)
5744 func(child);
5745 mutex_unlock(&event->child_mutex);
5746 }
5747
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5748 static void perf_event_for_each(struct perf_event *event,
5749 void (*func)(struct perf_event *))
5750 {
5751 struct perf_event_context *ctx = event->ctx;
5752 struct perf_event *sibling;
5753
5754 lockdep_assert_held(&ctx->mutex);
5755
5756 event = event->group_leader;
5757
5758 perf_event_for_each_child(event, func);
5759 for_each_sibling_event(sibling, event)
5760 perf_event_for_each_child(sibling, func);
5761 }
5762
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5763 static void __perf_event_period(struct perf_event *event,
5764 struct perf_cpu_context *cpuctx,
5765 struct perf_event_context *ctx,
5766 void *info)
5767 {
5768 u64 value = *((u64 *)info);
5769 bool active;
5770
5771 if (event->attr.freq) {
5772 event->attr.sample_freq = value;
5773 } else {
5774 event->attr.sample_period = value;
5775 event->hw.sample_period = value;
5776 }
5777
5778 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5779 if (active) {
5780 perf_pmu_disable(event->pmu);
5781 /*
5782 * We could be throttled; unthrottle now to avoid the tick
5783 * trying to unthrottle while we already re-started the event.
5784 */
5785 if (event->hw.interrupts == MAX_INTERRUPTS) {
5786 event->hw.interrupts = 0;
5787 perf_log_throttle(event, 1);
5788 }
5789 event->pmu->stop(event, PERF_EF_UPDATE);
5790 }
5791
5792 local64_set(&event->hw.period_left, 0);
5793
5794 if (active) {
5795 event->pmu->start(event, PERF_EF_RELOAD);
5796 perf_pmu_enable(event->pmu);
5797 }
5798 }
5799
perf_event_check_period(struct perf_event * event,u64 value)5800 static int perf_event_check_period(struct perf_event *event, u64 value)
5801 {
5802 return event->pmu->check_period(event, value);
5803 }
5804
_perf_event_period(struct perf_event * event,u64 value)5805 static int _perf_event_period(struct perf_event *event, u64 value)
5806 {
5807 if (!is_sampling_event(event))
5808 return -EINVAL;
5809
5810 if (!value)
5811 return -EINVAL;
5812
5813 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5814 return -EINVAL;
5815
5816 if (perf_event_check_period(event, value))
5817 return -EINVAL;
5818
5819 if (!event->attr.freq && (value & (1ULL << 63)))
5820 return -EINVAL;
5821
5822 event_function_call(event, __perf_event_period, &value);
5823
5824 return 0;
5825 }
5826
perf_event_period(struct perf_event * event,u64 value)5827 int perf_event_period(struct perf_event *event, u64 value)
5828 {
5829 struct perf_event_context *ctx;
5830 int ret;
5831
5832 ctx = perf_event_ctx_lock(event);
5833 ret = _perf_event_period(event, value);
5834 perf_event_ctx_unlock(event, ctx);
5835
5836 return ret;
5837 }
5838 EXPORT_SYMBOL_GPL(perf_event_period);
5839
5840 static const struct file_operations perf_fops;
5841
perf_fget_light(int fd,struct fd * p)5842 static inline int perf_fget_light(int fd, struct fd *p)
5843 {
5844 struct fd f = fdget(fd);
5845 if (!f.file)
5846 return -EBADF;
5847
5848 if (f.file->f_op != &perf_fops) {
5849 fdput(f);
5850 return -EBADF;
5851 }
5852 *p = f;
5853 return 0;
5854 }
5855
5856 static int perf_event_set_output(struct perf_event *event,
5857 struct perf_event *output_event);
5858 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5859 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5860 struct perf_event_attr *attr);
5861
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)5862 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5863 {
5864 void (*func)(struct perf_event *);
5865 u32 flags = arg;
5866
5867 switch (cmd) {
5868 case PERF_EVENT_IOC_ENABLE:
5869 func = _perf_event_enable;
5870 break;
5871 case PERF_EVENT_IOC_DISABLE:
5872 func = _perf_event_disable;
5873 break;
5874 case PERF_EVENT_IOC_RESET:
5875 func = _perf_event_reset;
5876 break;
5877
5878 case PERF_EVENT_IOC_REFRESH:
5879 return _perf_event_refresh(event, arg);
5880
5881 case PERF_EVENT_IOC_PERIOD:
5882 {
5883 u64 value;
5884
5885 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5886 return -EFAULT;
5887
5888 return _perf_event_period(event, value);
5889 }
5890 case PERF_EVENT_IOC_ID:
5891 {
5892 u64 id = primary_event_id(event);
5893
5894 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5895 return -EFAULT;
5896 return 0;
5897 }
5898
5899 case PERF_EVENT_IOC_SET_OUTPUT:
5900 {
5901 int ret;
5902 if (arg != -1) {
5903 struct perf_event *output_event;
5904 struct fd output;
5905 ret = perf_fget_light(arg, &output);
5906 if (ret)
5907 return ret;
5908 output_event = output.file->private_data;
5909 ret = perf_event_set_output(event, output_event);
5910 fdput(output);
5911 } else {
5912 ret = perf_event_set_output(event, NULL);
5913 }
5914 return ret;
5915 }
5916
5917 case PERF_EVENT_IOC_SET_FILTER:
5918 return perf_event_set_filter(event, (void __user *)arg);
5919
5920 case PERF_EVENT_IOC_SET_BPF:
5921 {
5922 struct bpf_prog *prog;
5923 int err;
5924
5925 prog = bpf_prog_get(arg);
5926 if (IS_ERR(prog))
5927 return PTR_ERR(prog);
5928
5929 err = perf_event_set_bpf_prog(event, prog, 0);
5930 if (err) {
5931 bpf_prog_put(prog);
5932 return err;
5933 }
5934
5935 return 0;
5936 }
5937
5938 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5939 struct perf_buffer *rb;
5940
5941 rcu_read_lock();
5942 rb = rcu_dereference(event->rb);
5943 if (!rb || !rb->nr_pages) {
5944 rcu_read_unlock();
5945 return -EINVAL;
5946 }
5947 rb_toggle_paused(rb, !!arg);
5948 rcu_read_unlock();
5949 return 0;
5950 }
5951
5952 case PERF_EVENT_IOC_QUERY_BPF:
5953 return perf_event_query_prog_array(event, (void __user *)arg);
5954
5955 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5956 struct perf_event_attr new_attr;
5957 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5958 &new_attr);
5959
5960 if (err)
5961 return err;
5962
5963 return perf_event_modify_attr(event, &new_attr);
5964 }
5965 default:
5966 return -ENOTTY;
5967 }
5968
5969 if (flags & PERF_IOC_FLAG_GROUP)
5970 perf_event_for_each(event, func);
5971 else
5972 perf_event_for_each_child(event, func);
5973
5974 return 0;
5975 }
5976
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5977 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5978 {
5979 struct perf_event *event = file->private_data;
5980 struct perf_event_context *ctx;
5981 long ret;
5982
5983 /* Treat ioctl like writes as it is likely a mutating operation. */
5984 ret = security_perf_event_write(event);
5985 if (ret)
5986 return ret;
5987
5988 ctx = perf_event_ctx_lock(event);
5989 ret = _perf_ioctl(event, cmd, arg);
5990 perf_event_ctx_unlock(event, ctx);
5991
5992 return ret;
5993 }
5994
5995 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5996 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5997 unsigned long arg)
5998 {
5999 switch (_IOC_NR(cmd)) {
6000 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6001 case _IOC_NR(PERF_EVENT_IOC_ID):
6002 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6003 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6004 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6005 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6006 cmd &= ~IOCSIZE_MASK;
6007 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6008 }
6009 break;
6010 }
6011 return perf_ioctl(file, cmd, arg);
6012 }
6013 #else
6014 # define perf_compat_ioctl NULL
6015 #endif
6016
perf_event_task_enable(void)6017 int perf_event_task_enable(void)
6018 {
6019 struct perf_event_context *ctx;
6020 struct perf_event *event;
6021
6022 mutex_lock(¤t->perf_event_mutex);
6023 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6024 ctx = perf_event_ctx_lock(event);
6025 perf_event_for_each_child(event, _perf_event_enable);
6026 perf_event_ctx_unlock(event, ctx);
6027 }
6028 mutex_unlock(¤t->perf_event_mutex);
6029
6030 return 0;
6031 }
6032
perf_event_task_disable(void)6033 int perf_event_task_disable(void)
6034 {
6035 struct perf_event_context *ctx;
6036 struct perf_event *event;
6037
6038 mutex_lock(¤t->perf_event_mutex);
6039 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6040 ctx = perf_event_ctx_lock(event);
6041 perf_event_for_each_child(event, _perf_event_disable);
6042 perf_event_ctx_unlock(event, ctx);
6043 }
6044 mutex_unlock(¤t->perf_event_mutex);
6045
6046 return 0;
6047 }
6048
perf_event_index(struct perf_event * event)6049 static int perf_event_index(struct perf_event *event)
6050 {
6051 if (event->hw.state & PERF_HES_STOPPED)
6052 return 0;
6053
6054 if (event->state != PERF_EVENT_STATE_ACTIVE)
6055 return 0;
6056
6057 return event->pmu->event_idx(event);
6058 }
6059
perf_event_init_userpage(struct perf_event * event)6060 static void perf_event_init_userpage(struct perf_event *event)
6061 {
6062 struct perf_event_mmap_page *userpg;
6063 struct perf_buffer *rb;
6064
6065 rcu_read_lock();
6066 rb = rcu_dereference(event->rb);
6067 if (!rb)
6068 goto unlock;
6069
6070 userpg = rb->user_page;
6071
6072 /* Allow new userspace to detect that bit 0 is deprecated */
6073 userpg->cap_bit0_is_deprecated = 1;
6074 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6075 userpg->data_offset = PAGE_SIZE;
6076 userpg->data_size = perf_data_size(rb);
6077
6078 unlock:
6079 rcu_read_unlock();
6080 }
6081
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6082 void __weak arch_perf_update_userpage(
6083 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6084 {
6085 }
6086
6087 /*
6088 * Callers need to ensure there can be no nesting of this function, otherwise
6089 * the seqlock logic goes bad. We can not serialize this because the arch
6090 * code calls this from NMI context.
6091 */
perf_event_update_userpage(struct perf_event * event)6092 void perf_event_update_userpage(struct perf_event *event)
6093 {
6094 struct perf_event_mmap_page *userpg;
6095 struct perf_buffer *rb;
6096 u64 enabled, running, now;
6097
6098 rcu_read_lock();
6099 rb = rcu_dereference(event->rb);
6100 if (!rb)
6101 goto unlock;
6102
6103 /*
6104 * compute total_time_enabled, total_time_running
6105 * based on snapshot values taken when the event
6106 * was last scheduled in.
6107 *
6108 * we cannot simply called update_context_time()
6109 * because of locking issue as we can be called in
6110 * NMI context
6111 */
6112 calc_timer_values(event, &now, &enabled, &running);
6113
6114 userpg = rb->user_page;
6115 /*
6116 * Disable preemption to guarantee consistent time stamps are stored to
6117 * the user page.
6118 */
6119 preempt_disable();
6120 ++userpg->lock;
6121 barrier();
6122 userpg->index = perf_event_index(event);
6123 userpg->offset = perf_event_count(event);
6124 if (userpg->index)
6125 userpg->offset -= local64_read(&event->hw.prev_count);
6126
6127 userpg->time_enabled = enabled +
6128 atomic64_read(&event->child_total_time_enabled);
6129
6130 userpg->time_running = running +
6131 atomic64_read(&event->child_total_time_running);
6132
6133 arch_perf_update_userpage(event, userpg, now);
6134
6135 barrier();
6136 ++userpg->lock;
6137 preempt_enable();
6138 unlock:
6139 rcu_read_unlock();
6140 }
6141 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6142
perf_mmap_fault(struct vm_fault * vmf)6143 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6144 {
6145 struct perf_event *event = vmf->vma->vm_file->private_data;
6146 struct perf_buffer *rb;
6147 vm_fault_t ret = VM_FAULT_SIGBUS;
6148
6149 if (vmf->flags & FAULT_FLAG_MKWRITE) {
6150 if (vmf->pgoff == 0)
6151 ret = 0;
6152 return ret;
6153 }
6154
6155 rcu_read_lock();
6156 rb = rcu_dereference(event->rb);
6157 if (!rb)
6158 goto unlock;
6159
6160 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6161 goto unlock;
6162
6163 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6164 if (!vmf->page)
6165 goto unlock;
6166
6167 get_page(vmf->page);
6168 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6169 vmf->page->index = vmf->pgoff;
6170
6171 ret = 0;
6172 unlock:
6173 rcu_read_unlock();
6174
6175 return ret;
6176 }
6177
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6178 static void ring_buffer_attach(struct perf_event *event,
6179 struct perf_buffer *rb)
6180 {
6181 struct perf_buffer *old_rb = NULL;
6182 unsigned long flags;
6183
6184 WARN_ON_ONCE(event->parent);
6185
6186 if (event->rb) {
6187 /*
6188 * Should be impossible, we set this when removing
6189 * event->rb_entry and wait/clear when adding event->rb_entry.
6190 */
6191 WARN_ON_ONCE(event->rcu_pending);
6192
6193 old_rb = event->rb;
6194 spin_lock_irqsave(&old_rb->event_lock, flags);
6195 list_del_rcu(&event->rb_entry);
6196 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6197
6198 event->rcu_batches = get_state_synchronize_rcu();
6199 event->rcu_pending = 1;
6200 }
6201
6202 if (rb) {
6203 if (event->rcu_pending) {
6204 cond_synchronize_rcu(event->rcu_batches);
6205 event->rcu_pending = 0;
6206 }
6207
6208 spin_lock_irqsave(&rb->event_lock, flags);
6209 list_add_rcu(&event->rb_entry, &rb->event_list);
6210 spin_unlock_irqrestore(&rb->event_lock, flags);
6211 }
6212
6213 /*
6214 * Avoid racing with perf_mmap_close(AUX): stop the event
6215 * before swizzling the event::rb pointer; if it's getting
6216 * unmapped, its aux_mmap_count will be 0 and it won't
6217 * restart. See the comment in __perf_pmu_output_stop().
6218 *
6219 * Data will inevitably be lost when set_output is done in
6220 * mid-air, but then again, whoever does it like this is
6221 * not in for the data anyway.
6222 */
6223 if (has_aux(event))
6224 perf_event_stop(event, 0);
6225
6226 rcu_assign_pointer(event->rb, rb);
6227
6228 if (old_rb) {
6229 ring_buffer_put(old_rb);
6230 /*
6231 * Since we detached before setting the new rb, so that we
6232 * could attach the new rb, we could have missed a wakeup.
6233 * Provide it now.
6234 */
6235 wake_up_all(&event->waitq);
6236 }
6237 }
6238
ring_buffer_wakeup(struct perf_event * event)6239 static void ring_buffer_wakeup(struct perf_event *event)
6240 {
6241 struct perf_buffer *rb;
6242
6243 if (event->parent)
6244 event = event->parent;
6245
6246 rcu_read_lock();
6247 rb = rcu_dereference(event->rb);
6248 if (rb) {
6249 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6250 wake_up_all(&event->waitq);
6251 }
6252 rcu_read_unlock();
6253 }
6254
ring_buffer_get(struct perf_event * event)6255 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6256 {
6257 struct perf_buffer *rb;
6258
6259 if (event->parent)
6260 event = event->parent;
6261
6262 rcu_read_lock();
6263 rb = rcu_dereference(event->rb);
6264 if (rb) {
6265 if (!refcount_inc_not_zero(&rb->refcount))
6266 rb = NULL;
6267 }
6268 rcu_read_unlock();
6269
6270 return rb;
6271 }
6272
ring_buffer_put(struct perf_buffer * rb)6273 void ring_buffer_put(struct perf_buffer *rb)
6274 {
6275 if (!refcount_dec_and_test(&rb->refcount))
6276 return;
6277
6278 WARN_ON_ONCE(!list_empty(&rb->event_list));
6279
6280 call_rcu(&rb->rcu_head, rb_free_rcu);
6281 }
6282
perf_mmap_open(struct vm_area_struct * vma)6283 static void perf_mmap_open(struct vm_area_struct *vma)
6284 {
6285 struct perf_event *event = vma->vm_file->private_data;
6286
6287 atomic_inc(&event->mmap_count);
6288 atomic_inc(&event->rb->mmap_count);
6289
6290 if (vma->vm_pgoff)
6291 atomic_inc(&event->rb->aux_mmap_count);
6292
6293 if (event->pmu->event_mapped)
6294 event->pmu->event_mapped(event, vma->vm_mm);
6295 }
6296
6297 static void perf_pmu_output_stop(struct perf_event *event);
6298
6299 /*
6300 * A buffer can be mmap()ed multiple times; either directly through the same
6301 * event, or through other events by use of perf_event_set_output().
6302 *
6303 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6304 * the buffer here, where we still have a VM context. This means we need
6305 * to detach all events redirecting to us.
6306 */
perf_mmap_close(struct vm_area_struct * vma)6307 static void perf_mmap_close(struct vm_area_struct *vma)
6308 {
6309 struct perf_event *event = vma->vm_file->private_data;
6310 struct perf_buffer *rb = ring_buffer_get(event);
6311 struct user_struct *mmap_user = rb->mmap_user;
6312 int mmap_locked = rb->mmap_locked;
6313 unsigned long size = perf_data_size(rb);
6314 bool detach_rest = false;
6315
6316 if (event->pmu->event_unmapped)
6317 event->pmu->event_unmapped(event, vma->vm_mm);
6318
6319 /*
6320 * rb->aux_mmap_count will always drop before rb->mmap_count and
6321 * event->mmap_count, so it is ok to use event->mmap_mutex to
6322 * serialize with perf_mmap here.
6323 */
6324 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6325 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6326 /*
6327 * Stop all AUX events that are writing to this buffer,
6328 * so that we can free its AUX pages and corresponding PMU
6329 * data. Note that after rb::aux_mmap_count dropped to zero,
6330 * they won't start any more (see perf_aux_output_begin()).
6331 */
6332 perf_pmu_output_stop(event);
6333
6334 /* now it's safe to free the pages */
6335 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6336 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6337
6338 /* this has to be the last one */
6339 rb_free_aux(rb);
6340 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6341
6342 mutex_unlock(&event->mmap_mutex);
6343 }
6344
6345 if (atomic_dec_and_test(&rb->mmap_count))
6346 detach_rest = true;
6347
6348 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6349 goto out_put;
6350
6351 ring_buffer_attach(event, NULL);
6352 mutex_unlock(&event->mmap_mutex);
6353
6354 /* If there's still other mmap()s of this buffer, we're done. */
6355 if (!detach_rest)
6356 goto out_put;
6357
6358 /*
6359 * No other mmap()s, detach from all other events that might redirect
6360 * into the now unreachable buffer. Somewhat complicated by the
6361 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6362 */
6363 again:
6364 rcu_read_lock();
6365 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6366 if (!atomic_long_inc_not_zero(&event->refcount)) {
6367 /*
6368 * This event is en-route to free_event() which will
6369 * detach it and remove it from the list.
6370 */
6371 continue;
6372 }
6373 rcu_read_unlock();
6374
6375 mutex_lock(&event->mmap_mutex);
6376 /*
6377 * Check we didn't race with perf_event_set_output() which can
6378 * swizzle the rb from under us while we were waiting to
6379 * acquire mmap_mutex.
6380 *
6381 * If we find a different rb; ignore this event, a next
6382 * iteration will no longer find it on the list. We have to
6383 * still restart the iteration to make sure we're not now
6384 * iterating the wrong list.
6385 */
6386 if (event->rb == rb)
6387 ring_buffer_attach(event, NULL);
6388
6389 mutex_unlock(&event->mmap_mutex);
6390 put_event(event);
6391
6392 /*
6393 * Restart the iteration; either we're on the wrong list or
6394 * destroyed its integrity by doing a deletion.
6395 */
6396 goto again;
6397 }
6398 rcu_read_unlock();
6399
6400 /*
6401 * It could be there's still a few 0-ref events on the list; they'll
6402 * get cleaned up by free_event() -- they'll also still have their
6403 * ref on the rb and will free it whenever they are done with it.
6404 *
6405 * Aside from that, this buffer is 'fully' detached and unmapped,
6406 * undo the VM accounting.
6407 */
6408
6409 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6410 &mmap_user->locked_vm);
6411 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6412 free_uid(mmap_user);
6413
6414 out_put:
6415 ring_buffer_put(rb); /* could be last */
6416 }
6417
6418 static const struct vm_operations_struct perf_mmap_vmops = {
6419 .open = perf_mmap_open,
6420 .close = perf_mmap_close, /* non mergeable */
6421 .fault = perf_mmap_fault,
6422 .page_mkwrite = perf_mmap_fault,
6423 };
6424
perf_mmap(struct file * file,struct vm_area_struct * vma)6425 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6426 {
6427 struct perf_event *event = file->private_data;
6428 unsigned long user_locked, user_lock_limit;
6429 struct user_struct *user = current_user();
6430 struct perf_buffer *rb = NULL;
6431 unsigned long locked, lock_limit;
6432 unsigned long vma_size;
6433 unsigned long nr_pages;
6434 long user_extra = 0, extra = 0;
6435 int ret = 0, flags = 0;
6436
6437 /*
6438 * Don't allow mmap() of inherited per-task counters. This would
6439 * create a performance issue due to all children writing to the
6440 * same rb.
6441 */
6442 if (event->cpu == -1 && event->attr.inherit)
6443 return -EINVAL;
6444
6445 if (!(vma->vm_flags & VM_SHARED))
6446 return -EINVAL;
6447
6448 ret = security_perf_event_read(event);
6449 if (ret)
6450 return ret;
6451
6452 vma_size = vma->vm_end - vma->vm_start;
6453
6454 if (vma->vm_pgoff == 0) {
6455 nr_pages = (vma_size / PAGE_SIZE) - 1;
6456 } else {
6457 /*
6458 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6459 * mapped, all subsequent mappings should have the same size
6460 * and offset. Must be above the normal perf buffer.
6461 */
6462 u64 aux_offset, aux_size;
6463
6464 if (!event->rb)
6465 return -EINVAL;
6466
6467 nr_pages = vma_size / PAGE_SIZE;
6468
6469 mutex_lock(&event->mmap_mutex);
6470 ret = -EINVAL;
6471
6472 rb = event->rb;
6473 if (!rb)
6474 goto aux_unlock;
6475
6476 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6477 aux_size = READ_ONCE(rb->user_page->aux_size);
6478
6479 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6480 goto aux_unlock;
6481
6482 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6483 goto aux_unlock;
6484
6485 /* already mapped with a different offset */
6486 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6487 goto aux_unlock;
6488
6489 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6490 goto aux_unlock;
6491
6492 /* already mapped with a different size */
6493 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6494 goto aux_unlock;
6495
6496 if (!is_power_of_2(nr_pages))
6497 goto aux_unlock;
6498
6499 if (!atomic_inc_not_zero(&rb->mmap_count))
6500 goto aux_unlock;
6501
6502 if (rb_has_aux(rb)) {
6503 atomic_inc(&rb->aux_mmap_count);
6504 ret = 0;
6505 goto unlock;
6506 }
6507
6508 atomic_set(&rb->aux_mmap_count, 1);
6509 user_extra = nr_pages;
6510
6511 goto accounting;
6512 }
6513
6514 /*
6515 * If we have rb pages ensure they're a power-of-two number, so we
6516 * can do bitmasks instead of modulo.
6517 */
6518 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6519 return -EINVAL;
6520
6521 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6522 return -EINVAL;
6523
6524 WARN_ON_ONCE(event->ctx->parent_ctx);
6525 again:
6526 mutex_lock(&event->mmap_mutex);
6527 if (event->rb) {
6528 if (data_page_nr(event->rb) != nr_pages) {
6529 ret = -EINVAL;
6530 goto unlock;
6531 }
6532
6533 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6534 /*
6535 * Raced against perf_mmap_close(); remove the
6536 * event and try again.
6537 */
6538 ring_buffer_attach(event, NULL);
6539 mutex_unlock(&event->mmap_mutex);
6540 goto again;
6541 }
6542
6543 goto unlock;
6544 }
6545
6546 user_extra = nr_pages + 1;
6547
6548 accounting:
6549 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6550
6551 /*
6552 * Increase the limit linearly with more CPUs:
6553 */
6554 user_lock_limit *= num_online_cpus();
6555
6556 user_locked = atomic_long_read(&user->locked_vm);
6557
6558 /*
6559 * sysctl_perf_event_mlock may have changed, so that
6560 * user->locked_vm > user_lock_limit
6561 */
6562 if (user_locked > user_lock_limit)
6563 user_locked = user_lock_limit;
6564 user_locked += user_extra;
6565
6566 if (user_locked > user_lock_limit) {
6567 /*
6568 * charge locked_vm until it hits user_lock_limit;
6569 * charge the rest from pinned_vm
6570 */
6571 extra = user_locked - user_lock_limit;
6572 user_extra -= extra;
6573 }
6574
6575 lock_limit = rlimit(RLIMIT_MEMLOCK);
6576 lock_limit >>= PAGE_SHIFT;
6577 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6578
6579 if ((locked > lock_limit) && perf_is_paranoid() &&
6580 !capable(CAP_IPC_LOCK)) {
6581 ret = -EPERM;
6582 goto unlock;
6583 }
6584
6585 WARN_ON(!rb && event->rb);
6586
6587 if (vma->vm_flags & VM_WRITE)
6588 flags |= RING_BUFFER_WRITABLE;
6589
6590 if (!rb) {
6591 rb = rb_alloc(nr_pages,
6592 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6593 event->cpu, flags);
6594
6595 if (!rb) {
6596 ret = -ENOMEM;
6597 goto unlock;
6598 }
6599
6600 atomic_set(&rb->mmap_count, 1);
6601 rb->mmap_user = get_current_user();
6602 rb->mmap_locked = extra;
6603
6604 ring_buffer_attach(event, rb);
6605
6606 perf_event_update_time(event);
6607 perf_event_init_userpage(event);
6608 perf_event_update_userpage(event);
6609 } else {
6610 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6611 event->attr.aux_watermark, flags);
6612 if (!ret)
6613 rb->aux_mmap_locked = extra;
6614 }
6615
6616 unlock:
6617 if (!ret) {
6618 atomic_long_add(user_extra, &user->locked_vm);
6619 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6620
6621 atomic_inc(&event->mmap_count);
6622 } else if (rb) {
6623 atomic_dec(&rb->mmap_count);
6624 }
6625 aux_unlock:
6626 mutex_unlock(&event->mmap_mutex);
6627
6628 /*
6629 * Since pinned accounting is per vm we cannot allow fork() to copy our
6630 * vma.
6631 */
6632 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6633 vma->vm_ops = &perf_mmap_vmops;
6634
6635 if (event->pmu->event_mapped)
6636 event->pmu->event_mapped(event, vma->vm_mm);
6637
6638 return ret;
6639 }
6640
perf_fasync(int fd,struct file * filp,int on)6641 static int perf_fasync(int fd, struct file *filp, int on)
6642 {
6643 struct inode *inode = file_inode(filp);
6644 struct perf_event *event = filp->private_data;
6645 int retval;
6646
6647 inode_lock(inode);
6648 retval = fasync_helper(fd, filp, on, &event->fasync);
6649 inode_unlock(inode);
6650
6651 if (retval < 0)
6652 return retval;
6653
6654 return 0;
6655 }
6656
6657 static const struct file_operations perf_fops = {
6658 .llseek = no_llseek,
6659 .release = perf_release,
6660 .read = perf_read,
6661 .poll = perf_poll,
6662 .unlocked_ioctl = perf_ioctl,
6663 .compat_ioctl = perf_compat_ioctl,
6664 .mmap = perf_mmap,
6665 .fasync = perf_fasync,
6666 };
6667
6668 /*
6669 * Perf event wakeup
6670 *
6671 * If there's data, ensure we set the poll() state and publish everything
6672 * to user-space before waking everybody up.
6673 */
6674
perf_event_fasync(struct perf_event * event)6675 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6676 {
6677 /* only the parent has fasync state */
6678 if (event->parent)
6679 event = event->parent;
6680 return &event->fasync;
6681 }
6682
perf_event_wakeup(struct perf_event * event)6683 void perf_event_wakeup(struct perf_event *event)
6684 {
6685 ring_buffer_wakeup(event);
6686
6687 if (event->pending_kill) {
6688 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6689 event->pending_kill = 0;
6690 }
6691 }
6692
perf_sigtrap(struct perf_event * event)6693 static void perf_sigtrap(struct perf_event *event)
6694 {
6695 /*
6696 * We'd expect this to only occur if the irq_work is delayed and either
6697 * ctx->task or current has changed in the meantime. This can be the
6698 * case on architectures that do not implement arch_irq_work_raise().
6699 */
6700 if (WARN_ON_ONCE(event->ctx->task != current))
6701 return;
6702
6703 /*
6704 * Both perf_pending_task() and perf_pending_irq() can race with the
6705 * task exiting.
6706 */
6707 if (current->flags & PF_EXITING)
6708 return;
6709
6710 send_sig_perf((void __user *)event->pending_addr,
6711 event->orig_type, event->attr.sig_data);
6712 }
6713
6714 /*
6715 * Deliver the pending work in-event-context or follow the context.
6716 */
__perf_pending_irq(struct perf_event * event)6717 static void __perf_pending_irq(struct perf_event *event)
6718 {
6719 int cpu = READ_ONCE(event->oncpu);
6720
6721 /*
6722 * If the event isn't running; we done. event_sched_out() will have
6723 * taken care of things.
6724 */
6725 if (cpu < 0)
6726 return;
6727
6728 /*
6729 * Yay, we hit home and are in the context of the event.
6730 */
6731 if (cpu == smp_processor_id()) {
6732 if (event->pending_sigtrap) {
6733 event->pending_sigtrap = 0;
6734 perf_sigtrap(event);
6735 local_dec(&event->ctx->nr_pending);
6736 }
6737 if (event->pending_disable) {
6738 event->pending_disable = 0;
6739 perf_event_disable_local(event);
6740 }
6741 return;
6742 }
6743
6744 /*
6745 * CPU-A CPU-B
6746 *
6747 * perf_event_disable_inatomic()
6748 * @pending_disable = CPU-A;
6749 * irq_work_queue();
6750 *
6751 * sched-out
6752 * @pending_disable = -1;
6753 *
6754 * sched-in
6755 * perf_event_disable_inatomic()
6756 * @pending_disable = CPU-B;
6757 * irq_work_queue(); // FAILS
6758 *
6759 * irq_work_run()
6760 * perf_pending_irq()
6761 *
6762 * But the event runs on CPU-B and wants disabling there.
6763 */
6764 irq_work_queue_on(&event->pending_irq, cpu);
6765 }
6766
perf_pending_irq(struct irq_work * entry)6767 static void perf_pending_irq(struct irq_work *entry)
6768 {
6769 struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6770 int rctx;
6771
6772 /*
6773 * If we 'fail' here, that's OK, it means recursion is already disabled
6774 * and we won't recurse 'further'.
6775 */
6776 rctx = perf_swevent_get_recursion_context();
6777
6778 /*
6779 * The wakeup isn't bound to the context of the event -- it can happen
6780 * irrespective of where the event is.
6781 */
6782 if (event->pending_wakeup) {
6783 event->pending_wakeup = 0;
6784 perf_event_wakeup(event);
6785 }
6786
6787 __perf_pending_irq(event);
6788
6789 if (rctx >= 0)
6790 perf_swevent_put_recursion_context(rctx);
6791 }
6792
perf_pending_task(struct callback_head * head)6793 static void perf_pending_task(struct callback_head *head)
6794 {
6795 struct perf_event *event = container_of(head, struct perf_event, pending_task);
6796 int rctx;
6797
6798 /*
6799 * If we 'fail' here, that's OK, it means recursion is already disabled
6800 * and we won't recurse 'further'.
6801 */
6802 preempt_disable_notrace();
6803 rctx = perf_swevent_get_recursion_context();
6804
6805 if (event->pending_work) {
6806 event->pending_work = 0;
6807 perf_sigtrap(event);
6808 local_dec(&event->ctx->nr_pending);
6809 }
6810
6811 if (rctx >= 0)
6812 perf_swevent_put_recursion_context(rctx);
6813 preempt_enable_notrace();
6814
6815 put_event(event);
6816 }
6817
6818 #ifdef CONFIG_GUEST_PERF_EVENTS
6819 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6820
6821 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6822 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6823 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6824
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6825 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6826 {
6827 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6828 return;
6829
6830 rcu_assign_pointer(perf_guest_cbs, cbs);
6831 static_call_update(__perf_guest_state, cbs->state);
6832 static_call_update(__perf_guest_get_ip, cbs->get_ip);
6833
6834 /* Implementing ->handle_intel_pt_intr is optional. */
6835 if (cbs->handle_intel_pt_intr)
6836 static_call_update(__perf_guest_handle_intel_pt_intr,
6837 cbs->handle_intel_pt_intr);
6838 }
6839 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6840
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6841 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6842 {
6843 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6844 return;
6845
6846 rcu_assign_pointer(perf_guest_cbs, NULL);
6847 static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6848 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6849 static_call_update(__perf_guest_handle_intel_pt_intr,
6850 (void *)&__static_call_return0);
6851 synchronize_rcu();
6852 }
6853 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6854 #endif
6855
6856 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)6857 perf_output_sample_regs(struct perf_output_handle *handle,
6858 struct pt_regs *regs, u64 mask)
6859 {
6860 int bit;
6861 DECLARE_BITMAP(_mask, 64);
6862
6863 bitmap_from_u64(_mask, mask);
6864 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6865 u64 val;
6866
6867 val = perf_reg_value(regs, bit);
6868 perf_output_put(handle, val);
6869 }
6870 }
6871
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)6872 static void perf_sample_regs_user(struct perf_regs *regs_user,
6873 struct pt_regs *regs)
6874 {
6875 if (user_mode(regs)) {
6876 regs_user->abi = perf_reg_abi(current);
6877 regs_user->regs = regs;
6878 } else if (!(current->flags & PF_KTHREAD)) {
6879 perf_get_regs_user(regs_user, regs);
6880 } else {
6881 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6882 regs_user->regs = NULL;
6883 }
6884 }
6885
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)6886 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6887 struct pt_regs *regs)
6888 {
6889 regs_intr->regs = regs;
6890 regs_intr->abi = perf_reg_abi(current);
6891 }
6892
6893
6894 /*
6895 * Get remaining task size from user stack pointer.
6896 *
6897 * It'd be better to take stack vma map and limit this more
6898 * precisely, but there's no way to get it safely under interrupt,
6899 * so using TASK_SIZE as limit.
6900 */
perf_ustack_task_size(struct pt_regs * regs)6901 static u64 perf_ustack_task_size(struct pt_regs *regs)
6902 {
6903 unsigned long addr = perf_user_stack_pointer(regs);
6904
6905 if (!addr || addr >= TASK_SIZE)
6906 return 0;
6907
6908 return TASK_SIZE - addr;
6909 }
6910
6911 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)6912 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6913 struct pt_regs *regs)
6914 {
6915 u64 task_size;
6916
6917 /* No regs, no stack pointer, no dump. */
6918 if (!regs)
6919 return 0;
6920
6921 /*
6922 * Check if we fit in with the requested stack size into the:
6923 * - TASK_SIZE
6924 * If we don't, we limit the size to the TASK_SIZE.
6925 *
6926 * - remaining sample size
6927 * If we don't, we customize the stack size to
6928 * fit in to the remaining sample size.
6929 */
6930
6931 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6932 stack_size = min(stack_size, (u16) task_size);
6933
6934 /* Current header size plus static size and dynamic size. */
6935 header_size += 2 * sizeof(u64);
6936
6937 /* Do we fit in with the current stack dump size? */
6938 if ((u16) (header_size + stack_size) < header_size) {
6939 /*
6940 * If we overflow the maximum size for the sample,
6941 * we customize the stack dump size to fit in.
6942 */
6943 stack_size = USHRT_MAX - header_size - sizeof(u64);
6944 stack_size = round_up(stack_size, sizeof(u64));
6945 }
6946
6947 return stack_size;
6948 }
6949
6950 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)6951 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6952 struct pt_regs *regs)
6953 {
6954 /* Case of a kernel thread, nothing to dump */
6955 if (!regs) {
6956 u64 size = 0;
6957 perf_output_put(handle, size);
6958 } else {
6959 unsigned long sp;
6960 unsigned int rem;
6961 u64 dyn_size;
6962
6963 /*
6964 * We dump:
6965 * static size
6966 * - the size requested by user or the best one we can fit
6967 * in to the sample max size
6968 * data
6969 * - user stack dump data
6970 * dynamic size
6971 * - the actual dumped size
6972 */
6973
6974 /* Static size. */
6975 perf_output_put(handle, dump_size);
6976
6977 /* Data. */
6978 sp = perf_user_stack_pointer(regs);
6979 rem = __output_copy_user(handle, (void *) sp, dump_size);
6980 dyn_size = dump_size - rem;
6981
6982 perf_output_skip(handle, rem);
6983
6984 /* Dynamic size. */
6985 perf_output_put(handle, dyn_size);
6986 }
6987 }
6988
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)6989 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6990 struct perf_sample_data *data,
6991 size_t size)
6992 {
6993 struct perf_event *sampler = event->aux_event;
6994 struct perf_buffer *rb;
6995
6996 data->aux_size = 0;
6997
6998 if (!sampler)
6999 goto out;
7000
7001 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7002 goto out;
7003
7004 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7005 goto out;
7006
7007 rb = ring_buffer_get(sampler);
7008 if (!rb)
7009 goto out;
7010
7011 /*
7012 * If this is an NMI hit inside sampling code, don't take
7013 * the sample. See also perf_aux_sample_output().
7014 */
7015 if (READ_ONCE(rb->aux_in_sampling)) {
7016 data->aux_size = 0;
7017 } else {
7018 size = min_t(size_t, size, perf_aux_size(rb));
7019 data->aux_size = ALIGN(size, sizeof(u64));
7020 }
7021 ring_buffer_put(rb);
7022
7023 out:
7024 return data->aux_size;
7025 }
7026
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7027 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7028 struct perf_event *event,
7029 struct perf_output_handle *handle,
7030 unsigned long size)
7031 {
7032 unsigned long flags;
7033 long ret;
7034
7035 /*
7036 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7037 * paths. If we start calling them in NMI context, they may race with
7038 * the IRQ ones, that is, for example, re-starting an event that's just
7039 * been stopped, which is why we're using a separate callback that
7040 * doesn't change the event state.
7041 *
7042 * IRQs need to be disabled to prevent IPIs from racing with us.
7043 */
7044 local_irq_save(flags);
7045 /*
7046 * Guard against NMI hits inside the critical section;
7047 * see also perf_prepare_sample_aux().
7048 */
7049 WRITE_ONCE(rb->aux_in_sampling, 1);
7050 barrier();
7051
7052 ret = event->pmu->snapshot_aux(event, handle, size);
7053
7054 barrier();
7055 WRITE_ONCE(rb->aux_in_sampling, 0);
7056 local_irq_restore(flags);
7057
7058 return ret;
7059 }
7060
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7061 static void perf_aux_sample_output(struct perf_event *event,
7062 struct perf_output_handle *handle,
7063 struct perf_sample_data *data)
7064 {
7065 struct perf_event *sampler = event->aux_event;
7066 struct perf_buffer *rb;
7067 unsigned long pad;
7068 long size;
7069
7070 if (WARN_ON_ONCE(!sampler || !data->aux_size))
7071 return;
7072
7073 rb = ring_buffer_get(sampler);
7074 if (!rb)
7075 return;
7076
7077 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7078
7079 /*
7080 * An error here means that perf_output_copy() failed (returned a
7081 * non-zero surplus that it didn't copy), which in its current
7082 * enlightened implementation is not possible. If that changes, we'd
7083 * like to know.
7084 */
7085 if (WARN_ON_ONCE(size < 0))
7086 goto out_put;
7087
7088 /*
7089 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7090 * perf_prepare_sample_aux(), so should not be more than that.
7091 */
7092 pad = data->aux_size - size;
7093 if (WARN_ON_ONCE(pad >= sizeof(u64)))
7094 pad = 8;
7095
7096 if (pad) {
7097 u64 zero = 0;
7098 perf_output_copy(handle, &zero, pad);
7099 }
7100
7101 out_put:
7102 ring_buffer_put(rb);
7103 }
7104
7105 /*
7106 * A set of common sample data types saved even for non-sample records
7107 * when event->attr.sample_id_all is set.
7108 */
7109 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \
7110 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \
7111 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7112
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7113 static void __perf_event_header__init_id(struct perf_sample_data *data,
7114 struct perf_event *event,
7115 u64 sample_type)
7116 {
7117 data->type = event->attr.sample_type;
7118 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7119
7120 if (sample_type & PERF_SAMPLE_TID) {
7121 /* namespace issues */
7122 data->tid_entry.pid = perf_event_pid(event, current);
7123 data->tid_entry.tid = perf_event_tid(event, current);
7124 }
7125
7126 if (sample_type & PERF_SAMPLE_TIME)
7127 data->time = perf_event_clock(event);
7128
7129 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7130 data->id = primary_event_id(event);
7131
7132 if (sample_type & PERF_SAMPLE_STREAM_ID)
7133 data->stream_id = event->id;
7134
7135 if (sample_type & PERF_SAMPLE_CPU) {
7136 data->cpu_entry.cpu = raw_smp_processor_id();
7137 data->cpu_entry.reserved = 0;
7138 }
7139 }
7140
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7141 void perf_event_header__init_id(struct perf_event_header *header,
7142 struct perf_sample_data *data,
7143 struct perf_event *event)
7144 {
7145 if (event->attr.sample_id_all) {
7146 header->size += event->id_header_size;
7147 __perf_event_header__init_id(data, event, event->attr.sample_type);
7148 }
7149 }
7150
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7151 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7152 struct perf_sample_data *data)
7153 {
7154 u64 sample_type = data->type;
7155
7156 if (sample_type & PERF_SAMPLE_TID)
7157 perf_output_put(handle, data->tid_entry);
7158
7159 if (sample_type & PERF_SAMPLE_TIME)
7160 perf_output_put(handle, data->time);
7161
7162 if (sample_type & PERF_SAMPLE_ID)
7163 perf_output_put(handle, data->id);
7164
7165 if (sample_type & PERF_SAMPLE_STREAM_ID)
7166 perf_output_put(handle, data->stream_id);
7167
7168 if (sample_type & PERF_SAMPLE_CPU)
7169 perf_output_put(handle, data->cpu_entry);
7170
7171 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7172 perf_output_put(handle, data->id);
7173 }
7174
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7175 void perf_event__output_id_sample(struct perf_event *event,
7176 struct perf_output_handle *handle,
7177 struct perf_sample_data *sample)
7178 {
7179 if (event->attr.sample_id_all)
7180 __perf_event__output_id_sample(handle, sample);
7181 }
7182
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7183 static void perf_output_read_one(struct perf_output_handle *handle,
7184 struct perf_event *event,
7185 u64 enabled, u64 running)
7186 {
7187 u64 read_format = event->attr.read_format;
7188 u64 values[5];
7189 int n = 0;
7190
7191 values[n++] = perf_event_count(event);
7192 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7193 values[n++] = enabled +
7194 atomic64_read(&event->child_total_time_enabled);
7195 }
7196 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7197 values[n++] = running +
7198 atomic64_read(&event->child_total_time_running);
7199 }
7200 if (read_format & PERF_FORMAT_ID)
7201 values[n++] = primary_event_id(event);
7202 if (read_format & PERF_FORMAT_LOST)
7203 values[n++] = atomic64_read(&event->lost_samples);
7204
7205 __output_copy(handle, values, n * sizeof(u64));
7206 }
7207
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7208 static void perf_output_read_group(struct perf_output_handle *handle,
7209 struct perf_event *event,
7210 u64 enabled, u64 running)
7211 {
7212 struct perf_event *leader = event->group_leader, *sub;
7213 u64 read_format = event->attr.read_format;
7214 unsigned long flags;
7215 u64 values[6];
7216 int n = 0;
7217
7218 /*
7219 * Disabling interrupts avoids all counter scheduling
7220 * (context switches, timer based rotation and IPIs).
7221 */
7222 local_irq_save(flags);
7223
7224 values[n++] = 1 + leader->nr_siblings;
7225
7226 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7227 values[n++] = enabled;
7228
7229 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7230 values[n++] = running;
7231
7232 if ((leader != event) &&
7233 (leader->state == PERF_EVENT_STATE_ACTIVE))
7234 leader->pmu->read(leader);
7235
7236 values[n++] = perf_event_count(leader);
7237 if (read_format & PERF_FORMAT_ID)
7238 values[n++] = primary_event_id(leader);
7239 if (read_format & PERF_FORMAT_LOST)
7240 values[n++] = atomic64_read(&leader->lost_samples);
7241
7242 __output_copy(handle, values, n * sizeof(u64));
7243
7244 for_each_sibling_event(sub, leader) {
7245 n = 0;
7246
7247 if ((sub != event) &&
7248 (sub->state == PERF_EVENT_STATE_ACTIVE))
7249 sub->pmu->read(sub);
7250
7251 values[n++] = perf_event_count(sub);
7252 if (read_format & PERF_FORMAT_ID)
7253 values[n++] = primary_event_id(sub);
7254 if (read_format & PERF_FORMAT_LOST)
7255 values[n++] = atomic64_read(&sub->lost_samples);
7256
7257 __output_copy(handle, values, n * sizeof(u64));
7258 }
7259
7260 local_irq_restore(flags);
7261 }
7262
7263 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7264 PERF_FORMAT_TOTAL_TIME_RUNNING)
7265
7266 /*
7267 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7268 *
7269 * The problem is that its both hard and excessively expensive to iterate the
7270 * child list, not to mention that its impossible to IPI the children running
7271 * on another CPU, from interrupt/NMI context.
7272 */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7273 static void perf_output_read(struct perf_output_handle *handle,
7274 struct perf_event *event)
7275 {
7276 u64 enabled = 0, running = 0, now;
7277 u64 read_format = event->attr.read_format;
7278
7279 /*
7280 * compute total_time_enabled, total_time_running
7281 * based on snapshot values taken when the event
7282 * was last scheduled in.
7283 *
7284 * we cannot simply called update_context_time()
7285 * because of locking issue as we are called in
7286 * NMI context
7287 */
7288 if (read_format & PERF_FORMAT_TOTAL_TIMES)
7289 calc_timer_values(event, &now, &enabled, &running);
7290
7291 if (event->attr.read_format & PERF_FORMAT_GROUP)
7292 perf_output_read_group(handle, event, enabled, running);
7293 else
7294 perf_output_read_one(handle, event, enabled, running);
7295 }
7296
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7297 void perf_output_sample(struct perf_output_handle *handle,
7298 struct perf_event_header *header,
7299 struct perf_sample_data *data,
7300 struct perf_event *event)
7301 {
7302 u64 sample_type = data->type;
7303
7304 perf_output_put(handle, *header);
7305
7306 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7307 perf_output_put(handle, data->id);
7308
7309 if (sample_type & PERF_SAMPLE_IP)
7310 perf_output_put(handle, data->ip);
7311
7312 if (sample_type & PERF_SAMPLE_TID)
7313 perf_output_put(handle, data->tid_entry);
7314
7315 if (sample_type & PERF_SAMPLE_TIME)
7316 perf_output_put(handle, data->time);
7317
7318 if (sample_type & PERF_SAMPLE_ADDR)
7319 perf_output_put(handle, data->addr);
7320
7321 if (sample_type & PERF_SAMPLE_ID)
7322 perf_output_put(handle, data->id);
7323
7324 if (sample_type & PERF_SAMPLE_STREAM_ID)
7325 perf_output_put(handle, data->stream_id);
7326
7327 if (sample_type & PERF_SAMPLE_CPU)
7328 perf_output_put(handle, data->cpu_entry);
7329
7330 if (sample_type & PERF_SAMPLE_PERIOD)
7331 perf_output_put(handle, data->period);
7332
7333 if (sample_type & PERF_SAMPLE_READ)
7334 perf_output_read(handle, event);
7335
7336 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7337 int size = 1;
7338
7339 size += data->callchain->nr;
7340 size *= sizeof(u64);
7341 __output_copy(handle, data->callchain, size);
7342 }
7343
7344 if (sample_type & PERF_SAMPLE_RAW) {
7345 struct perf_raw_record *raw = data->raw;
7346
7347 if (raw) {
7348 struct perf_raw_frag *frag = &raw->frag;
7349
7350 perf_output_put(handle, raw->size);
7351 do {
7352 if (frag->copy) {
7353 __output_custom(handle, frag->copy,
7354 frag->data, frag->size);
7355 } else {
7356 __output_copy(handle, frag->data,
7357 frag->size);
7358 }
7359 if (perf_raw_frag_last(frag))
7360 break;
7361 frag = frag->next;
7362 } while (1);
7363 if (frag->pad)
7364 __output_skip(handle, NULL, frag->pad);
7365 } else {
7366 struct {
7367 u32 size;
7368 u32 data;
7369 } raw = {
7370 .size = sizeof(u32),
7371 .data = 0,
7372 };
7373 perf_output_put(handle, raw);
7374 }
7375 }
7376
7377 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7378 if (data->br_stack) {
7379 size_t size;
7380
7381 size = data->br_stack->nr
7382 * sizeof(struct perf_branch_entry);
7383
7384 perf_output_put(handle, data->br_stack->nr);
7385 if (branch_sample_hw_index(event))
7386 perf_output_put(handle, data->br_stack->hw_idx);
7387 perf_output_copy(handle, data->br_stack->entries, size);
7388 } else {
7389 /*
7390 * we always store at least the value of nr
7391 */
7392 u64 nr = 0;
7393 perf_output_put(handle, nr);
7394 }
7395 }
7396
7397 if (sample_type & PERF_SAMPLE_REGS_USER) {
7398 u64 abi = data->regs_user.abi;
7399
7400 /*
7401 * If there are no regs to dump, notice it through
7402 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7403 */
7404 perf_output_put(handle, abi);
7405
7406 if (abi) {
7407 u64 mask = event->attr.sample_regs_user;
7408 perf_output_sample_regs(handle,
7409 data->regs_user.regs,
7410 mask);
7411 }
7412 }
7413
7414 if (sample_type & PERF_SAMPLE_STACK_USER) {
7415 perf_output_sample_ustack(handle,
7416 data->stack_user_size,
7417 data->regs_user.regs);
7418 }
7419
7420 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7421 perf_output_put(handle, data->weight.full);
7422
7423 if (sample_type & PERF_SAMPLE_DATA_SRC)
7424 perf_output_put(handle, data->data_src.val);
7425
7426 if (sample_type & PERF_SAMPLE_TRANSACTION)
7427 perf_output_put(handle, data->txn);
7428
7429 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7430 u64 abi = data->regs_intr.abi;
7431 /*
7432 * If there are no regs to dump, notice it through
7433 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7434 */
7435 perf_output_put(handle, abi);
7436
7437 if (abi) {
7438 u64 mask = event->attr.sample_regs_intr;
7439
7440 perf_output_sample_regs(handle,
7441 data->regs_intr.regs,
7442 mask);
7443 }
7444 }
7445
7446 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7447 perf_output_put(handle, data->phys_addr);
7448
7449 if (sample_type & PERF_SAMPLE_CGROUP)
7450 perf_output_put(handle, data->cgroup);
7451
7452 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7453 perf_output_put(handle, data->data_page_size);
7454
7455 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7456 perf_output_put(handle, data->code_page_size);
7457
7458 if (sample_type & PERF_SAMPLE_AUX) {
7459 perf_output_put(handle, data->aux_size);
7460
7461 if (data->aux_size)
7462 perf_aux_sample_output(event, handle, data);
7463 }
7464
7465 if (!event->attr.watermark) {
7466 int wakeup_events = event->attr.wakeup_events;
7467
7468 if (wakeup_events) {
7469 struct perf_buffer *rb = handle->rb;
7470 int events = local_inc_return(&rb->events);
7471
7472 if (events >= wakeup_events) {
7473 local_sub(wakeup_events, &rb->events);
7474 local_inc(&rb->wakeup);
7475 }
7476 }
7477 }
7478 }
7479
perf_virt_to_phys(u64 virt)7480 static u64 perf_virt_to_phys(u64 virt)
7481 {
7482 u64 phys_addr = 0;
7483
7484 if (!virt)
7485 return 0;
7486
7487 if (virt >= TASK_SIZE) {
7488 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7489 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7490 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7491 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7492 } else {
7493 /*
7494 * Walking the pages tables for user address.
7495 * Interrupts are disabled, so it prevents any tear down
7496 * of the page tables.
7497 * Try IRQ-safe get_user_page_fast_only first.
7498 * If failed, leave phys_addr as 0.
7499 */
7500 if (current->mm != NULL) {
7501 struct page *p;
7502
7503 pagefault_disable();
7504 if (get_user_page_fast_only(virt, 0, &p)) {
7505 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7506 put_page(p);
7507 }
7508 pagefault_enable();
7509 }
7510 }
7511
7512 return phys_addr;
7513 }
7514
7515 /*
7516 * Return the pagetable size of a given virtual address.
7517 */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)7518 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7519 {
7520 u64 size = 0;
7521
7522 #ifdef CONFIG_HAVE_FAST_GUP
7523 pgd_t *pgdp, pgd;
7524 p4d_t *p4dp, p4d;
7525 pud_t *pudp, pud;
7526 pmd_t *pmdp, pmd;
7527 pte_t *ptep, pte;
7528
7529 pgdp = pgd_offset(mm, addr);
7530 pgd = READ_ONCE(*pgdp);
7531 if (pgd_none(pgd))
7532 return 0;
7533
7534 if (pgd_leaf(pgd))
7535 return pgd_leaf_size(pgd);
7536
7537 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7538 p4d = READ_ONCE(*p4dp);
7539 if (!p4d_present(p4d))
7540 return 0;
7541
7542 if (p4d_leaf(p4d))
7543 return p4d_leaf_size(p4d);
7544
7545 pudp = pud_offset_lockless(p4dp, p4d, addr);
7546 pud = READ_ONCE(*pudp);
7547 if (!pud_present(pud))
7548 return 0;
7549
7550 if (pud_leaf(pud))
7551 return pud_leaf_size(pud);
7552
7553 pmdp = pmd_offset_lockless(pudp, pud, addr);
7554 again:
7555 pmd = pmdp_get_lockless(pmdp);
7556 if (!pmd_present(pmd))
7557 return 0;
7558
7559 if (pmd_leaf(pmd))
7560 return pmd_leaf_size(pmd);
7561
7562 ptep = pte_offset_map(&pmd, addr);
7563 if (!ptep)
7564 goto again;
7565
7566 pte = ptep_get_lockless(ptep);
7567 if (pte_present(pte))
7568 size = pte_leaf_size(pte);
7569 pte_unmap(ptep);
7570 #endif /* CONFIG_HAVE_FAST_GUP */
7571
7572 return size;
7573 }
7574
perf_get_page_size(unsigned long addr)7575 static u64 perf_get_page_size(unsigned long addr)
7576 {
7577 struct mm_struct *mm;
7578 unsigned long flags;
7579 u64 size;
7580
7581 if (!addr)
7582 return 0;
7583
7584 /*
7585 * Software page-table walkers must disable IRQs,
7586 * which prevents any tear down of the page tables.
7587 */
7588 local_irq_save(flags);
7589
7590 mm = current->mm;
7591 if (!mm) {
7592 /*
7593 * For kernel threads and the like, use init_mm so that
7594 * we can find kernel memory.
7595 */
7596 mm = &init_mm;
7597 }
7598
7599 size = perf_get_pgtable_size(mm, addr);
7600
7601 local_irq_restore(flags);
7602
7603 return size;
7604 }
7605
7606 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7607
7608 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7609 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7610 {
7611 bool kernel = !event->attr.exclude_callchain_kernel;
7612 bool user = !event->attr.exclude_callchain_user;
7613 /* Disallow cross-task user callchains. */
7614 bool crosstask = event->ctx->task && event->ctx->task != current;
7615 const u32 max_stack = event->attr.sample_max_stack;
7616 struct perf_callchain_entry *callchain;
7617
7618 if (!kernel && !user)
7619 return &__empty_callchain;
7620
7621 callchain = get_perf_callchain(regs, 0, kernel, user,
7622 max_stack, crosstask, true);
7623 return callchain ?: &__empty_callchain;
7624 }
7625
__cond_set(u64 flags,u64 s,u64 d)7626 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7627 {
7628 return d * !!(flags & s);
7629 }
7630
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7631 void perf_prepare_sample(struct perf_sample_data *data,
7632 struct perf_event *event,
7633 struct pt_regs *regs)
7634 {
7635 u64 sample_type = event->attr.sample_type;
7636 u64 filtered_sample_type;
7637
7638 /*
7639 * Add the sample flags that are dependent to others. And clear the
7640 * sample flags that have already been done by the PMU driver.
7641 */
7642 filtered_sample_type = sample_type;
7643 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7644 PERF_SAMPLE_IP);
7645 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7646 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7647 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7648 PERF_SAMPLE_REGS_USER);
7649 filtered_sample_type &= ~data->sample_flags;
7650
7651 if (filtered_sample_type == 0) {
7652 /* Make sure it has the correct data->type for output */
7653 data->type = event->attr.sample_type;
7654 return;
7655 }
7656
7657 __perf_event_header__init_id(data, event, filtered_sample_type);
7658
7659 if (filtered_sample_type & PERF_SAMPLE_IP) {
7660 data->ip = perf_instruction_pointer(regs);
7661 data->sample_flags |= PERF_SAMPLE_IP;
7662 }
7663
7664 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7665 perf_sample_save_callchain(data, event, regs);
7666
7667 if (filtered_sample_type & PERF_SAMPLE_RAW) {
7668 data->raw = NULL;
7669 data->dyn_size += sizeof(u64);
7670 data->sample_flags |= PERF_SAMPLE_RAW;
7671 }
7672
7673 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7674 data->br_stack = NULL;
7675 data->dyn_size += sizeof(u64);
7676 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7677 }
7678
7679 if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7680 perf_sample_regs_user(&data->regs_user, regs);
7681
7682 /*
7683 * It cannot use the filtered_sample_type here as REGS_USER can be set
7684 * by STACK_USER (using __cond_set() above) and we don't want to update
7685 * the dyn_size if it's not requested by users.
7686 */
7687 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7688 /* regs dump ABI info */
7689 int size = sizeof(u64);
7690
7691 if (data->regs_user.regs) {
7692 u64 mask = event->attr.sample_regs_user;
7693 size += hweight64(mask) * sizeof(u64);
7694 }
7695
7696 data->dyn_size += size;
7697 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7698 }
7699
7700 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7701 /*
7702 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7703 * processed as the last one or have additional check added
7704 * in case new sample type is added, because we could eat
7705 * up the rest of the sample size.
7706 */
7707 u16 stack_size = event->attr.sample_stack_user;
7708 u16 header_size = perf_sample_data_size(data, event);
7709 u16 size = sizeof(u64);
7710
7711 stack_size = perf_sample_ustack_size(stack_size, header_size,
7712 data->regs_user.regs);
7713
7714 /*
7715 * If there is something to dump, add space for the dump
7716 * itself and for the field that tells the dynamic size,
7717 * which is how many have been actually dumped.
7718 */
7719 if (stack_size)
7720 size += sizeof(u64) + stack_size;
7721
7722 data->stack_user_size = stack_size;
7723 data->dyn_size += size;
7724 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7725 }
7726
7727 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7728 data->weight.full = 0;
7729 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7730 }
7731
7732 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7733 data->data_src.val = PERF_MEM_NA;
7734 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7735 }
7736
7737 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7738 data->txn = 0;
7739 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7740 }
7741
7742 if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7743 data->addr = 0;
7744 data->sample_flags |= PERF_SAMPLE_ADDR;
7745 }
7746
7747 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7748 /* regs dump ABI info */
7749 int size = sizeof(u64);
7750
7751 perf_sample_regs_intr(&data->regs_intr, regs);
7752
7753 if (data->regs_intr.regs) {
7754 u64 mask = event->attr.sample_regs_intr;
7755
7756 size += hweight64(mask) * sizeof(u64);
7757 }
7758
7759 data->dyn_size += size;
7760 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7761 }
7762
7763 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7764 data->phys_addr = perf_virt_to_phys(data->addr);
7765 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7766 }
7767
7768 #ifdef CONFIG_CGROUP_PERF
7769 if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7770 struct cgroup *cgrp;
7771
7772 /* protected by RCU */
7773 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7774 data->cgroup = cgroup_id(cgrp);
7775 data->sample_flags |= PERF_SAMPLE_CGROUP;
7776 }
7777 #endif
7778
7779 /*
7780 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7781 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7782 * but the value will not dump to the userspace.
7783 */
7784 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7785 data->data_page_size = perf_get_page_size(data->addr);
7786 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7787 }
7788
7789 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7790 data->code_page_size = perf_get_page_size(data->ip);
7791 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7792 }
7793
7794 if (filtered_sample_type & PERF_SAMPLE_AUX) {
7795 u64 size;
7796 u16 header_size = perf_sample_data_size(data, event);
7797
7798 header_size += sizeof(u64); /* size */
7799
7800 /*
7801 * Given the 16bit nature of header::size, an AUX sample can
7802 * easily overflow it, what with all the preceding sample bits.
7803 * Make sure this doesn't happen by using up to U16_MAX bytes
7804 * per sample in total (rounded down to 8 byte boundary).
7805 */
7806 size = min_t(size_t, U16_MAX - header_size,
7807 event->attr.aux_sample_size);
7808 size = rounddown(size, 8);
7809 size = perf_prepare_sample_aux(event, data, size);
7810
7811 WARN_ON_ONCE(size + header_size > U16_MAX);
7812 data->dyn_size += size + sizeof(u64); /* size above */
7813 data->sample_flags |= PERF_SAMPLE_AUX;
7814 }
7815 }
7816
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7817 void perf_prepare_header(struct perf_event_header *header,
7818 struct perf_sample_data *data,
7819 struct perf_event *event,
7820 struct pt_regs *regs)
7821 {
7822 header->type = PERF_RECORD_SAMPLE;
7823 header->size = perf_sample_data_size(data, event);
7824 header->misc = perf_misc_flags(regs);
7825
7826 /*
7827 * If you're adding more sample types here, you likely need to do
7828 * something about the overflowing header::size, like repurpose the
7829 * lowest 3 bits of size, which should be always zero at the moment.
7830 * This raises a more important question, do we really need 512k sized
7831 * samples and why, so good argumentation is in order for whatever you
7832 * do here next.
7833 */
7834 WARN_ON_ONCE(header->size & 7);
7835 }
7836
7837 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))7838 __perf_event_output(struct perf_event *event,
7839 struct perf_sample_data *data,
7840 struct pt_regs *regs,
7841 int (*output_begin)(struct perf_output_handle *,
7842 struct perf_sample_data *,
7843 struct perf_event *,
7844 unsigned int))
7845 {
7846 struct perf_output_handle handle;
7847 struct perf_event_header header;
7848 int err;
7849
7850 /* protect the callchain buffers */
7851 rcu_read_lock();
7852
7853 perf_prepare_sample(data, event, regs);
7854 perf_prepare_header(&header, data, event, regs);
7855
7856 err = output_begin(&handle, data, event, header.size);
7857 if (err)
7858 goto exit;
7859
7860 perf_output_sample(&handle, &header, data, event);
7861
7862 perf_output_end(&handle);
7863
7864 exit:
7865 rcu_read_unlock();
7866 return err;
7867 }
7868
7869 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7870 perf_event_output_forward(struct perf_event *event,
7871 struct perf_sample_data *data,
7872 struct pt_regs *regs)
7873 {
7874 __perf_event_output(event, data, regs, perf_output_begin_forward);
7875 }
7876
7877 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7878 perf_event_output_backward(struct perf_event *event,
7879 struct perf_sample_data *data,
7880 struct pt_regs *regs)
7881 {
7882 __perf_event_output(event, data, regs, perf_output_begin_backward);
7883 }
7884
7885 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7886 perf_event_output(struct perf_event *event,
7887 struct perf_sample_data *data,
7888 struct pt_regs *regs)
7889 {
7890 return __perf_event_output(event, data, regs, perf_output_begin);
7891 }
7892
7893 /*
7894 * read event_id
7895 */
7896
7897 struct perf_read_event {
7898 struct perf_event_header header;
7899
7900 u32 pid;
7901 u32 tid;
7902 };
7903
7904 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)7905 perf_event_read_event(struct perf_event *event,
7906 struct task_struct *task)
7907 {
7908 struct perf_output_handle handle;
7909 struct perf_sample_data sample;
7910 struct perf_read_event read_event = {
7911 .header = {
7912 .type = PERF_RECORD_READ,
7913 .misc = 0,
7914 .size = sizeof(read_event) + event->read_size,
7915 },
7916 .pid = perf_event_pid(event, task),
7917 .tid = perf_event_tid(event, task),
7918 };
7919 int ret;
7920
7921 perf_event_header__init_id(&read_event.header, &sample, event);
7922 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7923 if (ret)
7924 return;
7925
7926 perf_output_put(&handle, read_event);
7927 perf_output_read(&handle, event);
7928 perf_event__output_id_sample(event, &handle, &sample);
7929
7930 perf_output_end(&handle);
7931 }
7932
7933 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7934
7935 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)7936 perf_iterate_ctx(struct perf_event_context *ctx,
7937 perf_iterate_f output,
7938 void *data, bool all)
7939 {
7940 struct perf_event *event;
7941
7942 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7943 if (!all) {
7944 if (event->state < PERF_EVENT_STATE_INACTIVE)
7945 continue;
7946 if (!event_filter_match(event))
7947 continue;
7948 }
7949
7950 output(event, data);
7951 }
7952 }
7953
perf_iterate_sb_cpu(perf_iterate_f output,void * data)7954 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7955 {
7956 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7957 struct perf_event *event;
7958
7959 list_for_each_entry_rcu(event, &pel->list, sb_list) {
7960 /*
7961 * Skip events that are not fully formed yet; ensure that
7962 * if we observe event->ctx, both event and ctx will be
7963 * complete enough. See perf_install_in_context().
7964 */
7965 if (!smp_load_acquire(&event->ctx))
7966 continue;
7967
7968 if (event->state < PERF_EVENT_STATE_INACTIVE)
7969 continue;
7970 if (!event_filter_match(event))
7971 continue;
7972 output(event, data);
7973 }
7974 }
7975
7976 /*
7977 * Iterate all events that need to receive side-band events.
7978 *
7979 * For new callers; ensure that account_pmu_sb_event() includes
7980 * your event, otherwise it might not get delivered.
7981 */
7982 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)7983 perf_iterate_sb(perf_iterate_f output, void *data,
7984 struct perf_event_context *task_ctx)
7985 {
7986 struct perf_event_context *ctx;
7987
7988 rcu_read_lock();
7989 preempt_disable();
7990
7991 /*
7992 * If we have task_ctx != NULL we only notify the task context itself.
7993 * The task_ctx is set only for EXIT events before releasing task
7994 * context.
7995 */
7996 if (task_ctx) {
7997 perf_iterate_ctx(task_ctx, output, data, false);
7998 goto done;
7999 }
8000
8001 perf_iterate_sb_cpu(output, data);
8002
8003 ctx = rcu_dereference(current->perf_event_ctxp);
8004 if (ctx)
8005 perf_iterate_ctx(ctx, output, data, false);
8006 done:
8007 preempt_enable();
8008 rcu_read_unlock();
8009 }
8010
8011 /*
8012 * Clear all file-based filters at exec, they'll have to be
8013 * re-instated when/if these objects are mmapped again.
8014 */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8015 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8016 {
8017 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8018 struct perf_addr_filter *filter;
8019 unsigned int restart = 0, count = 0;
8020 unsigned long flags;
8021
8022 if (!has_addr_filter(event))
8023 return;
8024
8025 raw_spin_lock_irqsave(&ifh->lock, flags);
8026 list_for_each_entry(filter, &ifh->list, entry) {
8027 if (filter->path.dentry) {
8028 event->addr_filter_ranges[count].start = 0;
8029 event->addr_filter_ranges[count].size = 0;
8030 restart++;
8031 }
8032
8033 count++;
8034 }
8035
8036 if (restart)
8037 event->addr_filters_gen++;
8038 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8039
8040 if (restart)
8041 perf_event_stop(event, 1);
8042 }
8043
perf_event_exec(void)8044 void perf_event_exec(void)
8045 {
8046 struct perf_event_context *ctx;
8047
8048 ctx = perf_pin_task_context(current);
8049 if (!ctx)
8050 return;
8051
8052 perf_event_enable_on_exec(ctx);
8053 perf_event_remove_on_exec(ctx);
8054 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8055
8056 perf_unpin_context(ctx);
8057 put_ctx(ctx);
8058 }
8059
8060 struct remote_output {
8061 struct perf_buffer *rb;
8062 int err;
8063 };
8064
__perf_event_output_stop(struct perf_event * event,void * data)8065 static void __perf_event_output_stop(struct perf_event *event, void *data)
8066 {
8067 struct perf_event *parent = event->parent;
8068 struct remote_output *ro = data;
8069 struct perf_buffer *rb = ro->rb;
8070 struct stop_event_data sd = {
8071 .event = event,
8072 };
8073
8074 if (!has_aux(event))
8075 return;
8076
8077 if (!parent)
8078 parent = event;
8079
8080 /*
8081 * In case of inheritance, it will be the parent that links to the
8082 * ring-buffer, but it will be the child that's actually using it.
8083 *
8084 * We are using event::rb to determine if the event should be stopped,
8085 * however this may race with ring_buffer_attach() (through set_output),
8086 * which will make us skip the event that actually needs to be stopped.
8087 * So ring_buffer_attach() has to stop an aux event before re-assigning
8088 * its rb pointer.
8089 */
8090 if (rcu_dereference(parent->rb) == rb)
8091 ro->err = __perf_event_stop(&sd);
8092 }
8093
__perf_pmu_output_stop(void * info)8094 static int __perf_pmu_output_stop(void *info)
8095 {
8096 struct perf_event *event = info;
8097 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8098 struct remote_output ro = {
8099 .rb = event->rb,
8100 };
8101
8102 rcu_read_lock();
8103 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8104 if (cpuctx->task_ctx)
8105 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8106 &ro, false);
8107 rcu_read_unlock();
8108
8109 return ro.err;
8110 }
8111
perf_pmu_output_stop(struct perf_event * event)8112 static void perf_pmu_output_stop(struct perf_event *event)
8113 {
8114 struct perf_event *iter;
8115 int err, cpu;
8116
8117 restart:
8118 rcu_read_lock();
8119 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8120 /*
8121 * For per-CPU events, we need to make sure that neither they
8122 * nor their children are running; for cpu==-1 events it's
8123 * sufficient to stop the event itself if it's active, since
8124 * it can't have children.
8125 */
8126 cpu = iter->cpu;
8127 if (cpu == -1)
8128 cpu = READ_ONCE(iter->oncpu);
8129
8130 if (cpu == -1)
8131 continue;
8132
8133 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8134 if (err == -EAGAIN) {
8135 rcu_read_unlock();
8136 goto restart;
8137 }
8138 }
8139 rcu_read_unlock();
8140 }
8141
8142 /*
8143 * task tracking -- fork/exit
8144 *
8145 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8146 */
8147
8148 struct perf_task_event {
8149 struct task_struct *task;
8150 struct perf_event_context *task_ctx;
8151
8152 struct {
8153 struct perf_event_header header;
8154
8155 u32 pid;
8156 u32 ppid;
8157 u32 tid;
8158 u32 ptid;
8159 u64 time;
8160 } event_id;
8161 };
8162
perf_event_task_match(struct perf_event * event)8163 static int perf_event_task_match(struct perf_event *event)
8164 {
8165 return event->attr.comm || event->attr.mmap ||
8166 event->attr.mmap2 || event->attr.mmap_data ||
8167 event->attr.task;
8168 }
8169
perf_event_task_output(struct perf_event * event,void * data)8170 static void perf_event_task_output(struct perf_event *event,
8171 void *data)
8172 {
8173 struct perf_task_event *task_event = data;
8174 struct perf_output_handle handle;
8175 struct perf_sample_data sample;
8176 struct task_struct *task = task_event->task;
8177 int ret, size = task_event->event_id.header.size;
8178
8179 if (!perf_event_task_match(event))
8180 return;
8181
8182 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8183
8184 ret = perf_output_begin(&handle, &sample, event,
8185 task_event->event_id.header.size);
8186 if (ret)
8187 goto out;
8188
8189 task_event->event_id.pid = perf_event_pid(event, task);
8190 task_event->event_id.tid = perf_event_tid(event, task);
8191
8192 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8193 task_event->event_id.ppid = perf_event_pid(event,
8194 task->real_parent);
8195 task_event->event_id.ptid = perf_event_pid(event,
8196 task->real_parent);
8197 } else { /* PERF_RECORD_FORK */
8198 task_event->event_id.ppid = perf_event_pid(event, current);
8199 task_event->event_id.ptid = perf_event_tid(event, current);
8200 }
8201
8202 task_event->event_id.time = perf_event_clock(event);
8203
8204 perf_output_put(&handle, task_event->event_id);
8205
8206 perf_event__output_id_sample(event, &handle, &sample);
8207
8208 perf_output_end(&handle);
8209 out:
8210 task_event->event_id.header.size = size;
8211 }
8212
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8213 static void perf_event_task(struct task_struct *task,
8214 struct perf_event_context *task_ctx,
8215 int new)
8216 {
8217 struct perf_task_event task_event;
8218
8219 if (!atomic_read(&nr_comm_events) &&
8220 !atomic_read(&nr_mmap_events) &&
8221 !atomic_read(&nr_task_events))
8222 return;
8223
8224 task_event = (struct perf_task_event){
8225 .task = task,
8226 .task_ctx = task_ctx,
8227 .event_id = {
8228 .header = {
8229 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8230 .misc = 0,
8231 .size = sizeof(task_event.event_id),
8232 },
8233 /* .pid */
8234 /* .ppid */
8235 /* .tid */
8236 /* .ptid */
8237 /* .time */
8238 },
8239 };
8240
8241 perf_iterate_sb(perf_event_task_output,
8242 &task_event,
8243 task_ctx);
8244 }
8245
perf_event_fork(struct task_struct * task)8246 void perf_event_fork(struct task_struct *task)
8247 {
8248 perf_event_task(task, NULL, 1);
8249 perf_event_namespaces(task);
8250 }
8251
8252 /*
8253 * comm tracking
8254 */
8255
8256 struct perf_comm_event {
8257 struct task_struct *task;
8258 char *comm;
8259 int comm_size;
8260
8261 struct {
8262 struct perf_event_header header;
8263
8264 u32 pid;
8265 u32 tid;
8266 } event_id;
8267 };
8268
perf_event_comm_match(struct perf_event * event)8269 static int perf_event_comm_match(struct perf_event *event)
8270 {
8271 return event->attr.comm;
8272 }
8273
perf_event_comm_output(struct perf_event * event,void * data)8274 static void perf_event_comm_output(struct perf_event *event,
8275 void *data)
8276 {
8277 struct perf_comm_event *comm_event = data;
8278 struct perf_output_handle handle;
8279 struct perf_sample_data sample;
8280 int size = comm_event->event_id.header.size;
8281 int ret;
8282
8283 if (!perf_event_comm_match(event))
8284 return;
8285
8286 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8287 ret = perf_output_begin(&handle, &sample, event,
8288 comm_event->event_id.header.size);
8289
8290 if (ret)
8291 goto out;
8292
8293 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8294 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8295
8296 perf_output_put(&handle, comm_event->event_id);
8297 __output_copy(&handle, comm_event->comm,
8298 comm_event->comm_size);
8299
8300 perf_event__output_id_sample(event, &handle, &sample);
8301
8302 perf_output_end(&handle);
8303 out:
8304 comm_event->event_id.header.size = size;
8305 }
8306
perf_event_comm_event(struct perf_comm_event * comm_event)8307 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8308 {
8309 char comm[TASK_COMM_LEN];
8310 unsigned int size;
8311
8312 memset(comm, 0, sizeof(comm));
8313 strscpy(comm, comm_event->task->comm, sizeof(comm));
8314 size = ALIGN(strlen(comm)+1, sizeof(u64));
8315
8316 comm_event->comm = comm;
8317 comm_event->comm_size = size;
8318
8319 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8320
8321 perf_iterate_sb(perf_event_comm_output,
8322 comm_event,
8323 NULL);
8324 }
8325
perf_event_comm(struct task_struct * task,bool exec)8326 void perf_event_comm(struct task_struct *task, bool exec)
8327 {
8328 struct perf_comm_event comm_event;
8329
8330 if (!atomic_read(&nr_comm_events))
8331 return;
8332
8333 comm_event = (struct perf_comm_event){
8334 .task = task,
8335 /* .comm */
8336 /* .comm_size */
8337 .event_id = {
8338 .header = {
8339 .type = PERF_RECORD_COMM,
8340 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8341 /* .size */
8342 },
8343 /* .pid */
8344 /* .tid */
8345 },
8346 };
8347
8348 perf_event_comm_event(&comm_event);
8349 }
8350
8351 /*
8352 * namespaces tracking
8353 */
8354
8355 struct perf_namespaces_event {
8356 struct task_struct *task;
8357
8358 struct {
8359 struct perf_event_header header;
8360
8361 u32 pid;
8362 u32 tid;
8363 u64 nr_namespaces;
8364 struct perf_ns_link_info link_info[NR_NAMESPACES];
8365 } event_id;
8366 };
8367
perf_event_namespaces_match(struct perf_event * event)8368 static int perf_event_namespaces_match(struct perf_event *event)
8369 {
8370 return event->attr.namespaces;
8371 }
8372
perf_event_namespaces_output(struct perf_event * event,void * data)8373 static void perf_event_namespaces_output(struct perf_event *event,
8374 void *data)
8375 {
8376 struct perf_namespaces_event *namespaces_event = data;
8377 struct perf_output_handle handle;
8378 struct perf_sample_data sample;
8379 u16 header_size = namespaces_event->event_id.header.size;
8380 int ret;
8381
8382 if (!perf_event_namespaces_match(event))
8383 return;
8384
8385 perf_event_header__init_id(&namespaces_event->event_id.header,
8386 &sample, event);
8387 ret = perf_output_begin(&handle, &sample, event,
8388 namespaces_event->event_id.header.size);
8389 if (ret)
8390 goto out;
8391
8392 namespaces_event->event_id.pid = perf_event_pid(event,
8393 namespaces_event->task);
8394 namespaces_event->event_id.tid = perf_event_tid(event,
8395 namespaces_event->task);
8396
8397 perf_output_put(&handle, namespaces_event->event_id);
8398
8399 perf_event__output_id_sample(event, &handle, &sample);
8400
8401 perf_output_end(&handle);
8402 out:
8403 namespaces_event->event_id.header.size = header_size;
8404 }
8405
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)8406 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8407 struct task_struct *task,
8408 const struct proc_ns_operations *ns_ops)
8409 {
8410 struct path ns_path;
8411 struct inode *ns_inode;
8412 int error;
8413
8414 error = ns_get_path(&ns_path, task, ns_ops);
8415 if (!error) {
8416 ns_inode = ns_path.dentry->d_inode;
8417 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8418 ns_link_info->ino = ns_inode->i_ino;
8419 path_put(&ns_path);
8420 }
8421 }
8422
perf_event_namespaces(struct task_struct * task)8423 void perf_event_namespaces(struct task_struct *task)
8424 {
8425 struct perf_namespaces_event namespaces_event;
8426 struct perf_ns_link_info *ns_link_info;
8427
8428 if (!atomic_read(&nr_namespaces_events))
8429 return;
8430
8431 namespaces_event = (struct perf_namespaces_event){
8432 .task = task,
8433 .event_id = {
8434 .header = {
8435 .type = PERF_RECORD_NAMESPACES,
8436 .misc = 0,
8437 .size = sizeof(namespaces_event.event_id),
8438 },
8439 /* .pid */
8440 /* .tid */
8441 .nr_namespaces = NR_NAMESPACES,
8442 /* .link_info[NR_NAMESPACES] */
8443 },
8444 };
8445
8446 ns_link_info = namespaces_event.event_id.link_info;
8447
8448 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8449 task, &mntns_operations);
8450
8451 #ifdef CONFIG_USER_NS
8452 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8453 task, &userns_operations);
8454 #endif
8455 #ifdef CONFIG_NET_NS
8456 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8457 task, &netns_operations);
8458 #endif
8459 #ifdef CONFIG_UTS_NS
8460 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8461 task, &utsns_operations);
8462 #endif
8463 #ifdef CONFIG_IPC_NS
8464 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8465 task, &ipcns_operations);
8466 #endif
8467 #ifdef CONFIG_PID_NS
8468 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8469 task, &pidns_operations);
8470 #endif
8471 #ifdef CONFIG_CGROUPS
8472 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8473 task, &cgroupns_operations);
8474 #endif
8475
8476 perf_iterate_sb(perf_event_namespaces_output,
8477 &namespaces_event,
8478 NULL);
8479 }
8480
8481 /*
8482 * cgroup tracking
8483 */
8484 #ifdef CONFIG_CGROUP_PERF
8485
8486 struct perf_cgroup_event {
8487 char *path;
8488 int path_size;
8489 struct {
8490 struct perf_event_header header;
8491 u64 id;
8492 char path[];
8493 } event_id;
8494 };
8495
perf_event_cgroup_match(struct perf_event * event)8496 static int perf_event_cgroup_match(struct perf_event *event)
8497 {
8498 return event->attr.cgroup;
8499 }
8500
perf_event_cgroup_output(struct perf_event * event,void * data)8501 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8502 {
8503 struct perf_cgroup_event *cgroup_event = data;
8504 struct perf_output_handle handle;
8505 struct perf_sample_data sample;
8506 u16 header_size = cgroup_event->event_id.header.size;
8507 int ret;
8508
8509 if (!perf_event_cgroup_match(event))
8510 return;
8511
8512 perf_event_header__init_id(&cgroup_event->event_id.header,
8513 &sample, event);
8514 ret = perf_output_begin(&handle, &sample, event,
8515 cgroup_event->event_id.header.size);
8516 if (ret)
8517 goto out;
8518
8519 perf_output_put(&handle, cgroup_event->event_id);
8520 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8521
8522 perf_event__output_id_sample(event, &handle, &sample);
8523
8524 perf_output_end(&handle);
8525 out:
8526 cgroup_event->event_id.header.size = header_size;
8527 }
8528
perf_event_cgroup(struct cgroup * cgrp)8529 static void perf_event_cgroup(struct cgroup *cgrp)
8530 {
8531 struct perf_cgroup_event cgroup_event;
8532 char path_enomem[16] = "//enomem";
8533 char *pathname;
8534 size_t size;
8535
8536 if (!atomic_read(&nr_cgroup_events))
8537 return;
8538
8539 cgroup_event = (struct perf_cgroup_event){
8540 .event_id = {
8541 .header = {
8542 .type = PERF_RECORD_CGROUP,
8543 .misc = 0,
8544 .size = sizeof(cgroup_event.event_id),
8545 },
8546 .id = cgroup_id(cgrp),
8547 },
8548 };
8549
8550 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8551 if (pathname == NULL) {
8552 cgroup_event.path = path_enomem;
8553 } else {
8554 /* just to be sure to have enough space for alignment */
8555 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8556 cgroup_event.path = pathname;
8557 }
8558
8559 /*
8560 * Since our buffer works in 8 byte units we need to align our string
8561 * size to a multiple of 8. However, we must guarantee the tail end is
8562 * zero'd out to avoid leaking random bits to userspace.
8563 */
8564 size = strlen(cgroup_event.path) + 1;
8565 while (!IS_ALIGNED(size, sizeof(u64)))
8566 cgroup_event.path[size++] = '\0';
8567
8568 cgroup_event.event_id.header.size += size;
8569 cgroup_event.path_size = size;
8570
8571 perf_iterate_sb(perf_event_cgroup_output,
8572 &cgroup_event,
8573 NULL);
8574
8575 kfree(pathname);
8576 }
8577
8578 #endif
8579
8580 /*
8581 * mmap tracking
8582 */
8583
8584 struct perf_mmap_event {
8585 struct vm_area_struct *vma;
8586
8587 const char *file_name;
8588 int file_size;
8589 int maj, min;
8590 u64 ino;
8591 u64 ino_generation;
8592 u32 prot, flags;
8593 u8 build_id[BUILD_ID_SIZE_MAX];
8594 u32 build_id_size;
8595
8596 struct {
8597 struct perf_event_header header;
8598
8599 u32 pid;
8600 u32 tid;
8601 u64 start;
8602 u64 len;
8603 u64 pgoff;
8604 } event_id;
8605 };
8606
perf_event_mmap_match(struct perf_event * event,void * data)8607 static int perf_event_mmap_match(struct perf_event *event,
8608 void *data)
8609 {
8610 struct perf_mmap_event *mmap_event = data;
8611 struct vm_area_struct *vma = mmap_event->vma;
8612 int executable = vma->vm_flags & VM_EXEC;
8613
8614 return (!executable && event->attr.mmap_data) ||
8615 (executable && (event->attr.mmap || event->attr.mmap2));
8616 }
8617
perf_event_mmap_output(struct perf_event * event,void * data)8618 static void perf_event_mmap_output(struct perf_event *event,
8619 void *data)
8620 {
8621 struct perf_mmap_event *mmap_event = data;
8622 struct perf_output_handle handle;
8623 struct perf_sample_data sample;
8624 int size = mmap_event->event_id.header.size;
8625 u32 type = mmap_event->event_id.header.type;
8626 bool use_build_id;
8627 int ret;
8628
8629 if (!perf_event_mmap_match(event, data))
8630 return;
8631
8632 if (event->attr.mmap2) {
8633 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8634 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8635 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8636 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8637 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8638 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8639 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8640 }
8641
8642 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8643 ret = perf_output_begin(&handle, &sample, event,
8644 mmap_event->event_id.header.size);
8645 if (ret)
8646 goto out;
8647
8648 mmap_event->event_id.pid = perf_event_pid(event, current);
8649 mmap_event->event_id.tid = perf_event_tid(event, current);
8650
8651 use_build_id = event->attr.build_id && mmap_event->build_id_size;
8652
8653 if (event->attr.mmap2 && use_build_id)
8654 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8655
8656 perf_output_put(&handle, mmap_event->event_id);
8657
8658 if (event->attr.mmap2) {
8659 if (use_build_id) {
8660 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8661
8662 __output_copy(&handle, size, 4);
8663 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8664 } else {
8665 perf_output_put(&handle, mmap_event->maj);
8666 perf_output_put(&handle, mmap_event->min);
8667 perf_output_put(&handle, mmap_event->ino);
8668 perf_output_put(&handle, mmap_event->ino_generation);
8669 }
8670 perf_output_put(&handle, mmap_event->prot);
8671 perf_output_put(&handle, mmap_event->flags);
8672 }
8673
8674 __output_copy(&handle, mmap_event->file_name,
8675 mmap_event->file_size);
8676
8677 perf_event__output_id_sample(event, &handle, &sample);
8678
8679 perf_output_end(&handle);
8680 out:
8681 mmap_event->event_id.header.size = size;
8682 mmap_event->event_id.header.type = type;
8683 }
8684
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8685 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8686 {
8687 struct vm_area_struct *vma = mmap_event->vma;
8688 struct file *file = vma->vm_file;
8689 int maj = 0, min = 0;
8690 u64 ino = 0, gen = 0;
8691 u32 prot = 0, flags = 0;
8692 unsigned int size;
8693 char tmp[16];
8694 char *buf = NULL;
8695 char *name = NULL;
8696
8697 if (vma->vm_flags & VM_READ)
8698 prot |= PROT_READ;
8699 if (vma->vm_flags & VM_WRITE)
8700 prot |= PROT_WRITE;
8701 if (vma->vm_flags & VM_EXEC)
8702 prot |= PROT_EXEC;
8703
8704 if (vma->vm_flags & VM_MAYSHARE)
8705 flags = MAP_SHARED;
8706 else
8707 flags = MAP_PRIVATE;
8708
8709 if (vma->vm_flags & VM_LOCKED)
8710 flags |= MAP_LOCKED;
8711 if (is_vm_hugetlb_page(vma))
8712 flags |= MAP_HUGETLB;
8713
8714 if (file) {
8715 struct inode *inode;
8716 dev_t dev;
8717
8718 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8719 if (!buf) {
8720 name = "//enomem";
8721 goto cpy_name;
8722 }
8723 /*
8724 * d_path() works from the end of the rb backwards, so we
8725 * need to add enough zero bytes after the string to handle
8726 * the 64bit alignment we do later.
8727 */
8728 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8729 if (IS_ERR(name)) {
8730 name = "//toolong";
8731 goto cpy_name;
8732 }
8733 inode = file_inode(vma->vm_file);
8734 dev = inode->i_sb->s_dev;
8735 ino = inode->i_ino;
8736 gen = inode->i_generation;
8737 maj = MAJOR(dev);
8738 min = MINOR(dev);
8739
8740 goto got_name;
8741 } else {
8742 if (vma->vm_ops && vma->vm_ops->name)
8743 name = (char *) vma->vm_ops->name(vma);
8744 if (!name)
8745 name = (char *)arch_vma_name(vma);
8746 if (!name) {
8747 if (vma_is_initial_heap(vma))
8748 name = "[heap]";
8749 else if (vma_is_initial_stack(vma))
8750 name = "[stack]";
8751 else
8752 name = "//anon";
8753 }
8754 }
8755
8756 cpy_name:
8757 strscpy(tmp, name, sizeof(tmp));
8758 name = tmp;
8759 got_name:
8760 /*
8761 * Since our buffer works in 8 byte units we need to align our string
8762 * size to a multiple of 8. However, we must guarantee the tail end is
8763 * zero'd out to avoid leaking random bits to userspace.
8764 */
8765 size = strlen(name)+1;
8766 while (!IS_ALIGNED(size, sizeof(u64)))
8767 name[size++] = '\0';
8768
8769 mmap_event->file_name = name;
8770 mmap_event->file_size = size;
8771 mmap_event->maj = maj;
8772 mmap_event->min = min;
8773 mmap_event->ino = ino;
8774 mmap_event->ino_generation = gen;
8775 mmap_event->prot = prot;
8776 mmap_event->flags = flags;
8777
8778 if (!(vma->vm_flags & VM_EXEC))
8779 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8780
8781 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8782
8783 if (atomic_read(&nr_build_id_events))
8784 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8785
8786 perf_iterate_sb(perf_event_mmap_output,
8787 mmap_event,
8788 NULL);
8789
8790 kfree(buf);
8791 }
8792
8793 /*
8794 * Check whether inode and address range match filter criteria.
8795 */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)8796 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8797 struct file *file, unsigned long offset,
8798 unsigned long size)
8799 {
8800 /* d_inode(NULL) won't be equal to any mapped user-space file */
8801 if (!filter->path.dentry)
8802 return false;
8803
8804 if (d_inode(filter->path.dentry) != file_inode(file))
8805 return false;
8806
8807 if (filter->offset > offset + size)
8808 return false;
8809
8810 if (filter->offset + filter->size < offset)
8811 return false;
8812
8813 return true;
8814 }
8815
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)8816 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8817 struct vm_area_struct *vma,
8818 struct perf_addr_filter_range *fr)
8819 {
8820 unsigned long vma_size = vma->vm_end - vma->vm_start;
8821 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8822 struct file *file = vma->vm_file;
8823
8824 if (!perf_addr_filter_match(filter, file, off, vma_size))
8825 return false;
8826
8827 if (filter->offset < off) {
8828 fr->start = vma->vm_start;
8829 fr->size = min(vma_size, filter->size - (off - filter->offset));
8830 } else {
8831 fr->start = vma->vm_start + filter->offset - off;
8832 fr->size = min(vma->vm_end - fr->start, filter->size);
8833 }
8834
8835 return true;
8836 }
8837
__perf_addr_filters_adjust(struct perf_event * event,void * data)8838 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8839 {
8840 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8841 struct vm_area_struct *vma = data;
8842 struct perf_addr_filter *filter;
8843 unsigned int restart = 0, count = 0;
8844 unsigned long flags;
8845
8846 if (!has_addr_filter(event))
8847 return;
8848
8849 if (!vma->vm_file)
8850 return;
8851
8852 raw_spin_lock_irqsave(&ifh->lock, flags);
8853 list_for_each_entry(filter, &ifh->list, entry) {
8854 if (perf_addr_filter_vma_adjust(filter, vma,
8855 &event->addr_filter_ranges[count]))
8856 restart++;
8857
8858 count++;
8859 }
8860
8861 if (restart)
8862 event->addr_filters_gen++;
8863 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8864
8865 if (restart)
8866 perf_event_stop(event, 1);
8867 }
8868
8869 /*
8870 * Adjust all task's events' filters to the new vma
8871 */
perf_addr_filters_adjust(struct vm_area_struct * vma)8872 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8873 {
8874 struct perf_event_context *ctx;
8875
8876 /*
8877 * Data tracing isn't supported yet and as such there is no need
8878 * to keep track of anything that isn't related to executable code:
8879 */
8880 if (!(vma->vm_flags & VM_EXEC))
8881 return;
8882
8883 rcu_read_lock();
8884 ctx = rcu_dereference(current->perf_event_ctxp);
8885 if (ctx)
8886 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8887 rcu_read_unlock();
8888 }
8889
perf_event_mmap(struct vm_area_struct * vma)8890 void perf_event_mmap(struct vm_area_struct *vma)
8891 {
8892 struct perf_mmap_event mmap_event;
8893
8894 if (!atomic_read(&nr_mmap_events))
8895 return;
8896
8897 mmap_event = (struct perf_mmap_event){
8898 .vma = vma,
8899 /* .file_name */
8900 /* .file_size */
8901 .event_id = {
8902 .header = {
8903 .type = PERF_RECORD_MMAP,
8904 .misc = PERF_RECORD_MISC_USER,
8905 /* .size */
8906 },
8907 /* .pid */
8908 /* .tid */
8909 .start = vma->vm_start,
8910 .len = vma->vm_end - vma->vm_start,
8911 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
8912 },
8913 /* .maj (attr_mmap2 only) */
8914 /* .min (attr_mmap2 only) */
8915 /* .ino (attr_mmap2 only) */
8916 /* .ino_generation (attr_mmap2 only) */
8917 /* .prot (attr_mmap2 only) */
8918 /* .flags (attr_mmap2 only) */
8919 };
8920
8921 perf_addr_filters_adjust(vma);
8922 perf_event_mmap_event(&mmap_event);
8923 }
8924
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)8925 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8926 unsigned long size, u64 flags)
8927 {
8928 struct perf_output_handle handle;
8929 struct perf_sample_data sample;
8930 struct perf_aux_event {
8931 struct perf_event_header header;
8932 u64 offset;
8933 u64 size;
8934 u64 flags;
8935 } rec = {
8936 .header = {
8937 .type = PERF_RECORD_AUX,
8938 .misc = 0,
8939 .size = sizeof(rec),
8940 },
8941 .offset = head,
8942 .size = size,
8943 .flags = flags,
8944 };
8945 int ret;
8946
8947 perf_event_header__init_id(&rec.header, &sample, event);
8948 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8949
8950 if (ret)
8951 return;
8952
8953 perf_output_put(&handle, rec);
8954 perf_event__output_id_sample(event, &handle, &sample);
8955
8956 perf_output_end(&handle);
8957 }
8958
8959 /*
8960 * Lost/dropped samples logging
8961 */
perf_log_lost_samples(struct perf_event * event,u64 lost)8962 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8963 {
8964 struct perf_output_handle handle;
8965 struct perf_sample_data sample;
8966 int ret;
8967
8968 struct {
8969 struct perf_event_header header;
8970 u64 lost;
8971 } lost_samples_event = {
8972 .header = {
8973 .type = PERF_RECORD_LOST_SAMPLES,
8974 .misc = 0,
8975 .size = sizeof(lost_samples_event),
8976 },
8977 .lost = lost,
8978 };
8979
8980 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8981
8982 ret = perf_output_begin(&handle, &sample, event,
8983 lost_samples_event.header.size);
8984 if (ret)
8985 return;
8986
8987 perf_output_put(&handle, lost_samples_event);
8988 perf_event__output_id_sample(event, &handle, &sample);
8989 perf_output_end(&handle);
8990 }
8991
8992 /*
8993 * context_switch tracking
8994 */
8995
8996 struct perf_switch_event {
8997 struct task_struct *task;
8998 struct task_struct *next_prev;
8999
9000 struct {
9001 struct perf_event_header header;
9002 u32 next_prev_pid;
9003 u32 next_prev_tid;
9004 } event_id;
9005 };
9006
perf_event_switch_match(struct perf_event * event)9007 static int perf_event_switch_match(struct perf_event *event)
9008 {
9009 return event->attr.context_switch;
9010 }
9011
perf_event_switch_output(struct perf_event * event,void * data)9012 static void perf_event_switch_output(struct perf_event *event, void *data)
9013 {
9014 struct perf_switch_event *se = data;
9015 struct perf_output_handle handle;
9016 struct perf_sample_data sample;
9017 int ret;
9018
9019 if (!perf_event_switch_match(event))
9020 return;
9021
9022 /* Only CPU-wide events are allowed to see next/prev pid/tid */
9023 if (event->ctx->task) {
9024 se->event_id.header.type = PERF_RECORD_SWITCH;
9025 se->event_id.header.size = sizeof(se->event_id.header);
9026 } else {
9027 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9028 se->event_id.header.size = sizeof(se->event_id);
9029 se->event_id.next_prev_pid =
9030 perf_event_pid(event, se->next_prev);
9031 se->event_id.next_prev_tid =
9032 perf_event_tid(event, se->next_prev);
9033 }
9034
9035 perf_event_header__init_id(&se->event_id.header, &sample, event);
9036
9037 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9038 if (ret)
9039 return;
9040
9041 if (event->ctx->task)
9042 perf_output_put(&handle, se->event_id.header);
9043 else
9044 perf_output_put(&handle, se->event_id);
9045
9046 perf_event__output_id_sample(event, &handle, &sample);
9047
9048 perf_output_end(&handle);
9049 }
9050
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9051 static void perf_event_switch(struct task_struct *task,
9052 struct task_struct *next_prev, bool sched_in)
9053 {
9054 struct perf_switch_event switch_event;
9055
9056 /* N.B. caller checks nr_switch_events != 0 */
9057
9058 switch_event = (struct perf_switch_event){
9059 .task = task,
9060 .next_prev = next_prev,
9061 .event_id = {
9062 .header = {
9063 /* .type */
9064 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9065 /* .size */
9066 },
9067 /* .next_prev_pid */
9068 /* .next_prev_tid */
9069 },
9070 };
9071
9072 if (!sched_in && task->on_rq) {
9073 switch_event.event_id.header.misc |=
9074 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9075 }
9076
9077 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9078 }
9079
9080 /*
9081 * IRQ throttle logging
9082 */
9083
perf_log_throttle(struct perf_event * event,int enable)9084 static void perf_log_throttle(struct perf_event *event, int enable)
9085 {
9086 struct perf_output_handle handle;
9087 struct perf_sample_data sample;
9088 int ret;
9089
9090 struct {
9091 struct perf_event_header header;
9092 u64 time;
9093 u64 id;
9094 u64 stream_id;
9095 } throttle_event = {
9096 .header = {
9097 .type = PERF_RECORD_THROTTLE,
9098 .misc = 0,
9099 .size = sizeof(throttle_event),
9100 },
9101 .time = perf_event_clock(event),
9102 .id = primary_event_id(event),
9103 .stream_id = event->id,
9104 };
9105
9106 if (enable)
9107 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9108
9109 perf_event_header__init_id(&throttle_event.header, &sample, event);
9110
9111 ret = perf_output_begin(&handle, &sample, event,
9112 throttle_event.header.size);
9113 if (ret)
9114 return;
9115
9116 perf_output_put(&handle, throttle_event);
9117 perf_event__output_id_sample(event, &handle, &sample);
9118 perf_output_end(&handle);
9119 }
9120
9121 /*
9122 * ksymbol register/unregister tracking
9123 */
9124
9125 struct perf_ksymbol_event {
9126 const char *name;
9127 int name_len;
9128 struct {
9129 struct perf_event_header header;
9130 u64 addr;
9131 u32 len;
9132 u16 ksym_type;
9133 u16 flags;
9134 } event_id;
9135 };
9136
perf_event_ksymbol_match(struct perf_event * event)9137 static int perf_event_ksymbol_match(struct perf_event *event)
9138 {
9139 return event->attr.ksymbol;
9140 }
9141
perf_event_ksymbol_output(struct perf_event * event,void * data)9142 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9143 {
9144 struct perf_ksymbol_event *ksymbol_event = data;
9145 struct perf_output_handle handle;
9146 struct perf_sample_data sample;
9147 int ret;
9148
9149 if (!perf_event_ksymbol_match(event))
9150 return;
9151
9152 perf_event_header__init_id(&ksymbol_event->event_id.header,
9153 &sample, event);
9154 ret = perf_output_begin(&handle, &sample, event,
9155 ksymbol_event->event_id.header.size);
9156 if (ret)
9157 return;
9158
9159 perf_output_put(&handle, ksymbol_event->event_id);
9160 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9161 perf_event__output_id_sample(event, &handle, &sample);
9162
9163 perf_output_end(&handle);
9164 }
9165
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9166 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9167 const char *sym)
9168 {
9169 struct perf_ksymbol_event ksymbol_event;
9170 char name[KSYM_NAME_LEN];
9171 u16 flags = 0;
9172 int name_len;
9173
9174 if (!atomic_read(&nr_ksymbol_events))
9175 return;
9176
9177 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9178 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9179 goto err;
9180
9181 strscpy(name, sym, KSYM_NAME_LEN);
9182 name_len = strlen(name) + 1;
9183 while (!IS_ALIGNED(name_len, sizeof(u64)))
9184 name[name_len++] = '\0';
9185 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9186
9187 if (unregister)
9188 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9189
9190 ksymbol_event = (struct perf_ksymbol_event){
9191 .name = name,
9192 .name_len = name_len,
9193 .event_id = {
9194 .header = {
9195 .type = PERF_RECORD_KSYMBOL,
9196 .size = sizeof(ksymbol_event.event_id) +
9197 name_len,
9198 },
9199 .addr = addr,
9200 .len = len,
9201 .ksym_type = ksym_type,
9202 .flags = flags,
9203 },
9204 };
9205
9206 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9207 return;
9208 err:
9209 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9210 }
9211
9212 /*
9213 * bpf program load/unload tracking
9214 */
9215
9216 struct perf_bpf_event {
9217 struct bpf_prog *prog;
9218 struct {
9219 struct perf_event_header header;
9220 u16 type;
9221 u16 flags;
9222 u32 id;
9223 u8 tag[BPF_TAG_SIZE];
9224 } event_id;
9225 };
9226
perf_event_bpf_match(struct perf_event * event)9227 static int perf_event_bpf_match(struct perf_event *event)
9228 {
9229 return event->attr.bpf_event;
9230 }
9231
perf_event_bpf_output(struct perf_event * event,void * data)9232 static void perf_event_bpf_output(struct perf_event *event, void *data)
9233 {
9234 struct perf_bpf_event *bpf_event = data;
9235 struct perf_output_handle handle;
9236 struct perf_sample_data sample;
9237 int ret;
9238
9239 if (!perf_event_bpf_match(event))
9240 return;
9241
9242 perf_event_header__init_id(&bpf_event->event_id.header,
9243 &sample, event);
9244 ret = perf_output_begin(&handle, &sample, event,
9245 bpf_event->event_id.header.size);
9246 if (ret)
9247 return;
9248
9249 perf_output_put(&handle, bpf_event->event_id);
9250 perf_event__output_id_sample(event, &handle, &sample);
9251
9252 perf_output_end(&handle);
9253 }
9254
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9255 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9256 enum perf_bpf_event_type type)
9257 {
9258 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9259 int i;
9260
9261 if (prog->aux->func_cnt == 0) {
9262 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9263 (u64)(unsigned long)prog->bpf_func,
9264 prog->jited_len, unregister,
9265 prog->aux->ksym.name);
9266 } else {
9267 for (i = 0; i < prog->aux->func_cnt; i++) {
9268 struct bpf_prog *subprog = prog->aux->func[i];
9269
9270 perf_event_ksymbol(
9271 PERF_RECORD_KSYMBOL_TYPE_BPF,
9272 (u64)(unsigned long)subprog->bpf_func,
9273 subprog->jited_len, unregister,
9274 subprog->aux->ksym.name);
9275 }
9276 }
9277 }
9278
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9279 void perf_event_bpf_event(struct bpf_prog *prog,
9280 enum perf_bpf_event_type type,
9281 u16 flags)
9282 {
9283 struct perf_bpf_event bpf_event;
9284
9285 if (type <= PERF_BPF_EVENT_UNKNOWN ||
9286 type >= PERF_BPF_EVENT_MAX)
9287 return;
9288
9289 switch (type) {
9290 case PERF_BPF_EVENT_PROG_LOAD:
9291 case PERF_BPF_EVENT_PROG_UNLOAD:
9292 if (atomic_read(&nr_ksymbol_events))
9293 perf_event_bpf_emit_ksymbols(prog, type);
9294 break;
9295 default:
9296 break;
9297 }
9298
9299 if (!atomic_read(&nr_bpf_events))
9300 return;
9301
9302 bpf_event = (struct perf_bpf_event){
9303 .prog = prog,
9304 .event_id = {
9305 .header = {
9306 .type = PERF_RECORD_BPF_EVENT,
9307 .size = sizeof(bpf_event.event_id),
9308 },
9309 .type = type,
9310 .flags = flags,
9311 .id = prog->aux->id,
9312 },
9313 };
9314
9315 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9316
9317 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9318 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9319 }
9320
9321 struct perf_text_poke_event {
9322 const void *old_bytes;
9323 const void *new_bytes;
9324 size_t pad;
9325 u16 old_len;
9326 u16 new_len;
9327
9328 struct {
9329 struct perf_event_header header;
9330
9331 u64 addr;
9332 } event_id;
9333 };
9334
perf_event_text_poke_match(struct perf_event * event)9335 static int perf_event_text_poke_match(struct perf_event *event)
9336 {
9337 return event->attr.text_poke;
9338 }
9339
perf_event_text_poke_output(struct perf_event * event,void * data)9340 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9341 {
9342 struct perf_text_poke_event *text_poke_event = data;
9343 struct perf_output_handle handle;
9344 struct perf_sample_data sample;
9345 u64 padding = 0;
9346 int ret;
9347
9348 if (!perf_event_text_poke_match(event))
9349 return;
9350
9351 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9352
9353 ret = perf_output_begin(&handle, &sample, event,
9354 text_poke_event->event_id.header.size);
9355 if (ret)
9356 return;
9357
9358 perf_output_put(&handle, text_poke_event->event_id);
9359 perf_output_put(&handle, text_poke_event->old_len);
9360 perf_output_put(&handle, text_poke_event->new_len);
9361
9362 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9363 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9364
9365 if (text_poke_event->pad)
9366 __output_copy(&handle, &padding, text_poke_event->pad);
9367
9368 perf_event__output_id_sample(event, &handle, &sample);
9369
9370 perf_output_end(&handle);
9371 }
9372
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)9373 void perf_event_text_poke(const void *addr, const void *old_bytes,
9374 size_t old_len, const void *new_bytes, size_t new_len)
9375 {
9376 struct perf_text_poke_event text_poke_event;
9377 size_t tot, pad;
9378
9379 if (!atomic_read(&nr_text_poke_events))
9380 return;
9381
9382 tot = sizeof(text_poke_event.old_len) + old_len;
9383 tot += sizeof(text_poke_event.new_len) + new_len;
9384 pad = ALIGN(tot, sizeof(u64)) - tot;
9385
9386 text_poke_event = (struct perf_text_poke_event){
9387 .old_bytes = old_bytes,
9388 .new_bytes = new_bytes,
9389 .pad = pad,
9390 .old_len = old_len,
9391 .new_len = new_len,
9392 .event_id = {
9393 .header = {
9394 .type = PERF_RECORD_TEXT_POKE,
9395 .misc = PERF_RECORD_MISC_KERNEL,
9396 .size = sizeof(text_poke_event.event_id) + tot + pad,
9397 },
9398 .addr = (unsigned long)addr,
9399 },
9400 };
9401
9402 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9403 }
9404
perf_event_itrace_started(struct perf_event * event)9405 void perf_event_itrace_started(struct perf_event *event)
9406 {
9407 event->attach_state |= PERF_ATTACH_ITRACE;
9408 }
9409
perf_log_itrace_start(struct perf_event * event)9410 static void perf_log_itrace_start(struct perf_event *event)
9411 {
9412 struct perf_output_handle handle;
9413 struct perf_sample_data sample;
9414 struct perf_aux_event {
9415 struct perf_event_header header;
9416 u32 pid;
9417 u32 tid;
9418 } rec;
9419 int ret;
9420
9421 if (event->parent)
9422 event = event->parent;
9423
9424 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9425 event->attach_state & PERF_ATTACH_ITRACE)
9426 return;
9427
9428 rec.header.type = PERF_RECORD_ITRACE_START;
9429 rec.header.misc = 0;
9430 rec.header.size = sizeof(rec);
9431 rec.pid = perf_event_pid(event, current);
9432 rec.tid = perf_event_tid(event, current);
9433
9434 perf_event_header__init_id(&rec.header, &sample, event);
9435 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9436
9437 if (ret)
9438 return;
9439
9440 perf_output_put(&handle, rec);
9441 perf_event__output_id_sample(event, &handle, &sample);
9442
9443 perf_output_end(&handle);
9444 }
9445
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)9446 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9447 {
9448 struct perf_output_handle handle;
9449 struct perf_sample_data sample;
9450 struct perf_aux_event {
9451 struct perf_event_header header;
9452 u64 hw_id;
9453 } rec;
9454 int ret;
9455
9456 if (event->parent)
9457 event = event->parent;
9458
9459 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9460 rec.header.misc = 0;
9461 rec.header.size = sizeof(rec);
9462 rec.hw_id = hw_id;
9463
9464 perf_event_header__init_id(&rec.header, &sample, event);
9465 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9466
9467 if (ret)
9468 return;
9469
9470 perf_output_put(&handle, rec);
9471 perf_event__output_id_sample(event, &handle, &sample);
9472
9473 perf_output_end(&handle);
9474 }
9475 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9476
9477 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)9478 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9479 {
9480 struct hw_perf_event *hwc = &event->hw;
9481 int ret = 0;
9482 u64 seq;
9483
9484 seq = __this_cpu_read(perf_throttled_seq);
9485 if (seq != hwc->interrupts_seq) {
9486 hwc->interrupts_seq = seq;
9487 hwc->interrupts = 1;
9488 } else {
9489 hwc->interrupts++;
9490 if (unlikely(throttle &&
9491 hwc->interrupts > max_samples_per_tick)) {
9492 __this_cpu_inc(perf_throttled_count);
9493 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9494 hwc->interrupts = MAX_INTERRUPTS;
9495 perf_log_throttle(event, 0);
9496 ret = 1;
9497 }
9498 }
9499
9500 if (event->attr.freq) {
9501 u64 now = perf_clock();
9502 s64 delta = now - hwc->freq_time_stamp;
9503
9504 hwc->freq_time_stamp = now;
9505
9506 if (delta > 0 && delta < 2*TICK_NSEC)
9507 perf_adjust_period(event, delta, hwc->last_period, true);
9508 }
9509
9510 return ret;
9511 }
9512
perf_event_account_interrupt(struct perf_event * event)9513 int perf_event_account_interrupt(struct perf_event *event)
9514 {
9515 return __perf_event_account_interrupt(event, 1);
9516 }
9517
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)9518 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9519 {
9520 /*
9521 * Due to interrupt latency (AKA "skid"), we may enter the
9522 * kernel before taking an overflow, even if the PMU is only
9523 * counting user events.
9524 */
9525 if (event->attr.exclude_kernel && !user_mode(regs))
9526 return false;
9527
9528 return true;
9529 }
9530
9531 /*
9532 * Generic event overflow handling, sampling.
9533 */
9534
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)9535 static int __perf_event_overflow(struct perf_event *event,
9536 int throttle, struct perf_sample_data *data,
9537 struct pt_regs *regs)
9538 {
9539 int events = atomic_read(&event->event_limit);
9540 int ret = 0;
9541
9542 /*
9543 * Non-sampling counters might still use the PMI to fold short
9544 * hardware counters, ignore those.
9545 */
9546 if (unlikely(!is_sampling_event(event)))
9547 return 0;
9548
9549 ret = __perf_event_account_interrupt(event, throttle);
9550
9551 /*
9552 * XXX event_limit might not quite work as expected on inherited
9553 * events
9554 */
9555
9556 event->pending_kill = POLL_IN;
9557 if (events && atomic_dec_and_test(&event->event_limit)) {
9558 ret = 1;
9559 event->pending_kill = POLL_HUP;
9560 perf_event_disable_inatomic(event);
9561 }
9562
9563 if (event->attr.sigtrap) {
9564 /*
9565 * The desired behaviour of sigtrap vs invalid samples is a bit
9566 * tricky; on the one hand, one should not loose the SIGTRAP if
9567 * it is the first event, on the other hand, we should also not
9568 * trigger the WARN or override the data address.
9569 */
9570 bool valid_sample = sample_is_allowed(event, regs);
9571 unsigned int pending_id = 1;
9572
9573 if (regs)
9574 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9575 if (!event->pending_sigtrap) {
9576 event->pending_sigtrap = pending_id;
9577 local_inc(&event->ctx->nr_pending);
9578 } else if (event->attr.exclude_kernel && valid_sample) {
9579 /*
9580 * Should not be able to return to user space without
9581 * consuming pending_sigtrap; with exceptions:
9582 *
9583 * 1. Where !exclude_kernel, events can overflow again
9584 * in the kernel without returning to user space.
9585 *
9586 * 2. Events that can overflow again before the IRQ-
9587 * work without user space progress (e.g. hrtimer).
9588 * To approximate progress (with false negatives),
9589 * check 32-bit hash of the current IP.
9590 */
9591 WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9592 }
9593
9594 event->pending_addr = 0;
9595 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9596 event->pending_addr = data->addr;
9597 irq_work_queue(&event->pending_irq);
9598 }
9599
9600 READ_ONCE(event->overflow_handler)(event, data, regs);
9601
9602 if (*perf_event_fasync(event) && event->pending_kill) {
9603 event->pending_wakeup = 1;
9604 irq_work_queue(&event->pending_irq);
9605 }
9606
9607 return ret;
9608 }
9609
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9610 int perf_event_overflow(struct perf_event *event,
9611 struct perf_sample_data *data,
9612 struct pt_regs *regs)
9613 {
9614 return __perf_event_overflow(event, 1, data, regs);
9615 }
9616
9617 /*
9618 * Generic software event infrastructure
9619 */
9620
9621 struct swevent_htable {
9622 struct swevent_hlist *swevent_hlist;
9623 struct mutex hlist_mutex;
9624 int hlist_refcount;
9625
9626 /* Recursion avoidance in each contexts */
9627 int recursion[PERF_NR_CONTEXTS];
9628 };
9629
9630 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9631
9632 /*
9633 * We directly increment event->count and keep a second value in
9634 * event->hw.period_left to count intervals. This period event
9635 * is kept in the range [-sample_period, 0] so that we can use the
9636 * sign as trigger.
9637 */
9638
perf_swevent_set_period(struct perf_event * event)9639 u64 perf_swevent_set_period(struct perf_event *event)
9640 {
9641 struct hw_perf_event *hwc = &event->hw;
9642 u64 period = hwc->last_period;
9643 u64 nr, offset;
9644 s64 old, val;
9645
9646 hwc->last_period = hwc->sample_period;
9647
9648 old = local64_read(&hwc->period_left);
9649 do {
9650 val = old;
9651 if (val < 0)
9652 return 0;
9653
9654 nr = div64_u64(period + val, period);
9655 offset = nr * period;
9656 val -= offset;
9657 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9658
9659 return nr;
9660 }
9661
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)9662 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9663 struct perf_sample_data *data,
9664 struct pt_regs *regs)
9665 {
9666 struct hw_perf_event *hwc = &event->hw;
9667 int throttle = 0;
9668
9669 if (!overflow)
9670 overflow = perf_swevent_set_period(event);
9671
9672 if (hwc->interrupts == MAX_INTERRUPTS)
9673 return;
9674
9675 for (; overflow; overflow--) {
9676 if (__perf_event_overflow(event, throttle,
9677 data, regs)) {
9678 /*
9679 * We inhibit the overflow from happening when
9680 * hwc->interrupts == MAX_INTERRUPTS.
9681 */
9682 break;
9683 }
9684 throttle = 1;
9685 }
9686 }
9687
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9688 static void perf_swevent_event(struct perf_event *event, u64 nr,
9689 struct perf_sample_data *data,
9690 struct pt_regs *regs)
9691 {
9692 struct hw_perf_event *hwc = &event->hw;
9693
9694 local64_add(nr, &event->count);
9695
9696 if (!regs)
9697 return;
9698
9699 if (!is_sampling_event(event))
9700 return;
9701
9702 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9703 data->period = nr;
9704 return perf_swevent_overflow(event, 1, data, regs);
9705 } else
9706 data->period = event->hw.last_period;
9707
9708 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9709 return perf_swevent_overflow(event, 1, data, regs);
9710
9711 if (local64_add_negative(nr, &hwc->period_left))
9712 return;
9713
9714 perf_swevent_overflow(event, 0, data, regs);
9715 }
9716
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)9717 static int perf_exclude_event(struct perf_event *event,
9718 struct pt_regs *regs)
9719 {
9720 if (event->hw.state & PERF_HES_STOPPED)
9721 return 1;
9722
9723 if (regs) {
9724 if (event->attr.exclude_user && user_mode(regs))
9725 return 1;
9726
9727 if (event->attr.exclude_kernel && !user_mode(regs))
9728 return 1;
9729 }
9730
9731 return 0;
9732 }
9733
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)9734 static int perf_swevent_match(struct perf_event *event,
9735 enum perf_type_id type,
9736 u32 event_id,
9737 struct perf_sample_data *data,
9738 struct pt_regs *regs)
9739 {
9740 if (event->attr.type != type)
9741 return 0;
9742
9743 if (event->attr.config != event_id)
9744 return 0;
9745
9746 if (perf_exclude_event(event, regs))
9747 return 0;
9748
9749 return 1;
9750 }
9751
swevent_hash(u64 type,u32 event_id)9752 static inline u64 swevent_hash(u64 type, u32 event_id)
9753 {
9754 u64 val = event_id | (type << 32);
9755
9756 return hash_64(val, SWEVENT_HLIST_BITS);
9757 }
9758
9759 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)9760 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9761 {
9762 u64 hash = swevent_hash(type, event_id);
9763
9764 return &hlist->heads[hash];
9765 }
9766
9767 /* For the read side: events when they trigger */
9768 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)9769 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9770 {
9771 struct swevent_hlist *hlist;
9772
9773 hlist = rcu_dereference(swhash->swevent_hlist);
9774 if (!hlist)
9775 return NULL;
9776
9777 return __find_swevent_head(hlist, type, event_id);
9778 }
9779
9780 /* For the event head insertion and removal in the hlist */
9781 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)9782 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9783 {
9784 struct swevent_hlist *hlist;
9785 u32 event_id = event->attr.config;
9786 u64 type = event->attr.type;
9787
9788 /*
9789 * Event scheduling is always serialized against hlist allocation
9790 * and release. Which makes the protected version suitable here.
9791 * The context lock guarantees that.
9792 */
9793 hlist = rcu_dereference_protected(swhash->swevent_hlist,
9794 lockdep_is_held(&event->ctx->lock));
9795 if (!hlist)
9796 return NULL;
9797
9798 return __find_swevent_head(hlist, type, event_id);
9799 }
9800
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9801 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9802 u64 nr,
9803 struct perf_sample_data *data,
9804 struct pt_regs *regs)
9805 {
9806 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9807 struct perf_event *event;
9808 struct hlist_head *head;
9809
9810 rcu_read_lock();
9811 head = find_swevent_head_rcu(swhash, type, event_id);
9812 if (!head)
9813 goto end;
9814
9815 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9816 if (perf_swevent_match(event, type, event_id, data, regs))
9817 perf_swevent_event(event, nr, data, regs);
9818 }
9819 end:
9820 rcu_read_unlock();
9821 }
9822
9823 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9824
perf_swevent_get_recursion_context(void)9825 int perf_swevent_get_recursion_context(void)
9826 {
9827 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9828
9829 return get_recursion_context(swhash->recursion);
9830 }
9831 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9832
perf_swevent_put_recursion_context(int rctx)9833 void perf_swevent_put_recursion_context(int rctx)
9834 {
9835 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9836
9837 put_recursion_context(swhash->recursion, rctx);
9838 }
9839
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9840 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9841 {
9842 struct perf_sample_data data;
9843
9844 if (WARN_ON_ONCE(!regs))
9845 return;
9846
9847 perf_sample_data_init(&data, addr, 0);
9848 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9849 }
9850
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9851 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9852 {
9853 int rctx;
9854
9855 preempt_disable_notrace();
9856 rctx = perf_swevent_get_recursion_context();
9857 if (unlikely(rctx < 0))
9858 goto fail;
9859
9860 ___perf_sw_event(event_id, nr, regs, addr);
9861
9862 perf_swevent_put_recursion_context(rctx);
9863 fail:
9864 preempt_enable_notrace();
9865 }
9866
perf_swevent_read(struct perf_event * event)9867 static void perf_swevent_read(struct perf_event *event)
9868 {
9869 }
9870
perf_swevent_add(struct perf_event * event,int flags)9871 static int perf_swevent_add(struct perf_event *event, int flags)
9872 {
9873 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9874 struct hw_perf_event *hwc = &event->hw;
9875 struct hlist_head *head;
9876
9877 if (is_sampling_event(event)) {
9878 hwc->last_period = hwc->sample_period;
9879 perf_swevent_set_period(event);
9880 }
9881
9882 hwc->state = !(flags & PERF_EF_START);
9883
9884 head = find_swevent_head(swhash, event);
9885 if (WARN_ON_ONCE(!head))
9886 return -EINVAL;
9887
9888 hlist_add_head_rcu(&event->hlist_entry, head);
9889 perf_event_update_userpage(event);
9890
9891 return 0;
9892 }
9893
perf_swevent_del(struct perf_event * event,int flags)9894 static void perf_swevent_del(struct perf_event *event, int flags)
9895 {
9896 hlist_del_rcu(&event->hlist_entry);
9897 }
9898
perf_swevent_start(struct perf_event * event,int flags)9899 static void perf_swevent_start(struct perf_event *event, int flags)
9900 {
9901 event->hw.state = 0;
9902 }
9903
perf_swevent_stop(struct perf_event * event,int flags)9904 static void perf_swevent_stop(struct perf_event *event, int flags)
9905 {
9906 event->hw.state = PERF_HES_STOPPED;
9907 }
9908
9909 /* Deref the hlist from the update side */
9910 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)9911 swevent_hlist_deref(struct swevent_htable *swhash)
9912 {
9913 return rcu_dereference_protected(swhash->swevent_hlist,
9914 lockdep_is_held(&swhash->hlist_mutex));
9915 }
9916
swevent_hlist_release(struct swevent_htable * swhash)9917 static void swevent_hlist_release(struct swevent_htable *swhash)
9918 {
9919 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9920
9921 if (!hlist)
9922 return;
9923
9924 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9925 kfree_rcu(hlist, rcu_head);
9926 }
9927
swevent_hlist_put_cpu(int cpu)9928 static void swevent_hlist_put_cpu(int cpu)
9929 {
9930 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9931
9932 mutex_lock(&swhash->hlist_mutex);
9933
9934 if (!--swhash->hlist_refcount)
9935 swevent_hlist_release(swhash);
9936
9937 mutex_unlock(&swhash->hlist_mutex);
9938 }
9939
swevent_hlist_put(void)9940 static void swevent_hlist_put(void)
9941 {
9942 int cpu;
9943
9944 for_each_possible_cpu(cpu)
9945 swevent_hlist_put_cpu(cpu);
9946 }
9947
swevent_hlist_get_cpu(int cpu)9948 static int swevent_hlist_get_cpu(int cpu)
9949 {
9950 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9951 int err = 0;
9952
9953 mutex_lock(&swhash->hlist_mutex);
9954 if (!swevent_hlist_deref(swhash) &&
9955 cpumask_test_cpu(cpu, perf_online_mask)) {
9956 struct swevent_hlist *hlist;
9957
9958 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9959 if (!hlist) {
9960 err = -ENOMEM;
9961 goto exit;
9962 }
9963 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9964 }
9965 swhash->hlist_refcount++;
9966 exit:
9967 mutex_unlock(&swhash->hlist_mutex);
9968
9969 return err;
9970 }
9971
swevent_hlist_get(void)9972 static int swevent_hlist_get(void)
9973 {
9974 int err, cpu, failed_cpu;
9975
9976 mutex_lock(&pmus_lock);
9977 for_each_possible_cpu(cpu) {
9978 err = swevent_hlist_get_cpu(cpu);
9979 if (err) {
9980 failed_cpu = cpu;
9981 goto fail;
9982 }
9983 }
9984 mutex_unlock(&pmus_lock);
9985 return 0;
9986 fail:
9987 for_each_possible_cpu(cpu) {
9988 if (cpu == failed_cpu)
9989 break;
9990 swevent_hlist_put_cpu(cpu);
9991 }
9992 mutex_unlock(&pmus_lock);
9993 return err;
9994 }
9995
9996 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9997
sw_perf_event_destroy(struct perf_event * event)9998 static void sw_perf_event_destroy(struct perf_event *event)
9999 {
10000 u64 event_id = event->attr.config;
10001
10002 WARN_ON(event->parent);
10003
10004 static_key_slow_dec(&perf_swevent_enabled[event_id]);
10005 swevent_hlist_put();
10006 }
10007
10008 static struct pmu perf_cpu_clock; /* fwd declaration */
10009 static struct pmu perf_task_clock;
10010
perf_swevent_init(struct perf_event * event)10011 static int perf_swevent_init(struct perf_event *event)
10012 {
10013 u64 event_id = event->attr.config;
10014
10015 if (event->attr.type != PERF_TYPE_SOFTWARE)
10016 return -ENOENT;
10017
10018 /*
10019 * no branch sampling for software events
10020 */
10021 if (has_branch_stack(event))
10022 return -EOPNOTSUPP;
10023
10024 switch (event_id) {
10025 case PERF_COUNT_SW_CPU_CLOCK:
10026 event->attr.type = perf_cpu_clock.type;
10027 return -ENOENT;
10028 case PERF_COUNT_SW_TASK_CLOCK:
10029 event->attr.type = perf_task_clock.type;
10030 return -ENOENT;
10031
10032 default:
10033 break;
10034 }
10035
10036 if (event_id >= PERF_COUNT_SW_MAX)
10037 return -ENOENT;
10038
10039 if (!event->parent) {
10040 int err;
10041
10042 err = swevent_hlist_get();
10043 if (err)
10044 return err;
10045
10046 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10047 event->destroy = sw_perf_event_destroy;
10048 }
10049
10050 return 0;
10051 }
10052
10053 static struct pmu perf_swevent = {
10054 .task_ctx_nr = perf_sw_context,
10055
10056 .capabilities = PERF_PMU_CAP_NO_NMI,
10057
10058 .event_init = perf_swevent_init,
10059 .add = perf_swevent_add,
10060 .del = perf_swevent_del,
10061 .start = perf_swevent_start,
10062 .stop = perf_swevent_stop,
10063 .read = perf_swevent_read,
10064 };
10065
10066 #ifdef CONFIG_EVENT_TRACING
10067
tp_perf_event_destroy(struct perf_event * event)10068 static void tp_perf_event_destroy(struct perf_event *event)
10069 {
10070 perf_trace_destroy(event);
10071 }
10072
perf_tp_event_init(struct perf_event * event)10073 static int perf_tp_event_init(struct perf_event *event)
10074 {
10075 int err;
10076
10077 if (event->attr.type != PERF_TYPE_TRACEPOINT)
10078 return -ENOENT;
10079
10080 /*
10081 * no branch sampling for tracepoint events
10082 */
10083 if (has_branch_stack(event))
10084 return -EOPNOTSUPP;
10085
10086 err = perf_trace_init(event);
10087 if (err)
10088 return err;
10089
10090 event->destroy = tp_perf_event_destroy;
10091
10092 return 0;
10093 }
10094
10095 static struct pmu perf_tracepoint = {
10096 .task_ctx_nr = perf_sw_context,
10097
10098 .event_init = perf_tp_event_init,
10099 .add = perf_trace_add,
10100 .del = perf_trace_del,
10101 .start = perf_swevent_start,
10102 .stop = perf_swevent_stop,
10103 .read = perf_swevent_read,
10104 };
10105
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)10106 static int perf_tp_filter_match(struct perf_event *event,
10107 struct perf_sample_data *data)
10108 {
10109 void *record = data->raw->frag.data;
10110
10111 /* only top level events have filters set */
10112 if (event->parent)
10113 event = event->parent;
10114
10115 if (likely(!event->filter) || filter_match_preds(event->filter, record))
10116 return 1;
10117 return 0;
10118 }
10119
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10120 static int perf_tp_event_match(struct perf_event *event,
10121 struct perf_sample_data *data,
10122 struct pt_regs *regs)
10123 {
10124 if (event->hw.state & PERF_HES_STOPPED)
10125 return 0;
10126 /*
10127 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10128 */
10129 if (event->attr.exclude_kernel && !user_mode(regs))
10130 return 0;
10131
10132 if (!perf_tp_filter_match(event, data))
10133 return 0;
10134
10135 return 1;
10136 }
10137
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10138 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10139 struct trace_event_call *call, u64 count,
10140 struct pt_regs *regs, struct hlist_head *head,
10141 struct task_struct *task)
10142 {
10143 if (bpf_prog_array_valid(call)) {
10144 *(struct pt_regs **)raw_data = regs;
10145 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10146 perf_swevent_put_recursion_context(rctx);
10147 return;
10148 }
10149 }
10150 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10151 rctx, task);
10152 }
10153 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10154
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_event * event)10155 static void __perf_tp_event_target_task(u64 count, void *record,
10156 struct pt_regs *regs,
10157 struct perf_sample_data *data,
10158 struct perf_event *event)
10159 {
10160 struct trace_entry *entry = record;
10161
10162 if (event->attr.config != entry->type)
10163 return;
10164 /* Cannot deliver synchronous signal to other task. */
10165 if (event->attr.sigtrap)
10166 return;
10167 if (perf_tp_event_match(event, data, regs))
10168 perf_swevent_event(event, count, data, regs);
10169 }
10170
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_event_context * ctx)10171 static void perf_tp_event_target_task(u64 count, void *record,
10172 struct pt_regs *regs,
10173 struct perf_sample_data *data,
10174 struct perf_event_context *ctx)
10175 {
10176 unsigned int cpu = smp_processor_id();
10177 struct pmu *pmu = &perf_tracepoint;
10178 struct perf_event *event, *sibling;
10179
10180 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10181 __perf_tp_event_target_task(count, record, regs, data, event);
10182 for_each_sibling_event(sibling, event)
10183 __perf_tp_event_target_task(count, record, regs, data, sibling);
10184 }
10185
10186 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10187 __perf_tp_event_target_task(count, record, regs, data, event);
10188 for_each_sibling_event(sibling, event)
10189 __perf_tp_event_target_task(count, record, regs, data, sibling);
10190 }
10191 }
10192
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)10193 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10194 struct pt_regs *regs, struct hlist_head *head, int rctx,
10195 struct task_struct *task)
10196 {
10197 struct perf_sample_data data;
10198 struct perf_event *event;
10199
10200 struct perf_raw_record raw = {
10201 .frag = {
10202 .size = entry_size,
10203 .data = record,
10204 },
10205 };
10206
10207 perf_sample_data_init(&data, 0, 0);
10208 perf_sample_save_raw_data(&data, &raw);
10209
10210 perf_trace_buf_update(record, event_type);
10211
10212 hlist_for_each_entry_rcu(event, head, hlist_entry) {
10213 if (perf_tp_event_match(event, &data, regs)) {
10214 perf_swevent_event(event, count, &data, regs);
10215
10216 /*
10217 * Here use the same on-stack perf_sample_data,
10218 * some members in data are event-specific and
10219 * need to be re-computed for different sweveents.
10220 * Re-initialize data->sample_flags safely to avoid
10221 * the problem that next event skips preparing data
10222 * because data->sample_flags is set.
10223 */
10224 perf_sample_data_init(&data, 0, 0);
10225 perf_sample_save_raw_data(&data, &raw);
10226 }
10227 }
10228
10229 /*
10230 * If we got specified a target task, also iterate its context and
10231 * deliver this event there too.
10232 */
10233 if (task && task != current) {
10234 struct perf_event_context *ctx;
10235
10236 rcu_read_lock();
10237 ctx = rcu_dereference(task->perf_event_ctxp);
10238 if (!ctx)
10239 goto unlock;
10240
10241 raw_spin_lock(&ctx->lock);
10242 perf_tp_event_target_task(count, record, regs, &data, ctx);
10243 raw_spin_unlock(&ctx->lock);
10244 unlock:
10245 rcu_read_unlock();
10246 }
10247
10248 perf_swevent_put_recursion_context(rctx);
10249 }
10250 EXPORT_SYMBOL_GPL(perf_tp_event);
10251
10252 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10253 /*
10254 * Flags in config, used by dynamic PMU kprobe and uprobe
10255 * The flags should match following PMU_FORMAT_ATTR().
10256 *
10257 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10258 * if not set, create kprobe/uprobe
10259 *
10260 * The following values specify a reference counter (or semaphore in the
10261 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10262 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10263 *
10264 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
10265 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
10266 */
10267 enum perf_probe_config {
10268 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
10269 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10270 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10271 };
10272
10273 PMU_FORMAT_ATTR(retprobe, "config:0");
10274 #endif
10275
10276 #ifdef CONFIG_KPROBE_EVENTS
10277 static struct attribute *kprobe_attrs[] = {
10278 &format_attr_retprobe.attr,
10279 NULL,
10280 };
10281
10282 static struct attribute_group kprobe_format_group = {
10283 .name = "format",
10284 .attrs = kprobe_attrs,
10285 };
10286
10287 static const struct attribute_group *kprobe_attr_groups[] = {
10288 &kprobe_format_group,
10289 NULL,
10290 };
10291
10292 static int perf_kprobe_event_init(struct perf_event *event);
10293 static struct pmu perf_kprobe = {
10294 .task_ctx_nr = perf_sw_context,
10295 .event_init = perf_kprobe_event_init,
10296 .add = perf_trace_add,
10297 .del = perf_trace_del,
10298 .start = perf_swevent_start,
10299 .stop = perf_swevent_stop,
10300 .read = perf_swevent_read,
10301 .attr_groups = kprobe_attr_groups,
10302 };
10303
perf_kprobe_event_init(struct perf_event * event)10304 static int perf_kprobe_event_init(struct perf_event *event)
10305 {
10306 int err;
10307 bool is_retprobe;
10308
10309 if (event->attr.type != perf_kprobe.type)
10310 return -ENOENT;
10311
10312 if (!perfmon_capable())
10313 return -EACCES;
10314
10315 /*
10316 * no branch sampling for probe events
10317 */
10318 if (has_branch_stack(event))
10319 return -EOPNOTSUPP;
10320
10321 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10322 err = perf_kprobe_init(event, is_retprobe);
10323 if (err)
10324 return err;
10325
10326 event->destroy = perf_kprobe_destroy;
10327
10328 return 0;
10329 }
10330 #endif /* CONFIG_KPROBE_EVENTS */
10331
10332 #ifdef CONFIG_UPROBE_EVENTS
10333 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10334
10335 static struct attribute *uprobe_attrs[] = {
10336 &format_attr_retprobe.attr,
10337 &format_attr_ref_ctr_offset.attr,
10338 NULL,
10339 };
10340
10341 static struct attribute_group uprobe_format_group = {
10342 .name = "format",
10343 .attrs = uprobe_attrs,
10344 };
10345
10346 static const struct attribute_group *uprobe_attr_groups[] = {
10347 &uprobe_format_group,
10348 NULL,
10349 };
10350
10351 static int perf_uprobe_event_init(struct perf_event *event);
10352 static struct pmu perf_uprobe = {
10353 .task_ctx_nr = perf_sw_context,
10354 .event_init = perf_uprobe_event_init,
10355 .add = perf_trace_add,
10356 .del = perf_trace_del,
10357 .start = perf_swevent_start,
10358 .stop = perf_swevent_stop,
10359 .read = perf_swevent_read,
10360 .attr_groups = uprobe_attr_groups,
10361 };
10362
perf_uprobe_event_init(struct perf_event * event)10363 static int perf_uprobe_event_init(struct perf_event *event)
10364 {
10365 int err;
10366 unsigned long ref_ctr_offset;
10367 bool is_retprobe;
10368
10369 if (event->attr.type != perf_uprobe.type)
10370 return -ENOENT;
10371
10372 if (!perfmon_capable())
10373 return -EACCES;
10374
10375 /*
10376 * no branch sampling for probe events
10377 */
10378 if (has_branch_stack(event))
10379 return -EOPNOTSUPP;
10380
10381 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10382 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10383 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10384 if (err)
10385 return err;
10386
10387 event->destroy = perf_uprobe_destroy;
10388
10389 return 0;
10390 }
10391 #endif /* CONFIG_UPROBE_EVENTS */
10392
perf_tp_register(void)10393 static inline void perf_tp_register(void)
10394 {
10395 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10396 #ifdef CONFIG_KPROBE_EVENTS
10397 perf_pmu_register(&perf_kprobe, "kprobe", -1);
10398 #endif
10399 #ifdef CONFIG_UPROBE_EVENTS
10400 perf_pmu_register(&perf_uprobe, "uprobe", -1);
10401 #endif
10402 }
10403
perf_event_free_filter(struct perf_event * event)10404 static void perf_event_free_filter(struct perf_event *event)
10405 {
10406 ftrace_profile_free_filter(event);
10407 }
10408
10409 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10410 static void bpf_overflow_handler(struct perf_event *event,
10411 struct perf_sample_data *data,
10412 struct pt_regs *regs)
10413 {
10414 struct bpf_perf_event_data_kern ctx = {
10415 .data = data,
10416 .event = event,
10417 };
10418 struct bpf_prog *prog;
10419 int ret = 0;
10420
10421 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10422 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10423 goto out;
10424 rcu_read_lock();
10425 prog = READ_ONCE(event->prog);
10426 if (prog) {
10427 perf_prepare_sample(data, event, regs);
10428 ret = bpf_prog_run(prog, &ctx);
10429 }
10430 rcu_read_unlock();
10431 out:
10432 __this_cpu_dec(bpf_prog_active);
10433 if (!ret)
10434 return;
10435
10436 event->orig_overflow_handler(event, data, regs);
10437 }
10438
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10439 static int perf_event_set_bpf_handler(struct perf_event *event,
10440 struct bpf_prog *prog,
10441 u64 bpf_cookie)
10442 {
10443 if (event->overflow_handler_context)
10444 /* hw breakpoint or kernel counter */
10445 return -EINVAL;
10446
10447 if (event->prog)
10448 return -EEXIST;
10449
10450 if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10451 return -EINVAL;
10452
10453 if (event->attr.precise_ip &&
10454 prog->call_get_stack &&
10455 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10456 event->attr.exclude_callchain_kernel ||
10457 event->attr.exclude_callchain_user)) {
10458 /*
10459 * On perf_event with precise_ip, calling bpf_get_stack()
10460 * may trigger unwinder warnings and occasional crashes.
10461 * bpf_get_[stack|stackid] works around this issue by using
10462 * callchain attached to perf_sample_data. If the
10463 * perf_event does not full (kernel and user) callchain
10464 * attached to perf_sample_data, do not allow attaching BPF
10465 * program that calls bpf_get_[stack|stackid].
10466 */
10467 return -EPROTO;
10468 }
10469
10470 event->prog = prog;
10471 event->bpf_cookie = bpf_cookie;
10472 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10473 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10474 return 0;
10475 }
10476
perf_event_free_bpf_handler(struct perf_event * event)10477 static void perf_event_free_bpf_handler(struct perf_event *event)
10478 {
10479 struct bpf_prog *prog = event->prog;
10480
10481 if (!prog)
10482 return;
10483
10484 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10485 event->prog = NULL;
10486 bpf_prog_put(prog);
10487 }
10488 #else
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10489 static int perf_event_set_bpf_handler(struct perf_event *event,
10490 struct bpf_prog *prog,
10491 u64 bpf_cookie)
10492 {
10493 return -EOPNOTSUPP;
10494 }
perf_event_free_bpf_handler(struct perf_event * event)10495 static void perf_event_free_bpf_handler(struct perf_event *event)
10496 {
10497 }
10498 #endif
10499
10500 /*
10501 * returns true if the event is a tracepoint, or a kprobe/upprobe created
10502 * with perf_event_open()
10503 */
perf_event_is_tracing(struct perf_event * event)10504 static inline bool perf_event_is_tracing(struct perf_event *event)
10505 {
10506 if (event->pmu == &perf_tracepoint)
10507 return true;
10508 #ifdef CONFIG_KPROBE_EVENTS
10509 if (event->pmu == &perf_kprobe)
10510 return true;
10511 #endif
10512 #ifdef CONFIG_UPROBE_EVENTS
10513 if (event->pmu == &perf_uprobe)
10514 return true;
10515 #endif
10516 return false;
10517 }
10518
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10519 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10520 u64 bpf_cookie)
10521 {
10522 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10523
10524 if (!perf_event_is_tracing(event))
10525 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10526
10527 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10528 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10529 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10530 is_syscall_tp = is_syscall_trace_event(event->tp_event);
10531 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10532 /* bpf programs can only be attached to u/kprobe or tracepoint */
10533 return -EINVAL;
10534
10535 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10536 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10537 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10538 return -EINVAL;
10539
10540 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10541 /* only uprobe programs are allowed to be sleepable */
10542 return -EINVAL;
10543
10544 /* Kprobe override only works for kprobes, not uprobes. */
10545 if (prog->kprobe_override && !is_kprobe)
10546 return -EINVAL;
10547
10548 if (is_tracepoint || is_syscall_tp) {
10549 int off = trace_event_get_offsets(event->tp_event);
10550
10551 if (prog->aux->max_ctx_offset > off)
10552 return -EACCES;
10553 }
10554
10555 return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10556 }
10557
perf_event_free_bpf_prog(struct perf_event * event)10558 void perf_event_free_bpf_prog(struct perf_event *event)
10559 {
10560 if (!perf_event_is_tracing(event)) {
10561 perf_event_free_bpf_handler(event);
10562 return;
10563 }
10564 perf_event_detach_bpf_prog(event);
10565 }
10566
10567 #else
10568
perf_tp_register(void)10569 static inline void perf_tp_register(void)
10570 {
10571 }
10572
perf_event_free_filter(struct perf_event * event)10573 static void perf_event_free_filter(struct perf_event *event)
10574 {
10575 }
10576
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10577 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10578 u64 bpf_cookie)
10579 {
10580 return -ENOENT;
10581 }
10582
perf_event_free_bpf_prog(struct perf_event * event)10583 void perf_event_free_bpf_prog(struct perf_event *event)
10584 {
10585 }
10586 #endif /* CONFIG_EVENT_TRACING */
10587
10588 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)10589 void perf_bp_event(struct perf_event *bp, void *data)
10590 {
10591 struct perf_sample_data sample;
10592 struct pt_regs *regs = data;
10593
10594 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10595
10596 if (!bp->hw.state && !perf_exclude_event(bp, regs))
10597 perf_swevent_event(bp, 1, &sample, regs);
10598 }
10599 #endif
10600
10601 /*
10602 * Allocate a new address filter
10603 */
10604 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)10605 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10606 {
10607 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10608 struct perf_addr_filter *filter;
10609
10610 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10611 if (!filter)
10612 return NULL;
10613
10614 INIT_LIST_HEAD(&filter->entry);
10615 list_add_tail(&filter->entry, filters);
10616
10617 return filter;
10618 }
10619
free_filters_list(struct list_head * filters)10620 static void free_filters_list(struct list_head *filters)
10621 {
10622 struct perf_addr_filter *filter, *iter;
10623
10624 list_for_each_entry_safe(filter, iter, filters, entry) {
10625 path_put(&filter->path);
10626 list_del(&filter->entry);
10627 kfree(filter);
10628 }
10629 }
10630
10631 /*
10632 * Free existing address filters and optionally install new ones
10633 */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)10634 static void perf_addr_filters_splice(struct perf_event *event,
10635 struct list_head *head)
10636 {
10637 unsigned long flags;
10638 LIST_HEAD(list);
10639
10640 if (!has_addr_filter(event))
10641 return;
10642
10643 /* don't bother with children, they don't have their own filters */
10644 if (event->parent)
10645 return;
10646
10647 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10648
10649 list_splice_init(&event->addr_filters.list, &list);
10650 if (head)
10651 list_splice(head, &event->addr_filters.list);
10652
10653 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10654
10655 free_filters_list(&list);
10656 }
10657
10658 /*
10659 * Scan through mm's vmas and see if one of them matches the
10660 * @filter; if so, adjust filter's address range.
10661 * Called with mm::mmap_lock down for reading.
10662 */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10663 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10664 struct mm_struct *mm,
10665 struct perf_addr_filter_range *fr)
10666 {
10667 struct vm_area_struct *vma;
10668 VMA_ITERATOR(vmi, mm, 0);
10669
10670 for_each_vma(vmi, vma) {
10671 if (!vma->vm_file)
10672 continue;
10673
10674 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10675 return;
10676 }
10677 }
10678
10679 /*
10680 * Update event's address range filters based on the
10681 * task's existing mappings, if any.
10682 */
perf_event_addr_filters_apply(struct perf_event * event)10683 static void perf_event_addr_filters_apply(struct perf_event *event)
10684 {
10685 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10686 struct task_struct *task = READ_ONCE(event->ctx->task);
10687 struct perf_addr_filter *filter;
10688 struct mm_struct *mm = NULL;
10689 unsigned int count = 0;
10690 unsigned long flags;
10691
10692 /*
10693 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10694 * will stop on the parent's child_mutex that our caller is also holding
10695 */
10696 if (task == TASK_TOMBSTONE)
10697 return;
10698
10699 if (ifh->nr_file_filters) {
10700 mm = get_task_mm(task);
10701 if (!mm)
10702 goto restart;
10703
10704 mmap_read_lock(mm);
10705 }
10706
10707 raw_spin_lock_irqsave(&ifh->lock, flags);
10708 list_for_each_entry(filter, &ifh->list, entry) {
10709 if (filter->path.dentry) {
10710 /*
10711 * Adjust base offset if the filter is associated to a
10712 * binary that needs to be mapped:
10713 */
10714 event->addr_filter_ranges[count].start = 0;
10715 event->addr_filter_ranges[count].size = 0;
10716
10717 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10718 } else {
10719 event->addr_filter_ranges[count].start = filter->offset;
10720 event->addr_filter_ranges[count].size = filter->size;
10721 }
10722
10723 count++;
10724 }
10725
10726 event->addr_filters_gen++;
10727 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10728
10729 if (ifh->nr_file_filters) {
10730 mmap_read_unlock(mm);
10731
10732 mmput(mm);
10733 }
10734
10735 restart:
10736 perf_event_stop(event, 1);
10737 }
10738
10739 /*
10740 * Address range filtering: limiting the data to certain
10741 * instruction address ranges. Filters are ioctl()ed to us from
10742 * userspace as ascii strings.
10743 *
10744 * Filter string format:
10745 *
10746 * ACTION RANGE_SPEC
10747 * where ACTION is one of the
10748 * * "filter": limit the trace to this region
10749 * * "start": start tracing from this address
10750 * * "stop": stop tracing at this address/region;
10751 * RANGE_SPEC is
10752 * * for kernel addresses: <start address>[/<size>]
10753 * * for object files: <start address>[/<size>]@</path/to/object/file>
10754 *
10755 * if <size> is not specified or is zero, the range is treated as a single
10756 * address; not valid for ACTION=="filter".
10757 */
10758 enum {
10759 IF_ACT_NONE = -1,
10760 IF_ACT_FILTER,
10761 IF_ACT_START,
10762 IF_ACT_STOP,
10763 IF_SRC_FILE,
10764 IF_SRC_KERNEL,
10765 IF_SRC_FILEADDR,
10766 IF_SRC_KERNELADDR,
10767 };
10768
10769 enum {
10770 IF_STATE_ACTION = 0,
10771 IF_STATE_SOURCE,
10772 IF_STATE_END,
10773 };
10774
10775 static const match_table_t if_tokens = {
10776 { IF_ACT_FILTER, "filter" },
10777 { IF_ACT_START, "start" },
10778 { IF_ACT_STOP, "stop" },
10779 { IF_SRC_FILE, "%u/%u@%s" },
10780 { IF_SRC_KERNEL, "%u/%u" },
10781 { IF_SRC_FILEADDR, "%u@%s" },
10782 { IF_SRC_KERNELADDR, "%u" },
10783 { IF_ACT_NONE, NULL },
10784 };
10785
10786 /*
10787 * Address filter string parser
10788 */
10789 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)10790 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10791 struct list_head *filters)
10792 {
10793 struct perf_addr_filter *filter = NULL;
10794 char *start, *orig, *filename = NULL;
10795 substring_t args[MAX_OPT_ARGS];
10796 int state = IF_STATE_ACTION, token;
10797 unsigned int kernel = 0;
10798 int ret = -EINVAL;
10799
10800 orig = fstr = kstrdup(fstr, GFP_KERNEL);
10801 if (!fstr)
10802 return -ENOMEM;
10803
10804 while ((start = strsep(&fstr, " ,\n")) != NULL) {
10805 static const enum perf_addr_filter_action_t actions[] = {
10806 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10807 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10808 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10809 };
10810 ret = -EINVAL;
10811
10812 if (!*start)
10813 continue;
10814
10815 /* filter definition begins */
10816 if (state == IF_STATE_ACTION) {
10817 filter = perf_addr_filter_new(event, filters);
10818 if (!filter)
10819 goto fail;
10820 }
10821
10822 token = match_token(start, if_tokens, args);
10823 switch (token) {
10824 case IF_ACT_FILTER:
10825 case IF_ACT_START:
10826 case IF_ACT_STOP:
10827 if (state != IF_STATE_ACTION)
10828 goto fail;
10829
10830 filter->action = actions[token];
10831 state = IF_STATE_SOURCE;
10832 break;
10833
10834 case IF_SRC_KERNELADDR:
10835 case IF_SRC_KERNEL:
10836 kernel = 1;
10837 fallthrough;
10838
10839 case IF_SRC_FILEADDR:
10840 case IF_SRC_FILE:
10841 if (state != IF_STATE_SOURCE)
10842 goto fail;
10843
10844 *args[0].to = 0;
10845 ret = kstrtoul(args[0].from, 0, &filter->offset);
10846 if (ret)
10847 goto fail;
10848
10849 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10850 *args[1].to = 0;
10851 ret = kstrtoul(args[1].from, 0, &filter->size);
10852 if (ret)
10853 goto fail;
10854 }
10855
10856 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10857 int fpos = token == IF_SRC_FILE ? 2 : 1;
10858
10859 kfree(filename);
10860 filename = match_strdup(&args[fpos]);
10861 if (!filename) {
10862 ret = -ENOMEM;
10863 goto fail;
10864 }
10865 }
10866
10867 state = IF_STATE_END;
10868 break;
10869
10870 default:
10871 goto fail;
10872 }
10873
10874 /*
10875 * Filter definition is fully parsed, validate and install it.
10876 * Make sure that it doesn't contradict itself or the event's
10877 * attribute.
10878 */
10879 if (state == IF_STATE_END) {
10880 ret = -EINVAL;
10881
10882 /*
10883 * ACTION "filter" must have a non-zero length region
10884 * specified.
10885 */
10886 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10887 !filter->size)
10888 goto fail;
10889
10890 if (!kernel) {
10891 if (!filename)
10892 goto fail;
10893
10894 /*
10895 * For now, we only support file-based filters
10896 * in per-task events; doing so for CPU-wide
10897 * events requires additional context switching
10898 * trickery, since same object code will be
10899 * mapped at different virtual addresses in
10900 * different processes.
10901 */
10902 ret = -EOPNOTSUPP;
10903 if (!event->ctx->task)
10904 goto fail;
10905
10906 /* look up the path and grab its inode */
10907 ret = kern_path(filename, LOOKUP_FOLLOW,
10908 &filter->path);
10909 if (ret)
10910 goto fail;
10911
10912 ret = -EINVAL;
10913 if (!filter->path.dentry ||
10914 !S_ISREG(d_inode(filter->path.dentry)
10915 ->i_mode))
10916 goto fail;
10917
10918 event->addr_filters.nr_file_filters++;
10919 }
10920
10921 /* ready to consume more filters */
10922 kfree(filename);
10923 filename = NULL;
10924 state = IF_STATE_ACTION;
10925 filter = NULL;
10926 kernel = 0;
10927 }
10928 }
10929
10930 if (state != IF_STATE_ACTION)
10931 goto fail;
10932
10933 kfree(filename);
10934 kfree(orig);
10935
10936 return 0;
10937
10938 fail:
10939 kfree(filename);
10940 free_filters_list(filters);
10941 kfree(orig);
10942
10943 return ret;
10944 }
10945
10946 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)10947 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10948 {
10949 LIST_HEAD(filters);
10950 int ret;
10951
10952 /*
10953 * Since this is called in perf_ioctl() path, we're already holding
10954 * ctx::mutex.
10955 */
10956 lockdep_assert_held(&event->ctx->mutex);
10957
10958 if (WARN_ON_ONCE(event->parent))
10959 return -EINVAL;
10960
10961 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10962 if (ret)
10963 goto fail_clear_files;
10964
10965 ret = event->pmu->addr_filters_validate(&filters);
10966 if (ret)
10967 goto fail_free_filters;
10968
10969 /* remove existing filters, if any */
10970 perf_addr_filters_splice(event, &filters);
10971
10972 /* install new filters */
10973 perf_event_for_each_child(event, perf_event_addr_filters_apply);
10974
10975 return ret;
10976
10977 fail_free_filters:
10978 free_filters_list(&filters);
10979
10980 fail_clear_files:
10981 event->addr_filters.nr_file_filters = 0;
10982
10983 return ret;
10984 }
10985
perf_event_set_filter(struct perf_event * event,void __user * arg)10986 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10987 {
10988 int ret = -EINVAL;
10989 char *filter_str;
10990
10991 filter_str = strndup_user(arg, PAGE_SIZE);
10992 if (IS_ERR(filter_str))
10993 return PTR_ERR(filter_str);
10994
10995 #ifdef CONFIG_EVENT_TRACING
10996 if (perf_event_is_tracing(event)) {
10997 struct perf_event_context *ctx = event->ctx;
10998
10999 /*
11000 * Beware, here be dragons!!
11001 *
11002 * the tracepoint muck will deadlock against ctx->mutex, but
11003 * the tracepoint stuff does not actually need it. So
11004 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11005 * already have a reference on ctx.
11006 *
11007 * This can result in event getting moved to a different ctx,
11008 * but that does not affect the tracepoint state.
11009 */
11010 mutex_unlock(&ctx->mutex);
11011 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11012 mutex_lock(&ctx->mutex);
11013 } else
11014 #endif
11015 if (has_addr_filter(event))
11016 ret = perf_event_set_addr_filter(event, filter_str);
11017
11018 kfree(filter_str);
11019 return ret;
11020 }
11021
11022 /*
11023 * hrtimer based swevent callback
11024 */
11025
perf_swevent_hrtimer(struct hrtimer * hrtimer)11026 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11027 {
11028 enum hrtimer_restart ret = HRTIMER_RESTART;
11029 struct perf_sample_data data;
11030 struct pt_regs *regs;
11031 struct perf_event *event;
11032 u64 period;
11033
11034 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11035
11036 if (event->state != PERF_EVENT_STATE_ACTIVE)
11037 return HRTIMER_NORESTART;
11038
11039 event->pmu->read(event);
11040
11041 perf_sample_data_init(&data, 0, event->hw.last_period);
11042 regs = get_irq_regs();
11043
11044 if (regs && !perf_exclude_event(event, regs)) {
11045 if (!(event->attr.exclude_idle && is_idle_task(current)))
11046 if (__perf_event_overflow(event, 1, &data, regs))
11047 ret = HRTIMER_NORESTART;
11048 }
11049
11050 period = max_t(u64, 10000, event->hw.sample_period);
11051 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11052
11053 return ret;
11054 }
11055
perf_swevent_start_hrtimer(struct perf_event * event)11056 static void perf_swevent_start_hrtimer(struct perf_event *event)
11057 {
11058 struct hw_perf_event *hwc = &event->hw;
11059 s64 period;
11060
11061 if (!is_sampling_event(event))
11062 return;
11063
11064 period = local64_read(&hwc->period_left);
11065 if (period) {
11066 if (period < 0)
11067 period = 10000;
11068
11069 local64_set(&hwc->period_left, 0);
11070 } else {
11071 period = max_t(u64, 10000, hwc->sample_period);
11072 }
11073 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11074 HRTIMER_MODE_REL_PINNED_HARD);
11075 }
11076
perf_swevent_cancel_hrtimer(struct perf_event * event)11077 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11078 {
11079 struct hw_perf_event *hwc = &event->hw;
11080
11081 if (is_sampling_event(event)) {
11082 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11083 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11084
11085 hrtimer_cancel(&hwc->hrtimer);
11086 }
11087 }
11088
perf_swevent_init_hrtimer(struct perf_event * event)11089 static void perf_swevent_init_hrtimer(struct perf_event *event)
11090 {
11091 struct hw_perf_event *hwc = &event->hw;
11092
11093 if (!is_sampling_event(event))
11094 return;
11095
11096 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11097 hwc->hrtimer.function = perf_swevent_hrtimer;
11098
11099 /*
11100 * Since hrtimers have a fixed rate, we can do a static freq->period
11101 * mapping and avoid the whole period adjust feedback stuff.
11102 */
11103 if (event->attr.freq) {
11104 long freq = event->attr.sample_freq;
11105
11106 event->attr.sample_period = NSEC_PER_SEC / freq;
11107 hwc->sample_period = event->attr.sample_period;
11108 local64_set(&hwc->period_left, hwc->sample_period);
11109 hwc->last_period = hwc->sample_period;
11110 event->attr.freq = 0;
11111 }
11112 }
11113
11114 /*
11115 * Software event: cpu wall time clock
11116 */
11117
cpu_clock_event_update(struct perf_event * event)11118 static void cpu_clock_event_update(struct perf_event *event)
11119 {
11120 s64 prev;
11121 u64 now;
11122
11123 now = local_clock();
11124 prev = local64_xchg(&event->hw.prev_count, now);
11125 local64_add(now - prev, &event->count);
11126 }
11127
cpu_clock_event_start(struct perf_event * event,int flags)11128 static void cpu_clock_event_start(struct perf_event *event, int flags)
11129 {
11130 local64_set(&event->hw.prev_count, local_clock());
11131 perf_swevent_start_hrtimer(event);
11132 }
11133
cpu_clock_event_stop(struct perf_event * event,int flags)11134 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11135 {
11136 perf_swevent_cancel_hrtimer(event);
11137 cpu_clock_event_update(event);
11138 }
11139
cpu_clock_event_add(struct perf_event * event,int flags)11140 static int cpu_clock_event_add(struct perf_event *event, int flags)
11141 {
11142 if (flags & PERF_EF_START)
11143 cpu_clock_event_start(event, flags);
11144 perf_event_update_userpage(event);
11145
11146 return 0;
11147 }
11148
cpu_clock_event_del(struct perf_event * event,int flags)11149 static void cpu_clock_event_del(struct perf_event *event, int flags)
11150 {
11151 cpu_clock_event_stop(event, flags);
11152 }
11153
cpu_clock_event_read(struct perf_event * event)11154 static void cpu_clock_event_read(struct perf_event *event)
11155 {
11156 cpu_clock_event_update(event);
11157 }
11158
cpu_clock_event_init(struct perf_event * event)11159 static int cpu_clock_event_init(struct perf_event *event)
11160 {
11161 if (event->attr.type != perf_cpu_clock.type)
11162 return -ENOENT;
11163
11164 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11165 return -ENOENT;
11166
11167 /*
11168 * no branch sampling for software events
11169 */
11170 if (has_branch_stack(event))
11171 return -EOPNOTSUPP;
11172
11173 perf_swevent_init_hrtimer(event);
11174
11175 return 0;
11176 }
11177
11178 static struct pmu perf_cpu_clock = {
11179 .task_ctx_nr = perf_sw_context,
11180
11181 .capabilities = PERF_PMU_CAP_NO_NMI,
11182 .dev = PMU_NULL_DEV,
11183
11184 .event_init = cpu_clock_event_init,
11185 .add = cpu_clock_event_add,
11186 .del = cpu_clock_event_del,
11187 .start = cpu_clock_event_start,
11188 .stop = cpu_clock_event_stop,
11189 .read = cpu_clock_event_read,
11190 };
11191
11192 /*
11193 * Software event: task time clock
11194 */
11195
task_clock_event_update(struct perf_event * event,u64 now)11196 static void task_clock_event_update(struct perf_event *event, u64 now)
11197 {
11198 u64 prev;
11199 s64 delta;
11200
11201 prev = local64_xchg(&event->hw.prev_count, now);
11202 delta = now - prev;
11203 local64_add(delta, &event->count);
11204 }
11205
task_clock_event_start(struct perf_event * event,int flags)11206 static void task_clock_event_start(struct perf_event *event, int flags)
11207 {
11208 local64_set(&event->hw.prev_count, event->ctx->time);
11209 perf_swevent_start_hrtimer(event);
11210 }
11211
task_clock_event_stop(struct perf_event * event,int flags)11212 static void task_clock_event_stop(struct perf_event *event, int flags)
11213 {
11214 perf_swevent_cancel_hrtimer(event);
11215 task_clock_event_update(event, event->ctx->time);
11216 }
11217
task_clock_event_add(struct perf_event * event,int flags)11218 static int task_clock_event_add(struct perf_event *event, int flags)
11219 {
11220 if (flags & PERF_EF_START)
11221 task_clock_event_start(event, flags);
11222 perf_event_update_userpage(event);
11223
11224 return 0;
11225 }
11226
task_clock_event_del(struct perf_event * event,int flags)11227 static void task_clock_event_del(struct perf_event *event, int flags)
11228 {
11229 task_clock_event_stop(event, PERF_EF_UPDATE);
11230 }
11231
task_clock_event_read(struct perf_event * event)11232 static void task_clock_event_read(struct perf_event *event)
11233 {
11234 u64 now = perf_clock();
11235 u64 delta = now - event->ctx->timestamp;
11236 u64 time = event->ctx->time + delta;
11237
11238 task_clock_event_update(event, time);
11239 }
11240
task_clock_event_init(struct perf_event * event)11241 static int task_clock_event_init(struct perf_event *event)
11242 {
11243 if (event->attr.type != perf_task_clock.type)
11244 return -ENOENT;
11245
11246 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11247 return -ENOENT;
11248
11249 /*
11250 * no branch sampling for software events
11251 */
11252 if (has_branch_stack(event))
11253 return -EOPNOTSUPP;
11254
11255 perf_swevent_init_hrtimer(event);
11256
11257 return 0;
11258 }
11259
11260 static struct pmu perf_task_clock = {
11261 .task_ctx_nr = perf_sw_context,
11262
11263 .capabilities = PERF_PMU_CAP_NO_NMI,
11264 .dev = PMU_NULL_DEV,
11265
11266 .event_init = task_clock_event_init,
11267 .add = task_clock_event_add,
11268 .del = task_clock_event_del,
11269 .start = task_clock_event_start,
11270 .stop = task_clock_event_stop,
11271 .read = task_clock_event_read,
11272 };
11273
perf_pmu_nop_void(struct pmu * pmu)11274 static void perf_pmu_nop_void(struct pmu *pmu)
11275 {
11276 }
11277
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)11278 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11279 {
11280 }
11281
perf_pmu_nop_int(struct pmu * pmu)11282 static int perf_pmu_nop_int(struct pmu *pmu)
11283 {
11284 return 0;
11285 }
11286
perf_event_nop_int(struct perf_event * event,u64 value)11287 static int perf_event_nop_int(struct perf_event *event, u64 value)
11288 {
11289 return 0;
11290 }
11291
11292 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11293
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)11294 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11295 {
11296 __this_cpu_write(nop_txn_flags, flags);
11297
11298 if (flags & ~PERF_PMU_TXN_ADD)
11299 return;
11300
11301 perf_pmu_disable(pmu);
11302 }
11303
perf_pmu_commit_txn(struct pmu * pmu)11304 static int perf_pmu_commit_txn(struct pmu *pmu)
11305 {
11306 unsigned int flags = __this_cpu_read(nop_txn_flags);
11307
11308 __this_cpu_write(nop_txn_flags, 0);
11309
11310 if (flags & ~PERF_PMU_TXN_ADD)
11311 return 0;
11312
11313 perf_pmu_enable(pmu);
11314 return 0;
11315 }
11316
perf_pmu_cancel_txn(struct pmu * pmu)11317 static void perf_pmu_cancel_txn(struct pmu *pmu)
11318 {
11319 unsigned int flags = __this_cpu_read(nop_txn_flags);
11320
11321 __this_cpu_write(nop_txn_flags, 0);
11322
11323 if (flags & ~PERF_PMU_TXN_ADD)
11324 return;
11325
11326 perf_pmu_enable(pmu);
11327 }
11328
perf_event_idx_default(struct perf_event * event)11329 static int perf_event_idx_default(struct perf_event *event)
11330 {
11331 return 0;
11332 }
11333
free_pmu_context(struct pmu * pmu)11334 static void free_pmu_context(struct pmu *pmu)
11335 {
11336 free_percpu(pmu->cpu_pmu_context);
11337 }
11338
11339 /*
11340 * Let userspace know that this PMU supports address range filtering:
11341 */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)11342 static ssize_t nr_addr_filters_show(struct device *dev,
11343 struct device_attribute *attr,
11344 char *page)
11345 {
11346 struct pmu *pmu = dev_get_drvdata(dev);
11347
11348 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11349 }
11350 DEVICE_ATTR_RO(nr_addr_filters);
11351
11352 static struct idr pmu_idr;
11353
11354 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)11355 type_show(struct device *dev, struct device_attribute *attr, char *page)
11356 {
11357 struct pmu *pmu = dev_get_drvdata(dev);
11358
11359 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11360 }
11361 static DEVICE_ATTR_RO(type);
11362
11363 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)11364 perf_event_mux_interval_ms_show(struct device *dev,
11365 struct device_attribute *attr,
11366 char *page)
11367 {
11368 struct pmu *pmu = dev_get_drvdata(dev);
11369
11370 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11371 }
11372
11373 static DEFINE_MUTEX(mux_interval_mutex);
11374
11375 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)11376 perf_event_mux_interval_ms_store(struct device *dev,
11377 struct device_attribute *attr,
11378 const char *buf, size_t count)
11379 {
11380 struct pmu *pmu = dev_get_drvdata(dev);
11381 int timer, cpu, ret;
11382
11383 ret = kstrtoint(buf, 0, &timer);
11384 if (ret)
11385 return ret;
11386
11387 if (timer < 1)
11388 return -EINVAL;
11389
11390 /* same value, noting to do */
11391 if (timer == pmu->hrtimer_interval_ms)
11392 return count;
11393
11394 mutex_lock(&mux_interval_mutex);
11395 pmu->hrtimer_interval_ms = timer;
11396
11397 /* update all cpuctx for this PMU */
11398 cpus_read_lock();
11399 for_each_online_cpu(cpu) {
11400 struct perf_cpu_pmu_context *cpc;
11401 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11402 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11403
11404 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11405 }
11406 cpus_read_unlock();
11407 mutex_unlock(&mux_interval_mutex);
11408
11409 return count;
11410 }
11411 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11412
11413 static struct attribute *pmu_dev_attrs[] = {
11414 &dev_attr_type.attr,
11415 &dev_attr_perf_event_mux_interval_ms.attr,
11416 &dev_attr_nr_addr_filters.attr,
11417 NULL,
11418 };
11419
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)11420 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11421 {
11422 struct device *dev = kobj_to_dev(kobj);
11423 struct pmu *pmu = dev_get_drvdata(dev);
11424
11425 if (n == 2 && !pmu->nr_addr_filters)
11426 return 0;
11427
11428 return a->mode;
11429 }
11430
11431 static struct attribute_group pmu_dev_attr_group = {
11432 .is_visible = pmu_dev_is_visible,
11433 .attrs = pmu_dev_attrs,
11434 };
11435
11436 static const struct attribute_group *pmu_dev_groups[] = {
11437 &pmu_dev_attr_group,
11438 NULL,
11439 };
11440
11441 static int pmu_bus_running;
11442 static struct bus_type pmu_bus = {
11443 .name = "event_source",
11444 .dev_groups = pmu_dev_groups,
11445 };
11446
pmu_dev_release(struct device * dev)11447 static void pmu_dev_release(struct device *dev)
11448 {
11449 kfree(dev);
11450 }
11451
pmu_dev_alloc(struct pmu * pmu)11452 static int pmu_dev_alloc(struct pmu *pmu)
11453 {
11454 int ret = -ENOMEM;
11455
11456 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11457 if (!pmu->dev)
11458 goto out;
11459
11460 pmu->dev->groups = pmu->attr_groups;
11461 device_initialize(pmu->dev);
11462
11463 dev_set_drvdata(pmu->dev, pmu);
11464 pmu->dev->bus = &pmu_bus;
11465 pmu->dev->parent = pmu->parent;
11466 pmu->dev->release = pmu_dev_release;
11467
11468 ret = dev_set_name(pmu->dev, "%s", pmu->name);
11469 if (ret)
11470 goto free_dev;
11471
11472 ret = device_add(pmu->dev);
11473 if (ret)
11474 goto free_dev;
11475
11476 if (pmu->attr_update) {
11477 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11478 if (ret)
11479 goto del_dev;
11480 }
11481
11482 out:
11483 return ret;
11484
11485 del_dev:
11486 device_del(pmu->dev);
11487
11488 free_dev:
11489 put_device(pmu->dev);
11490 goto out;
11491 }
11492
11493 static struct lock_class_key cpuctx_mutex;
11494 static struct lock_class_key cpuctx_lock;
11495
perf_pmu_register(struct pmu * pmu,const char * name,int type)11496 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11497 {
11498 int cpu, ret, max = PERF_TYPE_MAX;
11499
11500 mutex_lock(&pmus_lock);
11501 ret = -ENOMEM;
11502 pmu->pmu_disable_count = alloc_percpu(int);
11503 if (!pmu->pmu_disable_count)
11504 goto unlock;
11505
11506 pmu->type = -1;
11507 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11508 ret = -EINVAL;
11509 goto free_pdc;
11510 }
11511
11512 pmu->name = name;
11513
11514 if (type >= 0)
11515 max = type;
11516
11517 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11518 if (ret < 0)
11519 goto free_pdc;
11520
11521 WARN_ON(type >= 0 && ret != type);
11522
11523 type = ret;
11524 pmu->type = type;
11525
11526 if (pmu_bus_running && !pmu->dev) {
11527 ret = pmu_dev_alloc(pmu);
11528 if (ret)
11529 goto free_idr;
11530 }
11531
11532 ret = -ENOMEM;
11533 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11534 if (!pmu->cpu_pmu_context)
11535 goto free_dev;
11536
11537 for_each_possible_cpu(cpu) {
11538 struct perf_cpu_pmu_context *cpc;
11539
11540 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11541 __perf_init_event_pmu_context(&cpc->epc, pmu);
11542 __perf_mux_hrtimer_init(cpc, cpu);
11543 }
11544
11545 if (!pmu->start_txn) {
11546 if (pmu->pmu_enable) {
11547 /*
11548 * If we have pmu_enable/pmu_disable calls, install
11549 * transaction stubs that use that to try and batch
11550 * hardware accesses.
11551 */
11552 pmu->start_txn = perf_pmu_start_txn;
11553 pmu->commit_txn = perf_pmu_commit_txn;
11554 pmu->cancel_txn = perf_pmu_cancel_txn;
11555 } else {
11556 pmu->start_txn = perf_pmu_nop_txn;
11557 pmu->commit_txn = perf_pmu_nop_int;
11558 pmu->cancel_txn = perf_pmu_nop_void;
11559 }
11560 }
11561
11562 if (!pmu->pmu_enable) {
11563 pmu->pmu_enable = perf_pmu_nop_void;
11564 pmu->pmu_disable = perf_pmu_nop_void;
11565 }
11566
11567 if (!pmu->check_period)
11568 pmu->check_period = perf_event_nop_int;
11569
11570 if (!pmu->event_idx)
11571 pmu->event_idx = perf_event_idx_default;
11572
11573 list_add_rcu(&pmu->entry, &pmus);
11574 atomic_set(&pmu->exclusive_cnt, 0);
11575 ret = 0;
11576 unlock:
11577 mutex_unlock(&pmus_lock);
11578
11579 return ret;
11580
11581 free_dev:
11582 if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11583 device_del(pmu->dev);
11584 put_device(pmu->dev);
11585 }
11586
11587 free_idr:
11588 idr_remove(&pmu_idr, pmu->type);
11589
11590 free_pdc:
11591 free_percpu(pmu->pmu_disable_count);
11592 goto unlock;
11593 }
11594 EXPORT_SYMBOL_GPL(perf_pmu_register);
11595
perf_pmu_unregister(struct pmu * pmu)11596 void perf_pmu_unregister(struct pmu *pmu)
11597 {
11598 mutex_lock(&pmus_lock);
11599 list_del_rcu(&pmu->entry);
11600
11601 /*
11602 * We dereference the pmu list under both SRCU and regular RCU, so
11603 * synchronize against both of those.
11604 */
11605 synchronize_srcu(&pmus_srcu);
11606 synchronize_rcu();
11607
11608 free_percpu(pmu->pmu_disable_count);
11609 idr_remove(&pmu_idr, pmu->type);
11610 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11611 if (pmu->nr_addr_filters)
11612 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11613 device_del(pmu->dev);
11614 put_device(pmu->dev);
11615 }
11616 free_pmu_context(pmu);
11617 mutex_unlock(&pmus_lock);
11618 }
11619 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11620
has_extended_regs(struct perf_event * event)11621 static inline bool has_extended_regs(struct perf_event *event)
11622 {
11623 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11624 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11625 }
11626
perf_try_init_event(struct pmu * pmu,struct perf_event * event)11627 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11628 {
11629 struct perf_event_context *ctx = NULL;
11630 int ret;
11631
11632 if (!try_module_get(pmu->module))
11633 return -ENODEV;
11634
11635 /*
11636 * A number of pmu->event_init() methods iterate the sibling_list to,
11637 * for example, validate if the group fits on the PMU. Therefore,
11638 * if this is a sibling event, acquire the ctx->mutex to protect
11639 * the sibling_list.
11640 */
11641 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11642 /*
11643 * This ctx->mutex can nest when we're called through
11644 * inheritance. See the perf_event_ctx_lock_nested() comment.
11645 */
11646 ctx = perf_event_ctx_lock_nested(event->group_leader,
11647 SINGLE_DEPTH_NESTING);
11648 BUG_ON(!ctx);
11649 }
11650
11651 event->pmu = pmu;
11652 ret = pmu->event_init(event);
11653
11654 if (ctx)
11655 perf_event_ctx_unlock(event->group_leader, ctx);
11656
11657 if (!ret) {
11658 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11659 has_extended_regs(event))
11660 ret = -EOPNOTSUPP;
11661
11662 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11663 event_has_any_exclude_flag(event))
11664 ret = -EINVAL;
11665
11666 if (ret && event->destroy)
11667 event->destroy(event);
11668 }
11669
11670 if (ret)
11671 module_put(pmu->module);
11672
11673 return ret;
11674 }
11675
perf_init_event(struct perf_event * event)11676 static struct pmu *perf_init_event(struct perf_event *event)
11677 {
11678 bool extended_type = false;
11679 int idx, type, ret;
11680 struct pmu *pmu;
11681
11682 idx = srcu_read_lock(&pmus_srcu);
11683
11684 /*
11685 * Save original type before calling pmu->event_init() since certain
11686 * pmus overwrites event->attr.type to forward event to another pmu.
11687 */
11688 event->orig_type = event->attr.type;
11689
11690 /* Try parent's PMU first: */
11691 if (event->parent && event->parent->pmu) {
11692 pmu = event->parent->pmu;
11693 ret = perf_try_init_event(pmu, event);
11694 if (!ret)
11695 goto unlock;
11696 }
11697
11698 /*
11699 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11700 * are often aliases for PERF_TYPE_RAW.
11701 */
11702 type = event->attr.type;
11703 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11704 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11705 if (!type) {
11706 type = PERF_TYPE_RAW;
11707 } else {
11708 extended_type = true;
11709 event->attr.config &= PERF_HW_EVENT_MASK;
11710 }
11711 }
11712
11713 again:
11714 rcu_read_lock();
11715 pmu = idr_find(&pmu_idr, type);
11716 rcu_read_unlock();
11717 if (pmu) {
11718 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11719 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11720 goto fail;
11721
11722 ret = perf_try_init_event(pmu, event);
11723 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11724 type = event->attr.type;
11725 goto again;
11726 }
11727
11728 if (ret)
11729 pmu = ERR_PTR(ret);
11730
11731 goto unlock;
11732 }
11733
11734 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11735 ret = perf_try_init_event(pmu, event);
11736 if (!ret)
11737 goto unlock;
11738
11739 if (ret != -ENOENT) {
11740 pmu = ERR_PTR(ret);
11741 goto unlock;
11742 }
11743 }
11744 fail:
11745 pmu = ERR_PTR(-ENOENT);
11746 unlock:
11747 srcu_read_unlock(&pmus_srcu, idx);
11748
11749 return pmu;
11750 }
11751
attach_sb_event(struct perf_event * event)11752 static void attach_sb_event(struct perf_event *event)
11753 {
11754 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11755
11756 raw_spin_lock(&pel->lock);
11757 list_add_rcu(&event->sb_list, &pel->list);
11758 raw_spin_unlock(&pel->lock);
11759 }
11760
11761 /*
11762 * We keep a list of all !task (and therefore per-cpu) events
11763 * that need to receive side-band records.
11764 *
11765 * This avoids having to scan all the various PMU per-cpu contexts
11766 * looking for them.
11767 */
account_pmu_sb_event(struct perf_event * event)11768 static void account_pmu_sb_event(struct perf_event *event)
11769 {
11770 if (is_sb_event(event))
11771 attach_sb_event(event);
11772 }
11773
11774 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)11775 static void account_freq_event_nohz(void)
11776 {
11777 #ifdef CONFIG_NO_HZ_FULL
11778 /* Lock so we don't race with concurrent unaccount */
11779 spin_lock(&nr_freq_lock);
11780 if (atomic_inc_return(&nr_freq_events) == 1)
11781 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11782 spin_unlock(&nr_freq_lock);
11783 #endif
11784 }
11785
account_freq_event(void)11786 static void account_freq_event(void)
11787 {
11788 if (tick_nohz_full_enabled())
11789 account_freq_event_nohz();
11790 else
11791 atomic_inc(&nr_freq_events);
11792 }
11793
11794
account_event(struct perf_event * event)11795 static void account_event(struct perf_event *event)
11796 {
11797 bool inc = false;
11798
11799 if (event->parent)
11800 return;
11801
11802 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11803 inc = true;
11804 if (event->attr.mmap || event->attr.mmap_data)
11805 atomic_inc(&nr_mmap_events);
11806 if (event->attr.build_id)
11807 atomic_inc(&nr_build_id_events);
11808 if (event->attr.comm)
11809 atomic_inc(&nr_comm_events);
11810 if (event->attr.namespaces)
11811 atomic_inc(&nr_namespaces_events);
11812 if (event->attr.cgroup)
11813 atomic_inc(&nr_cgroup_events);
11814 if (event->attr.task)
11815 atomic_inc(&nr_task_events);
11816 if (event->attr.freq)
11817 account_freq_event();
11818 if (event->attr.context_switch) {
11819 atomic_inc(&nr_switch_events);
11820 inc = true;
11821 }
11822 if (has_branch_stack(event))
11823 inc = true;
11824 if (is_cgroup_event(event))
11825 inc = true;
11826 if (event->attr.ksymbol)
11827 atomic_inc(&nr_ksymbol_events);
11828 if (event->attr.bpf_event)
11829 atomic_inc(&nr_bpf_events);
11830 if (event->attr.text_poke)
11831 atomic_inc(&nr_text_poke_events);
11832
11833 if (inc) {
11834 /*
11835 * We need the mutex here because static_branch_enable()
11836 * must complete *before* the perf_sched_count increment
11837 * becomes visible.
11838 */
11839 if (atomic_inc_not_zero(&perf_sched_count))
11840 goto enabled;
11841
11842 mutex_lock(&perf_sched_mutex);
11843 if (!atomic_read(&perf_sched_count)) {
11844 static_branch_enable(&perf_sched_events);
11845 /*
11846 * Guarantee that all CPUs observe they key change and
11847 * call the perf scheduling hooks before proceeding to
11848 * install events that need them.
11849 */
11850 synchronize_rcu();
11851 }
11852 /*
11853 * Now that we have waited for the sync_sched(), allow further
11854 * increments to by-pass the mutex.
11855 */
11856 atomic_inc(&perf_sched_count);
11857 mutex_unlock(&perf_sched_mutex);
11858 }
11859 enabled:
11860
11861 account_pmu_sb_event(event);
11862 }
11863
11864 /*
11865 * Allocate and initialize an event structure
11866 */
11867 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)11868 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11869 struct task_struct *task,
11870 struct perf_event *group_leader,
11871 struct perf_event *parent_event,
11872 perf_overflow_handler_t overflow_handler,
11873 void *context, int cgroup_fd)
11874 {
11875 struct pmu *pmu;
11876 struct perf_event *event;
11877 struct hw_perf_event *hwc;
11878 long err = -EINVAL;
11879 int node;
11880
11881 if ((unsigned)cpu >= nr_cpu_ids) {
11882 if (!task || cpu != -1)
11883 return ERR_PTR(-EINVAL);
11884 }
11885 if (attr->sigtrap && !task) {
11886 /* Requires a task: avoid signalling random tasks. */
11887 return ERR_PTR(-EINVAL);
11888 }
11889
11890 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11891 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11892 node);
11893 if (!event)
11894 return ERR_PTR(-ENOMEM);
11895
11896 /*
11897 * Single events are their own group leaders, with an
11898 * empty sibling list:
11899 */
11900 if (!group_leader)
11901 group_leader = event;
11902
11903 mutex_init(&event->child_mutex);
11904 INIT_LIST_HEAD(&event->child_list);
11905
11906 INIT_LIST_HEAD(&event->event_entry);
11907 INIT_LIST_HEAD(&event->sibling_list);
11908 INIT_LIST_HEAD(&event->active_list);
11909 init_event_group(event);
11910 INIT_LIST_HEAD(&event->rb_entry);
11911 INIT_LIST_HEAD(&event->active_entry);
11912 INIT_LIST_HEAD(&event->addr_filters.list);
11913 INIT_HLIST_NODE(&event->hlist_entry);
11914
11915
11916 init_waitqueue_head(&event->waitq);
11917 init_irq_work(&event->pending_irq, perf_pending_irq);
11918 init_task_work(&event->pending_task, perf_pending_task);
11919
11920 mutex_init(&event->mmap_mutex);
11921 raw_spin_lock_init(&event->addr_filters.lock);
11922
11923 atomic_long_set(&event->refcount, 1);
11924 event->cpu = cpu;
11925 event->attr = *attr;
11926 event->group_leader = group_leader;
11927 event->pmu = NULL;
11928 event->oncpu = -1;
11929
11930 event->parent = parent_event;
11931
11932 event->ns = get_pid_ns(task_active_pid_ns(current));
11933 event->id = atomic64_inc_return(&perf_event_id);
11934
11935 event->state = PERF_EVENT_STATE_INACTIVE;
11936
11937 if (parent_event)
11938 event->event_caps = parent_event->event_caps;
11939
11940 if (task) {
11941 event->attach_state = PERF_ATTACH_TASK;
11942 /*
11943 * XXX pmu::event_init needs to know what task to account to
11944 * and we cannot use the ctx information because we need the
11945 * pmu before we get a ctx.
11946 */
11947 event->hw.target = get_task_struct(task);
11948 }
11949
11950 event->clock = &local_clock;
11951 if (parent_event)
11952 event->clock = parent_event->clock;
11953
11954 if (!overflow_handler && parent_event) {
11955 overflow_handler = parent_event->overflow_handler;
11956 context = parent_event->overflow_handler_context;
11957 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11958 if (overflow_handler == bpf_overflow_handler) {
11959 struct bpf_prog *prog = parent_event->prog;
11960
11961 bpf_prog_inc(prog);
11962 event->prog = prog;
11963 event->orig_overflow_handler =
11964 parent_event->orig_overflow_handler;
11965 }
11966 #endif
11967 }
11968
11969 if (overflow_handler) {
11970 event->overflow_handler = overflow_handler;
11971 event->overflow_handler_context = context;
11972 } else if (is_write_backward(event)){
11973 event->overflow_handler = perf_event_output_backward;
11974 event->overflow_handler_context = NULL;
11975 } else {
11976 event->overflow_handler = perf_event_output_forward;
11977 event->overflow_handler_context = NULL;
11978 }
11979
11980 perf_event__state_init(event);
11981
11982 pmu = NULL;
11983
11984 hwc = &event->hw;
11985 hwc->sample_period = attr->sample_period;
11986 if (attr->freq && attr->sample_freq)
11987 hwc->sample_period = 1;
11988 hwc->last_period = hwc->sample_period;
11989
11990 local64_set(&hwc->period_left, hwc->sample_period);
11991
11992 /*
11993 * We currently do not support PERF_SAMPLE_READ on inherited events.
11994 * See perf_output_read().
11995 */
11996 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11997 goto err_ns;
11998
11999 if (!has_branch_stack(event))
12000 event->attr.branch_sample_type = 0;
12001
12002 pmu = perf_init_event(event);
12003 if (IS_ERR(pmu)) {
12004 err = PTR_ERR(pmu);
12005 goto err_ns;
12006 }
12007
12008 /*
12009 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12010 * events (they don't make sense as the cgroup will be different
12011 * on other CPUs in the uncore mask).
12012 */
12013 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12014 err = -EINVAL;
12015 goto err_pmu;
12016 }
12017
12018 if (event->attr.aux_output &&
12019 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12020 err = -EOPNOTSUPP;
12021 goto err_pmu;
12022 }
12023
12024 if (cgroup_fd != -1) {
12025 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12026 if (err)
12027 goto err_pmu;
12028 }
12029
12030 err = exclusive_event_init(event);
12031 if (err)
12032 goto err_pmu;
12033
12034 if (has_addr_filter(event)) {
12035 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12036 sizeof(struct perf_addr_filter_range),
12037 GFP_KERNEL);
12038 if (!event->addr_filter_ranges) {
12039 err = -ENOMEM;
12040 goto err_per_task;
12041 }
12042
12043 /*
12044 * Clone the parent's vma offsets: they are valid until exec()
12045 * even if the mm is not shared with the parent.
12046 */
12047 if (event->parent) {
12048 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12049
12050 raw_spin_lock_irq(&ifh->lock);
12051 memcpy(event->addr_filter_ranges,
12052 event->parent->addr_filter_ranges,
12053 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12054 raw_spin_unlock_irq(&ifh->lock);
12055 }
12056
12057 /* force hw sync on the address filters */
12058 event->addr_filters_gen = 1;
12059 }
12060
12061 if (!event->parent) {
12062 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12063 err = get_callchain_buffers(attr->sample_max_stack);
12064 if (err)
12065 goto err_addr_filters;
12066 }
12067 }
12068
12069 err = security_perf_event_alloc(event);
12070 if (err)
12071 goto err_callchain_buffer;
12072
12073 /* symmetric to unaccount_event() in _free_event() */
12074 account_event(event);
12075
12076 return event;
12077
12078 err_callchain_buffer:
12079 if (!event->parent) {
12080 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12081 put_callchain_buffers();
12082 }
12083 err_addr_filters:
12084 kfree(event->addr_filter_ranges);
12085
12086 err_per_task:
12087 exclusive_event_destroy(event);
12088
12089 err_pmu:
12090 if (is_cgroup_event(event))
12091 perf_detach_cgroup(event);
12092 if (event->destroy)
12093 event->destroy(event);
12094 module_put(pmu->module);
12095 err_ns:
12096 if (event->hw.target)
12097 put_task_struct(event->hw.target);
12098 call_rcu(&event->rcu_head, free_event_rcu);
12099
12100 return ERR_PTR(err);
12101 }
12102
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)12103 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12104 struct perf_event_attr *attr)
12105 {
12106 u32 size;
12107 int ret;
12108
12109 /* Zero the full structure, so that a short copy will be nice. */
12110 memset(attr, 0, sizeof(*attr));
12111
12112 ret = get_user(size, &uattr->size);
12113 if (ret)
12114 return ret;
12115
12116 /* ABI compatibility quirk: */
12117 if (!size)
12118 size = PERF_ATTR_SIZE_VER0;
12119 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12120 goto err_size;
12121
12122 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12123 if (ret) {
12124 if (ret == -E2BIG)
12125 goto err_size;
12126 return ret;
12127 }
12128
12129 attr->size = size;
12130
12131 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12132 return -EINVAL;
12133
12134 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12135 return -EINVAL;
12136
12137 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12138 return -EINVAL;
12139
12140 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12141 u64 mask = attr->branch_sample_type;
12142
12143 /* only using defined bits */
12144 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12145 return -EINVAL;
12146
12147 /* at least one branch bit must be set */
12148 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12149 return -EINVAL;
12150
12151 /* propagate priv level, when not set for branch */
12152 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12153
12154 /* exclude_kernel checked on syscall entry */
12155 if (!attr->exclude_kernel)
12156 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12157
12158 if (!attr->exclude_user)
12159 mask |= PERF_SAMPLE_BRANCH_USER;
12160
12161 if (!attr->exclude_hv)
12162 mask |= PERF_SAMPLE_BRANCH_HV;
12163 /*
12164 * adjust user setting (for HW filter setup)
12165 */
12166 attr->branch_sample_type = mask;
12167 }
12168 /* privileged levels capture (kernel, hv): check permissions */
12169 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12170 ret = perf_allow_kernel(attr);
12171 if (ret)
12172 return ret;
12173 }
12174 }
12175
12176 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12177 ret = perf_reg_validate(attr->sample_regs_user);
12178 if (ret)
12179 return ret;
12180 }
12181
12182 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12183 if (!arch_perf_have_user_stack_dump())
12184 return -ENOSYS;
12185
12186 /*
12187 * We have __u32 type for the size, but so far
12188 * we can only use __u16 as maximum due to the
12189 * __u16 sample size limit.
12190 */
12191 if (attr->sample_stack_user >= USHRT_MAX)
12192 return -EINVAL;
12193 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12194 return -EINVAL;
12195 }
12196
12197 if (!attr->sample_max_stack)
12198 attr->sample_max_stack = sysctl_perf_event_max_stack;
12199
12200 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12201 ret = perf_reg_validate(attr->sample_regs_intr);
12202
12203 #ifndef CONFIG_CGROUP_PERF
12204 if (attr->sample_type & PERF_SAMPLE_CGROUP)
12205 return -EINVAL;
12206 #endif
12207 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12208 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12209 return -EINVAL;
12210
12211 if (!attr->inherit && attr->inherit_thread)
12212 return -EINVAL;
12213
12214 if (attr->remove_on_exec && attr->enable_on_exec)
12215 return -EINVAL;
12216
12217 if (attr->sigtrap && !attr->remove_on_exec)
12218 return -EINVAL;
12219
12220 out:
12221 return ret;
12222
12223 err_size:
12224 put_user(sizeof(*attr), &uattr->size);
12225 ret = -E2BIG;
12226 goto out;
12227 }
12228
mutex_lock_double(struct mutex * a,struct mutex * b)12229 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12230 {
12231 if (b < a)
12232 swap(a, b);
12233
12234 mutex_lock(a);
12235 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12236 }
12237
12238 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)12239 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12240 {
12241 struct perf_buffer *rb = NULL;
12242 int ret = -EINVAL;
12243
12244 if (!output_event) {
12245 mutex_lock(&event->mmap_mutex);
12246 goto set;
12247 }
12248
12249 /* don't allow circular references */
12250 if (event == output_event)
12251 goto out;
12252
12253 /*
12254 * Don't allow cross-cpu buffers
12255 */
12256 if (output_event->cpu != event->cpu)
12257 goto out;
12258
12259 /*
12260 * If its not a per-cpu rb, it must be the same task.
12261 */
12262 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12263 goto out;
12264
12265 /*
12266 * Mixing clocks in the same buffer is trouble you don't need.
12267 */
12268 if (output_event->clock != event->clock)
12269 goto out;
12270
12271 /*
12272 * Either writing ring buffer from beginning or from end.
12273 * Mixing is not allowed.
12274 */
12275 if (is_write_backward(output_event) != is_write_backward(event))
12276 goto out;
12277
12278 /*
12279 * If both events generate aux data, they must be on the same PMU
12280 */
12281 if (has_aux(event) && has_aux(output_event) &&
12282 event->pmu != output_event->pmu)
12283 goto out;
12284
12285 /*
12286 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
12287 * output_event is already on rb->event_list, and the list iteration
12288 * restarts after every removal, it is guaranteed this new event is
12289 * observed *OR* if output_event is already removed, it's guaranteed we
12290 * observe !rb->mmap_count.
12291 */
12292 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12293 set:
12294 /* Can't redirect output if we've got an active mmap() */
12295 if (atomic_read(&event->mmap_count))
12296 goto unlock;
12297
12298 if (output_event) {
12299 /* get the rb we want to redirect to */
12300 rb = ring_buffer_get(output_event);
12301 if (!rb)
12302 goto unlock;
12303
12304 /* did we race against perf_mmap_close() */
12305 if (!atomic_read(&rb->mmap_count)) {
12306 ring_buffer_put(rb);
12307 goto unlock;
12308 }
12309 }
12310
12311 ring_buffer_attach(event, rb);
12312
12313 ret = 0;
12314 unlock:
12315 mutex_unlock(&event->mmap_mutex);
12316 if (output_event)
12317 mutex_unlock(&output_event->mmap_mutex);
12318
12319 out:
12320 return ret;
12321 }
12322
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)12323 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12324 {
12325 bool nmi_safe = false;
12326
12327 switch (clk_id) {
12328 case CLOCK_MONOTONIC:
12329 event->clock = &ktime_get_mono_fast_ns;
12330 nmi_safe = true;
12331 break;
12332
12333 case CLOCK_MONOTONIC_RAW:
12334 event->clock = &ktime_get_raw_fast_ns;
12335 nmi_safe = true;
12336 break;
12337
12338 case CLOCK_REALTIME:
12339 event->clock = &ktime_get_real_ns;
12340 break;
12341
12342 case CLOCK_BOOTTIME:
12343 event->clock = &ktime_get_boottime_ns;
12344 break;
12345
12346 case CLOCK_TAI:
12347 event->clock = &ktime_get_clocktai_ns;
12348 break;
12349
12350 default:
12351 return -EINVAL;
12352 }
12353
12354 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12355 return -EINVAL;
12356
12357 return 0;
12358 }
12359
12360 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)12361 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12362 {
12363 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12364 bool is_capable = perfmon_capable();
12365
12366 if (attr->sigtrap) {
12367 /*
12368 * perf_event_attr::sigtrap sends signals to the other task.
12369 * Require the current task to also have CAP_KILL.
12370 */
12371 rcu_read_lock();
12372 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12373 rcu_read_unlock();
12374
12375 /*
12376 * If the required capabilities aren't available, checks for
12377 * ptrace permissions: upgrade to ATTACH, since sending signals
12378 * can effectively change the target task.
12379 */
12380 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12381 }
12382
12383 /*
12384 * Preserve ptrace permission check for backwards compatibility. The
12385 * ptrace check also includes checks that the current task and other
12386 * task have matching uids, and is therefore not done here explicitly.
12387 */
12388 return is_capable || ptrace_may_access(task, ptrace_mode);
12389 }
12390
12391 /**
12392 * sys_perf_event_open - open a performance event, associate it to a task/cpu
12393 *
12394 * @attr_uptr: event_id type attributes for monitoring/sampling
12395 * @pid: target pid
12396 * @cpu: target cpu
12397 * @group_fd: group leader event fd
12398 * @flags: perf event open flags
12399 */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)12400 SYSCALL_DEFINE5(perf_event_open,
12401 struct perf_event_attr __user *, attr_uptr,
12402 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12403 {
12404 struct perf_event *group_leader = NULL, *output_event = NULL;
12405 struct perf_event_pmu_context *pmu_ctx;
12406 struct perf_event *event, *sibling;
12407 struct perf_event_attr attr;
12408 struct perf_event_context *ctx;
12409 struct file *event_file = NULL;
12410 struct fd group = {NULL, 0};
12411 struct task_struct *task = NULL;
12412 struct pmu *pmu;
12413 int event_fd;
12414 int move_group = 0;
12415 int err;
12416 int f_flags = O_RDWR;
12417 int cgroup_fd = -1;
12418
12419 /* for future expandability... */
12420 if (flags & ~PERF_FLAG_ALL)
12421 return -EINVAL;
12422
12423 err = perf_copy_attr(attr_uptr, &attr);
12424 if (err)
12425 return err;
12426
12427 /* Do we allow access to perf_event_open(2) ? */
12428 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12429 if (err)
12430 return err;
12431
12432 if (!attr.exclude_kernel) {
12433 err = perf_allow_kernel(&attr);
12434 if (err)
12435 return err;
12436 }
12437
12438 if (attr.namespaces) {
12439 if (!perfmon_capable())
12440 return -EACCES;
12441 }
12442
12443 if (attr.freq) {
12444 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12445 return -EINVAL;
12446 } else {
12447 if (attr.sample_period & (1ULL << 63))
12448 return -EINVAL;
12449 }
12450
12451 /* Only privileged users can get physical addresses */
12452 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12453 err = perf_allow_kernel(&attr);
12454 if (err)
12455 return err;
12456 }
12457
12458 /* REGS_INTR can leak data, lockdown must prevent this */
12459 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12460 err = security_locked_down(LOCKDOWN_PERF);
12461 if (err)
12462 return err;
12463 }
12464
12465 /*
12466 * In cgroup mode, the pid argument is used to pass the fd
12467 * opened to the cgroup directory in cgroupfs. The cpu argument
12468 * designates the cpu on which to monitor threads from that
12469 * cgroup.
12470 */
12471 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12472 return -EINVAL;
12473
12474 if (flags & PERF_FLAG_FD_CLOEXEC)
12475 f_flags |= O_CLOEXEC;
12476
12477 event_fd = get_unused_fd_flags(f_flags);
12478 if (event_fd < 0)
12479 return event_fd;
12480
12481 if (group_fd != -1) {
12482 err = perf_fget_light(group_fd, &group);
12483 if (err)
12484 goto err_fd;
12485 group_leader = group.file->private_data;
12486 if (flags & PERF_FLAG_FD_OUTPUT)
12487 output_event = group_leader;
12488 if (flags & PERF_FLAG_FD_NO_GROUP)
12489 group_leader = NULL;
12490 }
12491
12492 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12493 task = find_lively_task_by_vpid(pid);
12494 if (IS_ERR(task)) {
12495 err = PTR_ERR(task);
12496 goto err_group_fd;
12497 }
12498 }
12499
12500 if (task && group_leader &&
12501 group_leader->attr.inherit != attr.inherit) {
12502 err = -EINVAL;
12503 goto err_task;
12504 }
12505
12506 if (flags & PERF_FLAG_PID_CGROUP)
12507 cgroup_fd = pid;
12508
12509 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12510 NULL, NULL, cgroup_fd);
12511 if (IS_ERR(event)) {
12512 err = PTR_ERR(event);
12513 goto err_task;
12514 }
12515
12516 if (is_sampling_event(event)) {
12517 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12518 err = -EOPNOTSUPP;
12519 goto err_alloc;
12520 }
12521 }
12522
12523 /*
12524 * Special case software events and allow them to be part of
12525 * any hardware group.
12526 */
12527 pmu = event->pmu;
12528
12529 if (attr.use_clockid) {
12530 err = perf_event_set_clock(event, attr.clockid);
12531 if (err)
12532 goto err_alloc;
12533 }
12534
12535 if (pmu->task_ctx_nr == perf_sw_context)
12536 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12537
12538 if (task) {
12539 err = down_read_interruptible(&task->signal->exec_update_lock);
12540 if (err)
12541 goto err_alloc;
12542
12543 /*
12544 * We must hold exec_update_lock across this and any potential
12545 * perf_install_in_context() call for this new event to
12546 * serialize against exec() altering our credentials (and the
12547 * perf_event_exit_task() that could imply).
12548 */
12549 err = -EACCES;
12550 if (!perf_check_permission(&attr, task))
12551 goto err_cred;
12552 }
12553
12554 /*
12555 * Get the target context (task or percpu):
12556 */
12557 ctx = find_get_context(task, event);
12558 if (IS_ERR(ctx)) {
12559 err = PTR_ERR(ctx);
12560 goto err_cred;
12561 }
12562
12563 mutex_lock(&ctx->mutex);
12564
12565 if (ctx->task == TASK_TOMBSTONE) {
12566 err = -ESRCH;
12567 goto err_locked;
12568 }
12569
12570 if (!task) {
12571 /*
12572 * Check if the @cpu we're creating an event for is online.
12573 *
12574 * We use the perf_cpu_context::ctx::mutex to serialize against
12575 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12576 */
12577 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12578
12579 if (!cpuctx->online) {
12580 err = -ENODEV;
12581 goto err_locked;
12582 }
12583 }
12584
12585 if (group_leader) {
12586 err = -EINVAL;
12587
12588 /*
12589 * Do not allow a recursive hierarchy (this new sibling
12590 * becoming part of another group-sibling):
12591 */
12592 if (group_leader->group_leader != group_leader)
12593 goto err_locked;
12594
12595 /* All events in a group should have the same clock */
12596 if (group_leader->clock != event->clock)
12597 goto err_locked;
12598
12599 /*
12600 * Make sure we're both events for the same CPU;
12601 * grouping events for different CPUs is broken; since
12602 * you can never concurrently schedule them anyhow.
12603 */
12604 if (group_leader->cpu != event->cpu)
12605 goto err_locked;
12606
12607 /*
12608 * Make sure we're both on the same context; either task or cpu.
12609 */
12610 if (group_leader->ctx != ctx)
12611 goto err_locked;
12612
12613 /*
12614 * Only a group leader can be exclusive or pinned
12615 */
12616 if (attr.exclusive || attr.pinned)
12617 goto err_locked;
12618
12619 if (is_software_event(event) &&
12620 !in_software_context(group_leader)) {
12621 /*
12622 * If the event is a sw event, but the group_leader
12623 * is on hw context.
12624 *
12625 * Allow the addition of software events to hw
12626 * groups, this is safe because software events
12627 * never fail to schedule.
12628 *
12629 * Note the comment that goes with struct
12630 * perf_event_pmu_context.
12631 */
12632 pmu = group_leader->pmu_ctx->pmu;
12633 } else if (!is_software_event(event)) {
12634 if (is_software_event(group_leader) &&
12635 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12636 /*
12637 * In case the group is a pure software group, and we
12638 * try to add a hardware event, move the whole group to
12639 * the hardware context.
12640 */
12641 move_group = 1;
12642 }
12643
12644 /* Don't allow group of multiple hw events from different pmus */
12645 if (!in_software_context(group_leader) &&
12646 group_leader->pmu_ctx->pmu != pmu)
12647 goto err_locked;
12648 }
12649 }
12650
12651 /*
12652 * Now that we're certain of the pmu; find the pmu_ctx.
12653 */
12654 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12655 if (IS_ERR(pmu_ctx)) {
12656 err = PTR_ERR(pmu_ctx);
12657 goto err_locked;
12658 }
12659 event->pmu_ctx = pmu_ctx;
12660
12661 if (output_event) {
12662 err = perf_event_set_output(event, output_event);
12663 if (err)
12664 goto err_context;
12665 }
12666
12667 if (!perf_event_validate_size(event)) {
12668 err = -E2BIG;
12669 goto err_context;
12670 }
12671
12672 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12673 err = -EINVAL;
12674 goto err_context;
12675 }
12676
12677 /*
12678 * Must be under the same ctx::mutex as perf_install_in_context(),
12679 * because we need to serialize with concurrent event creation.
12680 */
12681 if (!exclusive_event_installable(event, ctx)) {
12682 err = -EBUSY;
12683 goto err_context;
12684 }
12685
12686 WARN_ON_ONCE(ctx->parent_ctx);
12687
12688 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12689 if (IS_ERR(event_file)) {
12690 err = PTR_ERR(event_file);
12691 event_file = NULL;
12692 goto err_context;
12693 }
12694
12695 /*
12696 * This is the point on no return; we cannot fail hereafter. This is
12697 * where we start modifying current state.
12698 */
12699
12700 if (move_group) {
12701 perf_remove_from_context(group_leader, 0);
12702 put_pmu_ctx(group_leader->pmu_ctx);
12703
12704 for_each_sibling_event(sibling, group_leader) {
12705 perf_remove_from_context(sibling, 0);
12706 put_pmu_ctx(sibling->pmu_ctx);
12707 }
12708
12709 /*
12710 * Install the group siblings before the group leader.
12711 *
12712 * Because a group leader will try and install the entire group
12713 * (through the sibling list, which is still in-tact), we can
12714 * end up with siblings installed in the wrong context.
12715 *
12716 * By installing siblings first we NO-OP because they're not
12717 * reachable through the group lists.
12718 */
12719 for_each_sibling_event(sibling, group_leader) {
12720 sibling->pmu_ctx = pmu_ctx;
12721 get_pmu_ctx(pmu_ctx);
12722 perf_event__state_init(sibling);
12723 perf_install_in_context(ctx, sibling, sibling->cpu);
12724 }
12725
12726 /*
12727 * Removing from the context ends up with disabled
12728 * event. What we want here is event in the initial
12729 * startup state, ready to be add into new context.
12730 */
12731 group_leader->pmu_ctx = pmu_ctx;
12732 get_pmu_ctx(pmu_ctx);
12733 perf_event__state_init(group_leader);
12734 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12735 }
12736
12737 /*
12738 * Precalculate sample_data sizes; do while holding ctx::mutex such
12739 * that we're serialized against further additions and before
12740 * perf_install_in_context() which is the point the event is active and
12741 * can use these values.
12742 */
12743 perf_event__header_size(event);
12744 perf_event__id_header_size(event);
12745
12746 event->owner = current;
12747
12748 perf_install_in_context(ctx, event, event->cpu);
12749 perf_unpin_context(ctx);
12750
12751 mutex_unlock(&ctx->mutex);
12752
12753 if (task) {
12754 up_read(&task->signal->exec_update_lock);
12755 put_task_struct(task);
12756 }
12757
12758 mutex_lock(¤t->perf_event_mutex);
12759 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
12760 mutex_unlock(¤t->perf_event_mutex);
12761
12762 /*
12763 * Drop the reference on the group_event after placing the
12764 * new event on the sibling_list. This ensures destruction
12765 * of the group leader will find the pointer to itself in
12766 * perf_group_detach().
12767 */
12768 fdput(group);
12769 fd_install(event_fd, event_file);
12770 return event_fd;
12771
12772 err_context:
12773 put_pmu_ctx(event->pmu_ctx);
12774 event->pmu_ctx = NULL; /* _free_event() */
12775 err_locked:
12776 mutex_unlock(&ctx->mutex);
12777 perf_unpin_context(ctx);
12778 put_ctx(ctx);
12779 err_cred:
12780 if (task)
12781 up_read(&task->signal->exec_update_lock);
12782 err_alloc:
12783 free_event(event);
12784 err_task:
12785 if (task)
12786 put_task_struct(task);
12787 err_group_fd:
12788 fdput(group);
12789 err_fd:
12790 put_unused_fd(event_fd);
12791 return err;
12792 }
12793
12794 /**
12795 * perf_event_create_kernel_counter
12796 *
12797 * @attr: attributes of the counter to create
12798 * @cpu: cpu in which the counter is bound
12799 * @task: task to profile (NULL for percpu)
12800 * @overflow_handler: callback to trigger when we hit the event
12801 * @context: context data could be used in overflow_handler callback
12802 */
12803 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)12804 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12805 struct task_struct *task,
12806 perf_overflow_handler_t overflow_handler,
12807 void *context)
12808 {
12809 struct perf_event_pmu_context *pmu_ctx;
12810 struct perf_event_context *ctx;
12811 struct perf_event *event;
12812 struct pmu *pmu;
12813 int err;
12814
12815 /*
12816 * Grouping is not supported for kernel events, neither is 'AUX',
12817 * make sure the caller's intentions are adjusted.
12818 */
12819 if (attr->aux_output)
12820 return ERR_PTR(-EINVAL);
12821
12822 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12823 overflow_handler, context, -1);
12824 if (IS_ERR(event)) {
12825 err = PTR_ERR(event);
12826 goto err;
12827 }
12828
12829 /* Mark owner so we could distinguish it from user events. */
12830 event->owner = TASK_TOMBSTONE;
12831 pmu = event->pmu;
12832
12833 if (pmu->task_ctx_nr == perf_sw_context)
12834 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12835
12836 /*
12837 * Get the target context (task or percpu):
12838 */
12839 ctx = find_get_context(task, event);
12840 if (IS_ERR(ctx)) {
12841 err = PTR_ERR(ctx);
12842 goto err_alloc;
12843 }
12844
12845 WARN_ON_ONCE(ctx->parent_ctx);
12846 mutex_lock(&ctx->mutex);
12847 if (ctx->task == TASK_TOMBSTONE) {
12848 err = -ESRCH;
12849 goto err_unlock;
12850 }
12851
12852 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12853 if (IS_ERR(pmu_ctx)) {
12854 err = PTR_ERR(pmu_ctx);
12855 goto err_unlock;
12856 }
12857 event->pmu_ctx = pmu_ctx;
12858
12859 if (!task) {
12860 /*
12861 * Check if the @cpu we're creating an event for is online.
12862 *
12863 * We use the perf_cpu_context::ctx::mutex to serialize against
12864 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12865 */
12866 struct perf_cpu_context *cpuctx =
12867 container_of(ctx, struct perf_cpu_context, ctx);
12868 if (!cpuctx->online) {
12869 err = -ENODEV;
12870 goto err_pmu_ctx;
12871 }
12872 }
12873
12874 if (!exclusive_event_installable(event, ctx)) {
12875 err = -EBUSY;
12876 goto err_pmu_ctx;
12877 }
12878
12879 perf_install_in_context(ctx, event, event->cpu);
12880 perf_unpin_context(ctx);
12881 mutex_unlock(&ctx->mutex);
12882
12883 return event;
12884
12885 err_pmu_ctx:
12886 put_pmu_ctx(pmu_ctx);
12887 event->pmu_ctx = NULL; /* _free_event() */
12888 err_unlock:
12889 mutex_unlock(&ctx->mutex);
12890 perf_unpin_context(ctx);
12891 put_ctx(ctx);
12892 err_alloc:
12893 free_event(event);
12894 err:
12895 return ERR_PTR(err);
12896 }
12897 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12898
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)12899 static void __perf_pmu_remove(struct perf_event_context *ctx,
12900 int cpu, struct pmu *pmu,
12901 struct perf_event_groups *groups,
12902 struct list_head *events)
12903 {
12904 struct perf_event *event, *sibling;
12905
12906 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12907 perf_remove_from_context(event, 0);
12908 put_pmu_ctx(event->pmu_ctx);
12909 list_add(&event->migrate_entry, events);
12910
12911 for_each_sibling_event(sibling, event) {
12912 perf_remove_from_context(sibling, 0);
12913 put_pmu_ctx(sibling->pmu_ctx);
12914 list_add(&sibling->migrate_entry, events);
12915 }
12916 }
12917 }
12918
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)12919 static void __perf_pmu_install_event(struct pmu *pmu,
12920 struct perf_event_context *ctx,
12921 int cpu, struct perf_event *event)
12922 {
12923 struct perf_event_pmu_context *epc;
12924 struct perf_event_context *old_ctx = event->ctx;
12925
12926 get_ctx(ctx); /* normally find_get_context() */
12927
12928 event->cpu = cpu;
12929 epc = find_get_pmu_context(pmu, ctx, event);
12930 event->pmu_ctx = epc;
12931
12932 if (event->state >= PERF_EVENT_STATE_OFF)
12933 event->state = PERF_EVENT_STATE_INACTIVE;
12934 perf_install_in_context(ctx, event, cpu);
12935
12936 /*
12937 * Now that event->ctx is updated and visible, put the old ctx.
12938 */
12939 put_ctx(old_ctx);
12940 }
12941
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)12942 static void __perf_pmu_install(struct perf_event_context *ctx,
12943 int cpu, struct pmu *pmu, struct list_head *events)
12944 {
12945 struct perf_event *event, *tmp;
12946
12947 /*
12948 * Re-instate events in 2 passes.
12949 *
12950 * Skip over group leaders and only install siblings on this first
12951 * pass, siblings will not get enabled without a leader, however a
12952 * leader will enable its siblings, even if those are still on the old
12953 * context.
12954 */
12955 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12956 if (event->group_leader == event)
12957 continue;
12958
12959 list_del(&event->migrate_entry);
12960 __perf_pmu_install_event(pmu, ctx, cpu, event);
12961 }
12962
12963 /*
12964 * Once all the siblings are setup properly, install the group leaders
12965 * to make it go.
12966 */
12967 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12968 list_del(&event->migrate_entry);
12969 __perf_pmu_install_event(pmu, ctx, cpu, event);
12970 }
12971 }
12972
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)12973 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12974 {
12975 struct perf_event_context *src_ctx, *dst_ctx;
12976 LIST_HEAD(events);
12977
12978 /*
12979 * Since per-cpu context is persistent, no need to grab an extra
12980 * reference.
12981 */
12982 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
12983 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
12984
12985 /*
12986 * See perf_event_ctx_lock() for comments on the details
12987 * of swizzling perf_event::ctx.
12988 */
12989 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12990
12991 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
12992 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
12993
12994 if (!list_empty(&events)) {
12995 /*
12996 * Wait for the events to quiesce before re-instating them.
12997 */
12998 synchronize_rcu();
12999
13000 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13001 }
13002
13003 mutex_unlock(&dst_ctx->mutex);
13004 mutex_unlock(&src_ctx->mutex);
13005 }
13006 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13007
sync_child_event(struct perf_event * child_event)13008 static void sync_child_event(struct perf_event *child_event)
13009 {
13010 struct perf_event *parent_event = child_event->parent;
13011 u64 child_val;
13012
13013 if (child_event->attr.inherit_stat) {
13014 struct task_struct *task = child_event->ctx->task;
13015
13016 if (task && task != TASK_TOMBSTONE)
13017 perf_event_read_event(child_event, task);
13018 }
13019
13020 child_val = perf_event_count(child_event);
13021
13022 /*
13023 * Add back the child's count to the parent's count:
13024 */
13025 atomic64_add(child_val, &parent_event->child_count);
13026 atomic64_add(child_event->total_time_enabled,
13027 &parent_event->child_total_time_enabled);
13028 atomic64_add(child_event->total_time_running,
13029 &parent_event->child_total_time_running);
13030 }
13031
13032 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx)13033 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13034 {
13035 struct perf_event *parent_event = event->parent;
13036 unsigned long detach_flags = 0;
13037
13038 if (parent_event) {
13039 /*
13040 * Do not destroy the 'original' grouping; because of the
13041 * context switch optimization the original events could've
13042 * ended up in a random child task.
13043 *
13044 * If we were to destroy the original group, all group related
13045 * operations would cease to function properly after this
13046 * random child dies.
13047 *
13048 * Do destroy all inherited groups, we don't care about those
13049 * and being thorough is better.
13050 */
13051 detach_flags = DETACH_GROUP | DETACH_CHILD;
13052 mutex_lock(&parent_event->child_mutex);
13053 }
13054
13055 perf_remove_from_context(event, detach_flags);
13056
13057 raw_spin_lock_irq(&ctx->lock);
13058 if (event->state > PERF_EVENT_STATE_EXIT)
13059 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13060 raw_spin_unlock_irq(&ctx->lock);
13061
13062 /*
13063 * Child events can be freed.
13064 */
13065 if (parent_event) {
13066 mutex_unlock(&parent_event->child_mutex);
13067 /*
13068 * Kick perf_poll() for is_event_hup();
13069 */
13070 perf_event_wakeup(parent_event);
13071 free_event(event);
13072 put_event(parent_event);
13073 return;
13074 }
13075
13076 /*
13077 * Parent events are governed by their filedesc, retain them.
13078 */
13079 perf_event_wakeup(event);
13080 }
13081
perf_event_exit_task_context(struct task_struct * child)13082 static void perf_event_exit_task_context(struct task_struct *child)
13083 {
13084 struct perf_event_context *child_ctx, *clone_ctx = NULL;
13085 struct perf_event *child_event, *next;
13086
13087 WARN_ON_ONCE(child != current);
13088
13089 child_ctx = perf_pin_task_context(child);
13090 if (!child_ctx)
13091 return;
13092
13093 /*
13094 * In order to reduce the amount of tricky in ctx tear-down, we hold
13095 * ctx::mutex over the entire thing. This serializes against almost
13096 * everything that wants to access the ctx.
13097 *
13098 * The exception is sys_perf_event_open() /
13099 * perf_event_create_kernel_count() which does find_get_context()
13100 * without ctx::mutex (it cannot because of the move_group double mutex
13101 * lock thing). See the comments in perf_install_in_context().
13102 */
13103 mutex_lock(&child_ctx->mutex);
13104
13105 /*
13106 * In a single ctx::lock section, de-schedule the events and detach the
13107 * context from the task such that we cannot ever get it scheduled back
13108 * in.
13109 */
13110 raw_spin_lock_irq(&child_ctx->lock);
13111 task_ctx_sched_out(child_ctx, EVENT_ALL);
13112
13113 /*
13114 * Now that the context is inactive, destroy the task <-> ctx relation
13115 * and mark the context dead.
13116 */
13117 RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13118 put_ctx(child_ctx); /* cannot be last */
13119 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13120 put_task_struct(current); /* cannot be last */
13121
13122 clone_ctx = unclone_ctx(child_ctx);
13123 raw_spin_unlock_irq(&child_ctx->lock);
13124
13125 if (clone_ctx)
13126 put_ctx(clone_ctx);
13127
13128 /*
13129 * Report the task dead after unscheduling the events so that we
13130 * won't get any samples after PERF_RECORD_EXIT. We can however still
13131 * get a few PERF_RECORD_READ events.
13132 */
13133 perf_event_task(child, child_ctx, 0);
13134
13135 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13136 perf_event_exit_event(child_event, child_ctx);
13137
13138 mutex_unlock(&child_ctx->mutex);
13139
13140 put_ctx(child_ctx);
13141 }
13142
13143 /*
13144 * When a child task exits, feed back event values to parent events.
13145 *
13146 * Can be called with exec_update_lock held when called from
13147 * setup_new_exec().
13148 */
perf_event_exit_task(struct task_struct * child)13149 void perf_event_exit_task(struct task_struct *child)
13150 {
13151 struct perf_event *event, *tmp;
13152
13153 mutex_lock(&child->perf_event_mutex);
13154 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13155 owner_entry) {
13156 list_del_init(&event->owner_entry);
13157
13158 /*
13159 * Ensure the list deletion is visible before we clear
13160 * the owner, closes a race against perf_release() where
13161 * we need to serialize on the owner->perf_event_mutex.
13162 */
13163 smp_store_release(&event->owner, NULL);
13164 }
13165 mutex_unlock(&child->perf_event_mutex);
13166
13167 perf_event_exit_task_context(child);
13168
13169 /*
13170 * The perf_event_exit_task_context calls perf_event_task
13171 * with child's task_ctx, which generates EXIT events for
13172 * child contexts and sets child->perf_event_ctxp[] to NULL.
13173 * At this point we need to send EXIT events to cpu contexts.
13174 */
13175 perf_event_task(child, NULL, 0);
13176 }
13177
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)13178 static void perf_free_event(struct perf_event *event,
13179 struct perf_event_context *ctx)
13180 {
13181 struct perf_event *parent = event->parent;
13182
13183 if (WARN_ON_ONCE(!parent))
13184 return;
13185
13186 mutex_lock(&parent->child_mutex);
13187 list_del_init(&event->child_list);
13188 mutex_unlock(&parent->child_mutex);
13189
13190 put_event(parent);
13191
13192 raw_spin_lock_irq(&ctx->lock);
13193 perf_group_detach(event);
13194 list_del_event(event, ctx);
13195 raw_spin_unlock_irq(&ctx->lock);
13196 free_event(event);
13197 }
13198
13199 /*
13200 * Free a context as created by inheritance by perf_event_init_task() below,
13201 * used by fork() in case of fail.
13202 *
13203 * Even though the task has never lived, the context and events have been
13204 * exposed through the child_list, so we must take care tearing it all down.
13205 */
perf_event_free_task(struct task_struct * task)13206 void perf_event_free_task(struct task_struct *task)
13207 {
13208 struct perf_event_context *ctx;
13209 struct perf_event *event, *tmp;
13210
13211 ctx = rcu_access_pointer(task->perf_event_ctxp);
13212 if (!ctx)
13213 return;
13214
13215 mutex_lock(&ctx->mutex);
13216 raw_spin_lock_irq(&ctx->lock);
13217 /*
13218 * Destroy the task <-> ctx relation and mark the context dead.
13219 *
13220 * This is important because even though the task hasn't been
13221 * exposed yet the context has been (through child_list).
13222 */
13223 RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13224 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13225 put_task_struct(task); /* cannot be last */
13226 raw_spin_unlock_irq(&ctx->lock);
13227
13228
13229 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13230 perf_free_event(event, ctx);
13231
13232 mutex_unlock(&ctx->mutex);
13233
13234 /*
13235 * perf_event_release_kernel() could've stolen some of our
13236 * child events and still have them on its free_list. In that
13237 * case we must wait for these events to have been freed (in
13238 * particular all their references to this task must've been
13239 * dropped).
13240 *
13241 * Without this copy_process() will unconditionally free this
13242 * task (irrespective of its reference count) and
13243 * _free_event()'s put_task_struct(event->hw.target) will be a
13244 * use-after-free.
13245 *
13246 * Wait for all events to drop their context reference.
13247 */
13248 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13249 put_ctx(ctx); /* must be last */
13250 }
13251
perf_event_delayed_put(struct task_struct * task)13252 void perf_event_delayed_put(struct task_struct *task)
13253 {
13254 WARN_ON_ONCE(task->perf_event_ctxp);
13255 }
13256
perf_event_get(unsigned int fd)13257 struct file *perf_event_get(unsigned int fd)
13258 {
13259 struct file *file = fget(fd);
13260 if (!file)
13261 return ERR_PTR(-EBADF);
13262
13263 if (file->f_op != &perf_fops) {
13264 fput(file);
13265 return ERR_PTR(-EBADF);
13266 }
13267
13268 return file;
13269 }
13270
perf_get_event(struct file * file)13271 const struct perf_event *perf_get_event(struct file *file)
13272 {
13273 if (file->f_op != &perf_fops)
13274 return ERR_PTR(-EINVAL);
13275
13276 return file->private_data;
13277 }
13278
perf_event_attrs(struct perf_event * event)13279 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13280 {
13281 if (!event)
13282 return ERR_PTR(-EINVAL);
13283
13284 return &event->attr;
13285 }
13286
13287 /*
13288 * Inherit an event from parent task to child task.
13289 *
13290 * Returns:
13291 * - valid pointer on success
13292 * - NULL for orphaned events
13293 * - IS_ERR() on error
13294 */
13295 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)13296 inherit_event(struct perf_event *parent_event,
13297 struct task_struct *parent,
13298 struct perf_event_context *parent_ctx,
13299 struct task_struct *child,
13300 struct perf_event *group_leader,
13301 struct perf_event_context *child_ctx)
13302 {
13303 enum perf_event_state parent_state = parent_event->state;
13304 struct perf_event_pmu_context *pmu_ctx;
13305 struct perf_event *child_event;
13306 unsigned long flags;
13307
13308 /*
13309 * Instead of creating recursive hierarchies of events,
13310 * we link inherited events back to the original parent,
13311 * which has a filp for sure, which we use as the reference
13312 * count:
13313 */
13314 if (parent_event->parent)
13315 parent_event = parent_event->parent;
13316
13317 child_event = perf_event_alloc(&parent_event->attr,
13318 parent_event->cpu,
13319 child,
13320 group_leader, parent_event,
13321 NULL, NULL, -1);
13322 if (IS_ERR(child_event))
13323 return child_event;
13324
13325 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13326 if (IS_ERR(pmu_ctx)) {
13327 free_event(child_event);
13328 return ERR_CAST(pmu_ctx);
13329 }
13330 child_event->pmu_ctx = pmu_ctx;
13331
13332 /*
13333 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13334 * must be under the same lock in order to serialize against
13335 * perf_event_release_kernel(), such that either we must observe
13336 * is_orphaned_event() or they will observe us on the child_list.
13337 */
13338 mutex_lock(&parent_event->child_mutex);
13339 if (is_orphaned_event(parent_event) ||
13340 !atomic_long_inc_not_zero(&parent_event->refcount)) {
13341 mutex_unlock(&parent_event->child_mutex);
13342 /* task_ctx_data is freed with child_ctx */
13343 free_event(child_event);
13344 return NULL;
13345 }
13346
13347 get_ctx(child_ctx);
13348
13349 /*
13350 * Make the child state follow the state of the parent event,
13351 * not its attr.disabled bit. We hold the parent's mutex,
13352 * so we won't race with perf_event_{en, dis}able_family.
13353 */
13354 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13355 child_event->state = PERF_EVENT_STATE_INACTIVE;
13356 else
13357 child_event->state = PERF_EVENT_STATE_OFF;
13358
13359 if (parent_event->attr.freq) {
13360 u64 sample_period = parent_event->hw.sample_period;
13361 struct hw_perf_event *hwc = &child_event->hw;
13362
13363 hwc->sample_period = sample_period;
13364 hwc->last_period = sample_period;
13365
13366 local64_set(&hwc->period_left, sample_period);
13367 }
13368
13369 child_event->ctx = child_ctx;
13370 child_event->overflow_handler = parent_event->overflow_handler;
13371 child_event->overflow_handler_context
13372 = parent_event->overflow_handler_context;
13373
13374 /*
13375 * Precalculate sample_data sizes
13376 */
13377 perf_event__header_size(child_event);
13378 perf_event__id_header_size(child_event);
13379
13380 /*
13381 * Link it up in the child's context:
13382 */
13383 raw_spin_lock_irqsave(&child_ctx->lock, flags);
13384 add_event_to_ctx(child_event, child_ctx);
13385 child_event->attach_state |= PERF_ATTACH_CHILD;
13386 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13387
13388 /*
13389 * Link this into the parent event's child list
13390 */
13391 list_add_tail(&child_event->child_list, &parent_event->child_list);
13392 mutex_unlock(&parent_event->child_mutex);
13393
13394 return child_event;
13395 }
13396
13397 /*
13398 * Inherits an event group.
13399 *
13400 * This will quietly suppress orphaned events; !inherit_event() is not an error.
13401 * This matches with perf_event_release_kernel() removing all child events.
13402 *
13403 * Returns:
13404 * - 0 on success
13405 * - <0 on error
13406 */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)13407 static int inherit_group(struct perf_event *parent_event,
13408 struct task_struct *parent,
13409 struct perf_event_context *parent_ctx,
13410 struct task_struct *child,
13411 struct perf_event_context *child_ctx)
13412 {
13413 struct perf_event *leader;
13414 struct perf_event *sub;
13415 struct perf_event *child_ctr;
13416
13417 leader = inherit_event(parent_event, parent, parent_ctx,
13418 child, NULL, child_ctx);
13419 if (IS_ERR(leader))
13420 return PTR_ERR(leader);
13421 /*
13422 * @leader can be NULL here because of is_orphaned_event(). In this
13423 * case inherit_event() will create individual events, similar to what
13424 * perf_group_detach() would do anyway.
13425 */
13426 for_each_sibling_event(sub, parent_event) {
13427 child_ctr = inherit_event(sub, parent, parent_ctx,
13428 child, leader, child_ctx);
13429 if (IS_ERR(child_ctr))
13430 return PTR_ERR(child_ctr);
13431
13432 if (sub->aux_event == parent_event && child_ctr &&
13433 !perf_get_aux_event(child_ctr, leader))
13434 return -EINVAL;
13435 }
13436 if (leader)
13437 leader->group_generation = parent_event->group_generation;
13438 return 0;
13439 }
13440
13441 /*
13442 * Creates the child task context and tries to inherit the event-group.
13443 *
13444 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13445 * inherited_all set when we 'fail' to inherit an orphaned event; this is
13446 * consistent with perf_event_release_kernel() removing all child events.
13447 *
13448 * Returns:
13449 * - 0 on success
13450 * - <0 on error
13451 */
13452 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)13453 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13454 struct perf_event_context *parent_ctx,
13455 struct task_struct *child,
13456 u64 clone_flags, int *inherited_all)
13457 {
13458 struct perf_event_context *child_ctx;
13459 int ret;
13460
13461 if (!event->attr.inherit ||
13462 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13463 /* Do not inherit if sigtrap and signal handlers were cleared. */
13464 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13465 *inherited_all = 0;
13466 return 0;
13467 }
13468
13469 child_ctx = child->perf_event_ctxp;
13470 if (!child_ctx) {
13471 /*
13472 * This is executed from the parent task context, so
13473 * inherit events that have been marked for cloning.
13474 * First allocate and initialize a context for the
13475 * child.
13476 */
13477 child_ctx = alloc_perf_context(child);
13478 if (!child_ctx)
13479 return -ENOMEM;
13480
13481 child->perf_event_ctxp = child_ctx;
13482 }
13483
13484 ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13485 if (ret)
13486 *inherited_all = 0;
13487
13488 return ret;
13489 }
13490
13491 /*
13492 * Initialize the perf_event context in task_struct
13493 */
perf_event_init_context(struct task_struct * child,u64 clone_flags)13494 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13495 {
13496 struct perf_event_context *child_ctx, *parent_ctx;
13497 struct perf_event_context *cloned_ctx;
13498 struct perf_event *event;
13499 struct task_struct *parent = current;
13500 int inherited_all = 1;
13501 unsigned long flags;
13502 int ret = 0;
13503
13504 if (likely(!parent->perf_event_ctxp))
13505 return 0;
13506
13507 /*
13508 * If the parent's context is a clone, pin it so it won't get
13509 * swapped under us.
13510 */
13511 parent_ctx = perf_pin_task_context(parent);
13512 if (!parent_ctx)
13513 return 0;
13514
13515 /*
13516 * No need to check if parent_ctx != NULL here; since we saw
13517 * it non-NULL earlier, the only reason for it to become NULL
13518 * is if we exit, and since we're currently in the middle of
13519 * a fork we can't be exiting at the same time.
13520 */
13521
13522 /*
13523 * Lock the parent list. No need to lock the child - not PID
13524 * hashed yet and not running, so nobody can access it.
13525 */
13526 mutex_lock(&parent_ctx->mutex);
13527
13528 /*
13529 * We dont have to disable NMIs - we are only looking at
13530 * the list, not manipulating it:
13531 */
13532 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13533 ret = inherit_task_group(event, parent, parent_ctx,
13534 child, clone_flags, &inherited_all);
13535 if (ret)
13536 goto out_unlock;
13537 }
13538
13539 /*
13540 * We can't hold ctx->lock when iterating the ->flexible_group list due
13541 * to allocations, but we need to prevent rotation because
13542 * rotate_ctx() will change the list from interrupt context.
13543 */
13544 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13545 parent_ctx->rotate_disable = 1;
13546 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13547
13548 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13549 ret = inherit_task_group(event, parent, parent_ctx,
13550 child, clone_flags, &inherited_all);
13551 if (ret)
13552 goto out_unlock;
13553 }
13554
13555 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13556 parent_ctx->rotate_disable = 0;
13557
13558 child_ctx = child->perf_event_ctxp;
13559
13560 if (child_ctx && inherited_all) {
13561 /*
13562 * Mark the child context as a clone of the parent
13563 * context, or of whatever the parent is a clone of.
13564 *
13565 * Note that if the parent is a clone, the holding of
13566 * parent_ctx->lock avoids it from being uncloned.
13567 */
13568 cloned_ctx = parent_ctx->parent_ctx;
13569 if (cloned_ctx) {
13570 child_ctx->parent_ctx = cloned_ctx;
13571 child_ctx->parent_gen = parent_ctx->parent_gen;
13572 } else {
13573 child_ctx->parent_ctx = parent_ctx;
13574 child_ctx->parent_gen = parent_ctx->generation;
13575 }
13576 get_ctx(child_ctx->parent_ctx);
13577 }
13578
13579 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13580 out_unlock:
13581 mutex_unlock(&parent_ctx->mutex);
13582
13583 perf_unpin_context(parent_ctx);
13584 put_ctx(parent_ctx);
13585
13586 return ret;
13587 }
13588
13589 /*
13590 * Initialize the perf_event context in task_struct
13591 */
perf_event_init_task(struct task_struct * child,u64 clone_flags)13592 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13593 {
13594 int ret;
13595
13596 child->perf_event_ctxp = NULL;
13597 mutex_init(&child->perf_event_mutex);
13598 INIT_LIST_HEAD(&child->perf_event_list);
13599
13600 ret = perf_event_init_context(child, clone_flags);
13601 if (ret) {
13602 perf_event_free_task(child);
13603 return ret;
13604 }
13605
13606 return 0;
13607 }
13608
perf_event_init_all_cpus(void)13609 static void __init perf_event_init_all_cpus(void)
13610 {
13611 struct swevent_htable *swhash;
13612 struct perf_cpu_context *cpuctx;
13613 int cpu;
13614
13615 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13616
13617 for_each_possible_cpu(cpu) {
13618 swhash = &per_cpu(swevent_htable, cpu);
13619 mutex_init(&swhash->hlist_mutex);
13620
13621 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13622 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13623
13624 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13625
13626 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13627 __perf_event_init_context(&cpuctx->ctx);
13628 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13629 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13630 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13631 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13632 cpuctx->heap = cpuctx->heap_default;
13633 }
13634 }
13635
perf_swevent_init_cpu(unsigned int cpu)13636 static void perf_swevent_init_cpu(unsigned int cpu)
13637 {
13638 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13639
13640 mutex_lock(&swhash->hlist_mutex);
13641 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13642 struct swevent_hlist *hlist;
13643
13644 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13645 WARN_ON(!hlist);
13646 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13647 }
13648 mutex_unlock(&swhash->hlist_mutex);
13649 }
13650
13651 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)13652 static void __perf_event_exit_context(void *__info)
13653 {
13654 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13655 struct perf_event_context *ctx = __info;
13656 struct perf_event *event;
13657
13658 raw_spin_lock(&ctx->lock);
13659 ctx_sched_out(ctx, EVENT_TIME);
13660 list_for_each_entry(event, &ctx->event_list, event_entry)
13661 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13662 raw_spin_unlock(&ctx->lock);
13663 }
13664
perf_event_exit_cpu_context(int cpu)13665 static void perf_event_exit_cpu_context(int cpu)
13666 {
13667 struct perf_cpu_context *cpuctx;
13668 struct perf_event_context *ctx;
13669
13670 // XXX simplify cpuctx->online
13671 mutex_lock(&pmus_lock);
13672 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13673 ctx = &cpuctx->ctx;
13674
13675 mutex_lock(&ctx->mutex);
13676 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13677 cpuctx->online = 0;
13678 mutex_unlock(&ctx->mutex);
13679 cpumask_clear_cpu(cpu, perf_online_mask);
13680 mutex_unlock(&pmus_lock);
13681 }
13682 #else
13683
perf_event_exit_cpu_context(int cpu)13684 static void perf_event_exit_cpu_context(int cpu) { }
13685
13686 #endif
13687
perf_event_init_cpu(unsigned int cpu)13688 int perf_event_init_cpu(unsigned int cpu)
13689 {
13690 struct perf_cpu_context *cpuctx;
13691 struct perf_event_context *ctx;
13692
13693 perf_swevent_init_cpu(cpu);
13694
13695 mutex_lock(&pmus_lock);
13696 cpumask_set_cpu(cpu, perf_online_mask);
13697 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13698 ctx = &cpuctx->ctx;
13699
13700 mutex_lock(&ctx->mutex);
13701 cpuctx->online = 1;
13702 mutex_unlock(&ctx->mutex);
13703 mutex_unlock(&pmus_lock);
13704
13705 return 0;
13706 }
13707
perf_event_exit_cpu(unsigned int cpu)13708 int perf_event_exit_cpu(unsigned int cpu)
13709 {
13710 perf_event_exit_cpu_context(cpu);
13711 return 0;
13712 }
13713
13714 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)13715 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13716 {
13717 int cpu;
13718
13719 for_each_online_cpu(cpu)
13720 perf_event_exit_cpu(cpu);
13721
13722 return NOTIFY_OK;
13723 }
13724
13725 /*
13726 * Run the perf reboot notifier at the very last possible moment so that
13727 * the generic watchdog code runs as long as possible.
13728 */
13729 static struct notifier_block perf_reboot_notifier = {
13730 .notifier_call = perf_reboot,
13731 .priority = INT_MIN,
13732 };
13733
perf_event_init(void)13734 void __init perf_event_init(void)
13735 {
13736 int ret;
13737
13738 idr_init(&pmu_idr);
13739
13740 perf_event_init_all_cpus();
13741 init_srcu_struct(&pmus_srcu);
13742 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13743 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13744 perf_pmu_register(&perf_task_clock, "task_clock", -1);
13745 perf_tp_register();
13746 perf_event_init_cpu(smp_processor_id());
13747 register_reboot_notifier(&perf_reboot_notifier);
13748
13749 ret = init_hw_breakpoint();
13750 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13751
13752 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13753
13754 /*
13755 * Build time assertion that we keep the data_head at the intended
13756 * location. IOW, validation we got the __reserved[] size right.
13757 */
13758 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13759 != 1024);
13760 }
13761
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)13762 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13763 char *page)
13764 {
13765 struct perf_pmu_events_attr *pmu_attr =
13766 container_of(attr, struct perf_pmu_events_attr, attr);
13767
13768 if (pmu_attr->event_str)
13769 return sprintf(page, "%s\n", pmu_attr->event_str);
13770
13771 return 0;
13772 }
13773 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13774
perf_event_sysfs_init(void)13775 static int __init perf_event_sysfs_init(void)
13776 {
13777 struct pmu *pmu;
13778 int ret;
13779
13780 mutex_lock(&pmus_lock);
13781
13782 ret = bus_register(&pmu_bus);
13783 if (ret)
13784 goto unlock;
13785
13786 list_for_each_entry(pmu, &pmus, entry) {
13787 if (pmu->dev)
13788 continue;
13789
13790 ret = pmu_dev_alloc(pmu);
13791 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13792 }
13793 pmu_bus_running = 1;
13794 ret = 0;
13795
13796 unlock:
13797 mutex_unlock(&pmus_lock);
13798
13799 return ret;
13800 }
13801 device_initcall(perf_event_sysfs_init);
13802
13803 #ifdef CONFIG_CGROUP_PERF
13804 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)13805 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13806 {
13807 struct perf_cgroup *jc;
13808
13809 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13810 if (!jc)
13811 return ERR_PTR(-ENOMEM);
13812
13813 jc->info = alloc_percpu(struct perf_cgroup_info);
13814 if (!jc->info) {
13815 kfree(jc);
13816 return ERR_PTR(-ENOMEM);
13817 }
13818
13819 return &jc->css;
13820 }
13821
perf_cgroup_css_free(struct cgroup_subsys_state * css)13822 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13823 {
13824 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13825
13826 free_percpu(jc->info);
13827 kfree(jc);
13828 }
13829
perf_cgroup_css_online(struct cgroup_subsys_state * css)13830 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13831 {
13832 perf_event_cgroup(css->cgroup);
13833 return 0;
13834 }
13835
__perf_cgroup_move(void * info)13836 static int __perf_cgroup_move(void *info)
13837 {
13838 struct task_struct *task = info;
13839
13840 preempt_disable();
13841 perf_cgroup_switch(task);
13842 preempt_enable();
13843
13844 return 0;
13845 }
13846
perf_cgroup_attach(struct cgroup_taskset * tset)13847 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13848 {
13849 struct task_struct *task;
13850 struct cgroup_subsys_state *css;
13851
13852 cgroup_taskset_for_each(task, css, tset)
13853 task_function_call(task, __perf_cgroup_move, task);
13854 }
13855
13856 struct cgroup_subsys perf_event_cgrp_subsys = {
13857 .css_alloc = perf_cgroup_css_alloc,
13858 .css_free = perf_cgroup_css_free,
13859 .css_online = perf_cgroup_css_online,
13860 .attach = perf_cgroup_attach,
13861 /*
13862 * Implicitly enable on dfl hierarchy so that perf events can
13863 * always be filtered by cgroup2 path as long as perf_event
13864 * controller is not mounted on a legacy hierarchy.
13865 */
13866 .implicit_on_dfl = true,
13867 .threaded = true,
13868 };
13869 #endif /* CONFIG_CGROUP_PERF */
13870
13871 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13872