1 /*
2  * Performance events ring-buffer code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/perf_event.h>
13 #include <linux/vmalloc.h>
14 #include <linux/slab.h>
15 
16 #include "internal.h"
17 
perf_output_space(struct ring_buffer * rb,unsigned long tail,unsigned long offset,unsigned long head)18 static bool perf_output_space(struct ring_buffer *rb, unsigned long tail,
19 			      unsigned long offset, unsigned long head)
20 {
21 	unsigned long mask;
22 
23 	if (!rb->writable)
24 		return true;
25 
26 	mask = perf_data_size(rb) - 1;
27 
28 	offset = (offset - tail) & mask;
29 	head   = (head   - tail) & mask;
30 
31 	if ((int)(head - offset) < 0)
32 		return false;
33 
34 	return true;
35 }
36 
perf_output_wakeup(struct perf_output_handle * handle)37 static void perf_output_wakeup(struct perf_output_handle *handle)
38 {
39 	atomic_set(&handle->rb->poll, POLL_IN);
40 
41 	handle->event->pending_wakeup = 1;
42 	irq_work_queue(&handle->event->pending);
43 }
44 
45 /*
46  * We need to ensure a later event_id doesn't publish a head when a former
47  * event isn't done writing. However since we need to deal with NMIs we
48  * cannot fully serialize things.
49  *
50  * We only publish the head (and generate a wakeup) when the outer-most
51  * event completes.
52  */
perf_output_get_handle(struct perf_output_handle * handle)53 static void perf_output_get_handle(struct perf_output_handle *handle)
54 {
55 	struct ring_buffer *rb = handle->rb;
56 
57 	preempt_disable();
58 	local_inc(&rb->nest);
59 	handle->wakeup = local_read(&rb->wakeup);
60 }
61 
perf_output_put_handle(struct perf_output_handle * handle)62 static void perf_output_put_handle(struct perf_output_handle *handle)
63 {
64 	struct ring_buffer *rb = handle->rb;
65 	unsigned long head;
66 
67 again:
68 	head = local_read(&rb->head);
69 
70 	/*
71 	 * IRQ/NMI can happen here, which means we can miss a head update.
72 	 */
73 
74 	if (!local_dec_and_test(&rb->nest))
75 		goto out;
76 
77 	/*
78 	 * Since the mmap() consumer (userspace) can run on a different CPU:
79 	 *
80 	 *   kernel				user
81 	 *
82 	 *   READ ->data_tail			READ ->data_head
83 	 *   smp_mb()	(A)			smp_rmb()	(C)
84 	 *   WRITE $data			READ $data
85 	 *   smp_wmb()	(B)			smp_mb()	(D)
86 	 *   STORE ->data_head			WRITE ->data_tail
87 	 *
88 	 * Where A pairs with D, and B pairs with C.
89 	 *
90 	 * I don't think A needs to be a full barrier because we won't in fact
91 	 * write data until we see the store from userspace. So we simply don't
92 	 * issue the data WRITE until we observe it. Be conservative for now.
93 	 *
94 	 * OTOH, D needs to be a full barrier since it separates the data READ
95 	 * from the tail WRITE.
96 	 *
97 	 * For B a WMB is sufficient since it separates two WRITEs, and for C
98 	 * an RMB is sufficient since it separates two READs.
99 	 *
100 	 * See perf_output_begin().
101 	 */
102 	smp_wmb();
103 	rb->user_page->data_head = head;
104 
105 	/*
106 	 * Now check if we missed an update, rely on the (compiler)
107 	 * barrier in atomic_dec_and_test() to re-read rb->head.
108 	 */
109 	if (unlikely(head != local_read(&rb->head))) {
110 		local_inc(&rb->nest);
111 		goto again;
112 	}
113 
114 	if (handle->wakeup != local_read(&rb->wakeup))
115 		perf_output_wakeup(handle);
116 
117 out:
118 	preempt_enable();
119 }
120 
perf_output_begin(struct perf_output_handle * handle,struct perf_event * event,unsigned int size)121 int perf_output_begin(struct perf_output_handle *handle,
122 		      struct perf_event *event, unsigned int size)
123 {
124 	struct ring_buffer *rb;
125 	unsigned long tail, offset, head;
126 	int have_lost;
127 	struct perf_sample_data sample_data;
128 	struct {
129 		struct perf_event_header header;
130 		u64			 id;
131 		u64			 lost;
132 	} lost_event;
133 
134 	rcu_read_lock();
135 	/*
136 	 * For inherited events we send all the output towards the parent.
137 	 */
138 	if (event->parent)
139 		event = event->parent;
140 
141 	rb = rcu_dereference(event->rb);
142 	if (!rb)
143 		goto out;
144 
145 	handle->rb	= rb;
146 	handle->event	= event;
147 
148 	if (!rb->nr_pages)
149 		goto out;
150 
151 	have_lost = local_read(&rb->lost);
152 	if (have_lost) {
153 		lost_event.header.size = sizeof(lost_event);
154 		perf_event_header__init_id(&lost_event.header, &sample_data,
155 					   event);
156 		size += lost_event.header.size;
157 	}
158 
159 	perf_output_get_handle(handle);
160 
161 	do {
162 		/*
163 		 * Userspace could choose to issue a mb() before updating the
164 		 * tail pointer. So that all reads will be completed before the
165 		 * write is issued.
166 		 *
167 		 * See perf_output_put_handle().
168 		 */
169 		tail = ACCESS_ONCE(rb->user_page->data_tail);
170 		smp_mb();
171 		offset = head = local_read(&rb->head);
172 		head += size;
173 		if (unlikely(!perf_output_space(rb, tail, offset, head)))
174 			goto fail;
175 	} while (local_cmpxchg(&rb->head, offset, head) != offset);
176 
177 	if (head - local_read(&rb->wakeup) > rb->watermark)
178 		local_add(rb->watermark, &rb->wakeup);
179 
180 	handle->page = offset >> (PAGE_SHIFT + page_order(rb));
181 	handle->page &= rb->nr_pages - 1;
182 	handle->size = offset & ((PAGE_SIZE << page_order(rb)) - 1);
183 	handle->addr = rb->data_pages[handle->page];
184 	handle->addr += handle->size;
185 	handle->size = (PAGE_SIZE << page_order(rb)) - handle->size;
186 
187 	if (have_lost) {
188 		lost_event.header.type = PERF_RECORD_LOST;
189 		lost_event.header.misc = 0;
190 		lost_event.id          = event->id;
191 		lost_event.lost        = local_xchg(&rb->lost, 0);
192 
193 		perf_output_put(handle, lost_event);
194 		perf_event__output_id_sample(event, handle, &sample_data);
195 	}
196 
197 	return 0;
198 
199 fail:
200 	local_inc(&rb->lost);
201 	perf_output_put_handle(handle);
202 out:
203 	rcu_read_unlock();
204 
205 	return -ENOSPC;
206 }
207 
perf_output_copy(struct perf_output_handle * handle,const void * buf,unsigned int len)208 void perf_output_copy(struct perf_output_handle *handle,
209 		      const void *buf, unsigned int len)
210 {
211 	__output_copy(handle, buf, len);
212 }
213 
perf_output_end(struct perf_output_handle * handle)214 void perf_output_end(struct perf_output_handle *handle)
215 {
216 	perf_output_put_handle(handle);
217 	rcu_read_unlock();
218 }
219 
220 static void
ring_buffer_init(struct ring_buffer * rb,long watermark,int flags)221 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
222 {
223 	long max_size = perf_data_size(rb);
224 
225 	if (watermark)
226 		rb->watermark = min(max_size, watermark);
227 
228 	if (!rb->watermark)
229 		rb->watermark = max_size / 2;
230 
231 	if (flags & RING_BUFFER_WRITABLE)
232 		rb->writable = 1;
233 
234 	atomic_set(&rb->refcount, 1);
235 
236 	INIT_LIST_HEAD(&rb->event_list);
237 	spin_lock_init(&rb->event_lock);
238 }
239 
240 #ifndef CONFIG_PERF_USE_VMALLOC
241 
242 /*
243  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
244  */
245 
246 struct page *
perf_mmap_to_page(struct ring_buffer * rb,unsigned long pgoff)247 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
248 {
249 	if (pgoff > rb->nr_pages)
250 		return NULL;
251 
252 	if (pgoff == 0)
253 		return virt_to_page(rb->user_page);
254 
255 	return virt_to_page(rb->data_pages[pgoff - 1]);
256 }
257 
perf_mmap_alloc_page(int cpu)258 static void *perf_mmap_alloc_page(int cpu)
259 {
260 	struct page *page;
261 	int node;
262 
263 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
264 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
265 	if (!page)
266 		return NULL;
267 
268 	return page_address(page);
269 }
270 
rb_alloc(int nr_pages,long watermark,int cpu,int flags)271 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
272 {
273 	struct ring_buffer *rb;
274 	unsigned long size;
275 	int i;
276 
277 	size = sizeof(struct ring_buffer);
278 	size += nr_pages * sizeof(void *);
279 
280 	rb = kzalloc(size, GFP_KERNEL);
281 	if (!rb)
282 		goto fail;
283 
284 	rb->user_page = perf_mmap_alloc_page(cpu);
285 	if (!rb->user_page)
286 		goto fail_user_page;
287 
288 	for (i = 0; i < nr_pages; i++) {
289 		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
290 		if (!rb->data_pages[i])
291 			goto fail_data_pages;
292 	}
293 
294 	rb->nr_pages = nr_pages;
295 
296 	ring_buffer_init(rb, watermark, flags);
297 
298 	return rb;
299 
300 fail_data_pages:
301 	for (i--; i >= 0; i--)
302 		free_page((unsigned long)rb->data_pages[i]);
303 
304 	free_page((unsigned long)rb->user_page);
305 
306 fail_user_page:
307 	kfree(rb);
308 
309 fail:
310 	return NULL;
311 }
312 
perf_mmap_free_page(unsigned long addr)313 static void perf_mmap_free_page(unsigned long addr)
314 {
315 	struct page *page = virt_to_page((void *)addr);
316 
317 	page->mapping = NULL;
318 	__free_page(page);
319 }
320 
rb_free(struct ring_buffer * rb)321 void rb_free(struct ring_buffer *rb)
322 {
323 	int i;
324 
325 	perf_mmap_free_page((unsigned long)rb->user_page);
326 	for (i = 0; i < rb->nr_pages; i++)
327 		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
328 	kfree(rb);
329 }
330 
331 #else
332 
333 struct page *
perf_mmap_to_page(struct ring_buffer * rb,unsigned long pgoff)334 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
335 {
336 	if (pgoff > (1UL << page_order(rb)))
337 		return NULL;
338 
339 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
340 }
341 
perf_mmap_unmark_page(void * addr)342 static void perf_mmap_unmark_page(void *addr)
343 {
344 	struct page *page = vmalloc_to_page(addr);
345 
346 	page->mapping = NULL;
347 }
348 
rb_free_work(struct work_struct * work)349 static void rb_free_work(struct work_struct *work)
350 {
351 	struct ring_buffer *rb;
352 	void *base;
353 	int i, nr;
354 
355 	rb = container_of(work, struct ring_buffer, work);
356 	nr = 1 << page_order(rb);
357 
358 	base = rb->user_page;
359 	for (i = 0; i < nr + 1; i++)
360 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
361 
362 	vfree(base);
363 	kfree(rb);
364 }
365 
rb_free(struct ring_buffer * rb)366 void rb_free(struct ring_buffer *rb)
367 {
368 	schedule_work(&rb->work);
369 }
370 
rb_alloc(int nr_pages,long watermark,int cpu,int flags)371 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
372 {
373 	struct ring_buffer *rb;
374 	unsigned long size;
375 	void *all_buf;
376 
377 	size = sizeof(struct ring_buffer);
378 	size += sizeof(void *);
379 
380 	rb = kzalloc(size, GFP_KERNEL);
381 	if (!rb)
382 		goto fail;
383 
384 	INIT_WORK(&rb->work, rb_free_work);
385 
386 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
387 	if (!all_buf)
388 		goto fail_all_buf;
389 
390 	rb->user_page = all_buf;
391 	rb->data_pages[0] = all_buf + PAGE_SIZE;
392 	rb->page_order = ilog2(nr_pages);
393 	rb->nr_pages = 1;
394 
395 	ring_buffer_init(rb, watermark, flags);
396 
397 	return rb;
398 
399 fail_all_buf:
400 	kfree(rb);
401 
402 fail:
403 	return NULL;
404 }
405 
406 #endif
407